G Leger 
  
A Gines 
  
V Gutierrez 
  
M J Barragan 
  
A methodology for defect detection in analog circuits based on causal feature selection

The cost of assuring test quality significantly increases when dealing with complex systems with tightly integrated AMS-RF building blocks. Machine learning-based test may be a promising solution to this issue. These tests rely on regression models trained to replace costly performance measurements by simpler test signatures. However, these regression models are targeted only at parametric performance variations in defect-free circuits. The presence of spot defects may be undetected by these tests and lead to test quality degradation and reliability issues. In this work we propose a methodology based on causal discovery algorithms to screen out these spot defects.

I. INTRODUCTION

Current market trends in rapidly growing sectors (e.g., automotive, space, healthcare, etc.) demand the development of very complex, tightly integrated mixed-signal systems with stringent test quality and reliability requirements that go beyond traditional specification-based testing. Indeed, the production of current and future mixed-signal systems calls for an alternative test paradigm to meet ever decreasing defectivity rate requirements (in the sub-ppm range for automotive) at a reasonable cost.

Machine learning-based test, also called alternate or indirect test, is a promising strategy for overcoming the problems of traditional functional test of AMS-RF circuits [START_REF] Variyam | Prediction of analog performance parameters using fast transient testing[END_REF]. The basic idea is to replace costly specification measurements by a set of simpler (and cheaper) measurements, often called signatures or features. Machine learning algorithms are then used to map features to specifications. In order to build this mapping a supervised machine learning algorithm is employed to fit a regression model. Indirect test may lead to significant cost savings in production test, but this test strategy is not free of shortcomings. One key limitation is that indirect test is only sensitive to parametric variations. Indeed, machine learning regression algorithms just learn the subjacent correlation between signatures and specifications in the presence of process and mismatch variations. Any spot defect, which, by definition, do not belong to the stochastic process that governs parametric variations, would severely impact the accuracy of the indirect test program. This observation led to the proposal of the socalled defect filter. The original proposal of a defect filter was presented in [START_REF] Stratigopoulos | Defect Filter for Alternate RF Test[END_REF] and it was based on outlier detection in the space of input features. The main idea is to use Kernel Density Estimation (KDE) for approximating the probability density function of the set of features under regular process variations. This function is then employed to decide if a given set of measured features belongs or not to the defect-free distribution. The approaches in [START_REF] Krishnan | Exploiting multiple mahalanobis distance metrics to screen outliers from analog product manufacturing test responses[END_REF] and [START_REF] Larguech | A generic methodology for building efficient prediction models in the context of alternate testing[END_REF] also rely on outlier identification. The approach in [START_REF] Krishnan | Exploiting multiple mahalanobis distance metrics to screen outliers from analog product manufacturing test responses[END_REF] is based on the Mahalanobis distance, while the work in [START_REF] Larguech | A generic methodology for building efficient prediction models in the context of alternate testing[END_REF] defines a hyperrectangle in the input feature space based on the descriptive statistics of the features. In the same line, [START_REF] Kupp | Confidence Estimation in Non-RF to RF Correlation-Based Specification Test Compaction[END_REF] replaces the hyperrectangles with a nonlinear decision boundary defined by Support Vector Machines.

In essence, the proposal of the defect filter tries to solve the problem of analog structural test by transforming it in an outlier detection problem in the space of features. The key challenge for the practical implementation of a defect filter is the design and selection of an adequate feature set. To the best of our knowledge, there is no systematic methodology for the construction of a valid feature set for defect filters that does not rely on extensive defect simulations. In this work we will propose such methodology, based on the discovery of causal relationships between the features and the target performance [START_REF] Barragan | On the use of causal feature selection in the context of machine-learning indirect test[END_REF], [START_REF] Cilici | A Nonintrusive Machine Learning-Based Test Methodology for Millimeter-Wave Integrated Circuits[END_REF]. By leveraging expert design knowledge and automated causality inference tools, we will propose a robust set of input features based on the actual root causes of performance variation. We will show that such features -in the following, causal features-are suitable candidates for building reliable defect filters. The rest of the paper is organized as follows.

