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A DIRECT DISCONTINUOUS GALERKIN METHOD FOR A HIGH ORDER

NONLOCAL CONSERVATION LAW

AFAF BOUHARGUANE AND NOUR SELOULA

Abstract. In this paper, we develop a Direct Discontinuous Galerkin (DDG) method for

solving a time dependent partial differential equation with convection-diffusion terms and a

nonlocal term which is a pseudo-differential operator of order α ∈ (1, 2). This kind of equa-
tion was first introduced to describe morphodynamics of dunes and was then used for signal

processing methods. We consider the DDG method which is based on the direct weak formu-

lation of the PDE into the DG function space for both numerical solution and test functions.
Suitable numerical fluxes for all operators are then introduced. We prove nonlinear stability

estimates along with convergence results. Finally numerical experiments are given to illustrate

qualitative behaviors of solutions and to confirm convergence results.

Keywords. scalar conservation laws, convection-diffusion, fractional/nonlocal anti-diffusion,
discontinuous Galerkin method, numerical flux, stability, convergence, numerical simulations.

AMS subject classification. 65M12, 65M60, 26A33

1. Introduction

We consider in this paper a nonlocal conservation law which appears in the formation and
dynamics of sand structures such as dunes and ripples [21, 23] :

(1)

{
Ut + (f(U)− Ux + J [U ])x = 0, x ∈ R, t > 0,

U(0, x) = U0(x), x ∈ R,

where the unknown U represents the dune height and depends on the space variable x and the
time variable t. U0 : R → R is the initial datum, f(U) = 1

2U
2 and J is a nonlocal operator

defined by: for any Schwartz function ϕ ∈ S(R) and any x ∈ R,

J [ϕ](x) :=

∫ x

−∞
|x− ξ|− 1

3ϕ′(ξ) dξ.(2)

It has been proved in [3] that the operator ∂xJ is a pseudo-differential operator of order 4/3 since

F(∂xJ [ϕ])(ξ) = −4π2Γ(
2

3
)

(
1

2
− isgn(ξ)

√
3

2

)
|ξ|4/3F(ϕ)(ξ),

where Γ is the gamma function and F denotes the Fourier transform.
It will be clear from the analysis below that our results can easily be extended to the case where
this nonlocal operator is replaced with a Fourier multiplier homogeneous of degree α ∈ (1, 2), as
in [4], and not only α = 4/3.

Because of the opposite sign, this nonlocal operator has a deregularizing effect and thus acts
as an anti-diffusive operator on the initial data. However, these instabilities are controlled by
the diffusion term −Uxx which guarantees that the initial problem (1) admits the existence and
the uniqueness of a smooth solution [3]. We then always assume that there exists a sufficiently
regular solution U(t, x).

Conservation laws with nonlocal or fractional terms arise in a variety of problems in finance,
physical, mechanics, crow dynamics, traffic flow model ect. [31, 6, 5, 27]. Therefore, numerical
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studies of these kind of equations have attracted a lot of interest in recent years. Several authors
have proposed a variety of numerical schemes for solving space-fractional convection-diffusion
equations. For example, a general class of difference methods for fractional conservation laws
has been introduced in [20]. Finite element methods have been proposed to solve space-fractional
advection equations and space and time fractional Fokker-Planck equation in [35] and [18] respec-
tively. Finite differences approximations have been introduced for fractional advection dispersion
flow equation [28] and a finite difference-quadrature approach to solve the fractional Laplacian
[22]. Recently Chalon, Goatin and Villada designed a discontinuous Galerkin and Finite Volume-
WENO schemes to obtain high-order approximations for nonlocal conservation laws [10].

