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Hybrid Kinetic/Fluid numerical method for the
Vlasov-Poisson-BGK equation in the diffusive scaling

Tino Laidin1 and Thomas Rey1

Univ. Lille, CNRS, Inria, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France

Abstract. This short note presents an extension of the hybrid, model-adaptation
method introduced in [T. Laidin, arXiv 2202.03696, 2022] for linear collisional
kinetic equations in a diffusive scaling to the nonlinear mean-field Vlasov-Poisson-
BGK model. The aim of the approach is to reduce the computational cost by tak-
ing advantage of the lower dimensionality of the asymptotic model while reduc-
ing the overall error. It relies on two criteria motivated by a perturbative approach
to obtain a dynamic domain adaptation. The performance of the method and the
conservation of mass are illustrated through numerical examples.

Keywords: Vlasov-Poisson-BGK equations; Diffusion scaling; Asymptotic pre-
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1 The model

In this work, we are interested in the kinetic description of a system of particles
interacting via both mean-field electromagnetic interaction and collisions. Such
system can be modeled using the Vlasov-Poisson-BGK equation. The unknown
is the probability distribution function f = f (t,x,v) ∈ R+ solution to:

∂

∂ t
f ε +

vx

ε
∂x f ε +

Eε

ε
∂vx f ε =

1
ε2 Q( f ε ),

f (0,x,v) = f0(x,v),
(1)

where (t,x,v)∈R+× [0,x∗]×Rdv with periodic boundary conditions in the phys-
ical space and v = (vx,vy,vz). The long range interactions are modeled via the
self-consistent electrical field E = E(t,x) solution to the Poisson equation

∂x Eε = ρ
ε −ρ with ρ =

∫∫
f0 dxdv. (2)

The short-range interactions between particles are taken into account through the
linear BGK-like relaxation collision operator

Q( f ε )(t,x,v) = ρ
ε (t,x)M (v)− f ε (t,x,v), ∀(t,x,v) ∈ R+× [0,x∗]×Rdv ,

where the global Maxwellian and local density are respectively defined as

M (v) =
e−|v|

2/2

(2π)dv/2
, ρ

ε (t,x) =
∫

f ε (t,x,v)dv =: 〈 f ε (t,x, ·)〉.

In (1), the scaling parameter ε is related to the Knudsen number: the ratio between
the mean free path of the particles and the length scale of observation. It is now
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well known [4] that the limit case ε = 0 is described by a drift-diffusion equation
on the density ρ: when ε → 0, the distribution function f ε converges towards a
Maxwellian distribution ρM whose density ρ is solution to{

∂t ρ− ∂x J = 0, J = ∂x ρ−Eρ,

ρ(0,x) = ρ0(x), ∀x ∈ [0,x∗].
(P)

The approximation of solutions to (1)-(2) can be computationally expensive be-
cause of the high dimensionality of the kinetic phase space. Nevertheless, using
the more accurate kinetic description of the system may not be necessary in the
whole computing domain because of the local validity of the fluid description
(the system being in a state of thermodynamic equilibrium). This latter is less ac-
curate in describing the kinetic zones, but computationally less costly. The aim of
this work is therefore to design a hybrid kinetic/fluid scheme with an automatic
domain adaptation method. It relies on a robust numerical scheme for the kinetic
equation, on relevant criteria to carefully determine fluid and kinetic regions and
on a smart implementation.

2 Macroscopic models

The aim of this section is to derive a higher-order macroscopic model from which
we deduce a macroscopic coupling criterion. It generalizes the approach pre-
sented in [5]. Let us now introduce the truncated Chapman-Enskog expansion
of the distribution function f ε at order K ∈ N∗:

f ε (t,x,v) = ρ
ε (t,x)M (v)+

K

∑
k=1

ε
kh(k)(t,x,v). (3)

By inserting (3) into the original equation (1), one can identify powers of epsilon
to obtain

k = 0 : h(1) =−T (ρεM ), (4a)

k = 1 : h(2) =− ∂t (ρ
εM )−T (h(1)), (4b)

