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Abstract

There is an increasing demand in the space industry for methods allowing for gy-
roless spacecraft attitude determination to either provide low cost sensor fusion
or to recover from gyro failures. The gyroless configuration used in this paper
is a combination of magnetometers and Sun sensors. Sun sensors are subject to
measurement discontinuities during solar eclipses. Gyroless attitude sensing is
known to increase sensitivity to measurement noise and model uncertainty. This
paper presents a new Laplace Particle Filter with a Singular Value Decomposi-
tion to enhance attitude determination performance under these circumstances,
while also preventing filter degeneracy. An orthogonal Procrustes problem is
formulated to minimise the Wahba cost function and determine the attitude
matrix from the Sun and magnetic field vectors and a third virtual predicted
measurement vector, which is also available during Sun occlusion. The proposed
filter is compared to a regularised particle filter approach, which handles parti-
cle filter degeneracy. Both filters are applied to the attitude determination of
a small Earth observation satellite using three Sun sensors available during the
sunlit phase and three orthogonal magnetometers. A Monte Carlo numerical
simulation analysis demonstrates that the proposed particle filter significantly
outperforms the regularised particle filter in terms of accuracy and robustness
to the Sun sensor measurement discontinuities during solar eclipse and is also
more accurate when both types of sensor measurements are available.

Keywords: Particle filter, Satellite, Attitude determination, SVD, Sun sensor,
Magnetometer, Gyroless, Procrustes problem.

1. Introduction

Satellite Attitude Determination Systems (ADS) are crucial for space mis-
sions. Their development presents challenges when the number of onboard sen-
sors and the accuracy are limited for cost or spacecraft design considerations,
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especially in the case of small satellites and cubesats. Kalman filtering has suc-
cessfully been applied for a wide range of applications and is commonly used for
satellite attitude determination. It is the optimal maximum likelihood estima-
tor under the assumption of a linear system model, with Gaussian assumptions
on measurement and process noise. The extension of Kalman filtering to non-
linear systems, known as the extended Kalman filter (EKF), often represents
a sensible suboptimal solution for satellite attitude determination [1, 2]. The
unscented Kalman filter (UKF) improves estimation performance in systems
with nonlinearities by deterministically generating a number of sigma-points to
approximate a Gaussian distribution under non-linear transformations and its
higher order moments. The UKF was also applied to satellite attitude deter-
mination [3]. The EKF and UKF can however lose robustness and accuracy or
even stability in the presence of high initial uncertainty, coarse sensing, strong
nonlinearities, sensor faults or measurement discontinuities as in the case of
solar eclipses.

The application under consideration in this paper is satellite ADS with Sun
sensors and magnetometers. Sun sensors measurements are unavailable during
solar eclipse and magnetometers continuously measure the Earth’s magnetic
field, which exhibits a different behaviour in polar regions. Unintended gaps
between sensors measurements may also be caused by sensor faults. Gyro faults
and failures have often caused a faulty attitude determination and even mission
loss, as in the case of the Worldview-4 satellite lost by Digitalglobe in 2019.
There is consequently an increased interest for methods allowing for gyroless
attitude determination to deal with such failures or to provide a lower cost
satellite attitude determination in small satellites. These methods often employ
the remaining attitude determination sensors using EKF or UKF filters, which
are sometimes combined with vector based observation methods such as Dav-
enport’s q-method, the quaternion estimator (QUEST) and the singular value
decomposition (SVD) [4]. By measuring vectors such as the Sun and magnetic
field vectors in a body frame and modelling them in the Earth centred inertial
frame, it is possible to determine a rotation matrix between the two frames
by solving the so-called Wahba’s problem. A minimum of two vector observa-
tions is however necessary to provide an indirect attitude measurement to the
attitude determination algorithms and solve this problem. Gyroless attitude
determination however suffers from a higher sensitivity to measurement noise
and model uncertainty [5]. It can also be convenient to reformulate Wahba’s
problem as an orthogonal Procrustes problem that determines the orthogonal
transformation between matrices instead of vectors. The Procrustes problem
was indeed used to recast Wahba’s problem as a linear matrix inequality (LMI)
problem in [6] and applied to spacecraft attitude determination from ellipsoid
observations in [7].

With few exceptions such as [8], little research was focused on exploiting
the strengths of vector-based observations and non-linear estimation methods
to preserve maximum likelihood optimality in the non-linear case, especially in
the case of sensor faults or measurement discontinuities. Nonlinear estimation
approaches to satellite attitude determination have included orthogonal filters
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based on propagating rotation matrices rather than attitude quaternions or Eu-
ler angle, predictive filters where the output is linearised rather than the state,
observers where a prediction model is assumed and the estimation may be sub-
optimal but stable for a range of initial conditions, adaptive filters where the es-
timator updates noise covariances [9] or Particle Filters [10]. Particle Filters can
be viewed as a discrete approximation to the optimal filter for such non-linear
systems even in the case of multimodalities. This is done by sampling a set of
weighted admissible states called particles. Particles are propagated according
to the dynamics and their weights are recursively modified using measurement
updates. When the weights distribution degenerates, the particles can be re-
sampled in a new particle set, closer to the solution. Different strategies have
been developed for the state and measurement updates and for particle filter
resampling. Examples of particle filters include the Bootstrap/Monte Carlo fil-
ter in [10, 11, 12], the regularised particle filter (RPF [13]), the box particle
filter [14, 15] and the Laplace Particle Filter (LPF [16]). The LPF is currently
one of the most robust and accurate particle filtering approaches because it re-
lies on a suitable formulation of the proposal density. The key idea lies in the
resampling step, where particles are sampled according to an optimal proposal
density (or importance function) whose expectancy corresponds to the Maxi-
mum A Posteriori (MAP). The choice of the proposal density depends on the
problem formulation and must be handled carefully. The LPF was applied to
target tracking [17, 18] and non-linear and ambiguous terrain navigation [19].
For gyroless attitude determination, an unscented particle filter was also devel-
oped using the UKF to generate the proposal distribution of the particle filter,
with improved accuracy compared to the UKF [20]. However, the results pre-
sented in that paper appear to only demonstrate convergence from low initial
uncertainties on the attitude about a single axis and using highly accurate star
sensing. From a practical implementation viewpoint, particle filtering is often
associated with high computational demand, when a large number of particles
is needed, especially in high dimensional or highly non-linear system modes.
The relatively higher computational demand of particle filters is increasingly
being addressed in the aerospace field by new computational solutions such as
onboard graphics processing unit (GPU) applications [21, 22].

In this paper, a LPF is combined with a singular value decomposition (SVD)
for gyroless attitude determination on all three axes for a small Earth observa-
tion satellite using a combination of three magnetometers and three Sun sensors.
More precisely, three orthogonal Sun sensors out of six are lit by the Sun during
the sunlit phase, which is a standard configuration [2]. This combination of
sensors is considered because most satellites rely on them in at least one of their
attitude determination and control system (ADCS) modes. With this config-
uration, both sensor types are used except during the solar eclipse when Sun
sensors become unavailable.

The main contributions of the paper are:

� A new LPF for which the proposal density is designed using a SVD for
gyroless satellite attitude determination. The approach is used to enhance
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accuracy and robustness to measurement discontinuities and to efficiently
prevent filter degeneracy,

� The SVD is used to solve a maximum a posteriori (MAP) Procrustes
problem for gyroless attitude determination. This is done by converting
Sun sensor, magnetometer and a third orthogonal virtual a priori vec-
tor measurement to provide indirect attitude measurement inputs to the
filter. During the solar eclipse, the calculation of the virtual a priori vec-
tor crucially maintains uninterrupted gyroless attitude determination with
magnetometer measurements alone.

