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Abstract: Employing the new nitronyl nitroxide biradical ligand biNIT-3Py-5-Ph (2-(5-phenyl-3-pyridyl)-
bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)), a 16-spin Cu-radical complex, [Cu8(biNIT-3Py-
5-Ph)4(hfac)16] 1, and three 2p-3d-4f chain complexes, {[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n

(LnIII= Gd 2, Tb 3, Dy 4; hfac = hexafluoroacetylacetonate), have been prepared and characterized.
X-ray crystallographic analysis revealed in all derivatives a common cyclic [Cu-biNIT]2 secondary
building unit in which two bi-NIT-3Py-5-Ph biradical ligands and two CuII ions are associated via the
pyridine N atoms and NO units. For complex 1, two such units assemble with four additional CuII ions
to form a discrete complex involving 16 S = 1/2 spin centers. For complexes 2–4, the [Cu-biNIT]2 units
are linked by LnIII ions via NO groups in a 1D coordination polymer. Magnetic studies show that the
coordination of the aminoxyl groups with Cu or Ln ions results in behaviors combining ferromagnetic
and antiferromagnetic interactions. No slow magnetic relaxation behavior was observed for Tb and
Dy derivatives.

Keywords: nitronyl nitroxide biradical; heterospin; crystal structure; magnetic properties

1. Introduction

A particularly promising strategy for designing molecular-exchange-coupled magnetic
materials is to combine organic radicals and paramagnetic metal ions [1–3]. Utilizing this
strategy, some appealing results have been achieved, among which are high-TC molecular-
based magnets [4,5], spin-transition-like complexes [6–10] and molecular nanomagnets,
including single-molecule magnets (SMMs) and single-chain magnets (SCMs) [11–13].
Typical paramagnetic ligands are based on stable radicals such as semiquinone deriva-
tives [14–16], nitronyl nitroxides [17–19], TCNE/TCNQ−1 [20–22], verdazyl radicals [23,24]
and triazyls [25,26]. These radical derivatives can coordinate or even bridge paramag-
netic metal ions to produce novel structures with appealing magnetic behavior, which
makes them central to developments in molecular magnetism. For example, conjugated
semiquinones are widely investigated in extended magnetic systems, i.e., magnets and
single-molecule magnets (SMMs), due to their direct exchange mechanism based on the
delocalized character of π-electrons. Slageren’s group recently reported tetraoxolene
radical-bridged dinuclear Dy/Tb complexes with improved SMM behaviors due to the
strong Ln–radical magnetic coupling [27]. Zheng’s group has reported the first family of
p-semiquinone-radical-bridged lanthanide complexes, and the DyIII analog exhibits a
two-step slow relaxation of magnetization behavior [28]. The electron acceptor TCNQ
(TCNQ = 7,7,8,8-tetracyanoquinodimethane) has been widely used as a building block by
forming a stable radical in the process of designing coordination polymers and charge-
transfer complexes with magnetic and electrical conducting properties [29–31]. Dunbar’s
group reported TCNQ-based conductive SMMs [Dy(TPMA)(µ-TCNQ)(µ-OH)](TCNQ)2·
CH3CN, which are the first TCNQ–rare-earth bifunctional molecular materials with high
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electrical conductivity [20]. Verdazyl radicals also are employed to build molecular mag-
netic materials. Train et al. have obtained a six-spin cluster [(vdpy-CH2O)2Co2Dy2ac8]
(Hac = HO2CCH3) involving verdazyl radicals that exhibit SMM behavior [32]. It should
be noted that, among all of these organic radicals, the most well-documented family of
metal–radical complexes involves nitronyl nitroxide-derived ligands (NIT-R) because of
the high stability and facile chemical modification of this radical. Metal complexes of 3d
or 4f metal ions have been studied extensively and shown to allow a remarkable diversity
of molecular architectures and appealing magnetic properties [18,33–35]. The first SCM
[Co(hfac)2(NITPhOMe)] is constructed by using a nitronyl nitroxide radical [11]. Notably, a
very large proportion of the reported nitronyl nitroxide metal complexes involve mono-
radical ligands [35–42], whereas diradicals have been much less considered. However, a
poly-NIT ligand possesses more coordination sites that can lead to unique assemblage
topologies with metal ions and provide opportunities for the construction of novel magnetic
systems. Gatteschi et al. reported a mononuclear Dy-nitronyl nitroxide biradical complex
exhibiting SMM behavior [43]. A series of high-nuclear Ln-biradical SMMs were obtained
by using a nitronyl nitroxide biradical involving a flexible pyridine group [44]. Wang et al.
have successfully constructed Ln-based SMMs using a nitronyl nitroxide triradical [45].
More recently, 2p-4f- and 2p-3d-4f-based SCMs involving nitronyl nitroxide biradicals
have been reported. Ishida and co-workers prepared a series of rare-earth chains bridged
with triplet nitroxide biradicals, and a magnetic hysteresis loop was recorded for the Tb
derivative [46]. Our group has also been working on the construction of SCMs using
biradicals. We have shown that a biradical, with a ground spin state S = 1, will help to
strengthen the spin-flip barrier (i.e., the activation energy for magnetization relaxation,
Ueff) by counteracting second-neighbor interactions between two NITs coordinated to a Ln
center that is antiferromagnetic in nature. Thus, a biradical-based nitronyl nitroxide-Cu–Dy
chain with Ueff/kB = 40 K could be achieved [47].

