Luciano Maino 
email: luciano.maino@bristol.ac.ukchloe.martindale@bristol.ac.uk
  
Chloe Martindale 
  
Lorenz Panny 
email: lorenz@yx7.cc
  
Giacomo Pope 
email: giacomo.pope@nccgroup.com
  
Benjamin Wesolowski 
email: benjamin.wesolowski@math.u-bordeaux.fr
  
A Direct Key Recovery Attack on SIDH

Keywords: SIDH, Elliptic curve, Isogeny, Cryptanalysis

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Supersingular Isogeny Diffie-Hellman (SIDH) [START_REF] Jao | Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies[END_REF] is a key exchange proposed in 2011 by Jao and De Feo. It has since become an archetype of isogeny-based cryptography, a branch of cryptography whose security relates to the presumed hardness of computing isogenies: given two (supersingular) elliptic curves over a finite field, find an isogeny between them. Many other such cryptosystems have been developed [START_REF] Castryck | CSIDH: An Efficient Post-Quantum Commutative Group Action[END_REF][START_REF] Beullens | CSI-FiSh: Efficient Isogeny based Signatures through Class Group Computations[END_REF][START_REF] De Feo | SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies[END_REF][START_REF] De Feo | Séta: Supersingular encryption from torsion attacks[END_REF][START_REF] Costello | B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion[END_REF], fuelled by the presumed quantum hardness of the isogeny problem, thereby providing security against quantum adversaries. The influence of SIDH is notably illustrated by its incarnation "Supersingular Isogeny Key Encapsulation" (SIKE) [START_REF] Jao | Supersingular Isogeny Key Encapsulation[END_REF], a primitive submitted to the NIST standardisation effort to find a new quantum-safe cryptographic standard [START_REF]Post-Quantum Cryptography Standardization[END_REF].

Yet, the security of SIDH (hence, SIKE) is not guaranteed by the hardness of the 'pure' isogeny problem. It in fact relies on a variant, where the image of some torsion points under a hidden isogeny are also revealed. This is the supersingular isogeny with torsion (SSI-T) problem.

Supersingular Isogeny with Torsion (SSI-T):

Given coprime integers A and B, two supersingular elliptic curves E 0 /F p 2 and E A /F p 2 connected by an unknown degree-A isogeny φ A : E 0 → E A , and given the restriction of φ A to the B-torsion of E 0 , recover an isogeny φ matching these constraints.

This variant has been shown to be weaker than the pure isogeny problem in a line of work pioneered by Petit [START_REF] Petit | Faster Algorithms for Isogeny Problems Using Torsion Point Images[END_REF] in 2017 and expanded in multiple papers in the last 5 years [START_REF] De Quehen | Improved torsion-point attacks on SIDH variants[END_REF][START_REF] Bottinelli | The Dark SIDH of Isogenies[END_REF][START_REF] Fouotsa | On the Isogeny Problem with Torsion Point Information[END_REF]. However, the SIKE parameters had not been affected by these attacks, which all applied only to variants of SIDH.

In this paper, we present an algorithm that solves SSI-T for parameters that were believed to be secure, including SIKE as well as a few other similar protocols such as B-SIDH [START_REF] Costello | B-SIDH: Supersingular Isogeny Diffie-Hellman Using Twisted Torsion[END_REF] and Séta [START_REF] De Feo | Séta: Supersingular encryption from torsion attacks[END_REF]. The first such polynomial-time algorithm was described (and demonstrated against SIKE) by Castryck and Decru [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF]: they show that when the endomorphism ring End(E 0 ) is known (as is the case in SIKE, B-SIDH or Séta), then SSI-T can be solved in polynomial time, under plausible heuristic assumptions. The idea of the algorithm of [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF] is the following. First, they guess a small part of the isogeny φ A . Based on this guess, they construct some isogeny Φ : E A × E → X, where E is a carefully crafted elliptic curve, and X is some abelian surface. They prove that the guess is correct if X is itself a product of elliptic curves, which can be efficiently detected. This guessing approach allows one to reconstruct φ A one ternary-bit at a time, at a cost dominated by the many 2-dimensional isogenies Φ that must be computed.

The present work is semi-independent: it is the merge of a mostly independently discovered7 attack against SIDH [START_REF] Maino | An attack on SIDH with arbitrary starting curve[END_REF], with another work [START_REF] Wesolowski | Understanding and improving the Castryck-Decru attack on SIDH[END_REF] subsequent to [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF]. In addition to the independent discovery to [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF] of such an attack, our main contributions reside in:

Practicality: we develop methods fast enough to possibly find constructive applications. Similarly to [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF], we solve SSI-T via isogenies between elliptic products like E A × E, but we avoid using the iterative 'decision strategy'. Instead, we recover the isogeny φ A directly from a component of the matrix form of a (B, B)-isogeny, for some integer B > 0. As a result, in favourable settings, only one 2-dimensional isogeny computation is required, 8 instead of one per ternary-bit of the secret. Provability: when End(E 0 ) is known, we prove that our method runs in provable polynomial time, assuming the generalised Riemann hypothesis (GRH). When End(E 0 ) is unknown, we prove that there is a subexponential attack.

The attack is further supported by a SageMath [START_REF]The Sage Developers: SageMath, the Sage Mathematics Software System (Version 9[END_REF] proof-of-concept implementation available at: https://github.com/Breaking-SIDH/direct-attack

In the case where End(E 0 ) is unknown, Robert [START_REF] Robert | Breaking SIDH in polynomial time[END_REF] proved, following the first version of this work, that there also is a polynomial-time attack. This is asymptotically the fastest known attack in this setting. However, it involves the computation of a special 8-dimensional endomorphism of E 4 0 ×E 4 A (or 4-dimensional, under plausible heuristics), which may limit its practicality.

Finally, note that as in [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF] and [START_REF] Robert | Breaking SIDH in polynomial time[END_REF], our attack makes full use of the public torsion points, and as such, it has no effect on isogeny-based cryptosystems that do not publish images of points under a secret isogeny, such as CSIDH [START_REF] Castryck | CSIDH: An Efficient Post-Quantum Commutative Group Action[END_REF], CSI-FiSh [START_REF] Beullens | CSI-FiSh: Efficient Isogeny based Signatures through Class Group Computations[END_REF], and SQISign [START_REF] De Feo | SQISign: Compact Post-quantum Signatures from Quaternions and Isogenies[END_REF].

Outline

The success of our attack on the SSI-T problem relies on Theorem 1, which is proved in Section 2. This section additionally includes background material on polarized abelian surfaces. Section 3 describes a subexponential algorithm to solve the SSI-T problem without using knowledge of the endomorphism ring of the starting curve. In Section 4, we then show how knowledge of the endomorphism ring improves the performance of the attack, resulting in a provable polynomial time algorithm to solve the SSI-T problem. The paper concludes with Section 5 which we use to discuss future work.