2≤ k ≤ K−1 : h(k+1) =− ∂t h(k−1)−T (h(k)), (4c)

where T f = vx ∂x f +E ∂vx f is the transport operator. To obtain a hierarchy of
macroscopic models, one considers different truncation orders K, then plugs (3)
into (1) and integrates in velocity. The order K = 1 allows us to (formally) recover
the asymptotic model (P).
Let us now present the idea behind the computations in a 1D/1D setting for the
case K = 3. Note that the same method can be applied up to the full 3D/3D
setting. Integrating in velocity then yields

∂t ρ
ε + ∂x 〈vh(1)〉+ ε

2
∂x 〈vh(3)〉= O(ε4). (5)

The set of equations (4) allows us to compute the functions h(k), k = 1,2,3. Using
the identity ∂v M =−vM , one has

h(1) =−vM Jε , Jε = ∂x ρ
ε −Eε

ρ
ε .
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h(2) =−M ∂t ρ
ε + v2M ∂x Jε +(1− v2)M Eε Jε ,

and

h(3) =vM Jε + vM ∂x (∂t ρ
ε )− v3M ∂xx Jε − (v− v3)M ∂x (Eε J)

− vM Eε
∂t ρ

ε − (2v− v3)M Eε
∂x Jε − (v3−3v)(Eε )2Jε .

It remains to compute the quantities ∂x 〈vh(1)〉 and ∂x 〈vh(3)〉. By the definition
of M , one can explicitly compute its second and fourth moments: m2 = 1 and
m4 = 3. It yields

∂x 〈vh(1)〉= ∂x Jε .

Moreover, to avoid some approximation of mixed derivatives, we observe from
(5) that

∂t ρ
ε = ∂x Jε +O(ε2), (6)

and we deduce that

∂t Jε = ∂xx Jε −Eε
∂x Jε −ρ

ε
∂t Eε +O(ε2). (7)

Replacing the time derivatives by their approximations (6) and (7) yields

∂x 〈vh(3)〉=− ∂xxx Jε + ∂x ρ
ε

∂t Eε −ρ
ε

∂t (∂x Eε )+3∂x Eε
∂x Jε

+Eε
∂xx Jε +2Jε

∂x (∂x E)+O(ε2).

Finally, using the Poisson equation (2) and rearranging the terms, we obtain a
higher order macroscopic model:

∂t ρ
ε − ∂x Jε =−ε

2R+O(ε4), (8)

where the remainder Rε is given by

Rε =−∂xxx Jε +E ∂xx Jε +(2ρ
ε −3ρ)∂x Jε +2Jε

∂x ρ
ε − ∂x ρ

ε
∂t Eε . (9)

Furthermore, we emphasize the fact that this remainder term does not depend on
the velocity variable but on the macroscopic quantities ρ and E. It quantifies very
accurately the deviation from the thermodynamical equilibrium.

3 Numerical scheme

In this part, we briefly recall the derivation of the micro-macro model for (1)
introduced in [2]. Then, we present a micro-macro finite volume scheme that
enjoys the property of being Asymptotic Preserving (AP), which is a crucial point
of the hybrid method we present.
Let us decompose the distribution f ε as follows:

f ε = ρ
εM +gε . (10)

We introduce the orthogonal projector Π in L2(dxdvM−1) on Ker(Q) defined
for all f ∈ L2(dxdvM−1) by:

Π f = 〈 f 〉M .
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The so-called micro equation is obtained by plugging (10) into (1) and applying
(I−Π). Moreover, plugging (10) into (1) and applying the projection Π yields
the macro equation. The micro-macro model is then given by:

∂t gε +
1
ε
(T gε − ∂x 〈vxgε 〉M + vxM Jε ) =

−1
ε2 gε , (Micro)

∂t ρ
ε +

1
ε

∂x 〈vxgε 〉= 0. (Macro)

Let us now present the discretization of the (Micro)-(Macro) model. We shall
adopt a finite volume approach to discretize the phase space and present only the
1D/3D case that we shall consider in our numerical simulations.