In the present paper, a new nitronyl nitroxide biradical ligand, namely, 2-(5-phenyl-3-
pyridyl)-bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(bi-NIT-3Py-5-Ph) (Scheme 1),
is shown to lead to a particular cyclic dimer with CuII ions that acts as a secondary
building unit (SBU) in a series of 2p-3d and 2p-3d-4f complexes. The assemblage of
two such SBUs with additional CuII ions gave a discrete 16-spin complex, [Cu8 (biNIT-3Py-
5-Ph)2(hfac)16] (1), while in the presence of LnIII ions, it led to the 1D coordination polymer
{[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2} n (Ln= Gd, 2; Tb, 3; Dy, 4). The preparation,
crystal structures and magnetic behaviors have been investigated for all complexes.

Molecules 2023, 28, x FOR PEER REVIEW 2 of 13 
 

 

reported TCNQ-based conductive SMMs [Dy(TPMA)(µ-TCNQ)(µ-
OH)](TCNQ)2·CH3CN, which are the first TCNQ–rare-earth bifunctional molecular mate-
rials with high electrical conductivity [20]. Verdazyl radicals also are employed to build 
molecular magnetic materials. Train et al. have obtained a six-spin cluster [(vdpy-
CH2O)2Co2Dy2ac8] (Hac = HO2CCH3) involving verdazyl radicals that exhibit SMM behav-
ior [32]. It should be noted that, among all of these organic radicals, the most well-docu-
mented family of metal–radical complexes involves nitronyl nitroxide-derived ligands 
(NIT-R) because of the high stability and facile chemical modification of this radical. Metal 
complexes of 3d or 4f metal ions have been studied extensively and shown to allow a 
remarkable diversity of molecular architectures and appealing magnetic properties 
[18,33–35]. The first SCM [Co(hfac)2(NITPhOMe)] is constructed by using a nitronyl ni-
troxide radical [11]. Notably, a very large proportion of the reported nitronyl nitroxide 
metal complexes involve monoradical ligands [35–42], whereas diradicals have been 
much less considered. However, a poly-NIT ligand possesses more coordination sites that 
can lead to unique assemblage topologies with metal ions and provide opportunities for 
the construction of novel magnetic systems. Gatteschi et al. reported a mononuclear Dy-
nitronyl nitroxide biradical complex exhibiting SMM behavior [43]. A series of high-nu-
clear Ln-biradical SMMs were obtained by using a nitronyl nitroxide biradical involving 
a flexible pyridine group [44]. Wang et al. have successfully constructed Ln-based SMMs 
using a nitronyl nitroxide triradical [45]. More recently, 2p-4f- and 2p-3d-4f-based SCMs 
involving nitronyl nitroxide biradicals have been reported. Ishida and co-workers pre-
pared a series of rare-earth chains bridged with triplet nitroxide biradicals, and a magnetic 
hysteresis loop was recorded for the Tb derivative [46]. Our group has also been working 
on the construction of SCMs using biradicals. We have shown that a biradical, with a 
ground spin state S = 1, will help to strengthen the spin-flip barrier (i.e., the activation 
energy for magnetization relaxation, Ueff) by counteracting second-neighbor interactions 
between two NITs coordinated to a Ln center that is antiferromagnetic in nature. Thus, a 
biradical-based nitronyl nitroxide-Cu–Dy chain with Ueff/kB = 40 K could be achieved [47]. 

In the present paper, a new nitronyl nitroxide biradical ligand, namely, 2-(5-phenyl-
3-pyridyl)-bis(4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide(bi-NIT-3Py-5-Ph) (Scheme 
1), is shown to lead to a particular cyclic dimer with CuII ions that acts as a secondary 
building unit (SBU) in a series of 2p-3d and 2p-3d-4f complexes. The assemblage of two 
such SBUs with additional CuII ions gave a discrete 16-spin complex, [Cu8 (biNIT-3Py-5-
Ph)2(hfac)16] (1), while in the presence of LnIII ions, it led to the 1D coordination polymer 
{[Ln(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2} n (Ln= Gd, 2; Tb, 3; Dy, 4). The preparation, 
crystal structures and magnetic behaviors have been investigated for all complexes. 