The SVD-LPF is compared to a classical RPF in terms of attitude determi-
nation accuracy and robustness. The comparison is focussed on particle filtering
methods for paper length considerations and because the limitations of the sub-
optimal EKF and UKF for non-linear problems with severe uncertainty, mea-
surement discontinuities, coarse sensing in small satellites or faults are already
known from the existing literature [23] and adaptive formulations of these ap-
proaches are generally focused on addressing one of those issues as in [5] where
the focus is on sensor faults. The SVD-LPF and RPF are compared under two
scenarios, respectively with moderate and high magnetometer accuracies when
the satellite is in the Earth’s shadow, which occurs during approximately one
third of the orbit. Increased attitude determination accuracy is possible when
the satellite is not in eclipse because the Sun sensors are then also available.
The SVD-LPF is shown to outperform the RPF in terms of state estimation
accuracy when both sensor types are available. The improvement in attitude
determination accuracy is even more significant during eclipse, with enhanced
robustness to measurement discontinuities.

The paper is organised as follows. Section 2 describes the mathematical
model of satellite attitude dynamics and kinematics and the measurement mod-
els. Section 3 describes optimal non-linear filtering problem and the Particle
filtering approach. The SVD-Laplace Particle Filter approach is then presented
in Section 4. In Section 5, a comparative Monte Carlo numerical simulation
analysis is presented between the SVD-LPF and the RPF for satellite attitude
determination accuracy and robustness with a discussion of real time implemen-
tation considerations. Finally, Section 6 concludes the paper.

2. Motion and Measurement Models

2.1. Dynamic and kinematic models

If no external disturbance torque is assumed, the dynamic model of a rigid
body satellite is given by Euler’s rotational equation of motion:

L̇ + ω × L = 0, (1)

where × denotes the cross product, L denotes the total angular momentum and
ω = [ω1, ω2, ω3]

T
is the angular velocity vector, both in the body fixed reference

frame.
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The equation of the total angular momentum is:

L = Iω. (2)

By substituting L from equation (2), into the equation (1), we obtain the
general Euler’s rotational equation using three orthogonal reaction wheels on
the body axes of the satellite:

Iω̇ = −ω × Iω + u + w, (3)

where I is the moment of inertia matrix of the body of the satellite about its
centre of mass.
The control torque of the wheels on the satellite is defined as:

u = −ḣ + ω × h, (4)

where h is the momentum of the wheels. For simplicity, the wheels will typically
operate in a conventional zero momentum mode. The vector w represents the
angular velocity components of the white process noise that verifies the following
properties:

E[w] = 0, (5a)

E
[
wwT

]
= Q, (5b)

where E denotes expectation.

Using the quaternion representation of attitude kinematics, the kinematic
model of a satellite is given by:{

˙̄q = − 1
2ωo × q̄ + 1

2q0ωo,
q̇0 = − 1

2ωo
T q̄,

(6)

where q =
[
q0, q̄

T
]T

= [q0, q1, q2, q3]
T

is the attitude quaternion of the satellite
with respect to the local orbit frame, q0 and q̄ respectively represent the scalar
and vector parts of the quaternion and the angular velocity with respect to the
local orbit frame ωo = ω − Rb

o [0,−n, 0]
T

, where n is the mean orbital rate.
The attitude quaternion satisfies the following equation:

q2
0 + q2

1 + q2
2 + q2

3 = 1. (7)

The rotation matrix Rb
o from the local orbit frame to the body frame is

given by:

Rb
o =

q2
0 + q2

1 − q2
2 − q2

3 2 (q1q2 − q0q3) 2 (q0q2 + q1q3)
2 (q0q3 + q1q2) q2

0 − q2
1 + q2

2 − q2
3 2 (q2q3 − q0q1)

2 (q1q3 − q0q2) 2 (q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 . (8)

For the sake of convenience, the dynamic and kinematic models are written
in the form of an affine control system:
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ẋ = F (x) + Gu + Dw, (9)

where x =
[
qT ,ωT

]T ∈ R7 is the state vector and u ∈ R3 was previously
defined.

The dynamical model F (x), the control input matrix G and the process
noise input matrix D are respectively given by:

F (x) =
[
q̇T , ω̇T

]T
u=03×1
w=03×1

: R7 → R7, (10)

G =

[
04×3

I−1

]
: R7 → R7×3, (11)

D =

[
04×3

Id

]
: R7 → R7×3, (12)

where Id is the 3× 3 identity matrix.

This mathematical model of attitude kinematics and dynamics will be used
for the simulation analysis of all attitude determination algorithms.

Without loss of generality, the mathematical model of equation (9) is taken
to be in a zero momentum normal operation mode in the remainder of the paper,
implying that u = 0, which is a common assumption in estimation performance
analysis. All external disturbances are neglected for simplicity.

2.2. Measurement models

The Sun vector is first modelled in the Earth centred inertial (ECI) frame,
using a Sun ephemeris function, which is available in the companion software
of David Vallado’s textbook on the fundamentals of astrodynamics and appli-
cations [24]. For a Julian date specified in days, that function returns the Sun
position vector in ECI frame, as well as the right ascension and declination
angles. Given the satellite position vector in ECI frame and the Sun position
in ECI frame, it is then straightforward to compute the Sun vector from the
satellite body frame to the Sun. The Sun sensor frame is obtained by a constant
rotation sequence from the satellite body frame, which is assumed here to be
the identity matrix for simplicity. The three components of the measured Sun
vector in sensor frame are determined using the three orthogonal Sun sensors
out of six that are lit by the Sun during the sunlit phase [2].

The Sun sensor vector observation equation is given by:

Ys = Rb
oBs + νs, (13)

where Ys is the Sun vector in the satellites body frame, Rb
o is the rotation ma-

trix from the local orbit frame to the body frame and Bs is the modelled Sun
vector in the local orbit frame with:

‖Bs‖2 = 1, (14)
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and νs is the Sun sensor noise with:

νTs
(
Rb
oBs

)
= 0. (15)

Shuster and Oh [25] have shown that nearly all the distribution of the mea-
surement errors is concentrated on a very small area about the direction of
Rb
oBs, so the sphere containing that point can be locally approximated by a

tangent plane, characterized by the equation (13). The sensor noise νs is ap-
proximately Gaussian and satisfies:

E[νs] = 0, (16a)

Σs , E[νsν
T
s ] = σ2

s

(
Id −

(
Rb
oBs

) (
Rb
oBs

)T)
. (16b)

Equation (16b) is known as the QUEST measurement covariance matrix [26, 27].
Note that equation (16b) is a function of the unknown true values in Rb

o as
mentioned in [28]. The approximations in the covariance matrix are discussed
in [29, 27]. The covariance matrix Σs is rank-deficient [30], which would appear
to cause problems with filtering algorithms. However, Shuster also explains
in [27] that the following simpler nonsingular matrix:

Σs = σ2
sId, (17)

yields equivalent results. The advantage of using the equation (17) is that it
does not contain the unknown true values and that it has been extended to
large field-of-wiews [28]. Note that equation (17) also remains valid for all atti-
tude measurements that can be converted to unit vectors such as the three axes
magnetometer, which will be presented in the next paragraph.

For numerical simulation purposes, the Earth’s magnetic field vector Bm in
the local orbit frame is modelled using a 10th order International Geomagnetic
Reference Field (IGRF) model that uses a spherical harmonic representation
of the magnetic-potential function [24]. The Gaussian geomagnetic field coeffi-
cients used are valid for 2020-2025 and this model is updated every five years.
An IGRF function was used to express the magnetic field vector as a function
of longitude, latitude and altitude, for which the time evolutions were obtained
by a Simplified General Perturbation (SGP4) orbit propagator function.

