R L Tabachnick

P) Zsombor-Murray

L J Vroomen

zff-'onente Sequence Controllers with Standard Hardware and Custom Firmware

Programmable sequence controllers were developed to reduce the cost involved in relay-based or solid-state implemented sequence controllers. Consider the steps re quired to develop a hard wired sequencing system:

(I) definition of the sequence, (2) design of the functional circuits, (3) fabrication of component circuit subassemblies, (4) testing them, (5) system integration, (6) testing the entire system, and (7) installation and startup.

Steps I, 6, and 7 are required regardless of the technology upon which a sequence controller design is based. In pro grammable controllers, software writing and debugging represent steps 2, 3, and 4. By anticipating features com mon to the entire class of applications for which a se quencer is intended, one can standardize system integra tion, step 5, to include all functions, whether they are re quired for a given application or not. The waste of an

unused function is more than outweighed by the elimina tion of the need to assemble and carry a variety of con troller configurations. Software is the only configuration variable.

Considerable efforts have been expended on the devel opment of sequence controller software. Since ladder or flow diagrams1•2 have been used traditionally to define se quencer requirements, most sequence controller program ming languages have evolved along these lines.1•3•4•5•6 The development of "English language" programming lan guages represents efforts made to put programmable con troller design within the reach of nonprogrammers. [START_REF] Smith | Converting Relay Logic to Software[END_REF] These techniques severely limit the degree of controller sequence complexity that can be conveniently implemented. Loops requiring many logic, memory, and timing functions are poorly served by English language descriptions because of the inherently sequential structure of text. On the other hand, ladder diagrams, while capable of describing any sequence controller accurately, have a relatively low level of information ''chunking,'' compared to the symbolism of multiple-input logic-gate circuit diagrams. (See discus sion of "chunking" in box on page 10.) For these reasons, the customer who needs a sequence controller often insists that its functional description be in terms of a logic-gate circuit diagram. The inherent adapt ability oflogic circuits to parallel structure makes relative ly complicated controller networks easy to design and comprehend.

In this article we describe the development of a logic gate-based programming language and a sequence con troller to replace solid state or relay-based industrial con trol logic. Our central theme is the evolution of a com prehensive system architecture. We discuss some related hardware detail, pertaining to

• configuration and other constraints imposed on any sequence controller by its environment,

• development of an implementation based on an ICU (industrial control unit), suited for applications cur rently served by a specific family of hardwired, CMOS integrated circuit sequence controllers, and

• development of a portable EPROM programmer with a special keyboard for converting any controller logic circuit into an equivalent sequence of Motorola MCl4500B instructions.

Environment and constraints

The applications in which this family of sequence con trollers is used involve many parallel, logic-level inputs and outputs. In fact, these are the only type of intercon nection between the controller and the controlled system.

Therefore, the controller operates on a large number of 1 binary variables, and its role may be summed up simply: ro generate the state of certain subsets of these variables, given the states and/or transitions of other subsets. The variables whose state can be generated by the controller are called outputs; those whose state can only be sensed are inputs. As far as the controller is concerned, input states are subject to spontaneous change.

Information chunking: gate vs. relay logic P. J. Zsombor•Murray Expre sing information in a shorter sequence of symbo OQ'l a code containing mg re symbols is more emefe !n Using a longer sequ�nQe from a code contain' lng fewer symbols. This concept is called "in formalion chunking." In other words, larger "chunks" of information can be compacted into fewer symbols.

The binary code, for example, contains only the sym bols "O" and "1." The common decimal code contains 10 symbols to represent the digits 0 through 9.

Therefore, the number 28 can be written with only two decimal symbols but, written as 11100, requires five The contents of the addressed memory location become the data output (D0), which is then used as the logic output signal (d). This is a good controller implementation if the number of inputs is small and one bit of ROM width is re quired for every output. But t his approach cannot accom modate transient inputs or outputs of timed duration. Such time-dependent logic signals are often encountered output signals and a symbol that represents the logic operator but does not describe its mechanism.

