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EVOLUTION OF GAUSSIAN MEASURES AND APPLICATION TO THE ONE DIMENSIONAL NONLINEAR SCHR ÖDINGER EQUATION

. This latter work is devoted to the study of the one-dimensional nonlinear Schrödinger equation with random initial conditions. Namely, we describe the nonlinear evolution of Gaussian measures and we deduce global well-posedness and scattering results for the corresponding nonlinear Schrödinger equation.

Introduction

The motivation of this work is to study the long time behaviour of the nonlinear Schrödinger equation with random initial conditions

i∂ s U + ∂ 2 y U = |U | p-1 U, (s, y) ∈ R × R, U (0) = U 0 ∈ L 2 (R).
We will be able to prove:

▶ almost sure global existence results (p > 1)

▶ almost sure scattering results (p > 3).

To prove these results, we will first construct measures on the space of initial data for which we can describe precisely the non trivial evolution by the linear Schrödinger flow. Then we prove that the nonlinear evolution of these measures is absolutely continuous with respect to their linear evolutions, with quantitative estimates on the Radon-Nikodym derivative. To the best of our knowledge, these results are the first ones giving insight, in a non compact setting on the time evolution of the statistical distribution of solutions of a nonlinear PDE. They also are the first ones providing scattering for NLS for large initial data without assuming decay at infinity: our solutions are in a slighly larger space than L 2 (R).

1.1. On invariant measures. To begin with, let us recall the definition of a measure left invariant by a one parameter group. Definition 1.1. Consider a space X and a one parameter group (Φ(t, .)) t∈R with Φ(t, .) : X -→ X.

A measure µ defined in the space X is called invariant with respect to (Φ(t, .)) t∈R if for any µ-measurable set A one has µ Φ(t, A) = µ(A), t ∈ R.

In the case where µ is a probability measure, the Poincaré theorem applies:
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Theorem 1.2 (Poincaré theorem). Let (X, B, µ) be a probability space and let Φ(t, .) : X -→ X be a one parameter group which preserves the probability measure µ.

(i) Let A ∈ B be such that µ(A) > 0, then there exists k ≥ 1 such that

µ A ∩ Φ(k, A) > 0.
(ii) Let B ∈ B be such that µ(B) > 0, then for µ-almost all x ∈ B, the orbit Φ(n, x) n∈N enters infinitely many times in B.

In the case of ordinary differential equations, the Liouville theorem provides a condition so that the Lebesgue measure (possibly with a density) is invariant by the flow of the system. Namely, let Ω ⊂ R d be an open set and

F : Ω -→ R d a C ∞ function. Consider the ordinary differential equation    ẋ(t) = dx dt (t) = F (x(t)),
x(0) = x 0 .

We assume that for all x 0 ∈ R the system has a unique solution Φ(t, x 0 ), such that Φ(0, x 0 ) = x 0 and which is defined for all t ∈ R. The family (Φ(t, .) t∈R is a one parameter group of diffeomorphisms such that Φ(0, .) = id, Φ(t, Φ(s, .)) = Φ(t + s, .) for all s, t ∈ R. 1.2. Invariant measures for the Schrödinger equation on compact manifolds. Let M a compact manifold. Then there exists a Hilbert basis (h n ) n≥0 of L 2 (M ), composed of eigenfunctions of ∆ M and we write -∆ M h n = λ 2 n h n for all n ≥ 0. Next, consider a probability space (Ω, F, p) and let (g n ) n≥0 be a sequence of independent complex standard Gaussian variables N C (0, 1)

g n = 1 √ 2 (g 1,n + ig 2,n ), g 1,n , g 2,n ∈ N R (0, 1).
Finally, let (α n ) n≥0 and define the probability measure µ via the map

ω -→ γ(ω) = +∞ n=0 α n g n (ω)h n , µ = p • γ -1 = γ # p,
in other words: for all measurable set A, the measure µ is defined by