The observation equation for the magnetometer vector observation is given
by:

Ym = Rb
oBm + νm, (18)

where Ym is the measured magnetic field vector in the satellites body frame,
Bm is the modelled magnetic field vector in the local orbit frame with:

‖Bm‖2 = 1, (19)

and νm is the magnetometer noise with:

νTm
(
Rb
oBs

)
= 0. (20)
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As in the case of the Sun sensor noise, the magnetometer noise νm is also
approximately Gaussian and satisfies:

E[νm] = 0, (21a)

E[νmν
T
m] = σ2

m

(
Id −

(
Rb
oBm

) (
Rb
oBm

)T)
. (21b)

Again, as also explained in [27], the covariance matrix Σm can be approxi-
mated by:

Σm , E[νmν
T
m] = σ2

mId. (22)

For ease of notation, the attitude matrix R = Rb
o is used for the remainder

of this article. The notations Ys and Bs are not standard for Sun vectors but
will improve notation homogeneity in Section 4.

The observation function is given by:

H(x) =

{
[R Bs,R Bm]

T
: R7 → R6, during the sunlit phase;

R Bm : R7 → R3, during the Sun occlusion.
(23)

where R = R(q) is given by equation (8).

For this representation of the problem under consideration, estimation of x
requires non-linear filtering techniques. In the next section, optimal non-linear
filtering is used for a non-linear model of satellite attitude dynamics.

3. The non-linear filtering

3.1. Bayesian Estimation and Particle Filtering

The non-linear dynamic system model can be written in discrete time as:{
xk = Fk(xk−1,uk) + wk,

yk = Hk(xk) + vk,
(24)

where xk is the state vector of dimension n, uk is the control input of dimen-
sion s, yk is the observation vector of dimension m. For our application, the
dimension n of the state vector is 7 and the dimension m of the observation
vector is either 6 in the sunlit phase or 3 in the Sun occlusion phase. Fk and
Hk are two continuously differentiable maps from Rn to Rn and from Rn to
Rm. Fk is obtained by discretisation of the continuous time dynamic model of
equation (10) and Hk is obtained by discretisation of the observation function
of equation (23), wk and vk denote the dynamic and observation noise vectors.
The system model assumes additive noise, which is typical in satellite and other
applications. It is also assumed that the distributions of wk and vk are Gaus-
sian with zero mean (see equations (5a), (16a) and (21a)) and their covariance
matrices are Qk and Rk, respectively. The initial state vector x0 is assumed to
be random with a known distribution.
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The optimal non-linear filtering requires the calculation of the posterior den-
sity of the state variables at each time given the past measurements. The sim-
plified notation y1:k will be used as a shorthand for y1, . . . ,yk. Let pk(xk|y1:k)
be the posterior density of xk given the measurements y1:k and p(xk|y1:k−1) be
the prior density of xk given the measurements y1:k−1. The filtering algorithm
consists of two steps:

1. The prediction step: The prior density is computed via the Chapman-
Kolmogorov equation:

p(xk|y1:k−1) =

∫
Rn

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1, (25)

where p(xk|xk−1) denotes the transition density and p(xk−1|y1:k−1) de-
notes the previous posterior density.

2. The correction step: The posterior density of the state is calculated via
Bayes’ law:

p(xk|y1:k) =
p(xk|y1:k−1)p(yk|xk)∫
p(xk|y1:k−1)p(yk|xk)dxk

, (26)

where p(yk|xk) denotes the likelihood function.

In the sequel, we denote the likelihood function g(xk) and the prior (or pre-
dicted) density q(xk) as follows:{

g(xk) = p(yk|xk),

q(xk) = p(xk|y1:k−1).
(27)

The particle filter can be viewed as an approximation to the above optimal
non-linear filter based on Monte-Carlo sampling to approximate the conditional
or predictive distribution by a mixture of Dirac distribution. The Sampling
Importance Resampling Particle Filter and the Laplace Particle Filter are de-
scribed here in order to highlight the similarity between them and the SVD-
Laplace Particle Filter.

3.2. Particle Filter (Sampling Importance Resampling)

Assume that at time k − 1, one has an approximation to the filtering den-
sity p(xk−1|y1:k−1) of the form

∑N
i=1 ω

i
k−1δ(xk−1 − xik−1) where ωik−1 are pos-

itive weights summing to 1, x1
k−1, . . . ,x

N
k−1 are points in IRn (called particles),

δ(xk−1−xik−1) denotes the Dirac distribution located at xik−1 and N the number
of particles. From equation (25), the prior density is approached by a mixture
of Dirac distributions:

p(xk|y1:k−1) ≈
N∑
i=1

ωik−1δ(xk − xik).
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Then, from equation (26), the posterior density of xk given y1:k is again
approached by a mixture of Dirac distributions:

p(xk|y1:k) ≈
N∑
i=1

ωikδ(xk − xik). (28)

with weights:

ωik =
ωik−1g(xik)∑N
j=1 ω

j
k−1g(xjk)

. (29)

The main problem of the particle filter is the degeneracy phenomenon, where
after several iterations, the largest weights are concentrated on a few particles.
This phenomenon generally leads to divergence as the filter operates with too few
particles. This occurs when there are few particles near the true system state,
but since the particles evolve according to the system dynamics, which often
diverge, this phenomenon cannot be avoided unless resampling is performed.
Resampling consists of drawing new particles according to the distribution of
the particles cloud and reassigning them with the same weights. Therefore, a
resampling step is triggered when degeneracy is about to occur. The particle
weights are monitored using the following criterion:

Neff =
1∑N

i=1(ωi)2
< Nth. (30)

A resampling step occurs when Neff falls below a given threshold Nth = θN ,
where θ ∈ (0, 1) is an a priori defined parameter.

The following steps summarise the Sampling Importance Resampling algo-
rithm with a prior density p(xk|xk−1) [10]:

1. Initialisation: sample xi0 ∼ p(x0) for i = 1, . . . , N and set ωi0 = 1
N .

2. Prediction: sample xik ∼ p(xk|xik−1).
for i = 1, . . . , N

3. Correction:

– compute the weights $i
k = ωik−1g(xik),

– set ωik =
$i

k∑N
j=1$

j
k

,

– compute x̂k =
∑N
i=1 ω

i
kx

i
k and Pk =

∑N
i=1 ω

i
k(xik − x̂k)(xik − x̂k)T .

4. Resampling: discard/multiply particles
{
xik
}
i=1,...,N

according to high/low

weights ωik.

This algorithm can be significantly improved when considering proposal den-
sities which take into account the current measurement. In this case, the par-
ticles xik are sampled according to a proposal density q̃ and the weights ωik are
calculated as follows:

ωik ∝ ωik−1

g(xik)q(xik)

q̃(xik)
, (31)
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where g(.) and q(.) are defined in equation (27). In the next section, a proposal
density based on Laplace approximation [18] is described.

3.3. The Laplace Particle Filter (LPF)

The choice of the proposal density q̃ is crucial for the control of the Monte
Carlo error. The LPF [16, 17] operates in the same way as the particle filter
except for the resampling stage. Indeed, the LPF resampling is based on an op-
timal proposal density q̃ centered on the MAP, which showed superior accuracy
and robustness. The optimal proposal density is obtained for q̃opt = p(x|y). For
this purpose, LPF chooses a proposal density, which may be Gaussian with mo-
ments nearly equal to those of the posterior. The posterior expectation E[x|y]
and the posterior covariance matrixV[x|y] are well approximated by the Laplace
formula: {

E[x|y] ≈ xL = x∗ + β(x∗,J∗),

V[x|y] ≈ PL = (J∗)−1 + γ(x∗,J∗),
(32)

where β, γ are two exact high-order corrective terms. The MAP, which is
denoted x∗ and the observed Fisher information matrix J∗ are calculated by
solving the following problem:

x∗ = arg max
x

(g(x) q(x)),

J∗ = − ∂2 log(g(x) q(x))

∂x2

∣∣∣∣
x=x∗

.
(33)

The following approximation yields a suitable estimation accuracy:{
xL ≈ x∗,

PL ≈ (J∗)
−1
.

