Using a diphenyl-bi-(1,2,4-triazole) tricarbonylrhenium(I) complex with intramolecular π - π stacking interaction for efficient solid-state luminescence enhancement

Alexandre Poirot, Corinne Vanucci-Bacqué, Béatrice Delavaux-Nicot, Clarisse Meslien, Nathalie Saffon-Merceron, Charles-Louis Serpentini, Florence Bedos-Belval, Eric Benoist and Suzanne Fery-Forgues

Synthesis and characterization

Figure S1. Carbon numbering for attribution of ¹ H and ¹³ C NMR chemical shifts	2
Figure S2. ¹ H NMR spectrum of complex Re-BPTA in CDCl ₃	2
Figure S3. ¹³ C NMR spectrum of complex Re-BPTA in CDCl ₃	3
Figure S4. NMR HSQC spectrum of complex Re-BPTA in CDCl ₃	3
Figure S5. Experimental and theorical mass spectra of Re-BPTA	4
Figure S6. Variable temperature ¹ H NMR spectra of complex Re-BPTA in C ₂ D ₂ Cl ₄ at 400 MHz	5

Crystallographic data

Table S1. Selected bond lengths (Å) and angles (°) for ligand BPTA	5
Table S2. Selected bond lengths (Å) and angles (°) for complex Re-BPTA	6
Figure S7. Crystallographic arrangement of ligand BPTA	7
Figure S8. Crystallographic arrangement of complex Re-BPTA	7

Quantum chemistry calculations

Figure S9. Structure of Re-BPTA in the ground and lowest excited triplet state calculated by DFT	8
Table S3. Composition (%) of the frontier molecular orbitals of complex Re-BPTA in CH ₂ Cl ₂	8
Table S4. Main electronic transitions for complex Re-BPTA in CH ₂ Cl ₂ calculated using TD-DFT	9
Figure S10. Main electronic transitions, theoretical and experimental UV-vis absorption	
spectra of Re-BPTA in CH ₂ Cl ₂	9
Figure S11. Representation of complex Re-BPTA in the lowest triplet excited state.	
Spin density. Position of unpaired electrons in the hole (HOMO) and in the particle (LUMO)	9
Table S5. Selected bond lengths (Å), distance between the centroids (Cd) of both phenyl rings, and angles (°) for	
complex Re-BPTA in the ground state and in the lowest triplet excited state (³ MLCT) calculated by DFT	10

Electrochemistry

Table S6. Selected electrochemical data of complex Re-BPTA. Comparison with Re-Phe and Re-PBO Image: Comparison of the selected electrochemical data of complex Re-BPTA.	11
Table S7. Experimental electrochemical data and calculated value of the electrochemical energy gap (E_g^{el})	11
Evaluation of the energy gap values (Eg ^{el}) for the Re complexes	11
Figure S12. OSWVs: anodic and cathodic scans of complex Re-BPTA	12
Figure S13. Cyclic voltammograms of complex Re-BPTA at 0.2 V/s, and segmented voltammogram at 1 V/s	12
Figure S14. Segmented cyclic voltammograms of Re-BPTA at 10 V/s and at increasing potential	12
Figure S15. Cyclic voltammograms of complex Re-BPTA first oxidation wave at 50 V/s and 100 V/s	13
Figure S16. OSWVs: anodic and cathodic scans of ligand BPTA	13
Figure S17. Cyclic voltammograms of ligand BPTA at 0.2 V/s	13