The core of the attack

Let all notation be as in the SSI-T problem statement above. The core of the attack is the following. First suppose that B > A, and that we have access to some isogeny φ f : E → E 0 of degree f = B -A, given in any form that allows to evaluate it on the B-torsion. We postpone the discussion on finding such a φ f , as the method may depend on the context. Assuming φ f is provided, we give an algorithm (Algorithm 1) that recovers a generator of ker(φ A ) (i.e., solves SSI-T), at a cost dominated by one evaluation of a (B, B)-isogeny with known kernel (with an A-torsion point as input), and two evaluations of φ f (with two B-torsion points as input). In this section, we focus on the design and analysis of Algorithm 1 for this core task.

The idea is the following. Write g A : E → F for the isogeny of kernel φf (ker(φ A )), and g f : F → E A for the isogeny of kernel g A (ker(φ f )), so that the following diagram commutes:

E 0 E A E F . φ f φ A g A g f (1) 
Now, consider the 2-dimensional isogeny

Φ : E × E A -→ E 0 × F (P, Q) -→ (φ f (P ) -φ A (Q), g A (P ) + g f (Q)).
Observe that -φ A is equal to the composition

E A 0×id E A -----→ E × E A Φ -→ E 0 × F pr 1 --→ E 0 ,
where the first map is the inclusion map with image {0} × E A , the middle map is Φ, and the last is the natural projection map. Assuming that each map in this composition is efficiently computable, then we can evaluate φ A on any input. That directly leads to a recovery of ker(φ A ), hence to a solution of SSI-T. The difficulty is in proving that each step is indeed efficiently computable. The computation of the first inclusion is trivial. The step Φ requires a delicate analysis of this 2-dimensional isogeny, to prove that its kernel can be computed, and that this kernel permits an efficient evaluation of Φ. The last step-the projectionmay seem clear, but in fact hides a subtlety. The decomposition E 0 × F is only available if Φ is of a certain kind: it must behave well with respect to the implicit product polarizations of the domain and codomain.

Isogenies between abelian surfaces

Abelian surfaces can come equipped with a polarization. A polarization of X is an isogeny λ X : X → X ∨ to the dual variety X ∨ . For a primer on the theory of polarizations, we refer the reader to [START_REF] Milne | Arithmetic geometry, chap. V: Abelian varieties[END_REF]; for the purpose at hand, we recall in this section the relevant useful facts as a black-box.

Computationally, a polarization is essentially the data of an equation of the abelian surface. A relevant example: given two elliptic curves E 1 and E 2 , the surface E 1 × E 2 comes naturally equipped with a product polarization λ E1,E2 , which is computationally represented by the data of the equations of E 1 and E 2 .

The importance of this notion becomes clear in the context of supersingular curves. If E 1 /F p 2 and E 2 /F p 2 are supersingular, the abelian surface E 1 × E 2 is called superspecial. There is a unique isomorphism class of superspecial abelian surfaces over F p 2 . In particular, if E 3 and E 4 are any other supersingular curves defined over F p 2 , then E 1 × E 2 and E 3 × E 4 are isomorphic as abelian surfaces. However, they can be distinguished by their implicit product polarizations: the polarized surfaces

(E 1 × E 2 , λ E1,E2 ) and (E 3 × E 4 , λ E3,E4 ) are isomorphic if and only if E 1 ∼ = E i and E 2 ∼ = E j for {i, j} = {3, 4}. Given a positive integer B, a B-isogeny Φ : (X, λ X ) → (Y, λ Y ) is an isogeny such that [B] • λ X = Φ ∨ • λ Y • Φ, where Φ ∨ : Y ∨ → X ∨ is the dual isogeny. A (B, B)
-isogeny is a B-isogeny between abelian surfaces whose kernel is isomorphic to (Z/BZ) 2 . As we shall mention in Section 3.1, there are algorithms which, given a source (X, λ X ), and the kernel of a (B, B)-isogeny Φ : (X, λ X ) → (Y, λ Y ), compute the target (Y, λ Y ) and can evaluate Φ at points, in time polynomial in log(B) and in the largest prime factor of B. In particular, if

Φ : E 1 × E 2 -→ E 3 × E 4
is a (B, B)-isogeny with respect to the product polarizations, the algorithm is given as input equations of E 1 and E 2 , and generators of ker(Φ), and recovers equations for E 3 and E 4 . It can also take as input two points P 1 ∈ E 1 and P 2 ∈ E 2 , and output P 3 and P 4 such that Φ(P 1 , P 2 ) = (P 3 , P 4 ).

Finally, as products of elliptic curves will be of particular interest, let us introduce some convenient notation. Given four elliptic curves E 1 , E 2 , E ′ 1 , and E ′ 2 , and four isogenies φ ij : E i → E ′ j for i, j ∈ {1, 2}, the matrix

M = φ 11 φ 12 φ 21 φ 22 ,
represents the isogeny

Φ : E 1 × E 2 -→ E ′ 1 × E ′ 2 
(P 1 , P 2 ) -→ (φ 11 (P 1 ) + φ 12 (P 2 ), φ 21 (P 1 ) + φ 22 (P 2 )).

We call M a matrix form of Φ.

The algorithm

Our attack is a consequence of the following theorem, which is based on a criterion due to Kani [20]. This criterion determines whether a polarized isogeny originating from an elliptic product admits an elliptic product as codomain.

Theorem 1. Let f , A, and B be pairwise coprime integers such that B = f +A, and let E, E A , E 0 , and F be elliptic curves connected by the following commutative diagram of isogenies:

E 0 E A E F φ f φ φ A g A g f (2) 
where

deg(φ f ) = deg(g f ) = f and deg(φ A ) = deg(g A ) = A.
The isogeny

Φ = φ f -φ A g A g f ∈ Hom(E × E A , E 0 × F ),
is a (B, B)-isogeny with respect to the natural product polarizations on E × E A and E 0 × F , and has kernel ker(Φ) = {([A]P, φ(P ))

| P ∈ E[B]}.
This theorem allows us to compute the isogeny Φ efficiently (as long as B is smooth-preferably a power of 2 for good practical performance). Furthermore, it implies that this computation leads to the product polarization on the codomain. It leads to the following result.

Corollary 1. Algorithm 1 is correct and costs two evaluations of φ f on B-torsion input points, at most two evaluations of a (B, B)-isogeny (given by its kernel) on A-torsion input points, and one inversion modulo B.

Remark 1. Note that while the algorithm necessitates at most two evaluations of the (B, B)-isogeny, a single one is often sufficient. Indeed, suppose the basis

{P A , Q A } is uniformly random. If, for instance, A = 2 a , then [2 a-1 ]P A ̸ ∈ ker φ A (i.

e., P ′

A has order A) with probability 2/3. Even if P ′ A does not have order precisely A, it is likely to be close to A, in which case P ′ A generates most of ker(φ A ), and a simple exhaustive search can recover the missing information.

Proof of Theorem 1

In this section, we prove Theorem 1.

Algorithm 1: Solving SSI-T, provided an isogeny of degree B -A. 

P ′ B = φA(PB), Q ′ B = φA(QB), an isogeny φ f : E → E0 of degree f = B -A.
Output: A generator of ker(φA).