(1.1) µ(A) = p ω ∈ Ω : γ(ω) ∈ A .
It is then easy to observe that for any choice of (α n ) n≥0 the measure µ is invariant by the flow of the linear Schrödinger equation: Proposition 1.4. The measure µ defined in (1.1) is invariant under the flow of the equation

i∂ s U + ∆ M U = 0, (s, y) ∈ R × M.
Considering the nonlinear equation, it is then natural to look for invariant measures (invariant Gibbs measures, see [START_REF] Bourgain | Invariant measures for the 2D-defocusing nonlinear Schrödinger equation[END_REF] for example) or quasi-invariant measures (measures for which the nonlinear evolution is absolutely continuous with respect to µ. In this direction, we refer to the works [START_REF] Tzvetkov | Quasi-invariant Gaussian measures for one-dimensional Hamiltonian partial differential equations[END_REF][START_REF] Oh | Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation[END_REF][START_REF] Oh | An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation[END_REF][START_REF] Oh | Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation[END_REF]).

Let us sketch the proof of Proposition 1.4, since it is elementary.

Proof. For all t ∈ R, the random variable Assume that µ is invariant under the flow Σ lin of equation

e it∆ M γ(ω) = +∞ n=0 α n e -itλ 2 n t g n (ω)h n has the same distribution as γ since for all t ∈ R e -itλ 2 n t g n (ω) ∼ N C (0,
i∂ s U + ∂ 2 y U = 0, (s, y) ∈ R × R, U (0, •) = U 0 . Then µ = δ 0 .
By [3, Proposition 3.2 and Proposition 3.3], similar results hold true for the nonlinear equation

i∂ s U + ∂ 2 y U = |U | p-1 U. Proof.
Let us give the main lines of the argument. Let σ ∈ R and consider µ an invariant probability measure on H σ (R). Let χ ∈ C ∞ 0 (R). By invariance of the measure,

H σ (R) ∥χu∥ H σ 1 + ∥u∥ H σ dµ(u) = H σ (R) ∥χΣ lin (t)u∥ H σ 1 + ∥Σ lin (t)u∥ H σ dµ(u),
and by unitarity of the linear flow in H σ (R), we get (1.2)

H σ (R) ∥χu∥ H σ 1 + ∥u∥ H σ dµ(u) = H σ (R) ∥χΣ lin (t)u∥ H σ 1 + ∥u∥ H σ dµ(u).
Assume that the r.h.s. of (1.2) tends to 0 when t → +∞. This implies that ∥χu∥ H σ = 0, µ-a.s., and thus µ = δ 0 since χ is arbitrary.

By continuity of the product by χ in H σ (R) and unitarity of the linear flow in H σ (R), we have 

∥χΣ lin (t)u∥ H σ 1 + ∥u∥ H σ ≤ C ∥Σ lin (t)u∥ H σ 1 + ∥u∥ H σ = C ∥u∥ H σ 1 + ∥u∥ H σ ≤ C. If v ∈ C ∞ 0 (R)
H = -∂ 2 x + x 2 .
There exists a Hilbert basis (e n ) n≥0 of L 2 (R), composed of eigenfunctions of H and we write He n = λ 2 n e n = (2n + 1)e n for all n ≥ 0. We define the harmonic Sobolev space W σ,p by the norm (σ > 0)

∥u∥ W σ,p = ∥H σ/2 u∥ L p ≡ ∥(-∆) σ/2 u∥ L p + ∥⟨x⟩ σ u∥ L p .
1.5. Definition of the Gaussian measure µ 0 . Let ϵ > 0, we define the probability Gaussian measure µ 0 on H -ϵ (R) as the distribution of the random variable γ

Ω -→ H -ϵ (R) ω -→ γ(ω) = +∞ n=0 1 λ n g n (ω)e n , µ 0 = p • γ -1 = γ # p.
Notice that we can interpret µ 0 as the Gibbs measure of the equation i∂ t u -Hu = 0.

We denote by

X 0 (R) = ϵ>0 H -ϵ (R). Thus L 2 (R) ⊂ X 0 (R) ⊂ H -ϵ (R).
One can show that the measure µ 0 satisfies µ 0 (L 2 (R)) = 0 and µ 0 X 0 (R) = 1, since µ 0 (H -ϵ (R)) = 1 for all ϵ > 0. This shows that the support of µ 0 is essentially composed of L 2 functions. However, one can prove that the support of µ 0 is actually smoother in other L p scales. For instance, we have the bound:

µ 0 u 0 ∈ X 0 (R) : ∥e -itH u 0 ∥ L ∞ ((-π,π);W 1/6-,∞ ) ≥ R ≤ Ce -cR 2 ,
which implies that µ 0 -almost surely e -itH u 0 ∈ L ∞ ((-π, π); W 1/6-,∞ ).