(34)

The covariance matrix (J∗)
−1

can be approximated by:

J∗ ≈ − (log g)
′′

(x∗) + (P−)−1, (35)

where P− is the prior covariance matrix. The matrix (J∗)−1 can be taken equal
to the prior covariance matrix P−. The new sample is drawn according to the
proposal density q̃(x) given by:

q̃(x) = N (x; x∗,P−), (36)

where N is the Gaussian probability density function with x∗ mean and P−

covariance matrix.
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4. The SVD-Laplace Particle Filter (SVD-LPF)

The SVD-LPF, which is the main contribution of the paper, is derived from
the classical LPF (see Section 3.3) and adapted to the attitude determination
problem using Sun and magnetic field vector measurements for which the models
are defined in Section 2.

A maximum a posteriori (MAP) optimisation condition is calculated using
the Procrustes problem. Two possible measurement configurations are consid-
ered:

� Case 1: Only the magnetic field is available (e.g. during sun occlusions
case);

� Case 2: Magnetic field measurement Bm and Sun sensor measurement Bs

are available.

The Procrustes problem is derived for both cases and the algorithm allows to
switch between them. In each case, measurements are complemented by an ad-
ditional modelled vector Ba associated to a virtual measurement. The solution
to this problem is given as a rotation matrix using an SVD formulation [31].

In this section, the MAP optimisation objective is formulated for the satellite
attitude determination problem. The solution to the optimisation problem is
then derived in the first case of a Sun occlusion and in the second case where
both measurements are available. The MAP calculation is then derived from
the SVD solution and the conditional mean. The SVD-LPF algorithm is finally
introduced.

4.1. The MAP computation

The MAP from equation (33) can be difficult to compute, especially when
the state-space dimension is large. However, the MAP calculation simplifies
when the likelihood only depends on part of the state vector x.

Let x =
[
xT1 ,x

T
2

]T
with x1 = [q0, q1, q2, q3]

T
and x2 = [ω1, ω2, ω3]

T
. The

posterior density p(x|y) can be written as:

p(x|y) ∝ p(y|x) q(x)

= p(y|x1,x2) q(x2|x1) q(x1).
(37)

Therefore, the MAP calculation can be broken down as follows:

max
(x1,x2)

p(x1,x2|y) = max
x1

p(y|x1,x2) q(x1)︸ ︷︷ ︸
U(x1,x2)

max
x2

q(x2|x1).
(38)

The initial maximisation over the vector x is reframed into two separate
maximisation problems, one over x1 and the other over x2.

� Maximisation of U(x1,x2):
In our case, U(x1,x2) = U(x1) is maximised relative to x1. The prior
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density q(x1,x2) is assumed to be Gaussian of mean [E(x1),E(x2)]T =[
q−

T
,ω−

T
]T

and the covariance matrix:

P− =

(
P−11 P−12

P−21 P−22

)
, (39)

where:

– q− is the prior quaternion,

– ω− is the prior angular velocity,

– P−11 is the prior covariance sub-matrix of the quaternion part of x,

– P−22 is the prior covariance sub-matrix of the angular velocity part
of x,

– P−12 = P−21

T
is the prior cross-covariance sub-matrix between quater-

nion and the angular velocity vectors.

Assuming that the noises of the measurements of the magnetometer given
by equation (18) and of the Sun sensor from equation (13) are Gaussian,
the problem of finding q that optimises U(x1), which is also part of the
solution (38), can be written as:

min
q

(‖Ys −R(q)Bs‖2Σs
+ ‖Ym −R(q)Bm‖2Σm

+ ‖q− q−‖2P11
), (40)

where ‖q − q−‖2
P−11

represents the prior information. This term can be

written as a new measurement model based on the attitude matrix R as
following:

‖Ya −RBa‖2Σa
, (41)

where Ya represents the a priori information on the basis of the predicted
rotation matrix R− which depends on the past measurements. Ya is mod-
eled as follows:

Ya = R−Ba = RBa + νa. (42)

R− = R(q−) is the predicted attitude matrix and νa is the virtual a priori
measurement noise. Ba and Σa will be described in propositions 2 and 3.
Using the model of equation (42), the previous optimisation problem (40)
can be rewritten as:

R∗ = arg min
R

(‖Ys −RBs‖2Σs
+ ‖Ym −RBm‖2Σm

+ ‖Ya −RBa‖2Σa
),

(43)

where R is a rotation matrix. In the remainder of this article, it is assumed
that the Sun and magnetic field vectors have the same accuracy on all three
axes: Σs = σ2

sId, Σm = σ2
mId and Σa = σ2

aId where σ2
s , σ2

m and σ2
a are the

variances of the measurement noise of the Sun sensor, magnetometer and

13



Ya, respectively. Under this hypothesis, the solution R∗ of equation (43)
can be obtained explicitly using the Procrustes algorithm. This algorithm
is described in the next subsection in its SVD decomposition formulation.
In the case of a correlation between three axes, one should consider using
a nonlinear method [32] for the computation of the MAP, although this
would lead to a higher computational demand. The LPF presented in the
paper (see Subsection 3.3) can therefore be applied to the case of axes
correlations.

� Maximisation of q(x2|x1):

The conditional density q(x2|x1) is Gaussian with E2|1(x1) = E(x2|x1) as

a mean and P−2|1 as a covariance matrix. The optimisation problem with

respect to ω given a value of q is written as:

min
ω
‖ω − E2|1(q)‖2

P−
2|1
, (44)

where
E2|1(q) = ω− + P−21

(
P−11

)−1 (
q− q−

)
.

P−2|1 = P−22 −P−21

(
P−11

)−1
P−12.

As in the case of equation (43) which has an analytical solution R∗, the
solution of equation (44) can also be obtained analytically and is given
by the conditional mean where the maximum of the Gaussian conditional
density is reached:

ω∗ = E2|1(q∗), (45)

where q∗ is the associated quaternion of R∗

In conclusion, as we will see, an exact solution to the MAP of equation (38)

noted x∗ =
[
q∗T ,ω∗T

]T
can be analytically calculated.

4.2. Attitude matrix calculation in the case of Sun occlusion

This section presents the solution to the attitude matrix calculation problem
in the case of Sun occlusion. The rotation matrix is obtained by solving a
constrained optimisation problem. The attitude of the satellite is estimated by
the Procrustes method using the magnetic field vector measurements denoted
by Bm and the predicted measurement Ya given by equation (42). Ba will be
described in the next propositions.

The following constrained optimisation problem, known as the Procrustes
problem, provides the MAP relative to the quaternion q from equation (40),
which leads to the estimation of the rotation matrix R∗:

min
RTR=In
det(R)=1

(Ym−RBm)TΣ−1
m (Ym−RBm)+(Ya−RBa)TΣ−1

a (Ya−RBa), (46)
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where Ba and Bm are unit vectors.

‖Bm‖2 = ‖Ba‖2 = 1. (47)

Problem (46) boils down to a Procrustes problem and can be solved using La-
grange Multipliers. After some manipulations, the quadratic form equation (46)
can be written as follows:

f(R) = −2 Tr

{(
1

σ2
m

BmYT
m +

1

σ2
a

BaY
T
a

)
R

}
+

1

σ2
m

BT
mRTRBm +

1

σ2
a

BT
aRTRBa + Tr(L(RTR− In)) + λ(det(R)− 1),

(48)

where L is a symmetric matrix of unknown Lagrange multipliers and λ is another
unknown Lagrange multiplier. By setting to zero the partial derivatives of f with
respect to R, the following equation is obtained:

∂f

∂R
= −2MT +

2

σ2
m

RBmBT
m +

2

σ2
a

RBaB
T
a + 2LR + λ det(R)R

= 0,

(49)

where M is given by:

M =
1

σ2
m

BmYT
m +

1

σ2
a

BaY
T
a . (50)

The equation (49) leads to:

RN = M, (51)

where N is given by:

N =
1

σ2
m

BmBT
m +

1

σ2
a

BaB
T
a + L +

λ

2
Id, (52)

The solution of the equation (51) is given by the following proposition.