Spectroscopy

Table S8. Solid state spectroscopic data of two samples of Re-BPTA crystallized in butanol and CHCl3	14
Figure S18. Emission spectra of complex Re-BPTA in acetonitrile solutions containing from 0 to 95% water,	
24h after sample preparation. Evolution of the PL intensity at 546 nm as a function of f_w	14
Figure S19. Normalized emission spectra of microcrystals of Re-BPTA obtained from butanol as powder	
and after dispersion in water, and comparison with the suspension in H ₂ O/CH ₃ CN 90:10 v/v (AIPE experiment)	14
Figure S20. Photoluminescence decay of Re-BPTA in dichloromethane solution	15
Figure S21. Photoluminescence decay of Re-BPTA in acetonitrile solution	15
Figure S22. Photoluminescence decay of Re-BPTA in methanol solution	16
Figure S23. Photoluminescence decay of Re-BPTA microcrystalline powder	16
Figure S24. Photoluminescence decay of Re-BPTA in water/acetonitrile 90:10 v/v	17
Figure S25. Photoluminescence decay of Re-BPTA as microcrystalline powder dispersed in water	17
Figure S26. Photoluminescence decay of Re-Phe microcrystalline powder	18
Figure S27. Photoluminescence decay of Re-Phe-Ada microcrystalline powder	18

Synthesis and characterization

Figure S1. Carbon numbering for attribution of ¹H and ¹³C NMR chemical shifts.

Figure S2. ¹H NMR spectrum (500 MHz) of complex Re-BPTA in CDCl₃ recorded at 25°C.

Figure S3. ¹³C NMR spectrum (125 MHz, JMod) of complex Re-BPTA in CDCl₃ recorded at 25°C.

Figure S4. HSQC NMR spectrum of complex Re-BPTA in CDCl₃.

Figure S5. Experimental (top) and theorical (middle and bottom) mass spectra of Re-BPTA.

Figure S6. Variable temperature ¹H NMR spectra of complex **Re-BPTA** in C₂D₂Cl₄ at 400 MHz.

Crystallographic data

Bond	D (Å)	Bond angle	Angle value (°)
N(1)-C(2)	1.3700(12)	C(2)-N(1)-C(1)	104.49(8)
N(1)-C(1)	1.3741(11)	C(2)-N(1)-C(4)	124.61(8)
N(1)-C(4)	1.4438(11)	C(1)-N(1)-C(4)	130.86(8)
N(2)-C(1)	1.3151(11)	C(1)-N(2)-N(3)	107.21(8)
N(2)-N(3)	1.3876(12)	C(2)-N(3)-N(2)	107.40(8)
N(3)-C(2)	1.3133(12)	N(2)-C(1)-N(1)	110.39(8)
C(1)-C(1A)	1.4574(18)	N(2)-C(1)-C(1A)	124.90(10)
C(2)-C(3)	1.4835(14)	N(1)-C(1)-C(1A)	124.71(10)
C(4)-C(9)	1.3859(13)	N(3)-C(2)-N(1)	110.50(8)
C(4)-C(5)	1.3881(13)	N(3)-C(2)-C(3)	125.77(9)
C(5)-C(6)	1.3910(14)	N(1)-C(2)-C(3)	123.71(9)
C(6)-C(7)	1.3833(16)	C(9)-C(4)-C(5)	121.97(9)
C(7)-C(8)	1.3878(16)	C(9)-C(4)-N(1)	119.56(8)
C(8)-C(9)	1.3940(14)	C(5)-C(4)-N(1)	118.40(8)
		C(4)-C(5)-C(6)	118.63(9)
		C(7)-C(6)-C(5)	120.25(9)
		C(6)-C(7)-C(8)	120.46(9)
		C(7)-C(8)-C(9)	120.14(10)
		C(4)-C(9)-C(8)	118.55(9)

Table S1. Selected bond lengths (Å) and angles (°) for ligand BPTA. The atoms are numbered like on the molecular view.