1.6. Equivalence of Gaussian measures. Let µ and ν be two measures. We say that µ ≪ ν (µ is absolutely continuous with respect to ν) if ν(A) = 0 =⇒ µ(A) = 0. Now let us consider the particular case of Gaussian measures. Let α n , β n > 0 and define the measures µ = p • γ -1 and

ν = p • ψ -1 with γ(ω) = +∞ n=0 1 α n g n (ω)e n , ψ(ω) = +∞ n=0 1 β n g n (ω)e n .
Then the measures µ and ν are absolutely continuous with respect to each other (this means that they have the same zero measure sets) if and only if

(1.3) +∞ n=0 ( α n β n -1) 2 < +∞.
This criterion is equivalent to the next one which is written in a more symmetric manner by

+∞ n=0 (log α n -log β n ) 2 < +∞,
by an observation of R. Imekraz. Criterion (1.

3) shows that it is very restrictive for two infinitedimensional Gaussian measures to be absolutely continuous with respect to each other: the condition (1.3) says in some sense that the map which γ sends on ψ has to be close to the identity. We refer to [START_REF] Burq | Almost sure scattering for the one dimensional nonlinear Schrödinger equation[END_REF]Appendix B.3] for more details.

More generally, in [3, Section 2.2] we construct a four-parameter family of Gaussian measures based on the symmetries of the Schrödinger equation.

Main results

Consider the problem (2.1)

i∂ s U + ∂ 2 y U = |U | p-1 U, (s, y) ∈ R × R, U (0) = U 0 ∈ X 0 (R).
2.1. Global existence result. We are now able to state our global existence result:

Theorem 2.1 ([3], Theorem 2.4). Let p > 1.
(i) For µ 0 -almost every initial data U 0 ∈ X 0 (R), there exists a unique, global in time, solution

U = Ψ(s, 0)U 0 to (2.

1). (ii)

The measures Ψ(s, 0) # µ 0 and Ψ lin (s, 0) # µ 0 are equivalent:

(2.2) Ψ lin (s, 0) # µ 0 ≪ Ψ(s, 0) # µ 0 ≪ Ψ lin (s, 0) # µ 0 .
(iii) For all s ′ ̸ = s, the measures Ψ(s, 0) # µ 0 and Ψ(s ′ , 0) # µ 0 are mutually singular.

It is interesting to compare this result with the case where NLS is posed on a compact manifold. In this latter case, the linear flow satisfies Ψ lin (s, 0) # µ 0 = µ 0 . Hence, in this context it is natural to try to prove a quasi-invariance result of the form Ψ(s, 0) # µ 0 ≪ µ 0 . But for NLS on the real line, we are able to prove, using criterion (1.3) that Ψ lin (s, 0) # µ 0 and µ 0 are mutually singular, hence Ψ(s, 0) # µ 0 should not be compared to µ 0 but to Ψ(s, 0) # µ 0 as in (2.2).

The scattering result.

Theorem 2.2 ([3], Theorem 2.4).

(i) Assume that p > 1. Then for µ 0 -almost every initial data U 0 ∈ X 0 (R), there exists a constant

C > 0 such that for all s ∈ R ∥Ψ(s, 0)U 0 ∥ L p+1 (R) ≤      C (1+log⟨s⟩) 1/(p+1) ⟨s⟩ 1 2 -1 p+1 if 1 < p < 5 C ⟨s⟩ 1 2 -1 p+1 if p ≥ 5.
(ii) Assume now that p > 3. Then there exist η > 0 and

W ± ∈ L 2 (R) such that for all s ∈ R ∥Ψ(s, 0)U 0 -e is∂ 2 y (U 0 + W ± )∥ L 2 (R) ≤ C⟨s⟩ -η .
For all φ ∈ C ∞ 0 (R) we have the dispersion bound

∥e is∂ 2 y φ∥ L p+1 (R) ≤ C |s| 1 2 -1 p+1 ∥φ∥ L (p+1) ′ (R) , s ̸ = 0,
therefore, the power decay in s is optimal in the case p ≥ 5 (we do not know if the log is necessary in the case 1 < p < 5). We also stress that the condition p > 3 is optimal in our scattering result, by [START_REF] Barab | Nonexistence of asymptotically free solutions for nonlinear Schrödinger equation[END_REF].