 
Scheme 1. bi-NIT-3Py-5-Ph radical ligand. 

  

Scheme 1. bi-NIT-3Py-5-Ph radical ligand.



Molecules 2023, 28, 2514 3 of 13

2. Results and Discussion
2.1. Spectral Properties

The IR spectras of 1–4 are shown in Figure S2. For 1, the absorption bands of the coli-
gand hfac– appear at 1252 cm−1(νC-F), 1133 cm−1 (νC-F), 670 cm−1 (δC-F), 1646 cm−1(νC=O)
and 799 cm−1(δC-O). The observed absorption peaks at 1527 cm−1 and 1368−1cm are
assigned to C=N and N–O stretching in the biradical ligand. The IR spectra of com-
plexes 2–4 are similar. The peaks at about 1252 cm−1, 1130 cm−1 (νC-F), 659 cm−1 (δC-F),
1650 cm−1(νC=O) and 798 cm−1(δC-O) are assigned to the coligand hfac–, while the peaks at
about 1510 cm−1 and 1368 cm−1 originate from C=N and N–O stretching in the biradical
ligand [35].

2.2. Description of the Crystal Structures

A structural feature common to all of the complexes is the occurrence of a cyclic [Cu-
biNIT]2 moiety that acts as a secondary building unit in the formation of complexes 1–4, as
depicted in Scheme 2. This unit results from the association of two biNIT-3Py-5-Ph ligands
linked to two CuII ions by means of one of the NO groups and the pyridine nitrogen atom.
The centrosymmetric [Cu-biNIT]2 moiety is formed even for higher CuII stoichiometry or
in the presence of other ions such as LnIII, suggesting a preferred assembly pattern between
biNIT-3Py-5-Ph and CuII.
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Scheme 2. [Cu-biNIT]2 SBU and its involvement in the formation of complexes 1 and 2–4.

The single-crystal X-ray diffraction analysis reveals that complex 1 possesses a cen-
trosymmetric structure (Figure 1) and crystallizes in the triclinic space group Pı̄. The
asymmetric unit is composed of four Cu(hfac)2 units and two biNIT-3Py-5-Ph ligands. The
two biradical ligands are coordinated to CuII ions in different ways: one acts as a tridentate
ligand in µ3-κO:κO: κN mode, and the other behaves as a tetradentate ligand in µ4-κO:κO:
κO:κN mode. Cu1 has a square-pyramidal coordination sphere, while the other three CuII

ions (Cu2, Cu3 and Cu4) adopt an elongated octahedral geometry (Figure 1 and Figure S3).
Cu1 is coordinated by five oxygen atoms from two hfac coligands and one NO group. One
Ohfac atom is located in the axial site, as evidenced by the longer Cu-Ohfac bond (2.119(4)
Å) compared to other Cu-O bond lengths (Cu-Orad: 1.985(4) Å; Cu-Ohfac: 1.912(4)–1.970(4)
Å). Both Cu2 and Cu4 have a {NO5} coordination environment. The equatorial plane
includes three Ohfac atoms and one N atom from pyridine (Cu-Ohfac: 1.939(4)–1.949(4) Å
for Cu2, 1.942(4)–1.962(4) Å for Cu4, Cu-N: 2.005(4) Å for Cu2, 2.013(4) Å for Cu4). The
axial positions are occupied by two oxygen atoms, one from a NO unit (Cu-Orad: 2.592(4) Å
for Cu2, Cu-Orad: 2.489(4) Å for Cu4) and one from an hfac group (Cu-Ohfac: 2.217(4) Å for
Cu2, Cu-Ohfac:2.261(4) Å for Cu4). The Cu-O-N angles are 144.1(4)◦for Cu2 and 129.2(3)◦for
Cu4. Cu3 is six-coordinated by four oxygen atoms from hfac groups in the equatorial
plane (Cu-Ohfac: 1.927(4)–1.936(4) Å) and by two oxygen atoms from two NO groups in the
axial positions. The latter bonds are longer (Cu-Orad: 2.464(5) and 2.50(5) Å), indicating a
Jahn–Teller effect [6,48]. The Cu-O-N angles are 141.2(4)◦and 121.37(3), respectively. In the
molecular complex, the shortest distance between Cu ions is 7.83(1) Å, and the separation
of the uncoordinated NO group is 7.18(7) Å. The crystal packing diagram of 1 is shown in
Figure S4.
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Figure 2. One-dimensional structure of 2 and coordination polyhedra of GdIII ion (fluorine and
hydrogen atoms are omitted for the sake of clarity).