Bond	D (Å)	Bond angle	Angle value
Re(1)-C(3)	1.908(4)	C(3)-Re(1)-C(2)	91.59(17)
Re(1)-C(2)	1.925(4)	C(3)-Re(1)-C(1)	89.97(18)
Re(1)-C(1)	1.960(5)	C(2)-Re(1)-C(1)	91.71(18)
Re(1)-N(2)	2.175(3)	C(3)-Re(1)-N(2)	97.45(15)
Re(1)-N(4)	2.179(3)	C(2)-Re(1)-N(2)	170.70(15)
Re(1)-Cl(1)	2.4553(11)	C(1)-Re(1)-N(2)	90.50(15)
O(1)-C(1)	1.091(5)	C(3)-Re(1)-N(4)	168.98(15)
O(2)-C(2)	1.141(5)	C(2)-Re(1)-N(4)	97.19(15)
O(3)-C(3)	1.154(5)	C(1)-Re(1)-N(4)	96.40(15)
N(1)-C(5)	1.312(5)	N(2)-Re(1)-N(4)	73.59(12)
N(1)-N(2)	1.383(4)	C(3)-Re(1)-Cl(1)	91.80(14)
N(2)-C(4)	1.318(5)	C(2)-Re(1)-Cl(1)	91.36(13)
N(3)-C(4)	1.357(5)	C(1)-Re(1)-Cl(1)	176.41(13)
N(3)-C(5)	1.383(5)	N(2)-Re(1)-Cl(1)	86.17(10)
N(3)-C(10)	1.446(5)	N(4)-Re(1)-Cl(1)	81.37(10)
N(4)-C(7)	1.312(5)	C(5)-N(1)-N(2)	106.2(3)
N(4)-N(5)	1.378(4)	C(4)-N(2)-N(1)	108.6(3)
N(5)-C(8)	1.318(5)	C(4)-N(2)-Re(1)	116.8(3)
N(6)-C(7)	1.363(5)	N(1)-N(2)-Re(1)	133.5(2)
N(6)-C(8)	1.373(5)	C(4)-N(3)-C(5)	104.6(3)
N(6)-C(16)	1.448(5)	C(4)-N(3)-C(10)	129.0(3)
C(4)-C(7)	1.446(5)	C(5)-N(3)-C(10)	125.3(3)
		C(7)-N(4)-N(5)	109.1(3)
0		$C(7) N(4) P_{2}(1)$	116 2(2)

Table S2. Selected bond lengths (Å) and angles (°) for complex **Re-BPTA**. The atoms are numbered like on the molecular view.

N(1)-N(2)-Re(1)	133.5(2)
C(4)-N(3)-C(5)	104.6(3)
C(4)-N(3)-C(10)	129.0(3)
C(5)-N(3)-C(10)	125.3(3)
C(7)-N(4)-N(5)	109.1(3)
C(7)-N(4)-Re(1)	116.2(3)
N(5)-N(4)-Re(1)	131.9(3)
C(8)-N(5)-N(4)	105.9(3)
C(7)-N(6)-C(8)	104.8(3)
C(7)-N(6)-C(16)	127.2(3)
C(8)-N(6)-C(16)	125.8(3)

Figure S7. Crystallographic arrangement of ligand **BPTA**: a) asymmetric unit. b) Short contacts (drawn in turquoise ink) between neighboring molecules. The centroid-to-centroid distance between the phenyl rings is \sim 4.1 Å. All distances are in Å.

Figure S8. Crystallographic arrangement of complex **Re-BPTA**: a) asymmetric unit. b) Short contacts (drawn in turquoise ink) involving the nitrogen atoms. c) Short contacts (drawn in turquoise ink) involving the halogen atoms and one C...H interaction and d) centroid-to-centroid distance (in red ink) between triazole rings. All distances are in Å.

Quantum chemistry calculations

Figure S9. Structure of **Re-BPTA** in the ground state (a) and in the lowest excited triplet state (b) calculated by DFT at the PBE0/LANL2DZ level of theory. Angles between the planes of the phenyl and triazole rings are indicated in red ink. The distance between centroids is indicated in green ink.