There are gate symbols for all four common types of logic operations. Additional inputs are easily added to gate symbols, and input or output inversion is simply represented by the inverting circle (o). Figure 2 shows that simple combinatorial gate logic uses five symbols. in sequence controller applications. These signals can be handled effectively by sequential logic that examines all inputs in any order and defines outputs accordingly. These requirements are met by a sequential logic con troller with the following features:

• input buffers to accept field inputs, The clock must be fast enough to execute the entire con trol program in a period less than the duration of the shortest input pulse. This is not a serious constraint if one considers that a 50-ms-long button push on an operator's console is time enough for 50,000 instructions to be ex ecuted at a 1-M Hz clock rate. Before examining the architectures of the controller and the keyboard interpreter/compiler, let us see how the ICU instruction set handles three typical controller sub sequences.

Combinatorial logic simulation. Referring to Table I, the I CU instruction set, and Figure 2, a portion of a relay ladder diagram with its gate-logic circuit equivalent, we see that the following code performs the logic function of the circuit: An analogy exists in algebraic computation. Tem porary storage is required to execute any algebraic ex pression that cannot unambiguously be written without brackets, as in this example:

Y = (X, + X2)/(X3 -X4)
The instructions required in the assembly language of a typical computer would be: Flip-flop output depends on a specific direction of transition of either of its inputs and on the previous out- put. This is illustrated by the logic and state transition table of Figure 4. We can see that the possible ambiguity posed by a simultaneous SET= I and CLEAR= I input condition is resolved, in this case, by a clear-overrides-set, or COS, configuration. ICU code for a COS flip-flop is as follows:

LO SET OR Q ANOC CLEAR STD 0
This software flip-flop must not be confused with the hardware flip-flop included on timer boards to simplify software required to examine the current status of any timer. The following ICU code illustrates how a 1;mer is started, canceled, and examined for a timing-in-progress condition and examined for a timed-out condition, respectively. Note that the input, STRTMR, is either an actual system input, a RAM location, or a flip-flop out put such that STRTMR = 1 will start the timer, TIMER, which will then run for its entire, hand-preset timing period. STRTMR = 0 will cancel TIMER, regardless of its current condition, and will also clear both the timing-in progress and �e timed-out conditions. These will become T= 0 and R • T = 0, respectively. lnitalizing, starting, aborting, or canceling a timer:

LINE c B D E RETURN LOAD LOAD = (A + B + C) • (D • E)
LD STRTMR STO TIMER
Establishing a timing-in-progress condition:

NOPF LD TIMER
Establishing a timed-out condition:

NOPO LD TIM ER

Controller development

The general-purpose, industrial sequence controller described in this section uses the Motorola MC14500B

ICU chip9 as a central processor. As can be seen in Figure 6, all peripheral modules (T,0,1) are packaged on stan dard, rack-mounted printed-circuit boards so as to com municate, via edge connection to a 16-bit-wide processor bus, with a similarly packaged processor module (P).

RAM MEMORY

(2) processor input/output (W, D, 0, and F), and

(3) furnished from the sequencing instructions in ROM (M, A9, A8, A7, A6, A5, A4, A3, A2, A1, and �).

R is the reset signal that initializes various controller func tions automatically, after an appropriate delay, when power is applied to the controller. The system may be reset by a push button through operator intervention.

Processor board (P). Components of t he P-module are shown in Figure 7 cept when STO RE (STO or STO C) instructions are ex ecuted. The data path, D, provides communication with the ICU register (RR) and a 1024-bit RAM, as well as among RR and T-, 0-, and I-modules. One of two FLAG signals, 0 and F, are pulsed whenever the ICU executes a NOPO or NOPF instruction, respectively. These FLAG pulses are used to preset the examination mode of hard ware timers on T-cards. The sequence of control instruc tions begins anew whenever a RESET (R) pulse occurs or the ICU executes a JUMP (JMP) instruction. Sequencing instructions, whose format is shown in Figure 8, are stored in a 2048 x 16-bit ROM . In addition to a 4-bit instruction field, which invokes one of the ICU instructions detailed in Table I, the 16-bit instruction word contains a I 0-bit address field, which is decoded as a --

RAM address if M = 0. lfM =I, data, D, Oows between RR and a device on a T-, 0-, or I-card.

