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Abstract: A one-dimensional steady-state model is developed to simulate drying of PVC powder in a 
pneumatic dryer. In this model, a two-phase continuum model was used to describe the steady-state flow of a 
dilute dispersed phase (wet PVC powder) and a continuous phase (humid air) through dryer. The particle scale 
kinetics was obtained by immersion of a fixed mass of wet PVC’s particles (cake) in a batch dense fluidized bed 
containing inert hot particles (glass bead). The drying kinetics was described by a shrinking core type model and 
integrated in pneumatic dryer model. The results show that the inlet temperature is the most important parameter 
in the operation. The drying rate is controlled by a two-stage process. The first stage corresponds to the surface 
water evaporation, and the second to the pore water evaporation.  
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INTRODUCTION 

In PVC powder production line, after the 
polymerization step, a suspension, composed of 
water and PVC particles, is obtained. Most of this 
suspension’s water is eliminated during a 
centrifugation step, leading to a wet porous powder, 
called “cake”. The cake drying occurs essentially in a 
pneumatic dryer coupled with a fluidized bed dryer 
that role is to eliminate the residual humidity of PVC 
(less than 0,05 kg water/kg dry PVC). This operation 
consumes a lot of energy, between 125 and 375 J / kg 
dry PVC, in accordance to the operating conditions 
and the PVC’s grade. 

The pneumatic dryer is a technology commonly used 
in order to eliminate free or barely-bound water. A 
pneumatic dryer is a continuous, convective dryer 
with dilute solid transport. This technology presents 
numerous advantages (Strumillo 1986, Ouyang et al., 
2003) such as:  

• the short resident time of particles allows to 
dry thermosensible product, 

• in parallel flow, high temperature can be 
applied at the inlet giving high thermal 
efficiency, 

• the dryer can be used as a transport system. 

With the purpose to optimize the drying process, i.e. 
reduces the energy consumption, this study focuses 
on: 
(i) the acquisition of the kinetics data in a batch dense 
fluidized bed, 
(ii) the modeling of the dehydration of PVC’s 
particles in a pneumatic dryer. 

DRYING KINETICS 

Porous media drying is a complex problem, still not 
well-understand despite of the numerous studies that 
can be found in the literature, due to the coupled 
exchanges (mass, heat, and momentum transfers) 
between the gas and the particles (Kowalski, 2007, 
Prat, 2002, Segura and Toledo, 2005). 

As shown in figure 1, during the drying of a porous 
particle, two periods can be distinguished. The first 
period consists in the elimination of the free water 
located at its surface. In this case the evaporation is 
controlled by external transfers depending on the 
local relative velocity between the air and the 
particles, called slip velocity. These transfers 
depending on the drying technology have been 
widely studied, and the literature provides a lot of 
correlations, some times contradictory, for its 
estimation. In the second period, the water located in 
the particle’s pore, is eliminated: the drying is 



 

controlled by a combination between 
external transfers. 

In the case of porous particle, according to the 
of the solid, the internal transfers can be drive b
or a combination of several elementary mechanisms
such as: 

• the capillarity effect, 
• the migration in adsorbed phase

diffusion), 
• the vapor diffusion through the pores.

 

Fig. 1: Particle drying 

PVC PROPERTIES

The SEM pictures of PVC particles
suspension polymerization process,
particle can be represented by a “
structure constituted of elementary 
diameter (see Fig. 2). The pore size distribution
obtained by mercury porosimetry,
families of pores (see Fig. 3): 

• From 200 to 10 000 nm: the space between 
the primary particles. 

• From 50 to 200 nm: the primary particles
porosity. 

According to the Kelvin’s law, the effect of the pore 
mean size diameter on water activity can be 
neglected for the values greater than 10 nm. 
According to the figure 3, the capillary effects can be 
neglected in the case of PVC’s particle drying.
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toward the water vapor, some experiments

between internal and 

ccording to the nature 
can be drive by one 

a combination of several elementary mechanisms 

migration in adsorbed phase (or liquid 

he vapor diffusion through the pores. 