1 Let c ∈ Z such that cf ≡ 1 mod B. 2 Let P ′′ B = [c] • φ f (PB) and Q ′′ B = [c] • φ f (QB). We have φA • φ f (P ′′ B ) = P ′ B , and φA • φ f (Q ′′ B ) = Q ′ B . 3 Let Φ : E × EA → E0 × F be the (B, B)-isogeny with kernel ⟨([A]P ′′ B , P ′ B ), ([A]Q ′′ B , Q ′ B ))⟩. 4 Compute Φ(0, PA) = (P ′ A , x). We have P ′ A = φA(PA). 5 Return P ′ A if it has order A. 6 Else, compute Φ(0, QA) = (Q ′ A , y) (satisfying Q ′ A = φA(QA)), and return Q ′ A .
Prelude on the adjoint. Consider an isogeny Φ :

E 1 × E 2 → E ′ 1 × E ′ 2 repre- sented by the matrix M = ( φ11 φ12 φ21 φ22 ), where φ ij : E i → E ′ j . The adjoint of Φ is the isogeny Φ : E ′ 1 × E ′ 2 → E 1 × E 2 represented by the matrix M = φ11 φ21 φ12 φ22 .
Our interest in this notion is that it offers a practical characterisation of isogenies that preserve the product polarizations: the isogeny Φ is a B-isogeny with respect to the product polarizations if and only if M M = BId 2 , where Id 2 is the identity. While this property seems standard, let us provide a proof that only relies on well-documented properties of pairings. First, we show that the adjoint is closely related to the dual.

Lemma 1. We have

Φ = λ -1 E1,E2 • Φ ∨ • λ E ′ 1 ,E ′ 2 , where Φ ∨ : (E ′ 1 × E ′ 2 ) ∨ → (E 1 × E 2 ) ∨ ,
is the dual.

Proof. The dual Φ ∨ is the unique isogeny that satisfies

e E ′ 1 ×E ′ 2 ,n (Φ(P ), Q) = e E1×E2,n (P, Φ ∨ (Q)), for any positive integer n, any P ∈ (E 1 × E 2 )[n], and any Q ∈ (E ′ 1 × E ′ 2 ) ∨ [n]
, where e -×-,n denotes the (unpolarized) Weil pairings. Let us show that

Ψ = λ E1,E2 • Φ • λ -1 E ′ 1 ,E ′ 2
satisfies this property (hence Ψ = Φ ∨ , proving the lemma).

Recall that the polarized Weil pairing e

λ E 1 ,E 2 n (for the product polarization λ E1,E2 : E 1 × E 2 → (E 1 × E 2 ) ∨ ) satisfies e λ E 1 ,E 2 n (P, Q) = e E1×E2,n (P, λ E1,E2 (Q)) = e E1,n (P 1 , Q 1 )e E2,n (P 2 , Q 2 ), where P = (P 1 , P 2 ) and Q = (Q 1 , Q 2 ) are in (E 1 × E 2 )[n]
, and e Ei,n are the Weil pairings on elliptic curves. We deduce that

e λ E ′ 1 ,E ′ 2 n (Φ(P ), Q) = j i e E ′ j ,n (φ ij (P i ), Q j ) = j i e Ei,n (P i , φij (Q j )) = e λ E 1 ,E 2 n (P, Φ(Q)).
It follows that

e E ′ 1 ×E ′ 2 ,n (Φ(P ), Q) = e λ E ′ 1 ,E ′ 2 n (Φ(P ), λ -1 E ′ 1 ,E ′ 2 (Q)) = e λ E 1 ,E 2 n (P, Φ • λ -1 E ′ 1 ,E ′ 2 (Q)) = e E1×E2,n (P, λ E1,E2 • Φ • λ -1 E ′ 1 ,E ′ 2 (Q)), hence Ψ = Φ ∨ as desired. ⊓ ⊔ Lemma 2.
Let B be a positive integer. An isogeny Φ :

E 1 × E 2 → E ′ 1 × E ′ 2 is a B-isogeny with respect to the product polarizations if and only if Φ • Φ = [B]. Proof. Recall that Φ is a B-isogeny with respect to the product polarizations if and only if [B] • λ E1,E2 = Φ ∨ • λ E ′ 1 ,E ′ 2 • Φ. The result thus immediately follows from Lemma 1. ⊓ ⊔
For the rest of this section, assume the notation from Theorem 1.

Lemma 3. We have that Φ is a B-isogeny with respect to the product polarizations.

Proof. The isogeny Φ has matrix form

φ f -φ A g A g f
, so its adjoint has matrix form

φ f g A -φ A g f . We have φ f g A -φ A g f φ f -φ A g A g f = [deg(φ f ) + deg(g A )] 0 0 [deg(φ A ) + deg(g f )] = [B] 0 0 [B] .
The result follows from Lemma 2. ⊓ ⊔

Lemma 4. We have ker(Φ) = {([A]P, φ(P )) | P ∈ E[B]}. Proof. Let K = {([A]P, φ(P )) | P ∈ E[B]}, and let us show that ker(Φ) = K. The inclusion K ⊆ ker(Φ) follows from Φ([A]P, φ(P )) = (φ f ([A]P ) -φ A • φ(P ), g A ([A]P ) + g f • φ(P )) = ([A] • φ f (P ) -φ A • φ A • φ f (P ), [A] • g A (P ) + g f • g f • g A (P )) = ([A -A] • φ f (P ), [A + f ] • g A (P )) = (0, [B] • g A (P )) = (0, 0). To show that ker(Φ) ⊆ K, let ([A]P, Q) ∈ ker(Φ). Then, φ f ([A]P ) = φ A (Q), hence [A] • φ(P ) = φ A • φ f ([A]P ) = φ A • φ A (Q) = [A]Q. Since P ∈ E[B],
and A and B are coprime, we deduce Q = φ(P ), hence

([A]P, Q) ∈ K. ⊓ ⊔
Theorem 1 now follows from Lemma 3 and Lemma 4: the isogeny Φ is a B-isogeny with respect to the product polarizations, with kernel ker

(Φ) = {([A]P, φ(P )) | P ∈ E[B]} isomorphic to (Z/BZ) 2 , hence it is a (B, B)-isogeny.

The case of unknown endomorphism ring

To use Theorem 1 to solve the SSI-T problem, any f -isogeny φ f : E → E 0 suffices. When End(E 0 ) is unknown, for example in the case of a trusted setup, the problem faced by the attacker is that the computation of φ f is not necessarily easy as there is no reason to expect B -A to be smooth. To mitigate this, we increase our pool of available cofactors f by brute-forcing the last few steps of φ A and/or by brute-forcing some extra torsion-point images; this amounts to multiplying A and B respectively by small (fractions of) integers. For ease of notation, in all that follows we will assume that A = ℓ a A and B = ℓ b B , where ℓ A and ℓ B are coprime integers.