Proposition 1. The solution to the constrained optimisation problem of equa-
tion (46) is given by:

R∗ = UVT, (53)

where M from equation (50) has the following SVD decomposition,

M = UΛVT, (54)

and where
Λ = diag(1, 1,det(UVT)).
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Proof. Since N in equation (51) is a symmetric matrix, it has the following SVD
decomposition:

N = V1Λ1VT
1 , (55)

where V1 is unitary matrix. By multiplying by R both sides of equation (55),
we have:

RN = (RV1)Λ1VT
1 . (56)

Likewise, M also has an SVD decomposition:

M = UΛVT. (57)

Noting that U1 = RV1 is an orthogonal matrix, RN = U1Λ1V
T
1 from equation

(56) is the SVD decomposition of RN which is none other than that of M
given by equation (51). Thanks to the unicity of the SVD decomposition, by
identification in equation (57), we obtain: U = U1, Λ = Λ1 and V = V1.
Hence, the SVD decomposition of N is: N = VΛVT. The matrix R∗ given by
equation (53) satisfies equation (51). Indeed, we have:

R∗N = (UVT)(VΛVT) = UΛVT = M. (58)

Now, we aim to optimise the parameters Ba and Σa = σ2
aId defining the

predicted measurement model of equation (42) in the case of Sun occlusion.

Proposition 2. In the case of the Sun occlusion, the optimal predicted mea-
surement model parameters that minimise the estimation error on the rotation
matrix that solves the observation equations are obtained as follows:

� We choose the vector Ba to be orthogonal to Bm such that,

Ba =

 Bm2
/
√
B2
m1

+B2
m2

−Bm1/
√
B2
m1

+B2
m2

0

 , (59)

where Bm = [Bm1
, Bm2

, Bm3
]
T

.

The vector Ba then minimises the average error on the rotation matrix
estimation R∗ given by equation (53).

� The covariance matrix of the predicted measurement Ya adapted to the
model of equation (43) is the following,

Σa = σ2
aId =

1

3
Tr(Σ) Id, (60)

Σ being defined by:

Σ =
∂L
∂q

∣∣∣∣
q=q−

P−11

∂L
∂q

∣∣∣∣
q=q−

, (61)

where L(q) = R(q)Ba, P−11 from equation (39) being the covariance ma-
trix of the predicted quaternions q−.
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Proof. Perturbation theory [33] is used to determine the optimal choice of Ba

in the sense of minimising the error on R∗ given by equation (53). Consider the
following matrix W:

W =
1

σ2
m

BmBT
m +

1

σ2
a

BaB
T
a . (62)

In [34], it is proven that, on average, the error on R∗ is proportional to the
so-called condition number:

κ =
(
λ2

2 + λ2
3

)− 1
2 , (63)

where λi is the ith ordered singular value of W such that λ1 ≥ λ2 ≥ λ3.
For the sake of clarity, the variances σ2

i are omitted in the proof:

W = BmBT
m + BaB

T
a , (64)

The matrix W is positive definite and is of rank 2 if Ba and Bm are linearly
independent and its singular values are coincident with the eigenvalues. Observ-
ing that Tr(W) = 2, the eigenvalues of W are: (λ1, λ2, λ3)T = (α, 2 − α, 0)T

with 1 ≤ α ≤ 2. It suffices to establish that, for some value of Ba, λ2 = 1 is an
eigenvalue of W to ensure that the minimal value of the condition number κ
from equation (63) that maximises (2−α). This is the case if Ba is orthogonal
to Bm. Indeed, we have:

WW = (BmBT
m + BaB

T
a )(BmBT

m + BaB
T
a )

= BmBT
mBmBT

m + BmBT
mBaB

T
a + BaB

T
aBmBT

m + BaB
T
aBaB

T
a

= BmBT
m + BaB

T
a

= W,

since BT
mBm = BT

aBa = 1 and BT
mBa = 0. A possible choice of Ba is the one

from equation (59). Another way to determine Ba, which minimises the condi-
tion number from equation (63), consists in solving the following optimisation
problem:

min
‖Ba‖=1

‖BmBT
m + BaB

T
a − Ĩd‖2, (65)

where

Ĩd =

1 0 0
0 1 0
0 0 0

 , (66)

which gives the same result. Having defined Ba, it remains necessary to compute
the covariance matrix Σa of the predicted measurement model of equation (42).
Let L(q) = R(q)Ba, the 1st order Taylor expansion of the function L(q) around
q0 is given by:

Ya ≈ L(q0) +
∂L
∂q

∣∣∣∣
q=q0

(q− q0), (67)
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which leads to the following covariance matrix approximation (see Appendix):

Σ ≈ ∂L
∂q

∣∣∣∣
q=q−

P−11

∂L
∂q

∣∣∣∣
q=q−

, (68)

where P−11 = Pq− is the covariance matrix of the predicted quaternions q−. Σ
is an approximation of the covariance matrix of Ya. However, the latter is not
adapted to the Procrustes problem, which requires the covariance matrix to be
diagonal (see Proposition 1). A diagonal matrix Σa, which best approximates
Σ will therefore need to be estimated:

min
λ
‖Σ− λId‖2. (69)

It is easily verified that λ = 1
3 Tr(Σ) yields this minimum. Therefore, the

covariance matrix Σa of the predicted measurement modelled using equation
(42) is the following:

Σa = σ2
aId =

1

3
Tr(Σ)Id. (70)

4.3. Attitude matrix calculation with magnetic field measurement and Sun sens-
ing

In this case, the attitude of the satellite is also estimated using the Procrustes
method. The constrained optimisation problem now takes the following form:

min
RTR=Id
det(R)=1

(Ys −RBs)
TΣ−1

s (Ys −RBs) + (Ym −RBm)TΣ−1
m (Ym −RBm)+

(Ya −RBa)TΣ−1
a (Ya −RBa).

(71)

We obtain the solution of this constrained optimisation problem:

R∗ = UVT, (72)

where

M =
1

σ2
s

BsY
T
s +

1

σ2
m

BmYT
m +

1

σ2
a

BaY
T
a , (73)

has the following SVD decomposition:

M = UΛVT. (74)

As previously described, the aim is to optimise the parameters Ba and Σa =
σ2
aId, which define the predicted measurement model of equation (42) in the

case of magnetic field and Sun sensor measurements.
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Proposition 3. When the Sun sensor and magnetic field measurements are
both available, the optimal parameters of the predicted measurement model that
minimise the estimation error on the rotation matrix that solves the observation
equations are obtained as follows:

� The vector Ba is chosen to be orthogonal to the plane formed by the two
vectors Bs and Bm and is given by:

Ba =
Bs ×Bm

‖Bs ×Bm‖
, (75)

This choice of Ba minimises the average error on the rotation matrix es-
timation R∗ given by equation (72).

� The covariance matrix of the predicted virtual measurement vector Ya

adapted to the model of equation (43) is given by:

Σa = σ2
aId =

1

3
Tr(Σ) Id, (76)

where Σ is defined as:

Σ =
∂L
∂q

∣∣∣∣
q=q−

P−11

∂L
∂q

∣∣∣∣
q=q−

, (77)

where L(q) = R(q)Ba, P−11 is given by equation (39) is the covariance
matrix of the predicted quaternion q−.

