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Abstract

Extreme multi-label classification task deals with
nowadays problems involving up to millions of labels.
The extremely large number of labels requires efficient
methods not only in terms of prediction performances
but also in terms of time processing and memory man-
agement. Most recent works focus on representation
learning approaches: embeddings allow to infer a se-
mantic structured space with interesting generalization
properties; the label prediction is often performed by
using approximated nearest neighbors search. Recent
works in Language Modeling and especially in Question
Answering have shown increasing performances using
the hyperbolic space to learn the representation. The
Poincaré ball model is indeed more relevant to repre-
sent ontology than the euclidean space. In this work,
we propose to explore representation learning in hy-
perbolic space in the context of extreme classification.
The proposed model performs a joint embedding of ex-
amples and labels. Most of the embedding methods
for extreme classification only learn example embed-
ding. Thus in order to structure the space, they re-
quire to precompute examples neighborhood. In our
approach, learning a joint embedding allows structur-
ing the space without any expensive preprocessing. Ex-
periments conducted on real-world datasets show the
performances of our model compared to state of the
art.

1 Introduction

Large-Scale Multi-Label classification also known as
Extreme Classification has become a real challenge of
interest this last decade. Its objective is to develop
classification algorithms able to identify multiple rel-
evant labels among a very large label set for an ex-
ample given as input. Large-scale classification is dif-
ferent due to the large label and features dimension,

especially regarding the number of labels to discrimi-
nate. Assigning automatically topics/labels for a large
amount of data collected by social network or encyclo-
pedia is a main subject of interest. Even in the in-
dustry such as e-commerce platforms, finding relevant
object associated with a query is an important task
and requires often automatic tagging. Recently the do-
main has grown significantly and most leading meth-
ods are based on representation learning approaches.
Finding relevant representation is, therefore, a key task
to tackle extreme classification. In extreme classifica-
tion leading methods are often based on tree involv-
ing to discover latent hierarchy. Representation mod-
els do not include this hierarchical information, how-
ever recent works on embedding hierarchy using hyper-
bolic representation space have proven their efficiency
to capture the latent hierarchical information.

In this work, we propose to investigate representa-
tion learning for Extreme Multi-Label Classification by
using instead of the usual Euclidean metric space the
Poincaré ball model. To structure the embedding space
we learn a joint label/example representation. We
study the structure of the learned space and show ex-
perimentally that it is a relevant alternative to the eu-
clidean space for multi-label classification. We present
experiments on several large scale datasets and com-
pare our approach to state of the art models. We show
that for certain types of corpus our approach is rele-
vant, especially when the number of dimensions of the
embedding space is low.

Classification of documents, images or items has
raised interest during these previous years due to the
spread of available data, the diversity of new methods
and the growing of computational power. Document
classification has benefited from many improvements
reaching impressive performances. However, classifi-
cation of documents can be inefficient in computation
time, prediction performances and memory manage-
ment when the number of labels to discriminate be-
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come too large. To address this issue, the Extreme
Multi-label Classification domain is an active research
field to deal with the extremely large number of classes
(from 104 up to 107).

Algorithms for Extreme multi-label classification fol-
low mainly three paradigms: 1) One Versus Some/All
paradigm (OVA); 2) Hierarchical paradigm using clas-
sifiers organized by a graph structure; 3) Representa-
tion learning paradigm.

Historical baselines dealing with multi-label setting
are mainly based on the One versus All paradigm: for
each label present in the dataset a classifier is learned
to distinguish it from the others; the prediction step
infers the relevant labels using a voting scheme mix-
ing the outputs of all the classifiers. The approach
is extremely costly in terms of computation time and
in memory storage, needing an extremely large num-
ber of classifiers growing linearly with respect to the
number of labels. Another major drawback of this
paradigm is its incapacity to exploit label correlation
[ZLLG18]. To reduce the computation cost, methods
using sparsity have been proposed such as PDSparse

[YHZ+, YHD+17] using weight regularization to ensure
the sparsity of each classifier [ZH05]. With the growth
of parallel computational power, distributed OVA meth-
ods DiSmec success to learn classifiers efficiently using
1000 CPU cores, and manage the memory/time trade-
off by integrating pruning methods.