Timer board (T). Timer cards make use of all signals on the processor bus. Figure 9 shows that a T-card contains

R ••� 1 A,>- A 2>- AJ>- A,:>- A;:>- 1/4X
A G>- period starts when this output is changed to" I." The cur rent condition of a timer is established by reading from the DS port to which the gated timer output is connected. The timer condition which is thus read depends on the state of the flip-flop, FF. A pulse on the 0-line, generated by the execution of a NOPO instruction, connects all timer outputs in a subsystem to their respective OS ports so that the execution of a LD TIMER instruction will establish whether the particular timer addressed by the LO instruction has timed-out, i.e., R • T = I . Similarly, all timer OS ports will be set to read the timing-in-progress condition if a NOPF instruct ion is executed and pulses the F-line. Under these circumstances, RR will contain T= l after the LD TIMER instruction if that particular timer is running.

Output board (0). An 0-board contains 16 latchcd out put lines connected to two bidirectional latch chips (BL). On system initialization, output ports on all 0-boards are cleared to "O. " When a STO OUTPUT instruction is ex ecuted and W = I, the contents of RR are transferred to the addressed line (08) via D. A "I" stored into a BL out put turns on a 200mA 40Y DC transistor, which is used to energize a relay coil in the process field or to turn on a pilot light on an operator's console. Thus, outputs ac-Voo V2 x 4081""BSL ('h x 4011)= BSL tivate process functions, i.e., field relays or indicator lights. They also serve as memory. The content of an out put latch, 0B, is transferred to RR via D when a LD OUT PUT instruction is executed. Board select logic, BSL, on an 0-board is similar to that on a T-board, but 0-board BSL has asserted outputs since the signal, CE, on the BL chips requires a true logic level to enable the chip. This detail is shown in Figure 12.

Input board (I). I-card organization is shown in Figure 13. These boards contain 16 optically isolated field inputs (IB). They are accessed by the ICU via two data selectors, DS, which connect the addressed input to D. This signal is loaded into RR when a LD INPUT instruction is ex ecuted. Although inputs are read-only, the signal, W, is nevertheless decoded to prevent damage if a subsystem were erroneously programmed with a STO INPUT instruc tion. Note that 0and I-cards have mounted indicator lights (L), quite apart from any others on operators' consoles, <;bowing at a glance the current status of any field input or out put.

Programmer development

A software design aid-a suitcase-packaged EPROM programmer with a keyboard-has been developed to complement sequence controller hardware building O>-------� blocks. The prototype is a Motorola MC6800 microcom puter made up entirely of SS50 bus-compatible10 com ponents and peripheral boards. Key functions have been selected so that any process engineer, armed only with a logic diagram of his controller, can configure ready-to plug-in firmware in minutes. The portable programmer includes

• a unit to program simultaneously a pair of 2516

EPROMs that require a single 5V power supply and contain 2048 x 16-bit ICU instructions, • a magnetic tape cassette unit to produce duplicate software or to store large and often used instruction sequences, • the programming keyboard, and

• a firmware interpreter /compiler that accepts key board input, performs diagnostics on the source in put, and compiles MC14500B object code and address operands.

Programming language. Keyboard detail and key furic t ions are elaborated in Figure 14(a). A formal Backus Normal Form grammar of this language is listed in 14(b). (See discussion of BNF language in box on page 23.)