 

Particle drying  

PVC PROPERTIES 

les, produced by the 
, show that each 

can be represented by a “Pellet-grain” 
of elementary grains of 1 µm 
. The pore size distribution, 

obtained by mercury porosimetry, shows two 

he space between 

primary particles’ 

According to the Kelvin’s law, the effect of the pore 
mean size diameter on water activity can be 

glected for the values greater than 10 nm. 
, the capillary effects can be 

neglected in the case of PVC’s particle drying. 

the affinity of PVC 
, some experiments 

concerning the sorption equilibrium 
carried out. The results show that
small affinity with water vapor
containing 75% of relative humidity, the PVC’s 
equilibrium humidity is about 2.4 g
PVC). Moreover the PVC is 
the migration in adsorbed phase can be neglected.

Fig 2: SEM picture of a PVC particle

Fig. 3: pores size distribution of PVC’s particle

According to the nature of PVC’s particles
elementary mechanism can be
transfer is the water vapor’s diffusion through the 
pores. 

In order to minimize the external effects, the kinetics 
study was performed by immersion of a fixed mass 
of wet PVC’s particles (cake)
fluidized bed containing inert 
bead). The complete description of the apparatus and 
that of the experimental procedure are presented 
elsewhere (Aubin et al; 2012t). The influence of the 
temperature, the water vapor pressure, the PVC 
grades and the fluidizing gas vel
investigated. The evolution of the PVC humidity 
versus time is described correctly by a “
core” type model. 

KINETICS MODEL AT PARTICLE SCALE

In the shrinking core type model
4, particle’s humidity is concentrate
which will shrink during the drying and so form a dry 
crust at particle’s surface (Mezhericher et al.; 2008; 
Cheong et al., 1986).  
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which will shrink during the drying and so form a dry 
(Mezhericher et al.; 2008; 



 

The evaporation takes place at the surface of the 
moist core, and the water vapor diffuses through the 
dry crust. To determine the drying kinetics the mass 
balance on a single particle is realized. The balance 
takes into account the water vapor diffusion through 
the crust and water vapor exchange at particle’s 
surface. So, the rate of mass transfer can be 
expressed as: 

��� � �� . �	
 � 	�
.  (1) 

Where Y* is the equilibrium humidity, Y∞ the 
humidity of the air far from the particle, and Ky is the 
global mass transfer coefficient expressed as: 

�� � ��

���.���
��� �1��1

. (2) 

Where ky is the convective mass transfer coefficient, 
dp and dh the respective diameter of the particle and 
the humid core, and BiM the dimensionless number 
called Biot number relative to mass transfer. This 
number represents the competition between external 
and internal transfer: 

��� � ��.�
� !!."#

. (3) 

Where R is the particle’s radius, ρg the gas density, 
and Dapp the diffusion coefficient of water vapor in 
the air within a pore, calculated from the binary 
diffusion coefficient, Dbin: 

$%&& � $'()
*
+ (4) 

The porosity, χ, and the tortuosity, τ, values are 
indicated in the table 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: The shrinking core model 

This model has been validated in a previous study of 
the drying kinetics at particle’s scale obtained in 
fluidized bed (Aubin et al.; 2012). The results have 
shown that the resistance of internal transfers is about 
1.5 times bigger than the external resistance (BiM ≅ 

1.5). This shows the strong effect of external 
exchanges on the drying kinetic. 

ONE DIMENSION PNEUMATIC DRYER MODEL 

Table 1: Main equations 

Mass balances 

Solid phase 
�

�, -.&. /&. 0&1 � Γ& (5) 

Gas phase 
�

�, -.3. /3. 031 � Γ3 � �Γ& (6) 

Energy Balances 

Solid phase 4&
5. �6&

�, � 738& � 9: . Γ&. 6�
3 (7) 

Gas phase 43
5. �63

�, � 7&83 � 7�83 � 9:. Γ3. 6�
3 (8) 

Momentum balances 

Solid phase 

;
;, -.&. /&. 0&

<1 � .&. ;=
;, � .&. /&. >

� ?>8� 
(9) 

Gas phase 

;
;, -.3. /3. 03

<1 � .3. ;=
;, � .3. /3. > 

�?&83 � @0& � 03A. Γ3 � 4B,�83 
(10) 

Humidity transport equations 

Solid phase 
�D
�, � 9: . Γ&

4&5
 (11) 

Gas phase 
�	
�, � 9E. Γ3

435 � � 4&
5

435 . �D
�,  (12) 

 

Model’s hypothesis 

The aim of this study is to model a pneumatic dryer 
using the particle scale kinetics previously 
elaborated. In this model, a two-phase continuum 
model was used to describe the steady-state flow of a 
diluted dispersed phase (wet powder) and a 
continuous phase through a pneumatic dryer. The 
model is based on the following assumptions: 

• Mass, energy and momentum balances 
occur between the two phases. 