The picture that we should keep in mind when reading through the attack below is the following commutative diagram, where:

-φ A : E 0 → E A is the secret isogeny, -φ f : E → E 0 is a f -isogeny chosen by the attacker, 9 -φ ℓ i A : E ′ → E A is a guess of the (dual of the) last i steps of φ A , -φ ′ : E 0 → E ′ is the corresponding first a -i steps of φ A such that φ A = φ ℓ i A • φ ′ , and -φ : E → E ′ is the f ℓ a-i
A -isogeny to which we apply Theorem 1.

E 0 E ′ E A E φ f φ φ ′ φ ℓ i A φ A ( 3 
)
The attack is described in Algorithm 2, which is a natural generalisation of Algorithm 1. The parameters e, i, j are introduced to make f = eBℓ -j B -Aℓ -i A > 0 smooth enough and apply Theorem 1 on the parameters

A ⇝ Aℓ -i A , B ⇝ eBℓ -j B ,
and f ⇝ eBℓ -j B -Aℓ -i A . Once a f -isogeny φ f : E → E 0 is computed, the attacker reconstructs an eBℓ -j B -basis on E matching the B-basis on E 0 defined in the setup stage in SIDH. Then, the attacker guesses the last i steps of the secret isogeny φ A computing an isogeny φ ℓ i

A : E ′ → E A of degree ℓ i . For each guess, it is necessary to check all the eBℓ -j B -torsion points matching the B-torsion points on E A defined by the public key. For each pair of the eBℓ -j B -torsion points found, the attacker tries to compute a (eBℓ -j B , eBℓ -j B )-isogeny Φ as in Theorem 1. If the codomain of Φ consists of an elliptic product, the first a -i steps of the secret isogeny are revealed in one of the components of the matrix form of Φ. This high-level overview is made clear in Algorithm 2.

Remark 2.

Step 5 in Algorithm 2 has a small chance of causing the overall algorithm to fail, as a split Jacobian may accidentally be the codomain for an incorrect guess. However it is easy to check whether or not E 0 is a factor, and furthermore the chance of failure is very small.

To discuss the complexity of this attack we should split it into three parts:

1. The precomputation step (Step 1); this can be done once and for all for each parameter set A, B. 2. The cofactor isogeny computation (Step 2); if SIDH is set up with a fixed (arbitrary) E 0 , this can be done once and for all for this E 0 . 3. The online steps (Steps 3 to 7); these steps need to be performed for every new public key.

The cost of the cofactor isogeny computation. The cofactor isogeny remains fixed and is chosen by the attacker. As such, it does not need to be recomputed at any point due to a wrong guess when brute-forcing. We compute the isogeny φ f via a chain of isogenies φ q f of prime degree q f . It is worth noting that if a square factor appears in the factorization of f , we can simply perform a scalar multiplication [q f ] rather than computing two q f -isogenies. The cost of computing φ q f for the larger factors q f is discussed in detail in Section 3.2; an estimate (in terms of F p -multiplications) can be given as Õ(q f 2 ).

The cost of the online steps. The discussion in Section 3.1 approximates the cost of Steps 3 to 7 by ≈ C • e 4 ℓ i A q 4 e log q e , where q e is the largest prime dividing e and C is polynomial in log(p). We allow i and e to grow to increase the pool of options for f in order to get a smaller q f , where q f is the largest prime dividing f . The precomputation. If SIDH is set up to start every key exchange with a new E 0 , the optimal choice of (e, i, j, f ) for the attacker ensures that the cost of Step 2 is approximately the same as the cost of Steps 3 to 5. One could perform a brute force search over all parameters (e, i, j, f ) such that q 2 f ≤ e 4 ℓ i A q 4 e log q e and 0 ≤ j ≤ b, which would be costly.

Even though this exhaustive search should be done once and for all, the search space for SIKE parameters is too big to be bruteforced. However, since Algorithm 2: Solving SSI-T, general approach. Compute integers e, j, f , and i such that the overall cost according to the estimates in Section 3.1 is minimised, and eBℓ -j

B = f + Aℓ -i A .
For ease of notation, we set

A ′ = Aℓ -i A and B ′ = Bℓ -j B .
Compute a curve that is f -isogenous to E0, define the dual of the computed isogeny to be φ f : E → E0, and compute φ f (PB), φ f (QB). For more details, see Section 3.2.

Compute a basis

{P eB ′ , Q eB ′ } of E[eB ′ ] such that [e]P eB ′ = [ℓ j B ] φ f (PB) and [e]Q eB ′ = [ℓ j B ] φ f (QB). Choose a guess φ ℓ i A : E ′ → EA for the last i steps of φA, recall the definition of the corresponding φ : E → E ′ from diagram (3), and choose R, S ∈ E ′ [eB ′ ] such that [e]R = [ℓ -i A f ℓ j B ] φ ℓ i A • φA(PB)
and

[e]S = [ℓ -i A f ℓ j B ] φ ℓ i A • φA(QB),
i.e. R, S are a guess for the images φ(P eB ′ ), φ(Q eB ′ ) respectively. Compute a (eB ′ , eB ′ )-isogeny with domain E × E ′ and kernel

ker(Φguess) = ⟨([A ′ ]P eB ′ , R), ([A ′ ]Q eB ′ , S)⟩.
If the codomain splits, continue (see Remark 2). Else, return to Step 4 and take a new guess (φ ℓ i A , R, S). For more details see Section 3.3.

Choose a basis

{P, Q} of E ′ [A ′ ]; compute φ ′ (P ) and φ ′ (Q) via Φ(0E, P ) = (-φ ′ (P ), g f (P ))) and Φ(0E, Q) = (-φ ′ (Q), g f (Q))). Compute ker(φ ′ ) = ⟨ φ ′ (P ), φ ′ (Q)⟩ and return a generator of ker(φ ℓ i A • φ ′ ).
sharing the first version of this paper [START_REF] Maino | An attack on SIDH with arbitrary starting curve[END_REF], Luca De Feo shared with us a heuristic subexponential algorithm for the precomputation leading both to a subexponential cofactor isogeny computation and to subexponential online steps. His argument is as follows: suppose that we wish to target A ≈ B ≈ 2 b . To achieve subexponential complexity L 2 b (c, 1/2), one can see from the complexity discussion of the online and cofactor steps above that it is sufficient to find parameters

(e, i, j, f ) such that e, ℓ i A ≈ 2 √ b , and f is √ b √ b -smooth.
To achieve this, we search for solutions to the equation

xAℓ -i A + yBℓ -j B = z, (4) 
where

x, y ≤ 2 √ b , z is √ b √ b
-smooth, and i and j are fixed at some chosen values

such that ℓ i A ≈ ℓ j B ≈ 2 √ b
. This corresponds to e = -y (not necessarily coprime to B) and f = -xz; if xz, y > 0 then we switch the roles of A and B and this will correspond to e = -x and f = -yz. Writing f = -xz corresponds to decomposing φ f :

E f → E 0 into a degree-(-z) isogeny φ -z : E f → E ′
0 and a degree-x isogeny φ x : E ′ 0 → E 0 , and recovering φ A • φ x by applying Algorithm 2 with A = xA, E 0 = E ′ 0 , and φ A = φ A • φ x . Pictorially, this situation can be summarised by the following diagram.