Table S3.	Cor	mposition	(%)	of	the	frontier	m	olecular	ort	oitals	involv	ed i	n the	main	elect	ronic
transitions	of	complex	Re-I	BPTA	in 🖌	CH ₂ C	l ₂ ,	calculat	ed	using	g the	TD	-DFT	metho	d at	the
PBEO/LAN	VL2I	DZ level,														

	Rhenium	Cl	Phenyl	Triazole	СО
HOMO-9	8.516	14.778	48.574	24.608	3.524
HOMO-8	8.913	17.895	41.667	27.879	3.646
HOMO-6	14.088	61.658	5.889	12.705	5.660
HOMO-5	0.003	0.019	99.693	0.283	0.001
HOMO-4	0.470	5.242	80.648	13.449	0.190
HOMO-3	2.515	35.304	9.102	51.659	1.419
HOMO-2	68.403	0.636	0.079	1.591	29.291
HOMO-1	46.753	27.047	0.351	5.249	20.599
HOMO	47.371	22.356	0.0541	6.985	23.233
LUMO	3.711	2.267	2.450	84.096	7.477
LUMO+1	0.306	0.050	93.877	5.100	0.667
LUMO+2	17.789	0.715	6.017	-0.216	75.696
LUMO+3	7.533	1.175	65.937	1.219	24.135
LUMO+4	10.461	1.744	34.944	14.157	38.694
LUMO+5	2.045	0.176	83.911	5.348	8.520

Table S4. Description of the main electronic transitions for complex **Re-BPTA** in CH₂Cl₂ calculated using the TD-DFT method at the PBEO/LANL2DZ level, with corresponding wavelength (λ), energy (*E*) and oscillator strength (*f*). Only orbitals contributing by more than 5% have been indicated, and they are listed in decreasing order of importance. phe: phenyl; ta: *bi*-triazole.

Electronic transition	Contribution	Assignment		λ(nm)	E (eV)	f
$S0 \rightarrow S2$	$H-1 \rightarrow LUMO$	$d(\text{Re}) + p(\text{Cl}) + \pi(\text{CO}) \rightarrow \pi^*(\text{ta}) + \pi^*(\text{CO})$	MLCT/XLCT/LLCT	392.7	3.16	0.134
$S0 \rightarrow S7$	H-4→ LUMO	$\pi(\text{phe}) + \pi(\text{ta}) + p(\text{Cl}) \rightarrow \pi^*(\text{ta}) + \pi^*(\text{CO})$ IL/LLCT		294	4.22	0.036
$S0 \rightarrow S10$	H-6→ LUMO	$p(Cl) + d(Re) + \pi(ta) + \pi(phe) + \pi(CO) \rightarrow \pi^*(ta) + \pi^*(CO)$	XLCT/MLCT	290.6	4.27	0.117
$S0 \rightarrow S14$	$H-1 \rightarrow LUMO+1$	$d(Re) + p(Cl) + \pi(CO) \rightarrow \pi^*(phe) + \pi^*(ta)$	MLCT/LLCT	268.3	4.62	0.045
$S0 \rightarrow S17$	H-8→ LUMO	π (phe) + π (ta) + p(Cl) + d(Re) $\rightarrow \pi^*$ (ta) + π^* (CO)	IL/LLCT/XLCT/ML CT	262.7	4.72	0.041
$S0 \rightarrow S22$	H-9→ LUMO	π (phe) + π (ta) + p(Cl) + d(Re) $\rightarrow \pi^*$ (ta) + π^* (CO)	IL/LLCT/XLCT/ML CT	249.8	4.96	0.128
$S0 \rightarrow S51$	$H-6 \rightarrow LUMO+4$	$p(Cl) + d(Re) + \pi(ta) + \pi(phe) + \pi(CO) \rightarrow \pi^*(CO) + \pi^*(phe) + \pi^*(ta) + p(Re)$	XLCT	213.2	5.82	0.042

Figure S10. Main electronic transitions calculated using the TD-DFT method at the PBEO/LANL2DZ level and theoretical UV-vis absorption spectrum (red lines), compared with the experimental spectrum (blue line), for complex **Re-BPTA** in CH₂Cl₂.