• The frictions forces between the dispersed 
phase and the wall can be neglected. 

• The continuous phase, composed by a 
mixture of water vapor and other gas, is 
considered as an ideal phase. 

• The particles are spherical and composed of 
a homogeneous porous matrix. 

• The particles size’s distribution is 
considered as monodisperse  

• Liquid water and PVC density are constant. 

Y 

r 

Y∞ 
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Yh 

Dry 
crust 

 
 

Wet core 
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• Electrostatic forces and surface tension 
effects are neglected. 

• The wall heat loss is neglected. 

Balance equations 

The mass, energy, and momentum balances 
developed in one-dimensional steady-state for both 
phases are presented in table 1. The transport 
equations for solid and gas humidity, deduced from 
the masse balances, are also included in this table. 

Complementary equations 

The volume rate of mass transfer Γp, is expressed 
from the rate of mass-transfer ˙���. 

Γ& � �Γ3 � �.&. F&. ���. (13) 

Where αp is the local volume fraction of solid and sp 
the specific surface area of a particle. 

As shown on figure 1, the particle’s drying occurs in 
two periods (Levy, 1998). During the first period, the 
mass transfer is convective. Then the expression of 
the global mass transfer coefficient can be simplified 
as following: 

�� � ��. � "! .G
"H IJK

� 1 � L�. (14) 

Where ρp is the solid density, ρwater the liquid water 
density and χ the particle porosity. 

During the second period, the mass transfer is 
convective and diffusive, and the global mass 
transfer is given by equation (2). This period starts 
when the surface humidity is totally eliminated, 
which means that the particle’s humidity reaches a 
critical humidity, Xc: 

D: � "H IJK.*
"!

. (15) 

The energy transfer between the two phases is 
expressed as followed: 

738& � �7&83 � .&. 9: . F& . �. -M3 � M&1. (16) 

Where Ac is the pipe cross section, h the heat-transfer 
coefficient, and Tp and Tg, the, respectively, solid 
and gas phase temperature. 

Only the forces due to dragging are taken into 
account in the momentum transfer: 

?38& � �?&83 � N.O!."#.PKQ.RS
T.U!

. (17) 

Where Ur is the slip velocity. 

The drag coefficient, Cd, is calculated by the Wen et 
Yu correlation (Schiller and Naumann, 1935): 

VU � <T
�W �1 � 0.15Z[5.\]^
.3

_`.^ (18) 

The friction force between the pipe and the 
continuous phase is estimated by: 

4B,�83 � B."#
<.�!a!J

. 03
< (19) 

The friction factor, f, is calculated by the Blasius 
formula: 

b � \T
�W!a!J

 �b Z[&(&W d 2 100 (20) 

b � 5,5^f`
�W!a!J

g/i  �b Z[&(&W j 10 000 (21) 

Transfer coefficients 

Some empirical correlations can be used to calculate 
the heat-transfer coefficient from the Nusselt number, 
Nu, as a function of the Reynolds, Re, and Prandt, Pr, 
numbers. Their expressions are resumed in table 2. 

The Chilton and Colburn analogy is used in order to 
calculate the mass transfer coefficient: 

kl
�W.k:g/m � no

�W.pqg/m (22) 

As the gas phase is only composed of air and steam, 
the Prandt number can be considered equal to the 
Schmidt number, Sc. So the mass-transfer coefficient 
can be calculated from the correlations presented in 
the table 2 by substituting the Nusselt number by the 
Sherwood number, Sh, and the Prandt number by the 
Schmidt number. 

Table 2: Empirical correlations from literature 

Ranz-Marshall 
(Levi-Hevroni et 
al., 1995) 

�r � 2 � 0.6. Z[5,t=u5,NNN (23) 

Baeyens et al. 
(1995) �r � 0.15Z[ (24) 

De Brandt 
(Baeyens et al., 
1995) 

�r � 0.16Z[`.N=u5.\^ (25) 

Gamson      
(Kerker and 
Terwiesch, 1985) 

�r � 1.06Z[5.tf=u5.NN (26) 

Khotari        
(Kunii and 
Levenspiel, 1969) 

�r � 0.003Z[`.N 
(27) 

Bandrowski 
(1977) 

�r � 0.00114.&
_5.tf]TZ[5.]`tf (28) 

. 