The Discontinuous Galerkin method (DG hereafter) is a finite element method which uses a com-
pletely discontinuous piecewise polynomial space for the numerical solution and the test functions.
There have been various DG methods suggested in the literature to solve equations contain higher
order spatial derivatives, including the local discontinuous Galerkin (LDG) methods introduced
by Cockburn and Shu in [16] and the Direct Discontinuous Galerkin (DDG hereafter) method
introduced in [26] by Liu and Yan for diffusion problems. The idea of LDG methods is to rewrite
the equation into a first order system and then apply the DG method to the system whereas the
DDG method is based on the direct weak formulations for solutions and on appropriate numer-
ical fluxes. In contrast to the LDG method the direct approach does not need to introduce any
auxiliary variables and thus present the advantage of easier formulation and implementation and
efficient computation of numerical solution.
The first DG application to fractal conservation law was studied by Cifani, Jakobsen and Karlsen
in [13, 14]. Xu and Hesthaven [32] applied a local discontinuous Galerkin method to fractional
convection diffusion equations with a fractional Laplacian of order α ∈ (1, 2) in [32]. Mustapha
and McLean [29] studied a discontinuous Galerkin method for fractional diffusion and wave equa-
tions and, Deng and Hesthaven [19] a local discontinuous Galerkin method for fractional diffusion
equations. Aboelenen and H. El-Hawary [2] proposed a high-order nodal discontinuous Galerkin
method for a linearized fractional Cahn–Hilliard equation. Aboelenen [1] investigated a DDG
method to solve equations with fractional laplacian of order α ∈ (1, 2) where the equations have
been expressed as a system of parabolic equation and low order integral equation.
For equations like (1) involving diffusion and fractional anti-diffusion operators, few numerical
methods have been developed up to now: finite difference method [3], split-step Fourier method
[8] and a finite element method [7] have been used to perform numerical simulations for the dune
morphodynamics equation (1). More recently [24] proposed finite difference schemes for fractional
water waves models and [9] investigated LDG schemes where they proved nonlinear stability and
give errors estimates.
In this paper we propose to use a DDG method to approximate a nonlocal equation which contains
a pseudo-differential operator of order 4/3 which in particularly requires to define a numerical
flux for the nonlocal operator. To our knowledge, there is no work in literature which use a DDG
method to numerical solve fractional equations with α ∈ (1, 2). Generally a LDG approach is
preferred for fractional equations of order α ∈ (1, 2) which does not require to define a numerical
flux for fractional operators. We choose here to consider a direct approach because it present
the advantage of easier formulation and implementation and efficient computation of numerical
solution.
Building on recent work of Chalon, Goatin and Villada [10] on DG methods for nonlocal conser-
vation laws, we define numerical flux for nonlocal operators. Combining this with the classical
approaches of the DDG methods for convection-diffusion equations, we propose a new numerical
scheme for a high order nonlocal conservation law involving a pseudo-differential operators of
order 4/3.

For that, we rewrite the nonlocal operator J to apply the DDG method and we consider suitable
numerical fluxes on the cell interfaces for the convection, diffusion and nonlocal operators. We
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prove nonlinear stability estimates along with convergence results and we show some numerical
experiments.

The rest of this paper is organized as follows. In the next section, we give some properties related
to the nonlocal operator and we prove some useful lemmas. In Section 3 we introduce the semi-
discret DDG method for equation (1) and we prove stability and convergence of the numerical
scheme in Section 4 and Section 5 respectively. Finally, in Section 6 numerical experiments are
given to illustrate qualitative behaviors of solutions and to confirm convergence results.

Notations.
- We denote by F the Fourier transform of f which is defined by: for all ξ ∈ R,

Ff(ξ) = f̂(ξ) :=

∫
R
e−2iπxξf(x)dx.

We denote by F−1 its inverse.
- We denote by C(c1, c2, · · · ) a generic constant, strictly positive, which depends on parameters
c1, c2, · · · . The constant C is assumed to be a monotone increasing function of its arguments.

2. Preliminaries

In this section, we make some preparation including another representation of the nonlocal
operator for the subsequent numerical scheme and theoretical analysis.

Lemma 2.1. For all ϕ ∈ S(R) and all x ∈ R,

(3) J [ϕ](x) =
1

3

∫ 0

−∞

ϕ(x+ z)− ϕ(x)

|z|4/3
dz.