Figure S11. Representation of complex **Re-BPTA** in the lowest triplet excited state (³MLCT) calculated by DFT at the PBE0/LANL2DZ level of theory. a) Spin density distribution (isovalue = 0.03 e bohr^{-3}). b) Position of unpaired electrons in the hole (HOMO) and (c) in the particle (LUMO). Data obtained from the comparison of the Kohn-Sham orbitals of the molecule in the triplet state with those of the ground state.

Table S5. Selected bond lengths (Å), distance between the centroids (Cd) of both phenyl rings, and angles (°) for complex **Re-BPTA** in the ground state and in the lowest triplet excited state (³MLCT) calculated by DFT at the PBE0/LANL2DZ level of theory. The atoms are numbered like on the molecular view.

Bond		D (Å)	Bond angle	Ang	le value (°)
	Ground state	Lowest triplet excited state		Ground state	Lowest triplet excited state
Re(1)-C(3)	1.910	1.944	C(3)-Re(1)-C(2)	91.08	88.56
Re(1)-C(2)	1.909	1.943	C(3)-Re(1)-C(1)	90.81	91.99
Re(1)-C(1)	1.887	1.925	C(2)-Re(1)-C(1)	90.82	91.95
Re(1)-N(2)	2.129	2.063	C(3)-Re(1)-N(2)	97.04	97.50
Re(1)-N(4)	2.128	2.058	C(2)-Re(1)-N(2)	169.45	172.84
Re(1)-Cl(1)	2.544	2.514	C(1)-Re(1)-N(2)	95.00	91.66
O(1)-C(1)	1.191	1.178	C(3)-Re(1)-N(4)	169.82	172.72
O(2)-C(2)	1.184	1.177	C(2)-Re(1)-N(4)	97.27	97.35
O(3)-C(3)	1.184	1.177	C(1)-Re(1)-N(4)	93.88	92.05
N(1)-C(5)	1.336	1.330	N(2)-Re(1)-N(4)	73.57	76.33
N(1)-N(2)	1.380	1.386	C(3)-Re(1)-Cl(1)	91.17	88.64
N(2)-C(4)	1.347	1.410	C(2)-Re(1)-Cl(1)	91.02	89.07
N(3)-C(4)	1.371	1.393	C(1)-Re(1)-Cl(1)	177.25	178.81
N(3)-C(5)	1.393	1.406	N(2)-Re(1)-Cl(1)	82.87	87.27
N(3)-C(10)	1.443	1.435	N(4)-Re(1)-Cl(1)	83.86	87.21
N(4)-C(7)	1.346	1.411	C(5)-N(1)-N(2)	106.22	107.04
N(4)-N(5)	1.380	1.386	C(4)-N(2)-N(1)	109.74	109.00
N(5)-C(8)	1.337	1.330	C(4)-N(2)-Re(1)	118.60	117.33
N(6)-C(7)	1.371	1.392	N(1)-N(2)-Re(1)	131.06	133.66
N(6)-C(8)	1.392	1.406	C(4)-N(3)-C(5)	106.04	106.03
N(6)-C(16)	1.443	1.435	C(4)-N(3)-C(10)	131.16	127.22
C(4)-C(7)	1.441	1.381	C(5)-N(3)-C(10)	122.67	124.66
Cd-Cd	3.689	3.817	C(7)-N(4)-N(5)	109.73	109.00
C6			C(7)-N(4)-Re(1)	118.84	117.35
1	NI		N(5)-N(4)-Re(1)	131.42	133.47
C5		03	C(8)-N(5)-N(4)	106.20	107.02
N3	N2	Сз	C(7)-N(6)-C(8)	106.03	106.04
	Re		C(7)-N(6)-C(16)	131.13	127.38
C11 C4	CII T	CI	C(8)-N(6)-C(16)	122.75	124.46

Electrochemistry

Table S6. Selected electrochemical data of complex **Re-BPTA** $[1.0 \times 10^{-3} \text{ M}]$. Values determined by OSWV on a Pt working electrode in CH₂Cl₂ + 0.1 M *n*-Bu₄NBF₄ at room temperature.^{*a,b*} Ferrocene was used as internal reference. Comparison with **Re-Phe** and **Re-PBO**.