Most of the correlations have been developed for a 
single particle, but in pneumatic dryers, collisions 
between particles occur. This has an important 
influence on the boundary layer surrounding the 
particle surface, and so on the transfers’ rate. In order 
to model this phenomenon, Bandrowski (1977) 
expressed the Nusselt number as a function of the 
solid volume fraction, αp. 

 



 

RESULTS AND DISCUSSION 

The simulation data are resumed in table 3. The 
figures 5 and 6 represent the theoretical results 
obtained using the different correlations gathered in 
table 2 and the experimental founding of Baeyens et 
al. (1995). The results obtained with correlations of 
Ranz-Marshall (developed for a single particle), 
Gamson, and Kothari (developed for a fluidized bed) 
show important deviations with experimental results 
and so are not presented on these figures. 

Table 3: Simulation data 

Data Baeyens et al 
(1995) 

Mean particles diameter (µm) 180 

Solids density (kg.m-3) 1116 

Porosity (-) 0,15 

Tortuosity (-) 8 

Pipe diameter (m) 1.25 

Pipe length (m) 25 

Inlet PVC humidity 

(kg water / kg dry PVC) 
0.26 

Critical PVC humidity 

(kg water / kg dry PVC) 
0.134 

Inlet air temperature (°C) 127 

Dry air mass flowrate (kg.h-1) 46480 

Dry solid mass flowrate (kg.h-1) 6670 

 

 

Fig. 5: Comparison between experimental data and 
simulation results with different correlations: 

evolution of particle’s humidity 

The differences observed between experimental data 
and theoretical results can be explained by the worst 
dispersion of the wet cohesive PVC in the gas phase 
at the pipe’s inlet zone. The theoretical results which 
fit the best the experimental data have been obtained 
using Bandrowski’s correlation. This can be 

explained by the effect of the slip velocity on the 
Reynolds number, and so on the heat and mass 
transfer coefficients. As shown on Figure 7, this 
magnitude is really important at the inlet and 
progressively decreases along the dryer. This leads to 
very important variation of the transfer coefficients 
(see Fig. 8). In Bandrowski correlation, this effect is 
attenuated by the solid volume fraction of the 
dispersed phase. Indeed, as the solid go through the 
dryer, it is dispersed by the gas phase and its volume 
fraction decreases strongly at the dryer’s inlet. 

 

Fig. 6: Comparison between experimental data and 
simulation results with different correlations: 

evolution of air temperature 

 

Fig 7: Evolution of slip velocity along the dryer 

 

Fig. 8: Evolution of the global mass-transfer 
coefficient with the solid humidity 

These results show that a major part of the transfers 
occurs in the acceleration zone (the pipe’s first meter 



 

where the solid velocity increases). Particle 
temperature increases until a constant value, which 
corresponds to the constant rate drying period. Due to 
the evaporation surface reduction, a small rise can be 
observed. When particle humidity reaches the critical 
humidity, the falling rate drying period starts, and as 
the drying rate decreases, the particle temperature 
increase will be stronger (figure 9). 

Parameters study 

The results of the following simulations have been 
obtained using the Bandrowski’s correlation (see 
table 3). 

The effect of dry air mass flowrate has been 
examined between 25 and 46.4 t/h. As shown on 
figure 9, this parameter has a small influence on the 
drying rate above 35 t/h. The air velocity influences 
the drying rate only in the acceleration zone, then the 
slip velocity is equal to the terminal settling velocity. 
At the dryer’s outlet the air is far to be saturated, so 
the decrease of the dry air flowrate does not affect 
the drying driving force significantly (e.g. a decrease 
of dry air flowrate from 46 t/h to 35 t/h increases the 
outlet solid humidity from 0.054 to 0.067 kg water / 
kg dry PVC, and a decrease of dry air flowrate from 
35 t/h to 25 t/h increases the outlet solid humidity 
from 0.067 to 0.097 kg water / kg dry PVC). 

 

Fig. 9: Evolution of solid humidity and temperature 
along the riser for different dry air flowrates: 46.4 t/h, 

35 t/h, and 25 t/h.  

 

Fig. 10: Evolution of solid humidity and temperature 
along the riser for different inlet air temperatures: 

126°C, 96°C, and 156°C.  

Concerning the inlet air temperature, the figure 10 
shows a dominant effect (e.g. an increase of inlet air 
temperature from 96°C to 156°C decreases the outlet 
solid humidity from 0.097 to 0.014 kg water / kg dry 
PVC). Indeed, increasing the temperature lead to a 
more important heat-transfer driving force. But as the 
equilibrium humidity depends on the temperature, it 
will also increase the mass-transfer driving force.  