Proof. Let ϕ ∈ S(R), x, z ∈ R. Since

ϕ(x+ z)− ϕ(x) =

∫ x+z

x

ϕ′(y)dy =

∫ 1

0

z ϕ′(x+ t z) dt

then we have ∫ 0

−∞

ϕ(x+ z)− ϕ(x)

|z|4/3
dz =

∫ 0

−∞
|z|−4/3

(∫ 1

0

z ϕ′(x+ t z) dt

)
dz

=

∫ 1

0

(∫ 0

−∞
z|z|−4/3ϕ′(x+ t z) dz

)
dt

= −
∫ 1

0

(∫ 0

−∞
|z|−1/3ϕ′(x+ t z) dz

)
dt

and thanks to the change of variable tz = ξ we get∫ 0

−∞

ϕ(x+ z)− ϕ(x)

|z|4/3
dz = −

∫ 1

0

t−2/3

(∫ 0

−∞
|ξ|−1/3 ϕ′(x− ξ) dξ

)
dt

= −3

∫ 0

−∞
|ξ|−1/3 ϕ′(x− ξ) dξ

Therefore ∫ 0

−∞
|ξ|−1/3 ϕ′(x− ξ) dξ = −1

3

∫ 0

−∞

ϕ(x+ z)− ϕ(x)

|z|4/3
dz.

Observe that the term in the left hand side is J [ϕ] after a simple change of variables. This
completes the proof.

�
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From now we consider the previous representation for the operator J given in (3).

Lemma 2.2. For all ϕ ∈ H1/3(R)

(4) ||J [ϕ]||L2(R) ≤ Γ

(
2

3

)
||ϕ||H1/3(R).

Proof. The proof is based on Fourier analysis arguments.
It has been proved in [3] that

F (J [ϕ]) (ξ) = Γ

(
2

3

) (√
3

2
sgn(ξ) +

i

2

)
ξ1/3F(ϕ)(ξ)

then using Parseval’s inequality we have

||J [ϕ]||2L2(R) =

∫
R

Γ

(
2

3

)2

|
√

3

2
sgn(ξ) +

i

2
|2 |ξ|2/3 |F(ϕ)(ξ)|2 dξ

= Γ

(
2

3

)2 ∫
R
|ξ|2/3 |F(ϕ)(ξ)|2 dξ

≤ Γ

(
2

3

)2 ∫
R

(1 + |ξ|2)1/3 |F(ϕ)(ξ)|2 dξ

= Γ

(
2

3

)2

||ϕ||2H1/3(R).

�

Let us now introduce a partition of the domain consisting of cells Ij = (xj−1/2, xj+1/2) for all
j ∈ Z. We denote the cell lengths ∆xj = xj+1/2 − xj−1/2 and we define ∆x = maxj ∆xj .

We denote by P k(Ij) the space of all polynomials of degree at most k with support on Ij , and
we define the piecewise polynomial space V k as

V k =
{
v; v|IjP

k(Ij) for all j ∈ Z
}
.

Let us introduce the operators

[v(xj+1/2)] = v(x+
j+1/2)− v(x−j+1/2), v(xj+1/2) =

1

2
(v(x+

j+1/2) + v(x−j+1/2)).

The approximate solutions are sought under the form

u(t, x)|Ij =

k∑
l=0

clj(t)φ
l
j(x)

where clj are the degrees of freedom in the element Ij ( the unknown) and
{
φlj }l=0,··· ,k constitutes

a basis of P k(Ij).

Lemma 2.3. Let ϕ ∈ V k ∩ L2(R) and 0 < r < 1. Then ϕ ∈ H1/3(R) and

|ϕ|2H1/3(R) ≤ C(r−2/3)||ϕ||2L2(R) + C(r1/3)
∑
j∈Z

[ϕ]2j + C(r4/3)
∑
j∈Z
||ϕ′||2L2(Ij)

,

where |u|Hλ/2 :=

∫
R

∫
R

(u(z)− u(x))2

|z − x|1+λ
dz dx is the semi-norm of the fractional Sobolev space Hλ/2.