Compound	Oxidati	on	Reduction		
	E_2	E_{I}	E_I	E_2	E_3
Re-BPTA	1.66	1.37	-1.51	-1.66^{e}	
Re-Phe ^f	1.78	1.46	-1.29^{c}	-1.78	
Re-PBO ^g	1.73	1.44	-1.28^{d}	-1.58	-1.83

^a OSWVs were obtained using a sweep width of 20 mV, a frequency of 20 Hz, and a step potential of 5 mV.

^b Potential values in Volts vs. SCE (Fc⁺/Fc is observed at 0.55 V \pm 0.01 V vs. SCE).

^{*c*} One-electron quasi-reversible process at 1 V/s.

^d One-electron quasi-reversible process at 0.2 V/s

^e Shoulder of weak intensity.

^fValues from Poirot et al., Dalton Trans, 2021, 50, 13686-13698 (ESI). DOI: 10.1039/D1DT02161C

^g Values from Wang et al. Dalton Trans., 2019, 48, 15906–15916 (ESI). DOI: 10.1039/c9dt02786f

Table S7. Experimental electrochemical data used, and calculated value of the electrochemical energy gap (E_g^{el}) for mentioned complexes

Compound	Eonset OX (V)	Eonset red (V)	<i>Е</i> номо (eV)	<i>Еи</i> мо (еV)	$E_{\rm g}^{\rm el}$ (eV)
Re-BPTA	1.10	-1.60	-5.84	-3.14	2.70
Re-Phe ^a	1.42	-1.23	-6.16	-3.51	2.65

^a Values from Poirot et al., Dalton Trans, 2021, 50, 13686-13698 (ESI). DOI: 10.1039/D1DT02161C

Evaluation of the energy gap values (Egel) for the Re complexes

The onset oxidation and reduction potentials (E_{onset} ox, E_{onset} red) were measured by cyclic voltammetry in volt *versus* SCE. The CVs were carried out at a potential scan rate of 200 mV s⁻¹ at room temperature.

The HOMO and LUMO energy levels (EHOMO and ELUMO) in electron volt (eV) were calculated according to the empirical equations (1) and (2):^[1]

 $E_{\text{HOMO}}(eV) = -e (E_{\text{onset}} \text{ ox } (V \text{ vs. SCE}) + 4.74 \text{ V})$

Eq(1)Eq(2)

 $E_{\text{LUMO}} (eV) = -e (E_{\text{onset}} red (V vs. SCE) + 4.74 V)$

and the energy gap value was obtained as follows: $E_{g^{el}} = (E_{LUMO} - E_{HOMO})$.

The differences observed for the estimation of the energy gaps using experimental methods or theoretical calculations are well known. See for example: R. Stowasser and R. Hoffmann, J. Am. Chem. Soc. 1999, **121**, 3414-3420.

[1] a) Y. Zhou, J. W. Kim, R. Nandhakumar, M. J. Kim, E. Cho, Y. S. Kim, Y. H. Jang, C. Lee, S. Han, K. M. Kim, J.-J. Kim and J. Yoon, *Chem. Commun.* 2010, **46**, 6512–6514 and references therein; b) G. V. Loukova, *Chem. Phys. Lett.* 2002, **353**, 244–252.

Electrochemical selected curves

OSWV study was performed on a Pt working electrode in $CH_2Cl_2 + 0.1 \text{ M } n[Bu_4N][BF_4]$ at room temperature in the presence of ferrocene used as internal reference. Frequency 20 Hz, amplitude 20 mV, step potential 5 mV.