Complexes 2–4 are isomorphous and display a one-dimensional structure (Figure 2
and Figures S5–S9). Therefore, only the structure of 2 is briefly described. Its asymmetric
unit incorporates a Gd(hfac)3, two Cu(hfac)2 and two biNIT-3Py-5-Ph radical ligands. The
[Cu-biNIT]2 SBU formed between biNIT-3Py-5-Ph and CuII is connected to two Gd ions
via the two NIT groups already linked to CuII. Likewise, each Ln center is linked to two
SBUs, thus developing a zig-zag chain. GdIII is eight-coordinated with two oxygen atoms
from the NO groups (Gd-Orad: 2.367(7) Å, 2.364(7) Å) and six oxygen atoms from three
chelating hfac ligands (Gd-Ohfac: 2.358(7)–2.415(7) Å). The Gd-O-N angles are 131.9(5)◦ and
134.3(6)◦, respectively. These distances compare well to those of the reported Ln(hfac)3-
nitronyl nitroxide complexes [40,49]. The coordination sphere around Gd has a distorted
triangular dodecahedron geometry (D2d), as revealed by SHAPE software [50,51] (Table 1).
Each CuII ion is six-coordinated with one nitrogen, one oxygen from a NO unit and four
oxygen atoms from hfac ligands. The equatorial Cu-Ohfac distances are between 1.930(6)
and 1.975(7) Å, and the Cu-N distance is 2.003(8) Å. The axial positions are occupied by
one oxygen atom from a NO group (Cu-Orad: 2.519(8) Å) and another from an hfac group
(Cu-Ohfac: 2.202(7) Å); these bonds are significantly longer because of the Jahn–Teller effect.
In the chain, the Cu—Cu separation in the [Cu-biNIT]2 unit is 9.77(2) Å, and the Gd—Cu
distances are 8.52(1) Å and 8.56(2) Å. For the biradical ligand, only one of the NIT connects
with metal ions. Close proximity is found between uncoordinated NO units (3.642 Å).
Earlier research has indicated that the short distance of NO—NO might lead to important
magnetic interactions [52,53]; however, this depends strongly on the N-O· · ·N angle (α)
and the dihedral angle (β) between the [N-O· · ·O-N] and [O-N-C-N-O] planes [52,53]. For
2, the angles of α and β are 112.12◦ and 73.96◦ (Figure S10) and thus incompatible with the
effective overlap of magnetic orbitals, resulting in weak exchange interactions. The crystal
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packing diagram of 2 is shown in Figure S5. The shortest interchain metal–metal separation
is found between Cu ions with 8.00 (2) Å, and the shortest Gd—Gd and Gd—Cu distances
are 16.578(9) Å and 13.84(1) Å, respectively.

Table 1. SHAPE analyses for 2–4.

Complex TDD-8 SAPR-8 BTPR-8 JBTPR-8

GdCu 0.369 1.572 2.040 2.607
TbCu 0.361 1.578 2.053 2.641
DyCu 0.324 1.618 2.050 2.631

2.3. Magnetic Properties

The macroscopic phase purity of each sample was confirmed by PXRD (Figure S1)
before the magnetic studies. The temperature dependences of the molar magnetic sus-
ceptibilities (χM) were recorded between 2 and 300 K (in cooling mode) with an applied
magnetic field of 1 kOe; the results are plotted as χMT vs. T in Figures 3–5.
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For 1, the overall behavior is indicative of ferromagnetic interactions within the spin
system. However, the value of χMT obtained at 300 K (5.01 cm3 K mol−1) is clearly smaller
than the expected value (6.0 cm3 K mol−1) for 16 independent S =1/2 spin centers (i.e.,
eight CuII ions plus eight NIT radicals). This value is close to the expected contribution
of 4.50 cm3 K mol−1 for six free CuII ions and four monoradicals (CuII: C = 0.375 cm3 K
mol−1 and S = 1/2; radical: S = 1/2). This is indicative of some strong antiferromagnetic
interactions that are indeed anticipated for the equatorial Cu-NIT coordination (vide infra)
in 1. As the temperature decreases, the value of χMT progressively increases to reach
11.02 cm3 K mol−1 at 2 K, which shows that ferromagnetic interactions are also operative in
the system. The M vs. H behavior recorded at 2.0 K for fields up to 50 kOe (Figure 3) shows
a very fast increase at a low field and then tends to saturate. At 50 kOe, the magnetization
reaches 11.0 Nβ, which is close to the 12 Nβ expected for twelve S =1/2 spins, thus
confirming that the contributions of four S = 1/2 centers have been counteracted by strong
antiferromagnetic interactions.