Implementation of a simple controller circuit, contain ing examples of all possible elements, is diagrammed in Figure 15. This circuit can be programmed by the keystroke sequence shown in Table 2. The second column shows how a programmer may effectively reduce the number of instructions and memory locations necessary to perform the illustrated control sequence. In this case, location M2 is used only to provide the RESET argument to the flip-flop, tiil . By recalling the result of the previous operation as the first input argument, SET, RR fulfills the role of M2, thereby saving a STO and a LD instruction as well as RAM storage for M2. This operation requires only that output 17 be inverted to -17. No additional ICU in struction is n�eded for inversion because the compiler will substitute a store and complement, STOC, for the original STO. Figure 16 sums up the logic of the interpret er I compiler.

/6x 4069 1/4x4011 R Ao>-- A,)-- A z >-- "3>-- A.>-- As>-- "6>-- A 1)-- As>-- Ag)-- M>-- 0)NC F)NC 0 w :�2:} A z >- A3 >- A, > A:; > A5 > A 1 > A s >- A g >- !J> O>NC F>NC o.---- w �-;��-r---+� � O?i\
Compiler operations. After an entire source procedure has been entered by the keyboard, compilation proceeds instruction by instruction. Each keystroke is checked for syntax error, and the appropriate ICU operation code and address operand are generated as each instruction is decoded.

If an instruction contains a I• lor a I+ I operator, then the following steps are taken:

(1) If the previous instruction ended in a I; I or if the current one began with a I; I. then the first operand, or its complement, if required, is ANDed or ORed with RR. Otherwise the operand or its complement is loaded into RR.

(2) The subsequent operands or their complements are ANDed or ORed with RR.

(3) The ultimate contents of RR are stored into the ad dress specified by the last operand unless a I ; I ap peared in its place.

If the instruction contains a I tiil I operator, then the follo w ing steps are taken:

(1) The contents of the first or SET operand are loaded into RR unless the previous keystroke was I; I• In A prototype of the EPROM programmer firmware has been programmed, largely in Fortran IV, on a medium size Honeywell HS4020 process control computer, using a keyboard for source input. The Teletype mnemonics equivalent to those of the programming keyboard are listed in Figure l

L. J. Vroomen

A metalanguage is an artificial language that formal ly defines the grammar and other rules that apply to another language. BNF (Backus Normal Form or Backus Naur Form) is such a metalanguage; it con sists of statements describing the correct way to write a source language, in this case the Controller Design ing Keystroke Language. "Correct" means anything which is grammatically "legal," i.e., permissible. Orig inally developed in 1959 to describe the syntax of Algol 60,1 the BNF language is the most commonly used of the "context-free" languages. A "context-free" Ian• guage is composed of characters and words other than those used in the language being described,2 even though both BNF and the programming language use English words. There is a similarity between this type of grammar and the definitions in a standard dictionary, making its use almost intuitive.3 Languages such as Fortran 77 are completely defined by an extended ver sion of the BNF grammar.4•5

The symbols and conventions of BNF can be sum marized as follows6:

(1) Three special symbols represent the following: : : = means "is defined as"; < >delimits the name of a string, I.e., a set of en tities; and I means "or else"; i.e., it separates alternatives.

(2) All other symbols denote themselves.

(3) Symbols, stri ngs, or names following in succes sion in any combination, implicitly specify con catenation, i.e., "and." (4) The order of application of operations is: con catenation, then alternatives, then the definition symbol.

(5) Unless otherwise stated, the syntax equation is to be applied in left-to-right order.

Every new word introduced is defined by a combina tion of previously defined words and symbols. In this way, starting with the primitive definitions such as let ters and numbers, simple words can be defined at a sec ond level, followed by compound words, phrases, and finally complete sentences.