Proof. Let us consider a function ϕ ∈ V k ∩ L2(R). Then it has been proved in [14, Lemma A.4]
that for |z| < 1
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∫
R

(ϕ(x+ z)− ϕ(x))
2
dx ≤ C

|z|∑
j∈Z

[ϕ]2j + |z|2
∑
j∈Z
||ϕ′||2L2(Ij)

 .(5)

Therefore for r ∈ (0, 1) we have

|ϕ|2H1/3(R) =

∫
R

∫
R

(ϕ(x+ z)− ϕ(x))
2

|z|5/3
dxdz

=

∫
|z|<r

∫
R

(ϕ(x+ z)− ϕ(x))
2

|z|5/3
dxdz +

∫
|z|>r

∫
R

(ϕ(x+ z)− ϕ(x))
2

|z|5/3
dxdz

= T1 + T2

For the first term T1 we use the estimate (5) and we obtain

T1 ≤ C

∑
j∈Z

[ϕ]2j

∫
|z|<r

dz

|z|2/3
dz +

∑
j∈Z
||ϕ′||2L2(Ij)

∫
|z|<r

|z|1/3 dz


≤ C(r1/3)

∑
j∈Z

[ϕ]2j + C(r4/3)
∑
j∈Z
||ϕ′||2L2(Ij)

.

For the term T2 we direclty get

T2 ≤ 4||ϕ||2L2(R)

∫
|z|>r

dz

|z|5/3
dz

≤ C(r−2/3)||ϕ||2L2(R).

Combining the previous estimates, we obtain (5).
�

We will also need to use the following inverse property [12] : For any function wh ∈ V k, the
following inequalities hold

||wh||∞ ≤ C∆x−1/2||wh||L2

||wh||Γh ≤ C∆x−1/2||wh||L2(6)

where Γh denotes the set of interface points of all the elements.

3. Formulation of the scheme

In this section we introduce the numerical scheme for the dune morphodynamics model (1).
We first multiply the equation by an arbitrary v ∈ P k(Ij), integrate over Ij , and have integration
by parts. Then, we define the discrete DDG scheme as follows: Seek u ∈ V k ∩ L2(R) such that∫

Ij

utv dx−
∫
Ij

f(u)vx dx+ f̂(uj+1/2)v−
j+ 1

2

− f̂(uj+ 1
2
)v+
j− 1

2

+

∫
Ij

uxvx dx

− ûx(xj+ 1
2
)v−
j+ 1

2

+ ûx(xj− 1
2
)v+
j− 1

2

−
∫
Ij

J [u]vx dx+ Ĵ [u](xj+ 1
2
)v−
j+ 1

2

− Ĵ [u](xj− 1
2
)v+
j− 1

2

= 0∫
Ij

u(0, x)v(x) dx =

∫
Ij

U0(x)v(x) dx,

(7)

where the numerical fluxes are given by
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• Convection term: We consider the Lipschitz continuous E-flux (a consistent and mono-
tone flux)

f̂(uj+1/2) = f̂(u(x−j+1/2), u(x+
j+1/2)).

Note that since f̂ is consistent i.e. f̂(u, u) = f(u) and monotone i.e. increasing w.r.t. its
first variable and decreasing w.r.t. its second variable,∫ u+

j+1/2

u−
j+1/2

(
f(x)− f̂(u−j+1/2, u

+
j+1/2)

)
dx ≥ 0.

• Diffusion term: We follow Liu and Yan [26] and we introduce the flux

(8) ûx = β0
[u]

∆x
+ ux

which satisfies the following admissibility condition

Définition 3.1 (Admissibility [26] ). The numerical flux ûx is admissible if there exist
a γ ∈ (0, 1) and α > 0 such that

(9) γ
∑
j

∫
Ij

u2
x dx+

∑
j

(ûx)j+ 1
2
[u]j+ 1

2
≥ α

∑
j

[u]2
j+ 1

2

∆x

holds for any piecewise polynomials of degree k.