E 0 E ′ 0 E ′ E A E φ -z φ x φ φ ′ φ ℓ i A φ A
To find such (x, y, z) for a given (i, j), we run Euclid's xgcd algorithm on (Aℓ -i A , Bℓ -j B ) until we find (x 0 , y 0 , z 0 ) and (x 1 , y 1 , z 1 ) such that x i , y i ≈ 2

√ b/2 ; this should correspond to z i ≈ 2 b- √ √ b -smooth choice z if the number of choices for (u, v), that is 2 √ b , is ≈ β β . A short calculation shows that log 2 (β β ) = √ b 1 + 2 -2 log 2 log 2 b log 2 b ≈ log 2 (2 √ b ).
We give some examples for concrete parameters in Section 3.1.

Heuristic complexity of Algorithm 2

Here, we give some details on and study the complexity of the first four steps of Algorithm 2 in the case relevant to SIKE, namely A = 3 a and B = 2 b , with a focus on the Microsoft challenge parameters A = 3 67 and B = 2 110 and the parameters A = 3 137 and B = 2 216 that were proposed for NIST Level I.

Choosing parameters. To understand Step 1, we recall the commutative diagram that we keep in mind during this attack, where:

-φ A : E 0 → E A is the secret isogeny, -φ f : E → E 0 is a f -isogeny chosen by the attacker, -φ ℓ i A : E ′ → E A is a guess of the last i steps of φ A , -φ ′ : E 0 → E ′ is the corresponding first a -i steps of φ A such that φ A = φ ℓ i A • φ ′ , and -φ : E → E ′ is the f ℓ a-i
A -isogeny to which we apply Theorem 1.

E 0 E ′ E A E φ f φ φ ′ φ ℓ i A φ A (5) 
Choosing f . The shape of f determines the complexity of computing φ f . The cofactor f does not need to be small as the isogeny can be precomputed once and for all, but it does need to be smooth: considering the extreme case that f is a prime ≈ A, computing φ f directly will be harder than computing φ A directly (because of the extension field arithmetic). Exactly how smooth we require f to be depends on what we hope we can achieve in complexity for the attack. If q f is the largest prime divisor (of odd multiplicity) of f , the complexity of Step 2 will be dominated by the cost of the computation of a q f -isogeny, which involves operations in the field of definition of a generator of the kernel of the isogeny. The field of definition is unfortunately hard to control, and large field extensions can have a very serious performance impact. However, note that the required degree depends on arithmetic properties of the pair (p, q f ), rather than just the size of q f : for some values of q f the minimal k for which E(F p k ) contains a q f -torsion point will be much smaller than q f , but the typical case in our setting is k ≈ q f . Based on this preliminary discussion, we will see in more detail in Section 3.2 that the cost of computing φ q f , and therefore φ f , can be approximated as Õ(q 2 f ).

Choosing i and e. The cost coming from i is the cost of brute-forcing all the cyclic 3 i = ℓ i A -isogenies from E A , which costs ≈ 3 i multiplications in F p 2 . This is however multiplied by the brute-force cost of guessing the images of the e-torsion points in Step 4 and by the cost of computing Φ. Guessing the images of the e-torsion points amounts to checking all the pairs of points of order e on E ′ , which is ≈ e 4 . As a result, we have to run Steps 3 to 5 of Algorithm 2 ≈ e 4 3 i times.

Additionally, the isogeny Φ (which we will attempt to compute ≈ e 4 3 i times) is an (eB ′ , eB ′ )-isogeny; in particular it factors via an (e, e)-isogeny. So, in addition we require e to be q e -smooth, where q e is the largest prime for which it is feasible to compute (q e , q e )-isogenies (potentially over an extension field, which again will add a non-negligible cost). The need for the computation of the (e, e)-isogeny is the main barrier to implementing our algorithm for the proposed NIST parameters, as to do so requires a working implementation of (q e , q e )-isogenies, which while should theoretically be possible and reasonably fast, requires some research to achieve. There exists literature on this topic [START_REF] Bisson | AVIsogenies (abelian varieties and isogenies)[END_REF][START_REF] Lubicz | AVIsogenies SageMath package[END_REF][START_REF] Lubicz | Fast change of level and applications to isogenies[END_REF][START_REF] Bröker | Genus-2 curves and Jacobians with a given number of points[END_REF], from which we have made a baseline assumption that computations of (q e , q e )-isogenies over F p k can be performed in O(q 3 e ) multiplications in F p k . However, there is very little existing work in the way of practical implementation of supersingular Jacobians and products of elliptic curves. We do note here that it would be possible to avoid implementing the factors of the (e, e)-isogenies to also map to and from products of elliptic curves, as we can ensure to start and finish the computation of Φ with a (2,2)-isogeny, which may make the practical implementation of (e, e)-isogenies with regards to this attack a more achievable goal.

Working with our baseline assumption that a (q e , q e )-isogeny can be computed in approximately q 3 e multiplications over the base field of its kernel, we expect the cost of computing Φ as a (eB, eB)-isogeny to be dominated by the cost of computing a (q e , q e )-isogeny where q e is the largest prime factor of e. We leave a careful analysis of the sizes of the field extensions for genus 2 to later work that includes a practical implementation of (q e , q e )-isogenies for prime q e ̸ = 2, but let us assume for the sake of argument that the slow down for the extension field arithmetic scales with q e similarly to the elliptic curve case. Then, assuming that the field extensions required are large enough that it is best to use the Fast Fourier Transform for multiplication, we approximate the cost of computing the (q e , q e )-isogeny by O(q 3 e • q e log q e ). This is probably an overestimate: more research is needed into the existence of √ élu-style-algorithms in the case of abelian surfaces. However, if the attack costs 2 λ , note that e is already forced to be relatively small compared to this by the fact that we have to search through ≈ e 4 pairs of possible images of e-torsion points. Because of this, we can expect e to be fairly smooth compared to f , for example, so q e (and the corresponding field extension) need not be particularly large.

In our choice of parameters for our toy example, we have chosen to demonstrate the use of e without the need to delve into (q e , q e )-isogenies for q e > 2 by choosing e = 2. In this case we need a field extension of degree 4 for the 2 b+1 -torsion points. This is not special to this instance but a consequence of the fact that the pull-back of the multiplication-by-2 map contains a square root (and no other rational but not integral powers), and so each lift of a point of order 2 i to a point of order 2 i+1 will either double the degree of the field extension or keep it the same.

Choosing j. The choice of j only potentially effects the precomputation step, Step 1 of Algorithm 1, as we achieve B ′ = 2 -j B-torsion points by multiplying the known B-torsion by 2 j ; for this reason we have no restrictions on non-negative j. Notice that we do not require e to be coprime to B, so e may contain powers of two, accounting also for the possibility of negative j.

Concrete attack parameters.

We present here some choices of attack parameters in three cases of interest: two toy examples to test our algorithm, the Microsoft challenge parameters, and the parameters of SIKEp434 that were proposed for NIST Level I.