+ x B T T � E ! ' M (carriage return) 1 F m L M > (a) M14500 USER?10106 0, 1,X2A16 M,3,X4AM 50L1 4,L00L2 l1,L2F17 MB32 T32 >1B E32,7A19 X7,E32AM 60M 4FL0 (b)
1 0 1 0 0 0 0 0 101110 00 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 10001 100 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0 100 00000 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 10001 100 11110000 0 0 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 11000000 (C) 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 line printer output in l 7(c) are the binary program image to be burned into EPROM. The hexadecimal "chunking" of this information is shown in the next two columns. The last column contains the keystroke description of the se quence controller in MC14500B symbolic assembler code.* Since the envisaged sequence controller family makes no use of the IEN and OEN instructions, these instruc tions are unconditionally disarmed by initializing every object procedure with IEN 0 followed by OEN 0. Note that MO, M 1, and M2 occupy the first three RAM addresses, 0, 1, and 2, respectively. Timer and input/ out put addresses are automatically offset by 1024 1 0, because M = 1, unconditionally, in these cases. It is the program mer's responsibility, however, to ensure that he does not map timers or inputs or outputs onto the same card by designating mixed device addresses within the same con tiguous block of 16 addresses counting from 102410, in clusive. Note that inputs 0 to 7 are assigned to addresses 102410 to 103 110 s 103910, that the outputs 16 to 19 are as signed 104010 to 104310 s 1055 10, while the timer is located at 1056 1 0, at the beginning of the third block of 16 addresses.

A number of sequence controller systems, 1•3•5•6 using microprocessors with firmware and programming aids, exist. However, we believe that the system we have described here is the first comprehensive approach to

• defining the function of a large class of general purpose, industrial sequence controllers, • designing a system composed of a family of modular hardware building blocks around a bus structure and making use of the most suitable, currently available microelectronic components, and • implementing a simple, effective programming aid whereby any sequence controller can be quickly con figured, directly from a logic-circuit diagram design.

By getting the user intimately involved in the actual design process, this work might lead to the evolution of a widely accepted design standard for industrial sequence con trollers.

1 1• 1 2 The next step in this development, we predict, will be the integration of controller modules into single LSI chips. •

Figure 1 .:Figure 2 .Figure 3 .

 123 Figure 1. Ladder diagram and gate logic for a four-input AND function.

Figure 3 4 .

 34 Figure 3 shows how these four logic operations are represented in relay logic notation. Notice that the simple two-inpu, t AND function is constructed with two NO contacts in series and the simple two-input OR function is constructed with two NO contacts in parallel. The XOR function ladder diagram, however, il lustrates that this function is not a simple synthesis of the fundamental relay logic building blocks. It must be implemented in its expanded AND/OR form: A+ B =(A•B) +(A•B) This would be the same as drawing the gate diagram shown in Figure 4. In the XOR ladder diagram, the only way that one can see that contacts A and A are complementary and are activated by the same coil (not shown) is by the presence of the labels A and A. The ladder diagram does not show any explicit connection between these two contacts. Another conceptual difficulty arises in the relay representation of the inverter. Here the positive-true signal, A, must energize coil B, which then opens the NC contact, B, hence providing the in verted signal, A, to the input of the load, C. Again, only the labels B and B (which are necessary but concep tually irrelevant intermediates to the inversion func tion) associate the effect of A upon C. Furthermore, relay logic diagrams do not differentiate between loads that are coils of relays used to implement logic and process loads such as actuating solenoids and electric motors. Gate logic embodies better information chunking than does its relay counterpart, not so much because of its five-symbol "alphabet" versus the two symbols of relay logic, but because the graphical representa tion of gates more effectively associates the compo nent input and output signals with the logical opera tion to be implemented.

Figure 4 .

 4 Figure 4. Expanded form of XOR function.

Figure 1 .Figure 3 .

 13 Figure 1. ROM implementation of a logic controller.

 flip-flop simulation. The flip-flop is another case in which temporary storage is required to implement a logical device in software. This is a non boolean device because the output cannot be expressed as a function of the inputs.

 any register. The data pin is driven to The Flag 0 output pin gets the state of the result reg• a one-period pulse beginister. The write pin is ning on the falling edge driven high for a half peof X1 (Clk). riod beginning with the fall LO Load of X1 The state of the re-The result register (RR) is suit register is not changed. loaded with the state of 9 STOC Store complemented the data signal (D). Same as STO. except the 2 LDC Load complemented data signal is driven with The result register is the complement of the result loaded with the complement register of the data signal. A IEN Input enable

Figure 2 .Figure 3 .