• Nonlocal term: For the nonlocal term, we use the expression (3) and we define

(10) Ĵ [u]j+ 1
2

=
∑
i≤j

∫
Ii

u(z)− u(xj+1/2)

|z − xj+1/2|4/3
dz.

Similar numerical fluxes have been considered for nonlocal scalar conservation laws in
[10].

4. The nonlinear stability

In this section, we discuss stability of the proposed scheme.
Let us first review the stability property for the continuous problem. Using Fourier analysis it
has been proved in [3] that the exact solution of the initial value problem (1) satisfies

(11) ||U(t, ·)||L2(R) ≤ ew∗t||U0||L2(R), ∀t ∈ (0, T )

where w∗ is a positive constant.
Therefore, we say that the DDG scheme (7) is L2-stable if the numerical solution u satisfies

||u(T, ·)||L2(R) ≤ C(T )||u0||L2(R).

In the following Theorem, we show that the proposed DDG scheme (7) is stable.

Theorem 4.1 (Energy stability). Consider the DDG scheme (7) with the numerical fluxes defined
in Section 3. Then we have for small ∆x,
(12)

||u(T, ·)||2L2(R) + (1− γ)

∫ T

0

∑
j∈Z

∫
Ij

u2
x(s, x)dx ds+ α

∫ T

0

∑
j∈Z

[u]2
j+ 1

2

∆x
ds ≤ eC(α,γ)T

∫
R
U2

0 (x) dx.

Proof. Let us first some over all j and set v = u in the numerical scheme (7) :∫
R
utu+

∑
j∈Z

(
[Φ(u)]j+1/2− (f̂ [u])j+1

2

)
+
∑
j∈Z

∫
Ij

u2
x +
∑
j∈Z

(ûx[u])j+ 1
2
−
∑
j∈Z

(
Ĵ [u][u]

)
j+ 1

2

−
∑
j∈Z

∫
Ij

J [u]ux =0
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where Φ(u) =
∫ u

f(u) du.

Thanks to the monotone property of flux f̂ we have [Φ(u)]j+1/2 − (f̂ [u])j+ 1
2
> 0.

Therefore, we obtain

1

2

d

dt
||u(t, ·)||2L2(R) +

∑
j∈Z

∫
Ij

u2
x +

∑
j∈Z

(ûx[u])j+ 1
2
−
∑
j∈Z

(
Ĵ [u][u]

)
j+ 1

2

−
∑
j∈Z

∫
Ij

J [u]ux ≤ 0.

Now using admissibility condition (9) there exist a γ ∈ (0, 1) and α > 0 such that

1

2

d

dt
||u(t, ·)||2L2(R) + (1− γ)

∑
j∈Z

∫
Ij

u2
x(t, x)dx+ α

∑
j∈Z

[u]2
j+ 1

2

∆x

≤
∑
j∈Z

∫
Ij

J [u]ux +
∑
j∈Z

(
Ĵ [u][u]

)
j+ 1

2

≤ 4

1− γ
∑
j∈Z
||J [u]||2L2(Ij)

+
1− γ

4

∑
j∈Z
||ux||2L2(Ij)

+
4∆x

α

∑
j∈Z
Ĵ [u]

2

j+ 1
2

+
α

4

∑
j∈Z

[u]2
j+ 1

2

∆x

Using Lemma 2.2, Lemma 2.3 and inverse inequality we obtain

1

2

d

dt
||u(t, ·)||2L2(R) + (1− γ)

∑
j∈Z

∫
Ij

u2
x(t, x)dx+ α

∑
j∈Z

[u]2
j+ 1

2

∆x

≤
(

4

1− γ
+

4

α

)
||J [u]||2L2(R) +

1− γ
4

∑
j∈Z
||ux||2L2(Ij)

+
α

4

∑
j∈Z

[u]2
j+ 1

2

∆x

≤
(

4

1− γ
+

4

α

)
C(r1/3)