Hierarchical approaches exploit the divide and con-
quer paradigm to reduce drastically the number of clas-
sifiers used to infer labels. The classifiers are embed-
ded in a tree structure, where each split corresponds
to a split of the label set. The classifier attached to
a given node is fitted in order to recognize at which
child label subset belongs an example. Each leaf of
the tree corresponds ideally to a unique label. The
classification process begins at the root note and fol-
lows a path through the tree until a leaf is reached.
The complexity of the inference is thus logarithmic
with respect to the number of classes. Although find-
ing an optimal tree structure and label organization
is a complex problem, the recent approaches FastXML

and PfastreXML[PV14, JPV16] reach the state of the
art performances. FastXML recursively partitioning
nodes maximizing the Normalized Discounted Cumu-
lative Gain (nDCG) ranking loss; PFastreXML uses for
the partitioning a new loss function, the Propensity
scored Loss. This loss is also used to evaluate perfor-
mances taking into account the frequencies of labels in
corpora. Still using the divide and conquer paradigm,
the recent method PARABEL[PKH+18] merges OVA and
hierarchical approach proposing overlapping label par-

titioning at each node.

1.1 Learning embedding for extreme
classification

Label dimension reduction approaches reduce the com-
plexity of the inference step by taking into account the
label correlations.

A first approach consists to factorize the label ma-
trix, the label matrix being the matrix containing for
each example a label vector with value 1 if labels are an-
notated with. Remarking that labels can be correlated
led to find a way to factorize the matrix. Thus, the
labels matrix can be embedded in a sub-dimensional
space. This hypothesis is named the low-rank assump-
tion, it has been applied in [HKLZ09, TL12] by fac-
torizing the matrix using eigenvectors with the largest
eigenvalues. Similarly, methods have been proposed to
reduce the feature space dimension [CL12]. However,
in the case of extreme classification, the low-rank as-
sumption is very naive: in case of large diversity, labels
are represented only a few times in corpora [Tag17].
Despite the dimensionality reduction, these methods
are still time costly especially due to the decoding pro-
cess within a time complexity still linear in the number
of labels.

In order to deal with a large number of labels during
the prediction process, several methods have proposed
to use nearest neighbors search procedure. The num-
ber of label candidates is thus drastically reduced as
only the labels of nearest examples are taken into ac-
count. For instance, the SLEEC approach [BJK+15]
operates first partitioning of the input space and then
learns mapping features to embeddings in each parti-
tion according to a label/example similarity. The in-
ference is finally done by retrieving the labels of the
nearest neighbors of the input example. This method
has impressive performances on many corpora. The
more recent method AnnexML[Tag17] proposes several
improvements, particularly, it introduces a new parti-
tioning scheme taking into account the label similarity,
a new loss function to define the similarity between ex-
amples and an ensemble learning scheme to improve
performances. The inference time is also drastically
lowered thanks to an approximate nearest neighbor
search.

1.2 Hyperbolic representation space

Using hyperbolic geometry to embed hierarchical infor-
mation has recently raised the interest of the machine
learning community.
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Particularly the Poincaré ball model having good
properties such as differentiable distance or hierarchi-
cal compliant geometry. The point at the origin of the
ball is thus a natural candidate to represent the top
hierarchy and the edge of the ball the leaves. Several
recent works use this space: [NK17] have proposed an
embedding of word vectors with most general concepts
closer to the center of the ball;

Ganea et al [SDSGR18] have shown the efficiency of
the representation space in extremely low dimension,
producing state of the art results for WordNet em-
beddings using only two-dimensional latent space, but
with complete hierarchy known. Moreover, it has been
empirically proven to be efficient in not Tree like cor-
pora. If previous methods are directly learning to em-
bed without parametric functions, learning a mapping
function from a features space has also been studied.

The algorithm HyperQA [TLH17] have reached state
of the art on Question-Answering domain by using
neural-networks to produce Poincaré Ball embedding.

They also empirically show that using Poincaré ball
model for information retrieval through parametric
function can lead to state of the art performances and
confirm the low dimension efficiency. More recently the
works Hyperbolic Neural Networks[GBH18] provided a
set of neural layers for deep learning approaches using
hyperbolic structure.

If learning representation for large scale multi-label
classification remains a relevant approach, capture the
hierarchical structure of data is not covered by to-
day Extreme classification representation methods. In-
deed, it is difficult to observe and embed hierarchy in
Euclidean space while the majority of large scale cor-
pora have a latent taxonomy. Thus using Hyperbolic
representation space could lead to disambiguate exam-
ple/labels hierarchy, where Euclidean can not. More-
over, due to the robustness of those model using low
dimension, nearest neighbors search prediction could
be more stable using a lower dimension. Thus leading
to obtaining the same performances faster because of
lower dimensionality.