In section II, we briefly review basic concepts in causality inference. Section III describes the proposed methodology for building a robust defect filter based on causal discovery. Section IV validates the proposed methodology in a case study. Finally, section V summarizes our main contributions.

II. THEORETICAL BASIS

A. Basic concepts in causality inference

Causality connections between random variables describing the state of a system can be formally represented using causal Bayesian networks [START_REF] Pearl | Causality[END_REF]. Let us consider the directed acyclic graph (DAG) in Fig. 1 as an example. In a DAG a node A is denoted as the parent of node B (B is the child of A) if there is a direct edge from A to B, while A is the ancestor of B (B is the descendant of A) if there is a direct path from A to B. For instance, in Fig. 1, C1 is a parent of E1, and it is also an ancestor of E2 and E3. A Bayesian network [START_REF] Neapolitan | Probabilistic reasoning in expert systems: Theory and algorithms[END_REF], is the triplet of: a) a set of random variables, b) the joint probability distribution of these variables, and c) a DAG representing the variable connections. If the triplet complies with the Markov condition, this triplet is a Bayesian network. The Markov condition implies that any node A in the network is statistically independent of all nondescendants of A, given the parents of A. For instance, in Fig. 1, C3 should be statistically independent from E1, since C3 is not a descendant of E1.

Finally, a causal Bayesian network has the additional condition that each edge in the network represents a causeeffect link. Using Pearl's notation [START_REF] Pearl | Causality[END_REF], if nodes A and B are connected by an edge and we force node A to a given value (denoted as do(A)), then A is a cause of B (B is the effect of A) if the conditional probability P (B|do(A)) is different than the raw probability P (B). That is, forcing a value for A has an effect in the the distribution of B. It has to be noticed that this causality definition has a more profound meaning than a simple correlation. It implies that any change imposed on A, even if it is an external unexpected change, will have an effect in the distribution of B.

B. Markov blanket and causal feature selection

The Markov Blanket of a variable is formed by the parents of that variable, its children and the other parents of its children (also called spouses) [START_REF] Pearl | Causality[END_REF]. Once conditioned on its Markov Blanket, a variable is independent of any of the remaining variables. In other words, if the state of the MB variables is known, the other variables will not give any extra information. This does not imply that we can determine exactly the state of the target variable but it does guarantee that it is the best that we can do with the variables that we have.

For instance, in the example in Fig. 1, the Markov blanket of node C1 is composed by nodes C2 (its spouse) and E1 (its child). Let us think of these variables as binary events to simplify the discussion. Conceptually, if we want to know if event C1 happened, we can just observe the variables in its Markov blanket. Thus, if E1 happened and C2 did not, it is clear that C1 did happen. However, if E1 and C2 both happened, the state of C1 cannot be determined and no other variable in the network will give us any additional information about C1. These properties of the Markov blanket have a direct application for defect filtering. If we target the detection of a spot defect, variables in the Markov blanket of the circuit performance are likely to be the most robust candidate features for building a defect filter.

In this line, causal discovery machine learning algorithms [START_REF] Aliferis | Causal Explorer: A Causal Probabilistic Network Learning Toolkit for Biomedical Discovery[END_REF], [START_REF]Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation[END_REF] have been proposed for inferring causal relationships from sets of observational data. Generally, these algorithms start by identifying the shape of the DAG around the target variable and then they test conditional independence and dependence hypothesis between the identified variables to determine the Markov blanket of the target variable. Multiple implementations have been published in the last few years that optimize it for applications with large sets of variables with high connectivity. These algorithms differ in the way that the variables are ranked and in the way that the conditional independence and dependence hypothesis are checked. Readers are referred to [START_REF] Aliferis | Causal Explorer: A Causal Probabilistic Network Learning Toolkit for Biomedical Discovery[END_REF], [START_REF]Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation[END_REF] for a detailed discussion of causal discovery machine learning algorithms.