Toy parameters: First, we construct a small example to test our algorithm using the 34-bit prime p = 2 19 • 3 9 -1, with attack parameters e = 2, i = 1, j = 0 and f = 5•13•17•23•41. The largest field extension that we need for the computation of φ f is F p 20 , for the 41-isogeny. The largest field extension for e = 2 is F p 4 , for the pullbacks of the order-2 19 points to order-2 20 points. This runs in less than 10 seconds on a single core on a standard laptop; see our code linked below.

We additionally demonstrate our attack on the 64-bit prime p = 2 33 • 3 19 -1, which was introduced in [29] as a small example instance for the Castryck-Decru attack, using the attack parameters (e, i, j, f ) = (1, 3, 5, 5

• 11 • 13 • 19 • 47 • 353).
The largest field extension involved in computing φ f is F p 176 , for the 353-isogeny. As e = 1, no extension is required to perform point division. This runs in less than 1 minute on a single core on a standard laptop.

Our code for attacking both of the above parameter sets is available at:

https://github.com/Breaking-SIDH/direct-attack Challenge parameters: We consider one of the sets of challenge parameters put forward by Microsoft [START_REF] Costello | The Case for SIKE: A Decade of the Supersingular Isogeny Problem[END_REF]: A = 3 67 , B = 2 110 , i = 7, e = 1, j = 2,

f = 5 • 7 • 13 3 • 43 2 • 73 • 151 • 241 • 269 • 577 • 613 • 28111 • 321193.
The largest field extension we would need for the computation of φ 321193 using √ élu is of degree 642384; in this case it might be faster to use a variant of Kohel's algorithm to avoid the extension field arithmetic (see Section 3.2). The extension field degrees for all the factors of f are given by [k, q f ] = [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF][START_REF] Bottinelli | The Dark SIDH of Isogenies[END_REF], [START_REF] Costello | The Case for SIKE: A Decade of the Supersingular Isogeny Problem[END_REF][START_REF] Castel | Solving quadratic equations in dimension 5 or more without factoring[END_REF], [START_REF] Maino | An attack on SIDH with arbitrary starting curve[END_REF][START_REF] De Feo | Séta: Supersingular encryption from torsion attacks[END_REF], [START_REF] Oudompheng | SageMath Reimplementation of the SIDH key recovery attack[END_REF]43] The choice of i = 7 also means that we need to run Steps 3 to 5 of Algorithm 2 up to 3 7 ≈ 2 11 times. In particular, if the SIDH instantiation uses a fixed (arbitrary) starting curve, the computation of φ f can be performed as a precomputation and the attack on an individual public key is relatively fast, just the computation of some (2, 2)-isogenies and 3-isogenies of elliptic curves, repeated potentially 3 7 times.

We have thus far restricted ourselves to e and B being a powers of two, as we want to demonstrate our attack and do not yet have adequate resources at our disposal to compute (ℓ, ℓ)-isogenies for ℓ > 2. However, looking at the Microsoft challenge parameters can already illustrate the freedom that being able to compute efficiently (ℓ, ℓ)-isogenies for ℓ ̸ = 2 can provide: we open up more options for attack parameters, including in this case in which one requires very little brute-force (only repeating Steps 4 to Step 5 up to 4 times): A = 2 110 , B = 3 67 , A ′ = 2 a-j = 2 108 , B ′ = 3 b-i = 3 48 , e = 1, and

f = 5 • 7 • 13 • 61 • 73 • 431 • 593 • 607 • 881 • 36997 • 139393 • 227233.
The extension field degrees for all the factors of f are given by [k, q f ] = [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF][START_REF] Bottinelli | The Dark SIDH of Isogenies[END_REF], [START_REF] Costello | The Case for SIKE: A Decade of the Supersingular Isogeny Problem[END_REF][START_REF] Castel | Solving quadratic equations in dimension 5 or more without factoring[END_REF], [START_REF] Maino | An attack on SIDH with arbitrary starting curve[END_REF][START_REF] De Feo | Séta: Supersingular encryption from torsion attacks[END_REF] NIST Level I parameters: To select attack parameters for SIKEp434, that is, with A = 3 137 and B = 2 216 , we rely on the algorithm for parameter selection outlined in the 'precomputation step' complexity analysis of Section 3. Table 1 shows some outputs of the algorithm for SIKEp434 parameters; these represent (i, j, x, y, z) such that x3 137-i + y2 216-j = z.

We leave the details on the best parameter choice to further study, as all these parameters require a working implementation of (ℓ, ℓ)-isogenies for ℓ > 2. Note that the last entry in the table only requires the computation of (3, 3)-isogenies, at the expense of some smoothness of f = -yz; the largest degree of elliptic-curve isogeny required in this choice is 11144321.

Computing the cofactor isogeny

First, notice that any finite subgroup of an elliptic curve appearing in the SIDH setting defines an F p 2 -rational isogeny: this is simply because Frobenius equals a scalar multiplication for the supersingular elliptic curves employed by SIDH, hence stabilizes any subgroup by definition. Thus, when computing isogeny factors φ q : E n → E n+1 of φ f , the rationality of E n+1 or of the images of rational points on E n is no concern. Moreover, if Kohel's algorithm or the 'irrational' variant of the √ élu algorithm [1, § 4.14] is used, evaluating the isogeny at points in some E(F p r ) can be done using arithmetic in F p r rather than (as is the case for Vélu and √ élu) the potentially much bigger composite of the fields of definition of the kernel points and the evaluation point.

In order to make an approximation of the complexity of computing φ f on which we can base our search for good parameters for our attack, we ran some experiments to investigate the behaviour of extension degrees for different values of p. As an illustration we consider E 1728 /F p with p = 2 216 3 137 -1 as in the proposed NIST Level I parameters for SIKE. Only the even-degree fields are relevant as we are working with extensions of F p 2 . Figures 2,3, and 4 show the q f for which there exists an even k ≤ 1000 such that there is an F p k -rational point of order q f (only the minimal even k is depicted). In total, we find 72% of the primes < 10 2 (cf. Figure 2), 62.5% of the primes < 10 3 (cf. Figure 3), and 22% of the primes < 10 4 (cf. Figure 4). Based on these experiments, to guide our parameter selection for our attack we crudely estimate that the minimal field extension degree k for the maximal q f dividing f is close to degree q f over F p 2 . Below, we will often use the fact k ≤ q f . To compute with elements in an extension field of degree k, one requires an irreducible polynomial of that degree over the ground field (here, F p 2 ). There are many algorithms for this task. We specifically mention one approach due to Shoup [START_REF] Shoup | Fast Construction of Irreducible Polynomials over Finite Fields[END_REF], which has a complexity of Õ(k 2 + k log p) operations in F p .