In 1, the magnetic exchange, if any, between the CuII ion and the NO group spaced
by a pyridine and a benzene ring must be very weak, and thus, this exchange pathway
can be ignored. Therefore, the magnetic behavior of this complex can be attributed to
the two spin sequences comprising eight S = 1/2 centers in the exchange interaction, i.e.,
[Cu1-Rad1-Cu2-Rad2-Cu3-Rad3-Cu4-Rad4] (Scheme 3). To describe the behavior, three
exchange interactions must be considered, namely, J1, between the CuII ions and the NO
groups in the equatorial plane; J2, between the CuII ion and the axially coordinated NO
group; and J3, accounting for the interaction between CuII ions and the NO group through
the pyridine ring.
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PHI software was employed to simultaneously analyze the χMT vs. T and M vs. H
behaviors [54]. The best fit to the experimental data gave J1 = −350 (1) cm−1, J2 = 25.0 (3)
cm−1, J3 = 2.10 (3) cm−1, gCu = 2.03 (1) and grad = 2.0 (fixed). The value obtained for J1
confirms a strong and antiferromagnetic Cu-NOeq interaction, which can be attributed to
the effective overlap of the magnetic orbital (dx

2
-y

2) of the CuII ion and the magnetic π*
orbital of the radical [1]. The obtained value (−350 cm−1) is comparable to those reported
for the equatorial coordination of NIT to CuII [55–58]. The positive value for J2 confirms
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the anticipated ferromagnetic Cu-NOaxial interactions resulting from the orthogonality
of the magnetic orbitals (dx

2
-y

2) of CuII and π* of the radical [59]. The found strength
for J2 is consistent with the Cu-NO exchange interactions reported for similar Cu-NIT
complexes [6,60,61]. The small J3 accounts for the ferromagnetic interaction due to spin
polarization between CuII and NIT through the pyridine ring [62,63].

For complexes 2–4, the χMT products obtained at 300 K are, respectively, 10.27 cm3 K
mol−1, 15.30 cm3 K mol−1 and 16.87 cm3 K mol−1, in good agreement with the theoretical
values (10.13 cm3 K mol−1 for 2, 14.07 cm3 K mol−1 for 3 and 16.42 cm3 K mol−1 for 4) for
one LnIII ion (GdIII: 8S7/2, g = 2, C = 7.88 cm3 K mol−1; TbIII: 7F6, g = 3/2, C = 11.82 cm3

K mol−1; DyIII: 6H15/2, g = 4/3, C = 14.17 cm3 K mol−1), two CuII ions (S = 1/2, g = 2,
C = 0.375 cm3 K mol−1) and four radicals (S= 1/2, g=2, C = 0.375 cm3 K mol−1) in the
absence of magnetic exchange. For 2, the χMT value increases gradually as the temperature
is lowered from 300 K to 2 K, reaching a maximum of 15.89 cm3 K mol−1 (Figure 4). Such
behavior is indicative of dominant ferromagnetic interactions in the system.

As mentioned above, the magnetic exchange interaction between CuII and the NIT
radical through the phenyl and pyridine rings can be ignored. Thus, the magnetic properties
of 2 mainly result from the exchange-coupled [Rad1-Cu1-Rad2-Gd-Rad3-Cu2-Rad4] spin
sequence. The pertinent paths for magnetic interactions are shown in Scheme 4, where J1
accounts for the Gd-NO exchange, J2 accounts for the Cu-NOaxial interaction, J3 accounts
for the NO—Cu coupling via the pyridine ring, and J4 accounts for the next-neighbor
interaction between the two NO units coordinated to the GdIII ion.
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The analysis of the χMT vs. T behavior with PHI gave J1 = 1.41(3) cm−1, J2 = 20.3 (3)
cm−1, J3 = 1.0 (1) cm−1, J4 = −6.4(1) cm−1 and gcu = 2.03(1), with grad = gGd = 2.0 (fixed).
The positive value for J1 indicates that the Gd-NO interaction is mainly ferromagnetic,
which is attributed to a charge transfer from the π* orbital of the radical to the empty
5d/6s orbitals of Gd, resulting in the spins of 4f and 5d (or 6s) orbitals being arranged in
parallel [64–66]. The found weak ferromagnetic is in agreement with results for related Gd–
NIT complexes [65,67,68]. The value obtained for J2 confirms the ferromagnetic Cu-NOaxial
interaction already discussed for 1, as does the positive J3 between the CuII ion and the
NO group. It is satisfying to find that 1 and 2 have very similar values for these exchange
interactions. Finally, the antiferromagnetic interaction obtained for J4 is consistent with
values reported in the literature [69,70].