 23 Figure 2. Relay, logic gate, and boolean representation of a typical logic circuit.

Figure 5 Figure 4 .

 54 Figure 5 summarizes these transitions. Thus, we see why the timing function is best imple mented in dedicated hardware. A computer program can not handle the rfi!J -+ ® transition without ambiguity because the circuit input R =I defines a transition (fi!)-+ rfi!J, with a circuit output T= I, while the unit is timing, as well as the timed-out transition rfi!J -+ ® with a different circuit output, T=O.A timer occupies one addressable memory location, which behaves like one system output and two system in pu� R is a write-only output while the signals T and R • T, like inputs, are read-only. The timer board flip flo !?.! which is set up by software, determines whether Tor R• T is read by the ICU.

Figure 5 .(2)Figure 6 .0

 526 Figure 5. Timer state transition diagram.

BFigure 1 . 2 .Figure 1 .Figure 2 .Figure 3 .

 12123 Figure 1. Its output is 1 when two consecutive bits are different and 0 otherwise. It is obvious that the dif• ferential encoder is a sequential circuit since its out• put at any given time depends on the current bit and the history of the previous bit. There are two classes of past input histories corresponding to the possible values of the previous bit, 0 or 1. These classes will be called internal states (or simply states) of the differen tial encoder. By "remembering" the value of the previous bit, the encoder actually indicates some "trace" of its past input, at least to the extent of its in fluence on the response to the present input. Let S0 denote the state of the differential encoder at the pres ent instant, Tn, if the previous bit is 0 at the previous in stant, Tn _ 1, and S1, if the previous bit is 1 at T n _ 1 . The state of the differential encoder, at the time when the present input is applied to it, is referred to as its present state and the state to which the encoder goes, as the next state. The output, y(Tn), and the next state of the encoder depend on the present input, x(Tn>• and the present state. A convenient way of describing the behavior of the differential encoder is by means of a state transition diagram (also called state graph) as shown in Figure 2. The state transition diagram is a directed graph whose nodes (vertices) and arrows (directed arcs) correspond to the states of the differential encoder and its state transitions respectively. The labels of the arrows specify the input and the corresponding output in the format: input/output.

.Figure 7 .

 7 Figure 7. Organization of processor board (P).

Figure 8 .

 8 Figure 8. Format of 16-bit instruction word of controller.

Figure 9 .

 9 Figure 9. Organization of timer board (T).

4070 Figure 10 .

 407010 Figure 10. Board select logic (I•, 0•, and T•modules).

FF 1 Figure 11 .

 111 Figure 11. Detail of flip . flop and timer organization on timer module (T).

1

 1

 Figure13ion of in . Organizaf put board (I).

 previous result for next input operand End of line/enter Delete to previous end of line Delete previous symbol

Figure 14 .

 14 Figure 14. Keyboard and key functions of portable programming unit (a); BNF grammar of programming language (b).

Figure 15 .

 15 Figure15. A typical sequence controller circuit.

(3)Figure 16 .

 316 Figure 16. Compiler flow chart.

 7(a). The keystroke sequence equivalent to Figure 15 appears in 17(b). The first two columns of BNF language