To find a point of order q f , we may then sample a random point P ∈ E(F p k ) and multiply it by a cofactor on the order of p k . Using square-and-multiply, this amounts to O(k log p) multiplications in F p k . Thus, finding a point of order q f in this way costs Õ(k 2 log p) when using FFT-based multiplication for F p k . Under the assumption that log p ∈ (log q f ) O (1) , which would for instance follow from the heuristic estimates on f given above, this gives us a rough estimate of Õ(q 2 f ) for the complexity of computing the kernel of a φ q -isogeny. Note that if the largest factor of the smoothest possible choice of f only admits very large extension fields, it will be worthwhile to opt for a slightly less smooth f , i.e., a slightly bigger q f , for which the field extensions are smaller. To compute a large-degree isogeny from an explicit kernel point over F p k , we can either apply √ élu directly over F p k or first recover the kernel polynomial using [START_REF] Eriksen | Deuring for the People: Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic[END_REF]Algorithm 4] and then run Kohel's algorithm. The cost for the first method is Õ(q 1/2 f ) arithmetic operations in F p k , or Õ(q 3/2 f ) operations in F p using FFT-based multiplication in F p k . The cost for the second method is O(q 2 f ). (Note that the first method will require working in composite extension fields to evaluate the isogeny at points, whereas the second gives an expression for the isogeny with coefficients in F p 2 .)

Overall, the dominating part of the algorithm is the large scalar multiplication to find the kernel of a q f -isogeny. Therefore, to guide our choice of attack parameters, we take the complexity of computing and evaluating large-degree isogenies to be Õ(q 2 f ). We mention in passing that the field extension degree can be halved whenever it is even, by using x-only elliptic-curve arithmetic.

An alternative approach. Instead of finding an irreducible polynomial for F p k and computing a large scalar multiplication, it is also possible to extract an isogeny kernel from the q f -division polynomial directly, as follows.

The q f -division polynomial for E/F p 2 is the unique monic squarefree polynomial with coefficients in F p 2 whose roots are precisely the x-coordinates of nonzero q f -torsion points on E. It can either be precomputed for a generic curve E with symbolic coefficients (e.g., a single Montgomery coefficient A) or computed directly for a given E using a recursive expression [START_REF] Silverman | The arithmetic of elliptic curves[END_REF]Exercise 3.7]. A careful analysis of both approaches to computing division polynomials is given in [2, § 9]: Evaluation of a precomputed polynomial can be faster if q f is fairly small, but once q f is large enough that multiplying polynomials of degree q 2 f benefits from FFT-based multiplication, it becomes faster to compute the polynomials instantiate for a given E directly. For these large q f , the cost of computing the division polynomial is O(q 2 f log q f ) base-ring operations. Let F p 2k be the smallest extension of F p 2 where the q f -torsion is defined, and define k ′ = k/2 if k is even and k ′ = k otherwise. All irreducible divisors of the division polynomial have degree k ′ : for the curves used in SIDH, the p 2 -Frobenius π equals [-p], hence for any point P = (x, y) of order q f we have π k (P ) = [(-p) k ]P = P . Dropping the y-coordinate corresponds to quotienting the elliptic-curve group by negation, which shows x k ′ = x, and k ′ is minimal with this property since k was minimal. Thus, the irreducible divisor of ψ q f which vanishes at x has degree k ′ as claimed. We may thus apply 'equaldegree splitting' -see e.g. [START_REF] Von Zur Gathen | Modern Computer Algebra[END_REF]Algorithm 14.8]) -recursively to find a single irreducible divisor h of ψ q f . This involves O(d log p + log q f ) operations on polynomials of degree O(q 2 f ); assuming the use of FFT-based multiplication the cost in F p -operations is Õ(q 3 f ) log p. By construction h is then a minimal polynomial for a q f -isogeny in the sense of [START_REF] Eriksen | Deuring for the People: Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic[END_REF]Definition 15]. We may compute the isogeny in time O(k ′ q f ) + Õ(q f ) by running [15, Algorithm 3] and applying Kohel's algorithm. Overall, the cost for this is Õ(q 3 f ) log p, which is worse than finding an irreducible polynomial first and then running the multiplication-based method above.

Computing (ℓ, ℓ)-isogenies

In order for our algorithm to reach its full potential, it is necessary to consider integers e in Step 1 of Algorithm 2 that do not divide B, and in particular are not necessarily powers of two. It may also be that there is a nice parameter choice (e, i, j, f ) with A a power of 2 and B a power of 3 (cf. the attack parameter suggestions in Section 3.1), or one may want to consider more general setups. In all of these cases, in Step 5 of Algorithm 2 it will be necessary to compute (ℓ, ℓ)-isogenies for ℓ ̸ = 2, which as observed above requires more research to achieve practically (for ℓ = 3 there is however already some interesting work on this topic [START_REF] Bröker | Genus-2 curves and Jacobians with a given number of points[END_REF]). For this reason, we leave all instantiations of the attack that use e not dividing B to future work and focus on the case of (2, 2)-isogenies, that is, B = 2 b and e | B. Recall that we set B ′ = B2 -j , where 0 ≤ j ≤ b.

In order to compute the chain of (2, 2)-isogenies whose composition is the (eB ′ , eB ′ )-isogeny Φ, we need to able to compute three different flavours of (2, 2)-isogenies between principally polarized abelian surfaces:

-A (2,2)-isogeny from a Jacobian of a genus 2 curve to a Jacobian of a genus 2 curve, for which we refer to reader to [37, §2.3.1]. -A (2,2)-isogeny from a product of elliptic curves to the Jacobian of a genus 2 curve, for which we refer the reader to [START_REF] Castryck | An efficient key recovery attack on SIDH (preliminary version)[END_REF] for more details. (This is required for the first step of Φ). -A (2,2)-isogeny from a Jacobian of a genus 2 curve to a product of elliptic curves, for which we refer the reader to [START_REF] Smith | Explicit endomorphisms and correspondences[END_REF]Proposition 8.3.1]. (This is required for the last step of Φ).

Our proof-of-concept implementation uses Rémy Oudompheng and collaborators' SageMath implementation [START_REF] Oudompheng | SageMath Reimplementation of the SIDH key recovery attack[END_REF][START_REF] Oudompheng | A note on Reimplementing the Castryck-Decru attack and lessons learned for SageMath[END_REF] for these steps.

The case of known endomorphism ring

Algorithm 1 solves SSI-T, assuming that B > A, and an isogeny φ f : E → E 0 of degree B -A is known, in a way that allows efficient evaluation of φ f on the B-torsion. In this section, we describe how to find such an isogeny in polynomial time, provided E 0 and a description of the endomorphism ring End(E 0 ).

More precisely, we prove the following theorem. An efficient representation of an isogeny φ is an encoding of the isogeny, together with an algorithm that can evaluate it on points in time polynomial in the length of the input. Theorem 2. Assume the generalised Riemann hypothesis. There is an algorithm that solves the following task in polynomial time (in the length of the input): given a supersingular curve E 0 , four endomorphisms of E 0 in efficient representation, and a positive integer f , finds an isogeny φ : E 0 → E of degree f in efficient representation.

Together with Corollary 1, this theorem immediately implies a polynomial time algorithm for SSI-T, when the endomorphism ring of E 0 is known, and assuming the generalised Riemann hypothesis (GRH).