The mesh. The velocity domain is restricted to the bounded symmetric cube
[−v?,v?]3. We consider a Cartesian mesh of the phase space composed of Nv = 2L
velocity cells in each direction arranged symmetrically around v = 0. Let J =
{−L+ 1, . . . ,L} and j = ( jx, jy, jz) ∈J 3 be a multi-index. The cells of the ve-
locity mesh are denoted by V j for j ∈J 3. Each cell V j has a constant volume
∆v3 and midpoint v j.
The physical domain, a torus T of length x∗, is discretized into Nx primal cells

Xi = (xi− 1
2
,xi+ 1

2
), i ∈I = Z/NxZ,

of constant length ∆x and centers xi. We also define dual cells Xi+ 1
2
= (xi,xi+1)

for i ∈ I , of constant length ∆x and centers xi+ 1
2
. This defines respectively the

so-called primal and staggered meshes as

Ki j = Xi×V j and Ki+ 1
2 , j

= Xi+ 1
2
×V j, ∀(i, j) ∈I ×J 3.

Finally, we set a time step ∆ t > 0 and define tn = n∆ t for n ∈N. The Maxwellian
is discretized as a product of 1-dimensional Gaussians in such a way that it sat-
isfies discrete counterparts of its continuous properties, namely parity, positivity,
and unit mass.
The transport terms in (Micro) are approximated using a first order upwind scheme
and the time derivative is dealt with using a first order exponential time integrator.
Regarding the macro equation, we take advantage of approximating the perturba-
tion on the dual cells in position for the space derivative. The usual choice [1] to
obtain an AP scheme is to implicit the stiff term of (Macro). The equation on the
electrical field is solved using a centered finite difference scheme. The numerical
scheme reads as follows:

Proposition 1 Let n ∈ N. Let
(

gε,n
i+ 1

2 , j

)
i j

and
(
ρ

ε,n
i
)

i be given by the following

micro-macro finite volume scheme:

gε,n+1
i+ 1

2 , j
= gε,n

i+ 1
2 , j

e−∆ t/ε2 − ε(1− e−∆ t/ε2
)

 T ε,n
i+ 1

2 , j

∆x∆v3 +ξ jM jJ
ε,n
i+ 1

2

 ,

ρ
ε,n+1
i = ρ

ε,n
i −

∆ t
ε∆x

(
〈ξ gε,n+1

i+ 1
2
〉∆ −〈ξ gε,n+1

i− 1
2
〉∆
)
,

Eε,n
i+ 1

2
−Eε,n

i− 1
2
= (ρε,n

i −ρ)∆x,
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where ξ j = ξ( jx, jy, jz) = v jx ∀ j ∈J 3 and T ε,n
i+ 1

2 , j
is the discretization of the trans-

port terms. Assuming some uniform bounds in ε on ρε and for a fixed mesh size
∆x, ∆v> 0, the scheme enjoys the AP property in the diffusion limit. This property
does not depend on the initial data, and the associated limit scheme reads

ρ
n+1
i = ρ

n
i +m∆v

2
∆ t
∆x

(
Jn

i+ 1
2
− Jn

i− 1
2

)
,

En
i+ 1

2
−En

i− 1
2
= (ρn

i −ρ)∆x,

with the limit flux

Jn
i+ 1

2
=

ρn
i+1−ρn

i
∆x

−Ei+ 1
2
ρ

n
i+ 1

2
,

where m∆v
2 is given by ∑l∈J v2

l Ml∆vl .

4 Hybrid method

Let us now introduce the main contribution of this work, namely the hybrid
method between kinetic and fluid schemes. It consists in a coupled solver that
is faster than a full kinetic one to solve (1) while still being accurate. Follow-
ing [3,5] we first construct a hybrid kinetic/fluid solver with a dynamic domain
adaptation method and present its implementation.

4.1 Coupling criteria

The idea of the dynamic domain adaptation method is twofold. On the one hand,
the subdomains must accurately describe the state of the solution. In particular,
the fluid model has to be used only where the solution is near the local velocity
equilibrium. On the other hand, the method has to be dynamic, in the sense that
the subdomains are adapted at each time step. To determine in which domain
each cell lies, we use two criteria based on the higher order macroscopic model
(8) introduced in Section 2 and the norm of the perturbation gε = f ε −ρεM . Let
Rε,n

i be a discretization of the remainder (9) at time tn in cell Xi.
The coupling procedure will unfold as follows: Rε,n

i is computed using both the
kinetic density ρε in kinetic cells and the fluid density ρ in fluid cells. Cell
changes happen when one of the following situations occurs, depending on a
coupling threshold investigated in the previous work [5]:

– If Rε,n
i is small (w.r.t. a fixed threshold), the solution (8) is close to the limit

model (P) and one must use it;
– If gε is small (w.r.t. another fixed threshold), the solution is close to the local

equilibrium in velocity, and one must consider the fluid description.
If any of those two conditions are not met then, depending on its current state, the
cell either stays or becomes kinetic.