Proof. The proof is similar to that of Proposition 2. The aim is to estimate
Ba in order to minimise the condition number κ from equation (63). This is
achieved by minimising the following criterion (65):

min
‖Ba‖=1

f(Ba) = min
‖Ba‖=1

‖W − Id‖2, (78)

where W = BsB
T
s + BmBT

m + BaB
T
a is a matrix of rank 3. After some manip-

ulations, it can be shown that f(Ba) simplifies to the following expression:

f(Ba) = 2 Tr(BsB
T
s BmBT

m + BsB
T
s BaB

T
a + BmBT

mBaB
T
a ). (79)

Clearly, f(Ba) is minimised when Ba is orthogonal to both Bs and Bm. Under
this condition, we have: f(Ba) = 2 Tr(BsB

T
s BmBT

m) ≥ 0.

4.4. Discussion on the approximation of the covariance matrix of the predicted
virtual measurement

In using an approximate diagonal covariance matrix for the predicted virtual
measurement from equations (70) and (76), the MAP estimate x∗k, which occurs
in the SVD-LPF resampling step (see Algorithm 2) is slightly biased. The
particle filter samples around this approximate MAP given by equation (36).
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The bias of the MAP affects the variance of the Monte Carlo approximation of
the posterior estimate V[x̂k], where x̂k is obtained from Algorithm 2. However,
the mean value of the posterior estimate E[x̂k] remains unbiased [35, 17]. The
numerical simulations (see Subsection 5.2) show that the MAP bias has no
significant impact on the attitude estimation accuracy.

4.5. Maximum A Posteriori calculation
The MAP calculation takes as inputs the prior knowledge of the attitude

quaternion, the angular velocity and the prior covariance matrix to solve the
Procrustes problem. The Procrustes attitude solution is then used to compute
the MAP as a concatenation of two subvectors:

� The MAP attitude quaternion is taken as the Procrustes problem solution;

� The MAP angular velocity is computed from the quaternion using the
conditional expectancy principle.

The MAP covariance is assumed to be equal to the prior covariance. The MAP
calculation is described in Algorithm 1.

Algorithm 1 MAP calculation

Measurement Ya and covariance matrix Σa calculation:

� Get the predicted quaternion q− and the predicted angular velocity ω−;
� Get the predicted covariance matrix P− from Equation (39);
� Compute the predicted attitude matrix R− = R(q−);
� Compute the a priori vector Ba from Equation (59) or (75);
� Compute the vector Ya from Equation (42);
� Compute the covariance matrix Σa from Proposition 2 during Sun oc-

clusion or Proposition 3 during the sunlit phase.

Calculating the attitude matrix:

� Compute the Procrustes attitude Matrix solution R∗ from Equation
(53) or (72) by adapting the formulation to the number of available
sensors (see Sections 4.2 and 4.3);

� Convert matrix R∗ to the associated quaternion q∗ using Shepperd’s
method [36].

Calculating the MAP x∗:

� Compute the angular velocity vector ω∗ from Equation (45);

� Get the MAP x∗ =
[
q∗T ,ω∗T

]T
.

4.6. SVD-LPF algorithm
The SVD-LPF algorithm is based on the LPF principle and uses the MAP

calculation algorithm presented in Algorithm 1. The pseudo-code of the SVD-
LPF is presented in Algorithm 2.
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Algorithm 2 The SVD-Laplace Particle Filter

Initialisation:
The initial particle set is drawn as

{
xi0 =

[
qi T0 ,ωi T0

]T}
i∈[1,N ]

using the initial

density p(x0), associated to weights ωi0 = 1/N .
for k = 1, 2, ... do

� Prediction:
The particles are drawn from prior density xik ∼ p(xk|xik−1) according
to the dynamical equations (3) and (6).
- Predicted mean:

x̂k|k−1 =
∑N
i=1 ω

i
k−1x

i
k ,

[
q−

T
,ω−

T
]T

,

- Predicted covariance matrix:
Pk|k−1 =

∑N
i=1 ω

i
k−1(xik − x̂k|k−1)(xik − x̂k|k−1)T , P−.

� Correction:
The weights are updated using the likelihood $i

k = ωik−1 g(xik).

- Normalize the weights: ωik =
$i

k∑N
j $j

k

.

� Laplacian resampling:
if Neff < Nth then

- Get the MAP: x∗k =
[
q∗Tk ,ω∗Tk

]T
from Algorithm 1,

- Drawn particles from proposal density: xik ∼ N (xk; x∗k,Pk|k−1),

- Normalize the quaternions: qik =
qi
k∑N

j=1 qj
k

,

- Weights update:

$i
k =

g(xik) q(xik)

q̃(xik)
,

=
N (yk;Hk(xik),Rk)N (xik; x̂k|k−1,Pk|k−1)

N (xik; x∗k,Pk|k−1)
,

where g(.), q(.) and Hk(.) are defined in Equations (27) and (24) re-
spectively.

- Normalize the weights: ωik =
$i

k∑N
j $j

k

.

end if

Mean: x̂k =
∑N
i=1 ω

i
kx

i
k,

Covariance matrix: Pk =
∑N
i=1 ω

i
k(xik − x̂k)(xik − x̂k)T .

end for
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5. Numerical simulation analysis and filters comparison

5.1. Operating conditions for the numerical simulation

A microsatellite model is considered here, with moments of inertia Ixx =
19 kg.m2, Iyy = 19.5 kg.m2, Izz = 12 kg.m2, about the body X, Y and Z
axes respectively. This corresponds to a nearly axisymmetric microsatellite.
All filters under comparison are applied to the same model of natural satellite
attitude dynamics. For simplicity, it is assumed that the reaction wheels operate
in a zero momentum mode. The state vector is x = [q0, q1, q2, q3, ωx, ωy, ωz]

T
,

where ωx, ωy, ωz are the components of the inertially referenced angular velocity
vector in body coordinates ω.

The mean initial conditions for the simulations are:
ωx(0) = 0◦/s, ωy(0) = −0.06◦/s, ωz(0) = 0◦/s, q0(0) = 0.7861, q1(0) = 0.1675,
q2(0) = 0.5709 and q3(0) = 0.1675, which corresponds to an attitude of 57.2838
degrees in roll, 57.2942 degrees in pitch and 57.2838 degrees in yaw angle, with
respect to the local orbit frame.

Attitude estimation is obtained by data fusion from three orthogonal Sun
sensors out of six when they are lit by the Sun and three orthogonal magne-
tometers, which is a commonly used combination for small medium resolution
Earth observation satellites in a normal operation mode. It is assumed that the
satellite is orbiting the Earth on a nearly circular low Earth orbit at an altitude
of 650 km with an inclination of 96 degrees. All simulations are performed for
6000 s representing the duration of one satellite orbit.

The magnetometer and Sun sensor measurements are obtained with a sam-
pling time for the measurement updates period of 1 s.

The measurement models are described in Section 2 and filter parameters
including initial uncertainty and sensor standard deviations are given in the
next subsection.

5.2. Numerical simulation results and analysis

In this section, the SVD-LPF and RPF are compared in terms of Root-
Mean-Square Error (RMSE) for Nmc = 100 Monte Carlo runs. The RMSE is
defined for any state variable x as:

RMSE(xk) =

√√√√√Nmc∑
j=1

(
x̂jk − xk

)2

Nmc
, (80)

where xk and x̂jk respectively represent the true and estimated state variable at
time step k for the jth Monte Carlo run.

The average RMSE (ARMSE) over the total simulation time will also be
used as an estimation performance metric and is given by:

ARMSE(x) =

Ns∑
k=1

RMSE(xk)

Ns
, (81)
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where Ns is the total number of time steps for the simulation. In our case, Ns
is taken equal to 6000.

The numerical simulation comparison of the SVD-LPF and RPF filters is
performed under two scenarios that differ in their magnetometer accuracies.
The effect of magnetometer accuracy is particularly important because magne-
tometers are the only available sensors during solar eclipse.

The filters are compared in terms of state estimation accuracy and robustness
to measurement discontinuity during eclipse for the same Sun sensor accuracy.