2 Proposed approach

In this work we propose to study a model mapping the
feature space and the labels into a joint hyperbolic rep-
resentation space. Thus we design two functions, one
for the feature embedding and the other one for the
label embedding. In order to learn these representa-
tions jointly, we design a loss that tends to set closer
the embedding of an example and the embedding of

a label when the example belongs to the given label.
Once representation learned examples representation
within similar labels tends to be close, thus we perform
prediction by annotating labels of an example accord-
ing to its neighbors in the representation space. The
section is organized as follows: first we introduce the
notation being used; next we present a quick introduc-
tion to the Poincaré Ball model and give insight about
the geometry; the model architecture and the associ-
ated learning procedure are next presented; finally, we
present the inference step.

2.1 Notations

Let X ∈ RN×m be the data matrix containing N ex-
amples lying in a m dimensional feature space; xi ∈ RN

the i-th example; Y ∈ {0, 1}N×L the associated label
matrix with L labels, such that yi,k = 1 if the example
i is annotate with label k (otherwise yi,k = 0). We will
note yi the i-th line of the label matrix, corresponding
to the label vector of the example xi. We aim to embed
both examples xi and labels k ∈ {1, 2, 3, . . . , L} in the
Poincaré ball model.

2.2 Poincaré Ball Model

The Poincaré ball model is a model of hyperbolic ge-
ometry lying in an n-dimensional sphere. It can be
intuitively seen as the projection of a hyperbolic func-
tion of dimension n+ 1 to a ball of dimension n. The
original model maps points of the hyperbolic function
in the open unit ball. A particularity of this space is
that the norm of a vector tends to infinity when the
vector tends to the boundary of the ball. Thus a point
near the ball center tends to be closer to all points
than points near the boundary. This is explained by
the formulation of the metric in the space. This prop-
erty makes the Poincaré ball model a relevant choice
for embedding hierarchical data by mapping the nodes
near the root closer to the origin and leaves near the
boundary, as represented in the figure 2.2. Each seg-
ment in the figure has the same length in the hyperbolic
space.

Formally, let be Bn = {x ∈ Rn| ‖x‖ < 1} the n-
dimensional open unit ball. We refer now as Hn the
Poincaré ball model of dimension n corresponding to
the metric space on Bn equipped with the metric gx,
i.e (Bn, gx). The gx metric is defined as (with gE the
euclidean metric tensor):

gx =

(
2

1− ‖x‖22

)2

gE
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Figure 1: Embedding of a tree in B2 (This figure come
from the paper [NK17])

The definition of the hyperbolic metric space depicts
that a point will have a hyperbolic norm depending
on the inverse of the square of the Euclidean norm:
embedding close to the boundary of the ball will have
a norm tending to infinity. The hyperbolic distance in
the Poincaré ball model d is defined for two vectors
x1, x2 ∈ Hn as following :

d(x1, x2) = arcosh

(
1 + 2

‖x1 − x2‖22
(1− ‖x1‖22)(1− ‖y1‖22)

)
The distance is differentiable, thus usual back-

propagation algorithms can be used while taking into
account the curvature of the space into the optimiza-
tion procedure.

2.3 Embedding into the Poincaré ball
model

Our objective is to embed in the same space labels
and examples in hyperbolic space in such a way that
examples with similar annotation being close to each
other. As there is no mapping function to learn for
the labels, we represent their embeddings by a matrix
W l ∈ RL×n, with L the number of labels and n the
dimension of the Poincaré ball, i.e. the size of the latent
representation. The i-th line of the matrix W l, li ∈ Rn,
correspond to embedding of the i-th label . In order
to learn the mapping between the feature space and
the hyperbolic space, we use a simple linear projection
layer fθ : RM → Rn with θ ∈ RM×n. Let rj the
projection of the example j obtained by the function

fθ:
rj = fθ(xj) = θ′ · xj

More complex mapping functions can be used (for
instance neural networks with multiple layers) but ex-
periments showed that a linear projection is sufficient
to reach the best performances.

In order to constrain the projection of the labels and
the examples to the n-dimensional unit ball, we define
the following projection:

p(x) =

{
x

‖x‖+ε if ‖x‖ ≥ 1

x otherwise

Thus the label for the i-th label is given by p(li) and
embedding of an example xj by p(fθ(xj)) = p(rj).