The inlet air humidity effect has been investigated 
between 0 and 0.0105 kg water / kg dry air. The last 
value corresponds to an atmospheric air (15°C) 
almost saturated (98.4% of relative humidity). As 
shown on figure 11, such an increase of inlet air 
humidity increases the outlet solid humidity from 
0.052 to 0.054 kg water / kg dry PVC. This increase 
shows that the inlet air humidity, which is a sustained 
parameter, slightly influences the drying driving 
force. 

 

Fig. 11: Evolution of solid humidity and temperature 
along the riser for different inlet air humidity: 0 ; 

0.005 ; 0.0105 kg water / kg dry air 

It can be noticed that the solid temperature is 
influenced by: 

• the dry air flowrate during the falling drying 
rate period only, 

• the air humidity during the constant drying 
rate period only, 

• the air temperature influences it during both 
periods. 

In fact the temperature stage value of the constant 
drying period is controlled by the drying driving 
forces. As shown in equations (1) and (13), this force 
depends only on the air humidity, Y∞, and the 
equilibrium humidity, Y*, which is directly related to 
the solid temperature. In the falling drying rate period, 
the solid temperature increases until the thermal 
equilibrium with the air, which is controlled by the 
dry air flowrate and temperature. 

CONCLUSIONS 
A one-dimensional steady-state model for 

pneumatic dryer was established. This model is 
applied for the drying process of wet PVC powder. 
The drying rate is controlled by convective transfer in 
the first period and by convective and diffusive 
transfer in the second. The first period corresponds to 



 

the surface water drying; besides the second 
corresponds to the evaporation of the water in the 
pores, simulate by a shrinking core model. The model 
takes into account the convective heat, masse and 
momentum transfers. Parameters study shows that the 
inlet temperature is the most important parameter in 
the operation. But this model does not take into 
account the wet powder dispersion, which is certainly 
the limiting step of this process. 

NOMENCLATURE 

Ac pipe cross section m2 
Cd drag coefficient - 
Cpg specific heat of the gas J.kg-1K-1 
dp particle’s diameter m 
dh wet core’s diameter m 
Dpipe pipe diameter m 
Dbin diffusion coefficient of water vapor m2.s-1 
Dapp diffusion coefficient in the pores m2.s-1 
f friction factor - 
Ff friction force kg.m-2.s-2 
Fk° dry mass flowrate of the k-phase kg.s-1 
g acceleration due to gravity m.s-2 
h heat-transfer coefficient W.m-2K-1 
hwall wall heat-transfer coefficient W.m-2K-1 
Hk mass enthalpy of the k phase J.kg-1 
Hg

w water vapour mass enthalpy J.kg-1 
Iq→k interphase force from q to k phase kg.m-2s-2 
ky convective mass-transfer coefficient kg.m-2s-1 
Ky global mass-transfer coefficient kg.m-2s-1 

Nw rate of mass transfer kg.m-2s-1 
P gas ambient pressure Pa 
Qq→k heat transfer from q to k phase W.m-1 
sp specific surface area m2.m-3 
T temperature K 
Uk average velocity of the k-phase m.s-1 
Ur relative or slip velocity m.s-1 
X solid humidity kg.kgdry

-1 
Xc critical humidity kg.kgdry

-1 
Y air absolute humidity kg.kgdry

-1 
Y* interface air/water humidity kg.kgdry

-1 

z pipe’s height m 

Greek letters 

αk volume fraction of the k-phase - 
ρk density of the k-phase kg.m-3 
λg thermal conductivity of the gas W.m-1K-1 
µg viscosity of the gas Pa.s 
Γk volume rate of mass-transfer kg.m-3.s-1 
χ particle’s porosity - 
τ pore’s tortuosity - 

Subscripts 

g gas 
p particle 
w wall 

Dimensionless numbers 

Nu Nusselt number �r � l.U!
x#

 

Pr Prandt number =u � R&#.y#
x#

 

Re Particle Reynolds number Z[ � "#.PK.U!
y#

 

Repipe Pipe Reynolds number Z[&(&W � "#.P#.�!a!J
y#

 

Sc Schmidt number zE � y#
"#.�{a|

 

Sh Sherwood number z� � ��.U!
�{a|
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