III. PROPOSED METHODOLOGY FOR DEFECT FILTERING

In our application, the goal is to screen defects through a machine learning based approach. Ideally, this screening procedure, or defect filter, should also rely on simple and cheap measurements that may, or not, be part of the features used for regression. As discussed above, if we have a set of signature candidates, causality inference algorithms that determine the Markov Blanket of the variable of interest should provide an efficient feature selection tool for building a robust defect filter.

The proposed methodology for defect filter generation comprises the following steps:

• Step 1: Proposal of candidate features: the methodology starts by the proposal of a set of candidate features for our defect filter based on expert design knowledge on the circuit and its specifications. This is the only step in the methodology that requires expert human input to guide the process. In any case, a wide variety of standard features are readily available, including the DC operating points, frequency response at selected frequencies, etc, eventually measured under stress conditions [START_REF] Barragan | A procedure for alternate test feature design and selection[END_REF]. inference algorithm using the observational data obtained in the previous step. • Step 4: Defect filter construction: We use a nonparametric KDE method to estimate the joint probability density function of the set of causal features conforming the Markov Blanket of the target performance, using the Monte Carlo simulation data. The defect filter is defined as the hyper-surface in the causal feature space separating the hyper-volume for which the joint probability density function has a significant value (i.e., has a non-minimum probability) from the rest of the space. Any point inside this hyper-volume is considered defect-free, while any point outside it will be flagged as containing defects. • Step 5: Sanity check: To verify the reliability of the defect filter on a realistic scenario, we perform a smallscale defect simulation. This must be considered a sanity check. As commented, exhaustive defect simulation is computationally intractable. However a partial simulation (particularly considering defect likelihood, as suggested in [START_REF] Sunter | Practical random sampling of potential defects for analog fault simulation[END_REF]) allows to rapidly discard unreliable filters.

IV. CASE STUDY

In order to show the advantage of the proposed methodology for defect filter construction, we offer a direct comparison between the proposed methodology based on causal discovery and the standard approach based on the same observational features used for the performance regression model. For that purpose, we build two defect filters for a complex CUT: one using causal features and the other using observational features. For a fair comparison, both defect filters are built using the same non-parametric Kernel Density Estimation method and verified using extensive defect simulation.

The selected CUT is the unit-gain differential closed-loop amplifier with resistive feedback (RFB-AMP) conceptually depicted in Fig. 2. The RFB-AMP topology comprises: a) the input and feedback network formed by resistors R in = R f b , b) the two-stage op-amp with Miller's compensation shown in Fig. 3,c) three common-mode feedback (CMFB) circuits for stabilizing the voltages at input, first-and second-stage outputs of the op-amp. An independent control of the common-mode at different op-amp nodes was considered to optimize the signal range improving linearity performance.

The selected CUT has been implemented in a 1.8 V UMC 180 nm process. The implementation was sized to assure a THD of 80 dB. Characterizing the performance of such a RFB-AMP requires a dynamic test consisting in applying a pure sinusoidal signal at the input of the circuit, and acquiring and processing its output response. In this case study we will focus on THD as the main performance parameter and take advantage of our design knowledge to propose appropriate features for defect filtering.

Our initial set of signature candidates contains:

• The DC operating points of the twenty internal nodes in the buffer. These features should detect most issues in a design since, once the geometry of a transistor is fixed, most of its characteristics are defined by its biasing conditions. And conversely, undue changes in transistor characteristics may alter the DC operating point. • The output response of the buffer to a rising step and a falling step input at different time instants and at different amplitudes. These signatures are aimed at sensing the slewing characteristic and the settling error as well as the settled (long-term) error. Performing the test for different amplitudes should allow to sense the non-linearity of these errors, which is key to THD. In this case study we defined 15 signatures related to settling. In total, we have defined 35 candidate signatures for building the defect filter. We use 2000 Monte Carlo simulation iterations to define our data set. For each of the simulated circuit instances we extract the 35 signatures and the target performance, i.e., the THD of the CUT. Using this data set, we will then define two subsets of features in order to build a defect filter:

• The subset of best observational signatures: these signatures have been selected from the set of 35 candidate features by a state-of-the-art feature selection algorithm, the minimum redundancy maximum relevance (mRMR) algorithm [START_REF] Peng | Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy[END_REF]. This subset should contain the signatures that are best correlated to the THD. • The subset of best causal signatures: this subset of signatures has been selected using the mbHITON algorithm for causal discovery [START_REF] Aliferis | Causal Explorer: A Causal Probabilistic Network Learning Toolkit for Biomedical Discovery[END_REF]. This algorithm identifies the Markov Blanket of the target performance. We then build unsupervised learning defect filters for the two considered subsets. For that purpose, we evaluate a nonparametric estimate of the joint probability density function of each feature subset, using a Gaussian kernel with a width that is a function of the local sample density. That estimate was built using the mismatch Monte Carlo data. The pass-fail threshold was set to the minimum probability value obtained on the training data.

In order to test the performance of the two resulting defect filters, we resort to an exhaustive defect simulation campaign. For that purpose, defects are injected in the transistors using open or short resistances in the branches or between terminals, respectively. In addition to the conventional 6-defect model, we also consider the possibility of open fingers for multifinger transistors. In total, 304 defects were considered for the circuit in our case study. For further insight, we also used 1500 instances of the Monte Carlo data to train predictive models for the THD of the CUT using the two defined subsets of signatures. Table I displays the number of detected defects (and the associated detection rate) for the two defect filters, and the quality of the two predictive models in terms of the model FoM [START_REF] Barragán | Alternate Test of LNAs Through Ensemble Learning of On-Chip Digital Envelope Signatures[END_REF] evaluated on a test set of 500 independent instances of the CUT. This model FoM represents the improvement factor with respect to the naive regressor which consists in always predicting the mean value of the training set.

It is clear to see that observational feature selection methods are not appropriate to build defect filters. Indeed, the mRMR set has a very good predicting power but is not robust to unforeseen variations, as shown by the poor defect detection rate. On the other hand, the subset of causal signatures shows a worse predictive power, as seen in a significantly lower FoM, but clearly outperforms the observational features in terms of defect detection. Causal features, as we hypothesized, remain robust in the face of unforeseen variations such as spot defects.

To get more insight into the obtained results, we can evaluate how many of the defects that actually managed to escape the defect filter did produce a fault (i.e., failed to meet the specification). Thus, Fig. 4 illustrates the THD histograms of the defect escapes for the two considered defect filters. Green bars represent functional circuits (THD above 80 dB), while red bars represent faulty circuits (THD below 80 dB). It is worth noticing that the defect filter built with observational signatures not only let faults escape but these faults can actually produce quite catastrophic results, not just marginally sub-par performance. On the other hand, for the defect filter built with causal signatures none of the escaped defects impacted the THD. It is thus not surprising that they were not detected by features with a causal relation to THD.

V. CONCLUSIONS

This paper proposes a novel methodology for the design of robust unsupervised learning defect filters based on causal inference algorithms. The proposed methodology has been validated in an analog defect simulation scenario, demonstrating a clear advantage in terms of defect escapes and fault escapes with respect to the conventional defect filter approach. The proposed methodology may represent an affordable way to build and evaluate high-quality tests in applications with high reliability requirements.
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 2 Fig. 2. Simplified schematic of the DUT based on a unit-gain differential closed-loop amplifier with resistive feedback (RFB-AMP).
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 3 Fig. 3. Transistor-level implementation of the differential two-stage op-amp.
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 4 Fig. 4. THD histrograms of the defect escapes for different defect filters: a) observational set (mRMR set), c) causal set (mbHITON set)