2.4 Loss function

Most of recent contributions in representation learn-
ing for extreme classification are trying to obtain close
example embeddings for similar examples according to
their label vectors. For instance, AnnexML [Tag17]
proposes a similarity between examples based on the
cosine similarity of the vector labels:

cos(yi, yj) =
yi · yj

‖yi‖2‖yj‖2

with yi the label vector of xi. Today approaches to
structure the embedding space is to first for each exam-
ple define a set of neighbors based on a label similarity
and then design a cost function setting closer examples
within the same neighborhood.

The following loss is used in [Tag17] for a given ex-
ample xj and a example xv in the neighborhood Vj of
xj (i.e. the k-nearest neighbors of the example xj with
respect to the cosine similarity between the label vec-
tors), and ri the euclidean embedding associate to the
example xi:

L(xj , xv) = −log(
eαcos(rj ,rv)[ ∑

k/∈Vj

eαcos(rj ,rk)
]

+ eαcos(rj ,rv)
)

With k /∈ Vj denote examples xk who do not belong
to the xj neighborhood and α controlling the smooth-
ness of the softmax loss.

This loss model the negative log-probability of hav-
ing embedding of xv belonging to the neighborhood of
xj embedding.

This method requires before the learning step to pro-
cess the dataset using nearest neighbors search in order
to get for each example their neighborhood.
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Contrary to the state of the art methods, we propose
to learn the example embeddings based on the label
embedding, by setting closer example embeddings us-
ing label representation. This is made possible because
both representations lying in the same space. Thus we
do not need to pre-compute any label correlations or
pre-computing neighborhood for the examples. The
loss proposed in this work is similar to the previous
one, but instead of processing distance between the
example representations, we compute the distance of
the representation of an example to the representation
of one of its labels. Let V (j) = {k|yjk = 1} the labels
of the example xj ; the proposed loss for an example xj
and a label i such that i ∈ V (j) is :

L(xj , li) = −log(
e−αd(rj ,li)∑

k/∈V (j)

e−αd(rj ,p(lk)) + e−αd(rj ,p(li))
)

with rj = p(fθ(xj)) the projection of xj and li the
representation of the label i. Similarly, this can be in-
terpreted as the negative log-probability of having the
label i rather than another for the example xj . When
the convergence is achieved the label space has embed-
ded closer examples with shared labels, and the repre-
sentation of the examples should be close to the repre-
sentation of their labels. Moreover, we expect that ex-
amples having the most label in common will be rather
close to each other in terms of hyperbolic distance. In
practice, for an example xj , we use negative sampling
by randomly sampling labels rather than considering
all labels which are not in V (j). Because of the large
number of labels, there is only a low probability to sam-
ple a label belonging to V (j). Due to the structure of
the hyperbolic representation space, rare labels should
be close to the boundary of the ball. At the opposite,
top labels appearing often in the dataset should closer
to the origin.

2.5 Optimization algorithm

All the presented function are differentiable, however,
we can not learn that representation using regular gra-
dient descent algorithm due to the hyperbolic embed-
ding: the gradient depends on the metric gx. In order
to take into account the slope of the space curvature,
the paper [NK17] has proposed a gradient descent al-
gorithm named projected RSGD which scale the gra-
dient according to the metric of the space. To update
the label embeddings the gradient obtained by back-
propagation is scaled by the inverse of the metric g−1x .
Considering at a step t of the algorithm the represen-
tation vector lti of the i-th label, the update of the

representation at t+ 1 is given by :

lt+1
i = lti − η

(
1− ‖lti‖

2
2

2

)2

∇p(li)L(xi, li)

with ε the learning rate. In a similar way, the update
of the parameter θt of the mapping function of the
examples is given by the following rule :

θt+1 = θt − η∇θt(rj)
(

1− ‖rj‖22
2

)2

∇rjL(xj , li)

Experimentally we obtained better results using the
Adam optimization algorithm applying the previous in-
verse norm factor on the value to update, however, due
to exponentials decays in Adam we can not consider
this method as formal.

2.6 Inference step

To annotate a new example x we embed the example
to the representation space with p(fθ(x)). Then an
approximate K Nearest Neighbor Search according to
the distance d is performed to retrieve closest train-
ing examples. The number of occurrences of each label
associate to embedding within the neighborhood of x
representation is aggregated and ranked accordingly.
The most relevant labels correspond to the most oc-
curring labels in the neighborhood, with the highest
apparition frequency.