Cyclic voltammograms of compound **Re-BPTA** and ligand **BPTA** were performed on a Pt working electrode in $CH_2Cl_2 + 0.1 \text{ M } n[Bu_4N][BF_4]$ at room temperature at a scan rate of 0.2 Vs⁻¹ or at other mentioned scan rates.

Figure S12. OSWVs: anodic (left) and cathodic (right) scans of complex Re-BPTA.

Figure S13. Cyclic voltammograms of complex **Re-BPTA** (left) at 0.2 V/s, and segmented voltammogram at 1 V/s (right).

Figure S14. Segmented cyclic voltammograms of complex **Re-BPTA** with its first oxidation process and part of its reduction process at 10 V/s (left). Segmented cyclic voltammograms of complex **Re-BPTA** at increasing potential, scan 1 (black), scan 2 (grey) at 10 V/s (right).

Figure S15. Segmented cyclic voltammograms of complex **Re-BPTA**: first oxidation wave at 50 V/s (black) and 100 V/s (grey).

Figure S16. OSWVs: anodic (left) and cathodic (right) scans of ligand **BPTA** in black, electrochemical solution without ligand **BPTA** (light grey).

Figure S17. Cyclic voltammograms of ligand BPTA at 0.2 V/s.

Spectroscopy

Table S8. Solid state spectroscopic data of two samples of **Re-BPTA** obtained from evaporation of butan-2-ol and chloroform. Photoluminescence maximum wavelength (λ_{PL}) and quantum yield (Φ_{PL}) for the pristine powders, ground powders and ground powder fumed with THF for 48 h.

Solvent of	Pristine		Ground		THF fumed	
preparation	$\lambda_{\rm PL}$	${oldsymbol{\varPhi}}_{ ext{PL}}$	$\lambda_{\rm PL}$	${oldsymbol{\varPhi}}_{ ext{PL}}$	$\lambda_{ m PL}$	${oldsymbol{\varPhi}}_{ ext{PL}}$
Butan-2-ol	546	0.52	548	0.38	546	0.51
Chloroform	554	0.27	554	0.29		

Figure S18. a) Emission spectra of complex **Re-BPTA** at 3.3×10^{-5} M in acetonitrile solutions containing from 0 to 95% water, $\lambda_{ex} = 350$ nm, recorded 24h after sample preparation. b) Evolution of the PL intensity at 546 nm as a function of the proportion of water in acetonitrile.

Figure S19. Normalized emission spectra of microcrystals of **Re-BPTA** obtained from butan-2-ol as powder (black dotted line) and after dispersion in water (red line), and comparison with the suspension in H₂O/CH₃CN 90:10 v/v (AIPE experiment, blue line). $\lambda_{ex} = 380$ nm. Note that the spectrum of the powder sample was obtained using the integration sphere, and the correction curve is different from that used for the suspensions, which may partly explain some differences in the shape of the spectra.

Figure S20. Photoluminescence decay of Re-BPTA (~ 2.2×10^{-5} M) in dichloromethane solution.

Figure S21. Photoluminescence decay of Re-BPTA (~ 3.5×10^{-5} M) in acetonitrile solution.

Figure S22. Photoluminescence decay of Re-BPTA (~ 3.0×10^{-5} M) in methanol solution.

Figure S23. Photoluminescence decay of **Re-BPTA** microcrystalline powder obtained from butan-2-ol.

Chi-squared Probab	ility = 1.6099E-02%
Durbin-Watson Para	meter = 1.986751
Negative residuals	= 49.38384%
Residuals < 1 s.dev	= 66.91009%
Residuals < 2 s.dev	= 94.43176%
Residuals < 3 s.dev	= 99.49795%
Residuals < 4 s.dev	= 99.95436%

Figure S24. Photoluminescence decay of **Re-BPTA** $(3.3 \times 10^{-5} \text{ M})$ in water/acetonitrile 90:10 v/v.