We conclude this section by giving a few references on scattering results for NLS.

• Deterministic scattering results for NLS:

Barab [START_REF] Barab | Nonexistence of asymptotically free solutions for nonlinear Schrödinger equation[END_REF] -→ never scattering when p ≤ 3 Tsutumi-Yajima [START_REF] Tsutsumi | The asymptotic behavior of nonlinear Schrödinger equations[END_REF] -→ scattering in L 2 with H 1 data Nakanishi [START_REF] Nakanishi | Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2[END_REF] -→ scattering in H σ Dodson [START_REF] Dodson | Global well-posedness and scattering for the defocusing, L 2 -critical, nonlinear Schrödinger equation when d = 1[END_REF] -→ scattering in L 2 when p = 5

• Probabilistic scattering results for NLS:

Burq-Thomann-Tzvetkov [START_REF] Burq | Long time dynamics for the one dimensional nonlinear Schrödinger equation[END_REF] -→ case d = 1 and p ≥ 5 Poiret-Robert-Thomann [START_REF] Poiret | Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator[END_REF] -→ case d ≥ 2 and p ≥ 3 Dodson-Lührmann-Mendelson [START_REF] Dodson | Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation[END_REF] -→ case d = 4 and p = 3 Killip-Murphy-Visan [START_REF] Killip | Almost sure scattering for the energy-critical NLS with radial data below H 1 (R 4 )[END_REF] -→ case d = 4 in the radial setting Latocca [START_REF] Latocca | Almost sure scattering at mass regularity for radial Schrödinger equations[END_REF] -→ case d ≥ 2 in the radial setting Camps [START_REF] Camps | Scattering for the cubic Schrödinger equation in 3D with randomized radial initial data[END_REF] -→ case d = 3 and p = 3 in the radial setting

For results on the Gross-Pitaevskii equation with random perturbations we refer to the works of de Bouard, Debussche and Fukuizumi [START_REF] De Bouard | Long time behavior of Gross-Pitaevskii equation at positive temperature[END_REF][START_REF] De Bouard | Two dimensional Gross-Pitaevskii equation with space-time white noise[END_REF][START_REF] De Bouard | Stationary martingale solution for the 2D stochastic Gross-Pitaevskii equation[END_REF] and references therein.

3. Some key ingredients of the proof 3.1. The lens transform: compactification in time and space. There is an explicit transform, called the lens transform, which maps the solutions of NLS to solutions of NLS with harmonic potential. Namely, if U (s, y) is a solution of the problem (2.1), then the function u(t, x) defined for |t| < π 4 and x ∈ R by We define the corresponding energy

u(t, x) = L (U )(t, x) := 1 cos 1 2 (2t) U tan(2t) 2 , x cos(2t) e -ix 2 tan(2t)
(3.2) E(t, u(t)) = 1 2 ∥ √ H u(t)∥ 2 L 2 (R) + cos p-5 2 (2t) p + 1 ∥u(t)∥ p+1 L p+1 (R) ,
which is not conserved. For -π 4 < t < π 4 , we define the measure

dν t = e -E(t,u) dudu = e - cos p-5 2 (2t) p+1 ∥u∥ p+1 L p+1 (R) dµ 0
which is therefore not invariant by the flow of (3.1).

3.2.

Monotonicity of the measure ν t . We are able to bound the nonlinear evolution of ν 0 by ν t .