To perform the approximate neighbor search, we ex-
perimentally observe that random selection of centroids
among the representations of the training examples to
construct the clusters does not decrease performances
in comparison to exact neighbors search.

The approximate search allows to largely decrease
the inference time. In the remainder of this paper, we
will use N

3000 random clusters by default.

3 Experiments

3.1 Experimental settings

Table 1 presents the selected datasets to eval-
uate the proposed method. All of them are
real-world corpora based on Wikipedia annotations
(Wiki10-31K, WikiLSHTC-325K ), web page annota-
tions (Delicious-200K ) or web market items/query
annotations (AmazonCat-13K, Amazon-670K ). The
datasets have major differences: the Wikipedia and
the web page description dataset have a hierarchical
label organization while the two amazon datasets have
a more flat label organization; the number of labels
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by example and the number of examples for a given
label also differ from a factor larger than 10 between
the datasets. Moreover, corpus as wiki10 contains very
few examples compared to the number of labels, thus
the number of labels will be rarely considered during
learning. At the contrary in the case of AmazonCat
where the number of examples per label is large, most
of the labels will be updated many times.

In the following experiments, when not specified the
selected dimension of the representation space is gen-
erally fixed to 50 (like in most multi-label classification
works [BJK+15, Tag17]). A validation set is used to
control the overfitting, build by sampling 5% of the
training set. The learning process is stopped when
precision does not increase during 25 epochs. The la-
bel embedding matrix is initialized according to a nor-
mal distribution N (0, 1e−3) and the mapping function
f theta with the distribution N (0, 1e− 4).

Concerning the optimization, the adam optimizer
[KB14] is used with hyperbolic Poincaré retraction (see
2.5), which shown experimentally better results than
the regular stochastic descent. The main evaluation
metric considered is the precision at k (p@k): given
ŷi the ordered label prediction inferred for an example
xi, with ŷji ∈ {1, 2, . . . , L} the j-th predicted label, the
precision is computed as follows:

p@k =
1

N

N∑
i=1

1

k

k∑
j=1

yi,ŷki

Table 2 presents a naive baseline inspired by [Tag17]
showing the difference between the datasets regard-
ing the label distribution. The baseline named Most-
Common, predicts the same ordered label vector for
all the examples, sorted from the most frequent label
in the training dataset to the less frequent one (e.g
in wiki10, the five most common labels are wikipedia,
wiki, reference, history, research).

3.2 Evaluation

Table 3 shows the results of the proposed approach
(Hyp) compared to the state of the art results. Outside
our results, the reported results are from the Extreme
classification repository1 except for the AnnexML al-
gorithm for which the results come from [Tag17]. Fol-
lowing their experimental settings, the predictions are
made by an ensemble learning model, averaging the
vote of 15 different models. The performances differ
widely with respect to the nature of the dataset: on
Wiki10 and delicious-200K, our method is very close

1 http://manikvarma.org/downloads/XC/XMLRepository.html

to the best results; on the other datasets, there is a
gap between the performances of our approach and
the others. The main difference between the two sets
of corpora is the hierarchical latent organization of
the labels: the performances are better with our ap-
proach when such hierarchical organization is deep like
for Wiki10 or Delicious. At the contrary, results with
more flat hierarchies like Amazon did not succeed to
reach competitive performances.

Effect of the embedding dimension Poincaré ball
model is known for the ability to efficiently embed hi-
erarchical element in a low dimensional space. We de-
sign an experiment to verify this hypothesis by train-
ing our model using different embedding sizes and by
comparing it to the AnnexML algorithm without pre-
partitioning (corresponding in fact to an euclidean em-
bedding). Table 4 shows the results for wiki10. For
low dimensions (5 or 10), our approach slightly outper-
forms the euclidean embedding especially in the case
of a single learner. With the growth of the number of
dimensions, euclidean embedding tends to outperform
our approach.

The dimension of the embedding space is crucial in
the case of extreme classification, as it is a key factor for
the inference time: the k-nearest neighbors algorithm
used for the prediction is linear with respect to the em-
bedding size, thus the complexity of the inference step
can be drastically improved if a very low embedding
size is sufficient for good prediction performances.