∑
j∈Z

[u]2j+ 1
2

+

(
4

1− γ
+

4

α

)
C(r4/3)

∑
j∈Z
||ux||2L2(Ij)

+

(
4

1− γ
+

4

α

)
C(r−2/3)||u||2L2(R) +

α

4

∑
j∈Z

[u]2
j+ 1

2

∆x
+

1− γ
4

∑
j∈Z
||ux||2L2(Ij)

which gives for small ∆x

1

2

d

dt
||u(t, ·)||2L2(R) +

3

4
(1− γ)

∑
j∈Z

∫
Ij

u2
x(t, x)dx+

3

4
α
∑
j∈Z

[u]2
j+ 1

2

∆x

≤
(

4

1− γ
+

4

α

)
C(r1/3)

∑
j∈Z

[u]2
j+ 1

2

∆x
+

(
4

1− γ
+

4

α

)
C(r4/3)

∑
j∈Z
||ux||2L2(Ij)

+

(
4

1− γ
+

4

α

)
C(r−2/3)||u||2L2(R).

For r chosen in a way that the following conditions are satisfied

(13)


C(r1/3)

(
4

1− γ
+

4

α

)
≤ α

4

C(r4/3)

(
4

1− γ
+

4

α

)
≤ 1− γ

4

we finally obtain

1

2

d

dt
||u(t, ·)||2L2(R) +

1− γ
2

∑
j∈Z

∫
Ij

u2
x(t, x)dx+

α

2

∑
j∈Z

[u]2
j+ 1

2

∆x
≤ C(α, γ)||u||2L2(R)
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and we conclude the proof by using Gronwall’s Lemma. �

5. Error estimates

Inspired by the stability estimate (12), we introduce the following energy norm to measure the
error

|||v(t, ·)||| :=

||v(t, ·)||2L2(R) + (1− γ)

∫ t

0

∑
j∈Z

∫
Ij

v2
x(t, x)dx dt+ α

∫ t

0

∑
j∈Z

[v]2
j+ 1

2

∆x

1/2

.

Moreover, let P be the L2 projection defined as

(14)

∫
R
(P(U)(x)− U(x))v(x) dx = 0, ∀v ∈ V k ∩ L2(R).

We then consider the following projection properties stated in [26, Lemma 3.1].

Lemma 5.1 ([26] ). Let U ∈ Hs+1(Ij) for j = 0, · · · ,M − 1, and s ≥ 0. Then we have the
following estimates:

1. |P(U)− U |m,Ij ≤ ck∆xmin(k,s)+1−m|U |s+1,Ij , m ≤ k + 1

2. |∂mx (P(U)− U)x+1/2| ≤ ck∆xmin(k,s)+1/2−m|U |s+1,Ij+1/2
, m ≤ k + 1/2,

where m ≥ 0 is an integer and | · |m,Ij denotes the semi-norm of Hm(Ij).

5.1. The linear case f = cU . In this subsection, we consider the linear problem

(15)

{
Ut + (cU − Ux + J [U ])x = 0,

U(0, x) = U0(x).

For the convection term, we opt for the well-known monotone Lax-Friedrich flux [17]

(16) f̂(u−j+1/2, u
+
j+1/2) = cuj+1/2 − |c|

[u]j+1/2

2
.

We then define the bilinear form associated to the numerical scheme (7) by

B(w, v) := Bl(w, v) + Bf (w, v)

where

Bl(w, v) :=

∫
R
wt(t, x)v(t, x) dx+

∑
j∈Z

∫
Ij

wx(t, x)vx(t, x) dx

−
∑
j∈Z

∫
Ij

J [w]vx(t, x) dx−
∑
j∈Z

(Ĵ [w][v])j+ 1
2

+
∑
j∈Z

(ŵx[v])j+ 1
2

(17)

and

Bf (w, v) = −
∑
j∈Z

[
(f̂(w)[v])j+ 1

2
+

∫
Ij

f(w)vx

]
.