More precisely, we have:

Proposition 3.1. For all 0 ≤ |t| < π 4 ν 0 (Φ(t, 0) -1 A) ≤ ν t (A) cos(2t) 5-p 2 if 1 ≤ p ≤ 5 ν t (A) if p ≥ 5. (3.3) 
These quantitative estimates will be in the core of our argument. In particular, they allow to extend the globalisation argument of Bourgain relying on invariant measures (see Section 3.4). They are also crucial in the proof of the scattering result. The monotonicity estimate (3.3) has already been used in [START_REF] Burq | Long time dynamics for the one dimensional nonlinear Schrödinger equation[END_REF] in the case p ≥ 5 in order to prove global well posedness results for NLS. Notice that in the case 1 ≤ p ≤ 5, the estimates (3.3) are quite accurate for small times, but they deteriorate when |t| is close to π/4: in this regime we recover the trivial bound ν 0 (Φ(t, 0) -1 A) ≤ 1.

We give here an outline of the proof of Proposition 3.1. Recall the definition (3.2), then a direct computation shows that

d dt E(t, u(t)) = (5 -p) sin(2t) cos p-7 2 (2t) p + 1 ∥u(t)∥ p+1 L p+1 (R) .
Next, set F (t) = ν t Φ(t, 0)A . Then we have to prove that for all 0 ≤ |t| < π 4

F (0) ≤ F (t) cos(2t) 5-p 2 if 1 ≤ p ≤ 5 F (t) if p ≥ 5.
We compute d dt F (t) = (p -5) tan(2t) A α t, u(t) e -E(t,u(t)) du 0 , where α(t, u) = cos Finally the result follows from the integration of the previous differential inequality. (ii) The assertion (3.4) is satisfied with α = 1 iff f ∈ L ∞ (dν) ∩ L 1 (dν).
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i∂ t u -Hu = cos p- 5 2

 5 (2t)|u| p-1 u, |t| < π 4 , x ∈ R, u(0, •) = U 0 .
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 5 (2t) p+1 ∥u∥ p+1 L p+1 (R) . Using the Hölder inequality, we can check that for all k ≥ 1 d dt F (t) ≤ (p -5) tan(2t) with k = -log F (t) yields d dt F (t) ≤ -(p -5) tan(2t) log F (t) F (t).
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 3 On Radon-Nikodym derivatives. The bounds obtained in Proposition 3.1 say much more than just an absolute continuity result between two measures. In fact, they provide integrability results on the Radon-Nikodym density, since one has the following general result: Proposition 3.2 ([3], Proposition 3.5). Let µ, ν be two finite measures on a measurable space (X, T ). Assume that µ ≪ ν, and more precisely(3.4) ∃ 0 < α ≤ 1, ∃ C > 0, ∀A ∈ T , µ(A) ≤ Cν(A) α .By the Radon-Nikodym theorem, there exists a f ∈ L 1 (dν) with f ≥ 0, such that dµ = f dν, and we write f = dµ dν .(i) The assertion (3.4) is satisfied with 0 < α < 1 iff f ∈ L p w (dν) ∩ L 1 (dν) with p = 1 1-α . In other words, f ∈ L 1 (dν) and ν x : |f (x)| ≥ λ ≤ C ′ ⟨λ⟩ -p , ∀ λ > 0.

We deduce that for all |t| ≤ T and u

In particular, for |t| = T ∼ e cR/2 ∥Φ(t, 0)(u)∥ ≤ C(ln |t| + 1) 1/2 .

3.4. The Bourgain argument revisited. Let us now show how local in time solutions can be extended, using the bound (3.3). In order to simplify the presentation of the following argument, we assume that p ≥ 5. Moreover, we do not give details on the norm ∥ • ∥ below, since it does not really play a role in the method. Thus, let us assume the three following facts: ▶ There exists a flow Φ such that the time of existence τ on the ball

is uniform and such that τ ∼ R -κ for some κ > 0.

▶ We have the large deviation estimate µ 0 (X 0 (R)\B R ) ≤ Ce -cR .

Then for T ≤ e cR/2 fixed, we define the set of the good data

By Proposition 3.1 we have

In his original argument, Bourgain [START_REF] Bourgain | Invariant measures for the 2D-defocusing nonlinear Schrödinger equation[END_REF] considered invariant measures, so that the previous estimate was an indeed equality in his case. We observe here that the monotonicity property (3.3) is sufficient. Next, by definition of ν t , we have ν t (A) ≤ µ 0 (A), so that

which shows that Σ R is a big set of X 0 (R) when R -→ +∞.