The M vs. H behavior was recorded at 2.0 K in a field range of 0–50 KOe (Figure
S11). For 2, it is characterized by a very fast increase in magnetization for a low field and a
smoother increase above 10 kOe to reach 12.4 Nβ at 50 kOe, close to the expected saturation
value of 13 Nβ.

For 3, χMT smoothly decreases when T is reduced to 10 K and then rises rapidly to
reach 18.1 cm3 K mol−1 at 2 K (Figure 5). Such behavior is again indicative of ferromagnetic
contributions at a low temperature, in addition to the crystal field effect applying to the
TbIII ion. For 4, the value of χMT decreases steadily from 300 to 2 K, reaching 11.85 cm3 K
mol−1 (Figure 5). For this derivative, the anticipated ferromagnetic Dy-ON contributions
are not revealed. This overall behavior is found when the decrease due to the crystal
field contribution is larger than the component of χMT induced by weak ferromagnetic
interactions [71]. For 3 and 4, M vs. H behaviors reach values of 9.5 Nβ for 3 at 50 kOe and
10.8 Nβ for 4 at 70 kOe (Figures S12 and S13). AC magnetic susceptibility measurements
for 3 and 4 performed without and with an applied static field showed no out-of-phase



Molecules 2023, 28, 2514 8 of 13

(χ”) signals, thus excluding the slow relaxation of the magnetization for these derivatives
(Figures S14 and S15).

3. Materials and Methods
3.1. Materials and Physical Measurements

All solvents and chemicals used in the synthesis were of analytical grade. The bi-NIT-
3Py-5-Ph biradical ligand was synthesized following literature methods [72,73], and the
specific synthesis process of the bi-NIT-3Py-5-Ph radical ligand is shown in Scheme S1.
Elemental analysis was performed on a PerkinElmer 240 elemental analyzer. FT-IR data
were obtained by using a Bruker-Vector 22 Spectrophotometer. Magnetic measurements
were performed on a SQUID MPMS XL-5 and VSM magnetometer, in which samples
containing Dy and Tb ions were mixed with grease to avoid orientation effects. The data
were corrected for the diamagnetic contributions of the sample holder and for all of the
constituent atoms using Pascal’s table [74].

3.2. Synthesis of the Complexes
3.2.1. [Cu8 (biNIT-3Py-5-Ph)4(hfac)16] (1)

Cu(hfac)2 (9.6 mg, 0.02 mmol) was dissolved in hot n-hexane (16 mL). Then, a CH2Cl2
solution (5.0 mL) of bi-NIT-3Py-5-Ph (3.1 mg, 0.01 mmol) was slowly added. The stirred
solution was refluxed for 20 min, then cooled to room temperature and filtered. Slow
evaporation of the filtrate at room temperature yielded green block-like crystals of 1,
which were isolated after 3 days (m = 7.8 mg, Yield: 55%). Elem. Anal. found (calcd) for
C180H140Cu8F96N20O48 1 (%): C 38.04, H 2.48, N 4.93; Found: C 38.21, H 2.28, N 4.39. IR
(cm−1): 1646 (s), 1527 (m), 1458 (s), 1368 (m), 1252 (s), 1199 (s), 1133 (s), 799 (s), 670 (s),
590 (s), 528 (m).

3.2.2. {[Gd(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (2)

A solution of Gd(hfac)3·2H2O (8.2 mg, 0.01 mmol) and Cu(hfac)2 (9.6 mg, 0.02 mmol)
in heptane (18 mL) was heated to reflux for 3 h. Then, a CHCl3 solution (10 mL) of bi-
NIT-3Py-5-Ph (6.2 mg, 0.02 mmol) was slowly added. The resulting solution was further
refluxed for 15 min, then cooled to room temperature and filtered. The filtrate evaporated
slowly at room temperature over a period of 4 days to give gray-purple strip crystals of
the chain complex. For 2: m = 14.7 mg, Yield = 55%. Elem. Anal. found (calcd) (%) for
C85H69Cu2F42GdN10O22: C 38.31, H 2.61, N 5.26; Found: C 38.04, H 2.10, N 5.48. IR (cm−1):
1650 (s), 1510 (m), 1368 (m), 1253 (s), 1200 (s), 1138 (s), 912 (m), 869 (m), 798 (s), 659 (s),
585 (s), 545 (m).