The simulation parameters are set as follows:

� The sampling time is 4T = 1 s;
� The Sun sensor and magnetometer update frequencies are taken to be

equal to 1 Hz;
� The initial uncertainty is characterised by the error covariance matrix,

which is given by:

P0 = diag([(0.9972)2, (0.0416)2, (0.0454)2, (0.0416)2,

(0.1◦/s)2, (0.1◦/s)2, (0.1◦/s)2]);

� The process noise covariance matrix is taken to be similar to the one in [37]
and is given by:

Qk = 10−4 diag

([
4T 3

12 I2
xx

+
4T 3

12 I2
yy

+
4T 3

12 I2
zz

,
4T 3

12 I2
xx

,

4T 3

12 I2
yy

,
4T 3

12 I2
zz

,
4T
I2
xx

,
4T
I2
yy

,
4T
I2
zz

])
;

� The measurement noise covariance matrix is:

Rk =

{
diag([RSun,Rmag]) during the sunlit phase,

Rmag during the Sun occlusion.

� The threshold for the resampling criterion defined in equation (30) is
Nth = 0.75N .
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Figure 1: The reference attitude (Euler angles) over 1 orbit (6000 s).

0 0.5 1 1.5 2 2.4

Time (s) 10
4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Q
u

a
te

rn
io

n
s

q
0

q
1

q
2

q
3

Figure 2: The reference attitude (quaternions) over 4 orbits (24000 s).
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Figure 3: RMSE of angular velocity estimation for the SVD-LPF and RPF under moderate
magnetometer noise Rm1 (log scale on the y-axis).

0 2000 4000 6000

Time (s)

10
-2

10
-1

10
0

10
1

10
2

RMSE yaw (degrees)

RPF

SVD-LPF

0 2000 4000 6000

Time (s)

10
-2

10
-1

10
0

10
1

10
2

RMSE pitch (degrees)

RPF

SVD-LPF

0 2000 4000 6000

Time (s)

10
-2

10
-1

10
0

10
1

10
2

RMSE roll (degrees)

RPF

SVD-LPF

Figure 4: RMSE of attitude estimation for the SVD-LPF and RPF under moderate magne-
tometer noise Rm1 (log scale on the y-axis).
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Figure 5: RMSE of angular velocity estimation for the SVD-LPF and RPF under low mag-
netometer noise Rm2 (log scale on the y-axis).
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Figure 6: RMSE of attitude estimation for the SVD-LPF and RPF under low magnetometer
noise Rm2 (log scale on the y-axis).
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A similarity between the two scenarios under consideration is that simulation
time is 1 orbit (6000 s) and that the satellite eclipse occurs between t = 2000 s
and t = 4000 s representing one third of the orbit. Both scenarios also have the
same initial uncertainty of approximately 5 degrees on all three axes and the
same Sun sensor accuracy when the satellite is not in a solar eclipse is given by:
RSun = diag([(0.4◦)2, (0.4◦)2, (0.4◦)2]).

The difference between the scenarios is that magnetometer sensor noise levels
are taken to be different. Two scenarios are considered, which are as follows:

� Scenario 1, magnetometer measurement noise covariance matrix is
Rmag = Rm1

= diag([(0.2 µT )2, (0.2 µT )2, (0.2 µT )2]);
� Scenario 2, magnetometer measurement noise covariance matrix is

Rmag = Rm2
= diag([(0.02 µT )2, (0.02 µT )2, (0.02 µT )2]).

The numbers of particles for the SVD-LPF and the RPF were chosen to be
N = 2000.

The actual/reference attitude with respect to the local orbit frame is pro-
vided in Figure 1 (Euler angles) for 1 orbit (the time duration for the particle
filtering simulations). In Figure 2, quaternions (body frame with regard to or-
bit frame) are displayed for 4 orbits to show the periodicity of the torque free
motion. The period is 1 orbit because positive and negative quaternions cor-
respond to the same physical orientation. The initial angular rate about the
y-axis in the body frame is taken to match the orbital rate, but the y-axis of
the local orbit frame is different from the initial body frame y-axis due to ini-
tial attitude error. The nonzero initial attitude with respect to the orbit frame
means that the attitudes change on all three axes using a 3-2-1 Euler rotational
sequence. The time derivatives of the roll, pitch and yaw are Euler sequence
dependent and initial condition dependent and are different from the angular
velocities about the instantaneous body axes. The attitude variations repeat
every 1 orbit as expected and as shown in the quaternion figure.

The angular velocities and attitudes of scenarios 1 and 2 are respectively
represented in Figures 3 to 6 and mostly differ in their maximum deviations
during eclipse when the satellite is in the Earth’s shadow. The attitude was
converted from quaternions to Euler angles to simplify the results interpretation.

Figure 3 and Figure 4 with magnetometer covariance matrix Rm1
show

that both filters are accurate before and after eclipse but that the SVD-LPF
has a significantly lower RMSE. During solar eclipse, the SVD-LPF clearly
outperforms the RPF with deviations not exceeding 8 degrees on all three axes,
while the RPF deviation reaches up to 60 degrees about the roll axis, under
the same initial uncertainty. The variance of the SVD-LPF is also significantly
lower during both the sunlit and Sun occlusion phases.

Figure 5 and Figure 6 with the lower magnetometer covariance matrix Rm2

show further improvement with SVD-LPF accuracies below 5 degrees on all axes
and below 1 degree on the pitch axis. The RPF accuracy also improves with
a maximum deviation of 3 degrees on the pitch axis and about 20 degrees on
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the other axes during eclipse. The SVD-LPF has significantly lower RMSE and
variance during both the sunlit and Sun occlusion stages.

As shown in Figures 3 to 6, the estimation errors on the attitude and angu-
lar velocity are significantly lower with an improvement of up to one order of
magnitude using the SVD-LPF in both cases of low and high sensor noise.

The ARMSE results are summarised in Table 1 and Table 2. In the case of
one orbit (see in Table 1), the yaw ARMSE is reduced by a factor of 5.75 in
scenario 1 (moderate magnetometer noise) and 5.51 in scenario 2 (low magne-
tometer noise). The pitch ARMSE is also reduced by a factor of 3.48 in scenario
1 and 3.52 in senario 2. Finally, the roll ARMSE is reduced by a factor of 5.82 in
scenario 1 and 4.44 in scenario 2. During the solar eclipse (see Table 2), the yaw
ARMSE is reduced by a factor of 6.27 in scenario 1 (moderate magnetometer
noise) and 6.18 in scenario 2 (low magnetometer noise). The pitch ARMSE is
reduced by a factor of 5.61 in scenario 1 and 4.61 in senario 2. Finally, the roll
ARMSE is reduced by a factor of 6.80 in scenario 1 and 5.59 in scenario 2. The
RMSE improvement is therefore significant in both cases of low and high mag-
netometer accuracies but is more pronounced overall when the magnetometer
accuracy is lower and particularly during the solar eclipse.

Table 1: ARMSE results over 1 orbit (6000 s)

SVD-LPF RPF

Scenario 1

ARMSE yaw (degrees) 0.6752 3.8888

ARMSE pitch (degrees) 0.2777 0.9659

ARMSE roll (degrees) 0.7608 4.4370

Scenario 2

ARMSE yaw (degrees) 0.3643 2.0098

ARMSE pitch (degrees) 0.1593 0.5622

ARMSE roll (degrees) 0.4315 1.9166

Table 2: ARMSE results during the solar eclipse

SVD-LPF RPF

Scenario 1

ARMSE yaw (degrees) 1.8088 11.3553

ARMSE pitch (degrees) 0.4226 2.3726

ARMSE roll (degrees) 1.8934 12.8821

Scenario 2

ARMSE yaw (degrees) 0.9231 5.7127

ARMSE pitch (degrees) 0.2511 1.1595

ARMSE roll (degrees) 0.9623 5.3861
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5.3. Computational demand and real time implementation considerations

5.3.1. Complexity analysis

The complexity of algorithms can be evaluated in terms of their computa-
tional load for a given set of numerical operations. This complexity criterion
is often used in state estimation [38]. The computational load is defined as
the total number of floating point operations (or flops, namely additions and
multiplications) required to perform them during one time-step (i.e., prediction,
correction and Laplacien resampling for the SVD-LPF).