Ensemble Learning Ensemble learning in large
scale multi-label classification is a key process to in-
crease performances. As in the case of the state of the
art algorithms, we found that using several learners
(models) and aggregating their votes improve the per-
formances. The results are reported in Table 5. Our
approach seems to benefit from multiple models, but
quickly reach a plateau around 6 learners. These ex-
periments show that the presented approach is quite
robust and the learned representations relatively sta-
ble compare to annexML and SLEEC model.

Analysis of the representation space In this
section, we report qualitative results allowing to un-
derstand the properties of the inferred representation
space. A first observation concerns the learned repre-
sentation of the labels: as expected, the norm of the
embedding representation of a label is linked to its fre-
quency in the dataset: we observe that most common
labels have small norm when the less common ones
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Dataset Avg #examples per label Avg #labels per example #labels #train
AmazonCat-13K 448.57 5.04 306,782 1,186,239

Wiki10-31K 8.52 18.64 30,938 14,146
Delicious-200K 72.29 75.54 205,443 196,606

WikiLSHTC-325K 17.46 3.19 325,056 1,778,351
Amazon-670K 4 5.45 670,091 490,449

Table 1: Main statistics of the dataset: the average number of examples per label, the average number of labels
per example, the number of labels and the number of training examples.

Dataset p@1/p@3/p@5
AmazonCat-13K 30.0%/18.8%/14.9%

Wiki10-31K 80.8%/50.5%/36.8%
Delicious-200K 38.7%/36.8%/35.5%

WikiLSHTC-325K 15.9%/6.03%/3.80%
Amazon-670K 2.8e−3%/2.7e−3%/2.3e−3%

Table 2: Most-common baseline results, precision at
1/3/5 when the predicted labels are the most frequent
labels of the training set.

have the largest norm. For instance, in the case of
wiki10, Table 6 shows the norm and the frequency of
some labels. This experiment indicates that our model
is able to capture the latent hierarchical information
among the labels. To confirm this fact, we learned
a model in a simple two dimensions space. Figure 3.2
shows the label embeddings learned by this model. The
color of the vector is depending on the frequency of the
embedded label. The visualization shows that rare la-
bels are very close to the boundary of the ball.

Figure 2: Label embeddings for wiki10 in a two dimen-
sions representation space. The color tends to red for
more frequent labels and to yellow for rare labels.

4 Conclusion and Future Works

In this work we investigated the Extreme Multi-Label
classification task using a hyperbolic representation
learning paradigm. We propose an algorithm to learn a
joint label/example representation. We investigate the
strength of the hyperbolic space to represent a large
amount of data and its capacity to represent and cap-
ture latent hierarchical information. Our procedure
does not involve a preprocessing step when state of
the art algorithms use a heavy preprocessing clustering
procedure and/or pre-computation of example similar-
ities. The conducted experiments have shown that for
datasets with deep hierarchical label organization, our
model reaches the state of the art algorithms and can
outperform them in very low dimension. This is an im-
portant fact as the number of dimensions is a key factor
for the inference time. However, on other datasets with
a flat hierarchical structure, there is a real gap of per-
formances. The first improvement under investigation
concerns the loss function. The experiments show that
the proposed loss function is able to represent well the
labels, but lacks of local capacity to distinguish well
examples with some labels in common. We intend to
reinforce the proposed loss by adding a term able to
bring closer examples with most similar labels and re-
pulse examples sharing few labels, i.e. adding a term
based on example similarity. A second improvement
concerns the optimization procedure which has shown
instability. A more adapted gradient descent can be
derived specifically for the considered hyperbolic rep-
resentation.
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Dataset Hyp SLEEC Parabel FastXML PfastreXML AnnexML

amazonCat
P@1 89.8% 90.5% 93.0% 93.1% 91.8% 93.6%
P@3 73.5% 76.3% 79.16% 78.2% 78.0% 78.4%
P@5 58.7% 61.5% 64.5% 63.4% 63.7% 63.3%

wiki10
P@1 85.6% 85.9% 84.3% 83.0% 83.6% 86.5%
P@3 72.9% 73.0% 72.6% 67.5% 68.6% 74.3%
P@5 62.4% 62.7% 63.4% 57.8% 59.1% 64.2%

Delicious-200K
P@1 46.5% 47.85% 47.0% 43.07% 41.72% 46.6%
P@3 40.8% 42.21% 40.1% 38.66% 37.83% 40.8%
P@5 37.8% 39.43% 36.6% 36.19% 35.58% 37.8%