The fitted parameters are:
Hi reduced to: 3590 ch
SHIFT = 0.0547942 ch
2.278641E-11 sec
S.Dev = 7.305223E-12 sec
T1 = 2.079421 ch
8.647364E-10 sec
S.Dev = 5.004512E-11 sec
T2 = 139.3021 ch
5.792939E-08 sec
S.Dev = 1.069665E-09 sec
T3 = 948.6752 ch
3.945108E-07 sec
S.Dev = 6.438184E-10 sec
A = 197.6246
S.Dev = 0.6875767
B1 = 0.3231632
[0.48 Rel.Ampl]
S.Dev = 4.273481E-03
B2 = 4.701056E-02
[4.67 Rel.Ampl]
S.Dev = 3.286287E-04
B3 = 0.1401092
[94.85 Rel.Ampl]
S.Dev = 1.11114E-04
CHISQ = 1.090398
[3383 degrees of freedom]
Chi-squared Probability = 0.0147901%
Durbin-Watson Parameter = 1.906441
Negative residuals = 49.36597%
Residuals < 1 s.dev = 66.76497%
Residuals < 2 s.dev = 94.60336%
Residuals < 3 s.dev = 99.4102%
Residuals < 4 s.dev = 99.97051%

Figure S26. Photoluminescence decay of Re-Phe microcrystalline powder.

Figure S27. Photoluminescence decay of Re-Phe-Ada microcrystalline powder.

The fitted parameters are:					
Hi reduced to: 2590 ch					
SHIFT = 0.0514966 ch					
2.141509E-11 sec					
S.Dev = 8.355113E-12 sec					
T1 = 3.01927 ch					
1.255577E-09 sec					
S.Dev = 8.907812E-11 sec					
T2 = 143.5256 ch					
5.968576E-08 sec					
S.Dev = 1.483393E-09 sec					
T3 = 1536.439 ch					
6.389352E-07 sec					
S.Dev = 1.592319E-09 sec					
A = 1227.893					
S.Dev = 2.836676					
B1 = 0.1616507					
[0.22 Rel.Ampl]					
S.Dev = 3.051225E-03					
B2 = 3.562143E-02					
[2.27 Rel.Ampl]					
S.Dev = 3.515054E-04					
B3 = 0.1430173					
[97.51 Rel.Ampl]					
S.Dev = 1.725031E-04					
CHISQ = 1.073985					
[2463 degrees of freedom]					
Chi-squared Probability = 0.5481262%					
Durbin-Watson Parameter = 1.88993					
Negative residuals = 49.73695%					
Residuals < 1 s.dev = 66.36989%					
Residuals < 2 s.dev = 94.90085%					
Residuals < 3 s.dev = 99.55483%					
Residuals < 1 s dev = 00 87850%					

The fitted parameters are:		
Hi reduced to: 2300 ch		
SHIFT = -6.739429E-02 ch		
-2.802622E-11 sec		
S.Dev = 7.683109E-12 sec		
T1 = 2.180721 ch		
9.068627E-10 sec		
S.Dev = 5.685307E-11 sec		
T2 = 145.4145 ch		
6.047127E-08 sec		
S.Dev = 1.644882E-09 sec		
T3 = 1553.87 ch		
6.461837E-07 sec		
S.Dev = 2.201864E-09 sec		
A = 1280.708		
S.Dev = 4.056493		
B1 = 0.2428479		
[0.23 Rel.Ampl]		
S.Dev = 4.221174E-03		
B2 = 3.713449E-02		
[2.36 Rel.Ampl]		
S.Dev = 3.730864E-04		
B3 = 0.1435503		
[97.41 Rel.Ampl]		
S.Dev = 2.26044E-04		
CHISQ = 1.070533		
[2043 degrees of freedom]		
Chi-squared Probability = 1.344119%		
Durbin-Watson Parameter = 1.891855		
Negative residuals = 48.7567%		
Residuals < 1 s.dev = 66.69917%		
Residuals < 2 s.dev = 94.44173%		
Residuals < 3 s.dev = 99.60995%		
Residuals < 4 s.dev = 99.95124%		