In this section, we compare the SVD-LPF approach with the classical Ex-
tended Kalman Filter (EKF) in terms of algorithmic complexity. In order to
compare the SVD-LPF and the EKF, we assume that the dynamics are lin-
earized. Table 3 presents the total number of flops and is obtained by adding
the number of multiplications and additions. Moreover, some operations such
as random numbers generation or highly nonlinear functions cannot be quanti-
fied in terms of flops. The cost of evaluating the Gaussian likelihood and the
Laplacian resampling are denoted c1 and c2 respectively. The theoretical cost
of one random sample is denoted c3. Furthermore, for comparisons between
filtering algorithms, only the most significant terms will be considered and are
denoted by O(.).

Table 3: The flops complexity associated with elementary operations.

Instruction Size Multiplications Additions

A+B A,B ∈ Rn×m nm
AB A ∈ Rn×m, B ∈ Rm×l nml (m− 1)nl
A−1 A ∈ Rn×n n3

The implementation of the EKF yields the following number of flops per
time-step, as stated by [39]:

C
EKF

=
3

2
n3 + n2

(
3m+

1

2
n

)
+ n

(
3

2
m2 + n2

)
+

1

6
m3, (82)

where n and m are the dimension of the state vector and the observation vector
respectively.

The SVD-LPF yields the following number of flops per time-step, assuming
a linear dynamics, is given by:

C
SVD-LPF

= N
(
4n2 + n+ nc3 + c1 + c2

)
+

4

3
n3 + 2n2, (83)

where N is the number of particles.
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Table 4: Computational load (flops) needed by SVD-LPF and EKF for m < n, c1 < n2,
c2 < n2 and c3 < n2.

Algorithm EKF SVD-LPF
Prediction O(n3) O(Nn2)
Correction O(n2m) O(Nc1)
Laplacian resampling - O(Nc2)
Estimate O(n3) O(Nn2)
Total O(n3) O(Nn2)

From of the Equation (83), the number of particles N is the important factor
in terms of computational load. Assuming that m < n and that the costs of
c1, c2 and c3 are less than n2, the first order term of the algorithm complexity
of SVD-LPF per time step is O(Nn2) and O(n3) with EKF (see Table 4).
Therefore, the global ratio between the two complexities is of order O(N/n).
For example, if N = 2000 and n = 7, SVD-LPF is about 300 times more
demanding than EKF. However, note that particle filters operations are highly
parallelizable in practice, which may result in a significant computational time
reduction when implemented for real-time applications [40]. Note also that the
resampling step is not triggered at each time-step, which contributes to reducing
the global computation time.

5.3.2. Real time implementation

The computational demand of the filters requires advanced real time pro-
cessing capability, which is currently being developed for a number of space
missions, such as GPU computing based real time operations at NASA’s God-
dard spaceflight centre for the Magnetospheric Multiscale (MMS) Mission [21].

The computation times of the particle filters used here represented slightly
less than 10% of the simulation time in both cases. This setup can be considered
for ground validations and comparison purposes, but more advanced specialised
real time computation hardware, such as the abovementioned GPU approach,
would be required for validation onboard a satellite. Further computational
enhancements are possible by algorithmic improvements, such as the ability to
vary and tune filter parameters including the numbers of particles, which can be
reduced when estimation error covariances are low. This was however beyond
the scope of this paper, where the focus is on robustness and estimation accuracy
and their dependency on the availability and accuracy of measurements.

6. Conclusion

A gyroless satellite attitude determination approach using Sun sensors and
magnetometers was proposed using a combined SVD and LPF approach. It is
based on a Laplace approximation of the posterior density and feeding the LPF
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with indirect attitude measurements through the SVD approach. A Procrustes
problem formulation was successfully used to analytically solve Wahba’s optimi-
sation problem using Sun and magnetic field vector measurements and a third
virtual predicted measurement that remained available during Sun occlusion.
A Monte Carlo numerical simulation analysis confirms that the SVD-LPF fil-
ter significantly enhances accuracy compared to the regularized particle filter
(RPF) when both types of sensor measurements are available and is significantly
more accurate and robust to measurement discontinuities during solar eclipse
under either coarse or fine magnetometer sensing. Compared to the RPF, the
average roll, pitch and yaw RMSE results are reduced by factors of at least 4.44,
3.52 and 5.51, respectively, for the scenarios under consideration with moder-
ate to high magnetometer accuracies. The SVD-LPF approach allows for the
integration of more robust AOCS functionality in gyroless satellites. It can
also yield cost reductions compared to more expensive sensing configurations
with a similar performance. As part of the future work, we aim to combine
the SVD-LPF with stochastic feedback attitude control to enforce probabilistic
constraints under a high initial uncertainty.
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Appendix

Let L(q) = R(q)Ba where R(q) is defined on (8). The 1st order Taylor
expansion of the function L(q) around q0 is given by:

Ya = L(q)

≈ L(q0) +
∂L
∂q

∣∣∣∣
q=q0

(q− q0).
(A.1)

The covariance matrix Σ of Ya is approximated by:

Σ ≈ E

(
∂L
∂q

∣∣∣∣
q=q0

(q− q0)(q− q0)T
∂L
∂q

∣∣∣∣
q=q0

)

=
∂L
∂q

∣∣∣∣
q=q0

E((q− q0)(q− q0)T )
∂L
∂q

∣∣∣∣
q=q0

=
∂L
∂q

∣∣∣∣
q=q0

P−11

∂L
∂q

∣∣∣∣
q=q0

.

(A.2)
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The function L(q) is given by:

L(q) = R(q)Ba =

L11Ba1 + L12Ba2 + L13Ba3
L21Ba1 + L22Ba2 + L23Ba3
L31Ba1 + L32Ba2 + L33Ba3

 ,

l1l2
l3

 , (A.3)

where Ba = [Ba1 , Ba2 , Ba3 ]
T

.

The matrix ∂L
∂q can then be obtained as follows:

∂L
∂q

=


∂l1
∂q0

∂l2
∂q0

∂l3
∂q0

∂l1
∂q1

∂l2
∂q1

∂l3
∂q1

∂l1
∂q2

∂l2
∂q2

∂l3
∂q2

∂l1
∂q3

∂l2
∂q3

∂l3
∂q3

 , (A.4)

where: 

∂l1
∂q0

= −2q0Ba1 − 2q1Ba2 + 2q2Ba3

∂l1
∂q1

= 2q1Ba1 − 2q0Ba2 + 2q3Ba3

∂l1
∂q2

= 2q2Ba1 + 2q3Ba2 + 2q0Ba3

∂l1
∂q3

= −2q3Ba1 + 2q2Ba2 + 2q1Ba3

(A.5)



∂l2
∂q0

= 2q1Ba1 − 2q0Ba2 + 2q3Ba3

∂l2
∂q1

= 2q0Ba1 + 2q1Ba2 − 2q2Ba3

∂l2
∂q2

= 2q3Ba1 − 2q2Ba2 − 2q1Ba3

∂l2
∂q3

= 2q2Ba1 + 2q3Ba2 + 2q0Ba3

(A.6)
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

∂l3
∂q0

= 2q2Ba1 + 2q3Ba2 + 2q0Ba3

∂l3
∂q1

= −2q3Ba1 + 2q2Ba2 + 2q1Ba3

∂l3
∂q2

= 2q0Ba1 + 2q1Ba2 − 2q2Ba3

∂l3
∂q3

= −2q1Ba1 + 2q0Ba2 − 2q3Ba3

(A.7)
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