Algorithm 3: Finding an ideal of prescribed norm.

Input: A basis (αi) 4 i=1 of End(E0) in efficient representation, and an integer f coprime to 2 and p. Output: A left ideal I of norm f in End(E0)

1 Find a solution of deg(α0) = z 2 0 f with α0 ∈ End(E0) and z0 ∈ Z. It is a homogenous quadratic equations of dimension 5, so can be solved in polynomial time by [START_REF] Castel | Solving quadratic equations in dimension 5 or more without factoring[END_REF]. Proof of Theorem 2. The idea is the following: first, find an ideal I in End(E 0 ) of norm f . Then, assuming GRH, one can find the codomain of φ = φ I : E 0 → E and evaluate φ on any input using [START_REF] Fouotsa | On the Isogeny Problem with Torsion Point Information[END_REF]Lemma 3.3].

Finding the ideal I requires more explanation. First observe that the problem reduces to the case where f is coprime to 2p: write f = 2 i p j f ′ with (f ′ , 2p) = 1, solve the problem for f ′ , and then compose the resulting isogeny with i isogenies of degree 2 and j Frobenius isogenies. The steps to find I are then given in Algorithm 3. Let us explain Step [START_REF] Bernstein | Quantum Circuits for the CSIDH: Optimizing Quantum Evaluation of Isogenies[END_REF]. Finding the desired solution heuristically is simple, so the motivation of the following discussion is mostly to get a provable method. Write the solutions (α, z) in the form (x, z) ∈ Z 4 ×Z, where x represents the coefficients of α in the provided basis of End(E 0 ). The equation can then be written as x t Gx = z 2 f , or x t Qx = 0, where G is the Gram matrix of the basis, and Q = G ⊕ ⟨-f ⟩ (the 5 × 5 matrix with G in the upper-left corner, -f in the lower-right corner, and zeros elsewhere). Note that we can assume that x 0 (the vector of coordinates of α 0 ) is primitive (i.e., the greatest common divisor of its coefficients is 1) and z 0 ∈ Z >0 . We are looking for another solution where x is coprime with f . The rest of the proof reproduces mutatis mutandi the technique of [START_REF] Wesolowski | The supersingular isogeny path and endomorphism ring problems are equivalent[END_REF]Algorithm 7,Step 3]. From [10, Proposition 6.3.2], the general solution X = (x, z) is given by

X = d((R t QR)X 0 -2(R t QX 0 )R),
for arbitrary R ∈ Q 5 and d ∈ Q * , where X 0 = (x 0 , z 0 ) is our initial solution. Fix d = 1. Write R = (r x , r z ) with r x ∈ Z 4 and r z ∈ Z. The last coordinate of X is given by the integral quadratic form r t x Gr x z 0 -2r t

x Gx 0 r z + f z 0 r 2 z = (r x z 0 -x 0 r z ) t G(r x z 0 -x 0 r z ) z 0 .

It is of rank 4, so let M ∈ M 4×4 (Z) be a matrix whose columns generate Λ = z 0 Z 4 + x 0 Z, and

g(v) = v t (M t GM )v z 0 .
It is positive definite, since G is and z 0 > 0. Let us show that g is (almost) primitive. If s is a prime that does not divide z 0 , both M and z 0 are invertible modulo s, so g is primitive at s because G is. Now suppose s | z 0 . Then, writing M v = r x z 0 -x 0 r z , we have g(v) ≡ -2r t x Gx 0 r z mod s.

Therefore, if s ̸ = 2 and Gx 0 ̸ ≡ 0 mod s, then g is primitive at s. If Gx 0 ≡ 0 mod s, since x 0 is primitive, s must divide disc(G), so s is 2 or p. This proves that the only primes where g might not be primitive are 2 and p. We can then write g = g ′ /a where g ′ is primitive and a may only be divisible by the primes 2 and p. Applying [38, Proposition 3.6], we can find in polynomial time a v such that z ′ = g ′ (v) is a prime larger than f . With z = az ′ , we obtain a solution of x t Gx = f z 2 . Since f is coprime to 2p, it is also coprime to z.

Future work

We have provided an implementation of a toy example, but with a practical implementation of (ℓ, ℓ)-isogenies for ℓ > 2 it should be possible to provide a practical implementation of larger interesting instances. Additionally, our implementation does not yet incorporate the fast (2,2)-isogeny formulas of Kunzweiler [START_REF] Kunzweiler | Efficient Computation of (2 n , 2 n )-Isogenies[END_REF], which especially when working over field extensions will have a positive impact on performance. Finally, given the speed of recovering the secret isogeny using our algorithm, especially in the case of known endomorphism ring, we also hope that it will be possible to use these methods for constructive purposes.
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 2 Deduce another solution (α, z) for which z is coprime with f , using the technique of [38, Algorithm 7, Step 3]. 3 Return I = End(E0)α + End(E0)f .

  Coprime integers A and B, two supersingular elliptic curves E0/F p 2 and EA/F p 2 connected by an unknown degree-A isogeny φA : E0 → EA of cyclic kernel, a basis {PB, QB} of E0[B], a basis {PA, QA} of EA[A], the image points
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 1 Some possible attack parameters for SIKEp434 103 • 109 • 2791 • 3643 • 36191 • 47581 • 99817 •401119 • 749467 • 2690497 • 2863607 • 3014203 16 25 -197 • 9391 11 • 307 • 941 -5 • 233 • 431 • 659 • 4219 • 237277 • 371341 • 820643 23 • 31 • 131 • 281 • 311 • 601 • 3331 • 8059 • 8761 •163411 • 1164091 • 2101681 • 4027511 • 11144321

	i	j	x	y	z
	19 27	41 • 2333	-101 • 241	-5 4 • 19 • 47 • 61 • 857 • 2903 • 60889 • 216617
					•342497 • 2309969 • 2945407 • 3951767 • 4037069
	16 24	1823581	-239 • 6553 -11 • 13 • 19 • 29 • 631 • 6043 • 16451 • 29759 • 139987
					•364513 • 1850837 • 3464849 • 6344729 • 26440207
	15 27	123551	-2546657	-5 2 • 29 • 103 • 1549 • 28201 • 55933 • 243431
					•1874903 • 4421117 • 6553021 • 14183149 • 39691591
	16 29 5 • 7 2 • 1171	-7884713	-173 • 853 • 883 • 8627 • 26759 • 692929 • 3500557
					•5202137 • 6065333 • 15108221 • 28512793
	16 25 79 • 139 • 499 -197 • 47777 -5 • 11 • 17 • 571 • 35099 • 40639 • 48889 • 81281
					•138899 • 1285429 • 8464307 • 13664309 • 17314859
	16 24 -467 • 5419	5 • 434689	-7 • •2362589 • 3896323 • 14204429 • 55510211
	17 26	-1	1	-11 •

Maino had been working together with Castryck and Decru on a tangentially related project using similar underlying ideas.

Together with the computation of the image of one point under said isogeny.

In practice, the attacker computes φ f and deduces φ f from this.
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