 For example, in some versions of Bas ic, variable names may be only one or two characters long. The first character must be alphabetic; the second may be either alphabetic or numeric. In addition, a qualifier may be ap pended to indicate an integer or string variable rat her than a normal real variable. Permitted variable names are completely defined by the following equations: statements allow variable names such as P, TA, N % , Q5$, but exclude names such as 3B or LMN. Because of the "recursion" operation that al lows the use of a name both on the right and left of the definition symbol, the Intermediate step of the <SUB NAME > was required; otherwise <NAME> would have to be defined using six alternatives, three with and three without <QUALIFIER >. <INTEGE R> :: = <NUMBER >! <NUMBER > <NUMBER > defines only a one-or two-digit value, whereas <INTEGER > : : = <NUMBER > I <INTEGER > <NUMBER > defines any length integer; e.g., the symbol 9 Is a <NUMBER > (first alternative) and is therefore also an <INTEGER >. Adding a second symbol, 7, to get 97, conforms to the second alternative: <INTEGER > <NUMBER >. This combination therefore qualifies as an <INTEGER >, allowing the concatenation of an unlimited string of numbers. Subsequent lines combine the Information from previous lines in a powerful manner, yielding a high measure of information compression. It should be noted that compilers, using the BNF language descriptions, can determine only if a statement is "legal," i.e., grammatically correct. They cannot deter mine whether the statement is correct logically, or whether It will produce the desired result in the con text of the rest of the program.

Figure 17 .

 17 Figure 17. Teletype-keyboard equivalent mnemonics (a); input (b) and output (c) corresponding to logic example of Figure 15.

Table 1 .

 1 MC14500B ICU instruction set.

	INSTRUCTION			INSTRUCTION		
	CODE	MNEMONIC	ACTION	CODE	MNEMONIC	ACTION
	0	NOPO	No operation zero			

Table 2 .

 2

		ICU program for circuit
		shown in Figure 15.
	KEYSTROKE SEQUENCE	
	WITH M2	WITHOUT M2	DESCRIPTION
	0.1,-2•16.		AND input 0, input 1 and complement of input 2.
			STORE state in output 16.
	; 3, -4 •;		AND previously computed state with input 3 and complement of input 4.
	5+M1.		OR previously computed state with input 5. STORE
			computed state in temporary location M1.
	4,MO+M2.	4,MO+;	OR input 4 with temporary location M4. STORE com
			puted state in temporary location M2.
	M1,M2 tiil17. M1 tiil -17.	Output 17 is the output of a flip-flop which has tem
			porary location M1 as its SET input and temporary loca
			tion M2 as its RESET input.
	;T32.		Output 17 is also the REQUEST input of timer 32.
	-132=18.		Output 18 is the TIMING status of timer 32.
	.L32, 7•19 .		AND the TIMED-OUT status of timer 32 with input 7 .
	-7, 132•;		
	6+;		
	4 tiil MO ..		

STORE the computed state in output 19.

AND the complement of input 7 with the TIMED-OUT status of timer 32. OR previously computed state with input 6. Temporary location MO is the output of a flip-flop, which has the previously computed state as the SET input and input 4 as the RESET input.

 •The Fortran IV listing of this compiler is available from the DAT AC Computer Laboratory, Dept. of Mechanical Engineering, McGill Univer sity, 817 Sherbrooke Street West, Montreal, PQ, Canada H3A 2K6.

	AO	00		IEN	0
	BS	00		OEN	0
	14	00		LO	1024
	34	01		AND	l025
	4C	02		ANDC	1026
	BC	10		STO	1040
	3C	03		AND	1027
	4C	04		ANDC	102B
	5C	05		OR	1029
	80	01		STD	1
	1C	04		LO	102B
	50	00		OR	0
	80	02		STO	2
	10	01		LO	1
	50	11		OR	17
	40	02		ANDC	2
	BB	11		STO	17
	BC	20		STD	1056
	FO	00		NOPF	0
	1C	20		LO	1056
	84	12		STD	1042
	00	00		NOPO	0
	1C	20		LO	1056
	34	07		AND	1031
	BC	13		STD	1043
	2C 07		LDC	1031
	00	00		NOPO	0
	34	20		AND	1056
	5C	06		OR	1030
	50	00		OR	0
	48	04		ANDC	4
	88	00		STO	0
		00	co	JMP	0

L

Acknowledgment This research is supported by the Natural Sciences and Engineering Research Council of Canada under grant number A42 19 and by the Bailey Controls Company of Canada.