WikiLSHTC-325K
P@1 43.2% 54.8% 65.0% 49.8% 56.0% 63.4%
P@3 26.5% 33.4% 43.2% 33.1% 36.8% 40.7%
P@5 19.4% 23.9% 32.1% 24.5% 27.1% 29.8%

Amazon-670K
P@1 31.1% 35.1% 44.9% 37.0% 39.5% 42.0%
P@3 28.1% 31.3% 39.8% 33.3% 35.8% 36.7%
P@5 26.0% 28.7% 36.0% 30.5% 33.1% 32.8%

Table 3: Results of our approach (Hyp) compared to several state of the art approaches. For SLEEC and An-
nexML, the predictions are made by aggregating the label vote of 15 different models. FastXML and PfastreXML
aggregate 50 trees prediction. AnnexML merging 1 to 3 classifiers results. All reported results come from the
Extreme Classification repository, except for AnnexML for which the reported results came from [Tag17].

#Learners # Dimensions Hyperbolic Euclidean
1 5 78.9/54.1/43.1 77.02/53.5/42.5
3 5 81.3/60.0/50.0 81.1/59.2/48.7
6 5 81.1/61.5/52.0 81.3/60.3/50.4
9 5 81.2/61.8/52.6 81.2/60.6/50.7
12 5 81.2/61.8/53.0 81.2/60.6/50.9
15 5 81.2/61.6/53.1 81.2/60.6/50.9
1 10 81.5/61.6/50.9 79.1/61.4, 50.4
3 10 82.8/66.5/56.0 83.0/66.2/55.0
6 10 82.6/67.4/57.5 83.2/67.3/56.9
9 10 82.6/67.6/57.7 83.1/67.5/57.4
12 10 82.5/67.4/57.7 83.1/67.4/57.6
15 10 82.6/67.6/58.0 83.1/67.5/57.5
1 25 82.9/67.7/57.1 82.5/67.8/57.5
3 25 84.8/70.1/59.7 84.8/71.0/60.5
6 25 84.6/71.0/60.3 85.6/71.7/61.5
9 25 84.5/71.0/60.5 85.5/77.9/61.7
12 25 84.5/71.1/60.7 85.8/71.9/61.7
15 25 84.6/71.3/60.7 85.8/72.0/67.9

Table 4: Influence of the size of the representations and the number of aggregated models for the Wiki10-31K
corpus for the precision @1,3,5. Hyperbolic refers to our approach, euclidean refers to an euclidean embedding
similar to the AnnexML algorithm without pre-clustering.
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Dataset # learners P@1 P@3 P@5 SLEEC (15 Learners)

AmazonCat

1 86.7% 69.1% 54.5%

90.5%/76.3%/61.5%

3 88.7% 72.1% 57.3%
6 89.4% 72.8% 58.2%
9 89.6% 73.3% 58.5%
12 89.7% 73.4% 58.6%
15 89.8% 73.5% 58.7%

Wiki10-31k

1 83.9% 70.1% 59.7%

85.9%/73.0%/62.7%

3 85.3% 72.3% 61.6%
6 85.7% 72.6% 62.1%
9 85.6% 72.8% 62.4%
12 85.5% 73.0% 62.5%
15 85.6% 72.9% 62.4%

Delicious Large 200K

1 41.1% 35.4% 32.5%

47.9%/42.2%/39.4%

3 44.6% 39.0% 36.1%
6 45.8% 40.2% 37.2%
9 46.3% 40.6% 37.6%
12 46.5% 40.8% 37.8%
15 46.5% 40.8% 37.8%

WikiLSHTC-325K

1 36.4% 20.5% 14.5%

54.8%/33.4%/23.9%

3 40.9% 24.1% 17.3%
6 42.4% 25.5% 18.5%
9 43.0% 26.2% 19.1%
12 43.2% 26.5% 19.4%

Amazon-670K

1 19.3% 18.0% 17.1%

35.1%/31.3%/28.6%

3 23.9% 21.8% 20.3%
6 27.4% 24.8% 23.04%
9 29.2% 26.4% 24.5%
12 30.3% 27.4% 25.4%
15 31.1% 28.1% 26.0%

Table 5: Precision @k (1/3/5) depending on the number of aggregated models for our method and SLEEC.

Label Name Norm Frequency
wikipedia 0.6 80.7

wiki 6.8 41.9
reference 10.7 28.3
history 14.6 18.7
science 21.5 12.3
research 23.0 14.5

Table 6: Label sorted by the norm of their representation for the wiki10 dataset.
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