Remark 1 Note that in a kinetic cell, the criterion on the norm of gε is manda-
tory. Indeed, the remainder Rε,n

i could be small because of small gradients, but
the perturbation large. In this situation, one does not want to change from kinetic
to fluid. As an example, one could take a distribution function at equilibrium in
position and far from the Maxwellian in velocity (see [3] for details).
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4.2 Implementation

The way the method is implemented is crucial. Indeed, the main goal of the
method is to avoid the update of the perturbation which is the most computa-
tionally expensive part of the code. Therefore, from an implementation point of
view, gε is not updated in fluid regions and is set to 0 only when needed. In par-
ticular, it occurs only when a fluid cell becomes kinetic and when saving data.
The interface conditions between kinetic and fluid cells are treated in the same
way as in [5].

Remark 2 Note that we want to start the resolution with the approach contain-
ing the full information on the system. Hence, the domain is initialized as fully
kinetic. Moreover, let us emphasize that in practice the kinetic fluxes are explicitly
computed. Therefore, the hybrid setting is an explicit method.

5 Numerical results

Let us now present some numerical simulations with our approach.
We shall start with the validation of the AP property of the micro-macro Vlasov-
Poisson-BGK solver with exponential integrator presented in Section 3. It is a
combination of the methods presented in [6,2] that have never been implemented
in any work, to the best of our knowledge. Figure 1 presents the time evolution
of the L2 norm of the energy of solutions to equations (1–2) with different val-
ues of the relaxation parameter ε , for the seminal weak Landau damping initial
data from [2]. We observe the convergence with respect to ε of the energy. The
oscillations due to the Vlasov-Poisson transport term T occur only in the ki-
netic regime, when ε is large. They are then damped by the linear BGK term for
smaller values of ε , where exponential decay of the electric field occurs.

0 2 4 6 8 10
Time

10−12

10−10

10−8

10−6

10−4

10−2

ε = 1.0

ε = 0.5

ε = 0.1

Limit

Fig. 1: Fully kinetic scheme: Landau damping. Time evolution of ||E(t)||2 for differ-
ent values of ε .

We now turn our attention to the hybrid method. Figure 2 assesses the validity
of this new method by computing the time evolution of the density of a smooth
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solution. The initial condition is a Maxwellian distribution ρM , whose initial
space dependent density is given by ρ(x) = 1+ 0.05cos(2x) for x∗ = 2π with a
fixed ε = 0.1. Although the solution is far from the fluid description because of
this mild value of ε , we observe an almost perfect agreement between the fully
kinetic and the hybrid kinetic-fluid solvers. We also observe the back-and-forth
phenomenon between kinetic and fluid cells, resulting in large time in a full fluid
(albeit accurate with the kinetic equation) solver for the global equilibrium. The
speed-up tables are similar to those presented in [5], where factors up to 400
have been observed between the hybrid and the fully kinetic solver.
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t = 1.200
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t = 0.300
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t = 1.050

0 1 2 3 4 5 6
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0.1590

0.1595

0.1600

0.1605

t = 3.000

Full Kinetic

Full Fluid

Hybrid Kinetic

Hybrid Fluid

Fig. 2: Comparison of the solvers. Time evolution of the space densities for ε = 0.1
with a smooth initial data.

Then this domain adaptation is investigated in Figure 3. One can observe the pre-
cise domain adaptation during time. We notice in particular the quick vanishing
of the kinetic cells in favor of the fluid ones (and hence a computational speedup).
This adaptation phenomenon can bring mass variation as noticed in [5], but we
observe that it remains very close to the machine precision.
Finally, we investigate again the case of the weak Landau damping using the new
hybrid solver. We observe in Figure 4 that this new method is able to accurately
capture the oscillations induced by the transport operator T in short time. Never-
theless, these oscillations are destroyed by the switch to a full fluid solver, which
relax exponentially because of its relaxation structure.
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