3.2.3. {[Tb(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (3)

Samples of Tb(hfac)3·2H2O (8.2 mg, 0.01 mmol) and Cu(hfac)2 (9.6 mg, 0.02 mmol)
were dissolved in boiling n-heptane (20 mL) and heated to reflux for 4 h. Then, a CHCl3
solution (10 mL) of bi-NIT-3Py-5-Ph (6.2 mg, 0.02 mmol) was added. The obtained solution
was refluxed for 12 min. The solution was filtered, allowed to cool down and evapo-
rated at room temperature for 4 days. Gray-purple strip crystals of the chain complexes
were obtained. For 3: m = 15.47 mg, Yield = 58%. Elem. Anal. found (calcd) (%) for
C85H69Cu2F42TbN10O22: C 38.29, H 2.61, N 5.25; Found: C 38.13, H 2.36, N 5.42. IR (cm−1):
1650 (s), 1508 (m), 1368 (m), 1250 (s), 1200 (s), 1137 (s), 913 (m), 870 (m), 798 (s), 659 (s),
585 (s), 545 (m).

3.2.4. {[Dy(hfac)3][Cu(hfac)2]2(biNIT-3Py-5-Ph)2}n (4)

Dy(hfac)3·2H2O (8.2 mg, 0.01 mmol) and Cu(hfac)2 (9.6 mg, 0.02 mmol) dissolved
in hot n-heptane(20 mL) for refluxing were added to a CHCl3 solution (12 mL) of bi-NIT-
3Py-5-Ph (6.2 mg, 0.02 mmol) with further reflux for 20 min. The solution was filtered and
allowed to stay at room temperature for 3 days. Well-shaped gray-purple strip crystals
suitable for X-ray structure determination were obtained. For 4: m = 14.42 mg, Yield = 54%.
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Elem. Anal. found (calcd) (%) for C85H69Cu2F42DyN10O22: C 38.24, H 2.60, N 5.24; Found:
C 38.05, H 2.30, N 5.56. IR (cm−1): 1650 (s), 1509 (m), 1370 (m), 1250 (s), 1200 (s), 1130 (s),
906 (m), 870 (m), 798 (s), 659 (s), 582 (s), 528 (m).

3.3. X-Ray Structure Determination

Single-crystal X-ray data of complexes 1–4 were collected at 113 K on a Rigaku Saturn
CCD diffractometer with graphite monochromated Mo-Kα radiation (λ = 0.71073 Å). The
single-crystal structure was solved by SHELXL-2014 [75] and SHELXS 2014 [76] programs.
All non-hydrogen atoms were refined anisotropically, and the H atoms of organic molecules
were positioned geometrically. SIMU, DELU, ISOR and other commands were used to
correct some disordered C and F atoms. Crystallographic data for complexes 1–4 are shown
in Table 2. Key bond lengths and angles are listed in Table 3, Table 4 and Tables S1–S4,
respectively.

Table 2. Crystallographic data for complexes 1–4.

Complex 1 2 3 4

Formula C90H70Cu4F48N10O24 C85H69Cu2F42GdN10O22 C81H53Cu2F42TbN10O22O22 C81H53Cu2F42DyN10O22
Mr, g·mol−1 2841.72 2664.83 2666.50 2670.08
T/K 113(2) 113(2) 113(2) 113(2)
Crystal system Triclinic Monoclinic Monoclinic Monoclinic
Space group Pı̄ P21/n P21/n P21/n
a/Å 16.9339(5) 15.2072(4) 15.1947(4) 15.2346(4)
b/Å 18.6148(7) 26.5688(7) 26.6157(4) 26.6466(6)
c/Å 20.4094(8) 30.2985(9) 30.2844(7) 30.2582(7)
α/◦ 71.591(3) 90 90 90
β/◦ 71.330(3) 99.343(3) 99.0810(17) 98.792(2)
γ/◦ 89.533(3) 90 90 90
V/Å3 5752.0(4) 12,079.3(6) 12,094.0(5) 12,139.0(5)
Z 2 4 4 4
Dcalcd/g·cm–3 1.641 1.465 1.465 1.461
µ(mm−1) 0.878 1.018 1.054 1.083
θ/◦ 1.648–26.372 1.559–24.713 1.531–24.713 1.611–24.713
F (000) 2840 5300 5304 5308
Reflections collected 61,762 47,646 91,466 84,653
Unique reflns/Rint 23,530/0.0599 19,859/0.0556 20,584/0.0692 20,681/0.1009
GOF (F2) 0.98 1.001 1.002 1.021
R1/wR2 [I>2σ(I)] a 0.0702/0.1518 0.1024/0.2331 0.0760/0.1975 0.0795/0.1964
R1/wR2 (All data) a 0.1288/0.1935 0.1310/0.2449 0.0929/0.2060 0.1187/0.2223

a R1 = Σ(||Fo| – |Fc||)/Σ|Fo|. wR2 = [Σw(|Fo|2 – |Fc|2)2/Σw(|Fo|2)2]1/2.

Table 3. Key bond lengths [Å] and angles [◦] for complex 1.

Complex 1 Cu

Cu1-Orad, Cu2-Orad 1.985(4), 2.592(4)
Cu3-Orad 2.464(5), 2.506(5)
Cu4-Orad 2.489(4)

Cu2-N, Cu4-N 2.005(4), 2.013(4)
Cu1-Ohfac 1.912(4)–2.119(4)
Cu2-Ohfac 1.939(4)–2.217(4)
Cu3-Ohfac 1.927(4)–1.936(4)
Cu4-Ohfac 1.942(4)–2.261(4)

N-Orad-Cu1, N-Orad-Cu2 119.8(3), 144.1(4)
N-Orad-Cu3 141.2(4), 121.4(3)
N-Orad-Cu4 129.2(5)

N-Cu2-Orad, N-Cu4-Orad 88.70(16), 90.19(15)
Orad-Cu2-N, Orad-Cu4-N 88.72(2), 90.19(2)

Orad-Cu3-Orad 163.7(2)
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Table 4. Key bond lengths [Å] and angles [◦] for complexes 2–4.

Complex 2 GdCu 3 TbCu 4 DyCu

Ln-Orad 2.367(7), 2.364(7) 2.369(5), 2.355(5) 2.358(5), 2.337(5)
Ln-Ohfac 2.358(7)–2.415(7) 2.366(5)–2.398(5) 2.347(5)–2.392(5)
Ln-O-N 131.9(5), 134.3(6) 132.6(4), 134.9(4) 133.1(5), 134.3(5)

Orad-Ln-Orad 141.0(2) 141.05(16) 140.92(19)

Cu-Ohfac
1.930(6)–2.202(7) 1.944(5)–2.201(5) 1.942(5)–2.206(6)
1.940(7)–2.249(8) 1.945(5)–2.253(6) 1.937(6)–2.259(8)

Cu-N 2.003(8), 2.034(8) 2.012(5), 2.020(6) 2.019(6), 2.034(7)
Cu-Orad 2.519(8), 2.509(8) 2.506(6), 2.493(6) 2.522(6), 2.493(7)
Cu-O-N 157.4(7), 153.3(7) 157.5(5), 154.6(5) 157.5(5), 156.5(5)
N-Cu-O 87.7(3), 88.1(3) 87.3(2), 87.6(2) 87.6(2), 86.5(2)

4. Conclusions

The reported diradical ligand was found to interact with CuII ions to form a specific
cyclic [CubiNIT)]2 dimer, and this unit then acts as an SBU in the formation of polynuclear
complexes. A 16-spin Cu-NIT complex and a series of 2p-Cu-Ln 1D complexes were derived
from this particular association pattern induced by the biNIT-3Py-5-Ph ligand. In the 2p-3d
complex, the biNIT-3Py-5-Ph diradical ligands behave as three- or four-dentate ligands to
bind CuII ions, leading to an octanuclear structure. In the 2p-3d-4f complexes, the cyclic
[Cu-radical]2 dimers connect Ln ions via NO groups to develop a 1D coordination polymer.
Magnetic studies have shown that there exist strong antiferromagnetic and ferromagnetic
interactions stemming from the Cu-NOeq and Cu-NOaxial moieties, respectively, in complex
1. For 2–3, the magnetic behaviors are governed by ferromagnetic NO-Ln/Cu interactions.
This work demonstrates that nitronyl nitroxide diradicals containing functional groups are
appealing ligands for constructing novel radical–metal complexes with interesting spin
topologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062514/s1. CCDC deposition numbers: CCDC
2224151-2224154 contain the supplementary crystallographic data for 1–4, respectively. These data
can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif (accessed on 6 February 2023). Tables S1–S4: Selected bond lengths [Å]
and angles [◦] for 1–4; Figure S1: The Powder X-ray diffraction (PXRD) patterns for all complexes
at room temperature; Figure S2: The IR spectra for complexes 1–4. Figure S3: The coordination
polyhedra of CuII ions; Figures S4–S9: The Packing diagrams and the one-dimensional structures
of complexes 1–4; Figure S10: The relative disposition and the close contacts between the unco-
ordinated NO groups in 2. Figures S11–S13: Field-dependent magnetization for complexes 2–4.
Figures S14–S15: Frequency-dependent ac signals of the χ′ (top) and χ” (bottom) for complexes 3–4;
Scheme S1: The synthesis of bi-NIT-3Py-5-Ph radical ligand.
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