Lemma 5.2. Let U be a regular solution of (15). Then we have for all v ∈ V k ∩ L2(R)

B(U, v) = 0.
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Proof. Let v ∈ V k ∩ L2(R). We first multiply (15) by v, integrate over Ij and have integration
by parts ∫

Ij

Utv dx−
∫
Ij

f(U)vx dx+ (f(U)v)(xj+ 1
2
)− (f(U)v)(xj− 1

2
) +

∫
Ij

Uxvx dx

− (Uxv)(xj+ 1
2
) + (Uxv)(xj− 1

2
)−

∫
Ij

J [U ]vx dx+ (J [u] v)(xj+ 1
2
)− (J [u] v)(xj− 1

2
) = 0

(18)

Moreover, since U is regular, we have [U ]j+1/2 = 0, (Ux)j+1/2 = Ux(xj+1/2) then

Ux(xj+1/2) = (̂Ux)j+1/2, f(U)(xj+1/2) = f̂(U)j+1/2

and from definition (10) of Ĵ , we have Ĵ [U ]j+1/2 = J [U ](xj+1/2). We have similar results for
xj−1/2.
Therefore by summing over all Ij , (18) gives B(U, v) = 0.

�

Theorem 5.3 (Convergence). Let U be a regular solution of (15) where all terms are well defined
and u ∈ C1([0, T ];V k ∩ L2(R)) be a solution of (7) with the numerical fluxes defined in section
3. With e := u− U , we have for small ∆x the following error estimate:

|||e(T, ·)||| ≤ C∆xk|U(T, ·)|k+1,(19)

where C = C(k, γ, α, c, T ) is a constant depending on k, γ, α, c, T .

Proof. Let e = u− U = P(e)− (U − P(U)). Then, we have

(20) |||e(T, ·)||| ≤ |||P(e)(T, ·)|||+ |||(U − P(U))(T, ·)|||.

From Lemma 5.1 it is sufficient to estimate the first term in the right side of (20) since

|||(U − P(U))(T, ·)||| ≤ C|U(T, ·)|k+1(∆x)k.

Since for any v in V k∩L2(R), the numerical solution u satisfies B(u, v) = 0 and the exact solution
U satisfies B(U, v) = 0 thanks to Lemma 5.2, we have

B(u, v)− B(U, v) = Bl(u, v) + Bf (u, v)− Bl(U, v)− Bf (U, v) = 0.

Then for v = P(e) and since P(e) = u− P(U) we have

Bl(P(e),P(e)) = Bl(U − P(U),P(e)) + Bf (U,P(e))− Bf (u,P(e)).

From the admissibility property (9) there exist γ ∈ (0, 1) and α > 0 such that

Bl(P(e),P(e)) ≥ 1

2

d

dt
||P(e)(t, ·)||2L2(R) + (1− γ)

∑
j∈Z
||P(e)x||2L2(Ij)

+ α
∑
j∈Z

[P(e)]2
j+ 1

2

∆x

−
∑
j∈Z

∫
Ij

J [P(e)](P(e))x dx−
∑
j∈Z

(Ĵ [Pe][Pe])j+ 1
2
.

Therefore, we have

1

2

d

dt
||P(e)(t, ·)||2L2(R) + (1− γ)

∑
j∈Z
||P(e)x||2L2(Ij)

+ α
∑
j∈Z

[P(e)]2j
∆x

≤ T1 + T2 + T3 + T4

(21)
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where

T1 = Bl(U − P(U),P(e))

T2 = Bf (U,P(e))− Bf (u,P(e))

T3 =
∑
j∈Z

∫
Ij

J [P(e)](P(e))x dx

T4 =
∑
j∈Z

(Ĵ [Pe][Pe])j+ 1
2

Let us first study the term T1. Using Hölder inequality we have

T1 = Bl(U − P(U),P(e)) =
∑
j∈Z

∫
Ij

(U − P(U))xP(e)x dx+
∑
j∈Z

̂(U − P(U))x[P(e)]j+ 1
2

−
∑
j∈Z

∫
Ij

J [U − P(U)]P(e)x dx−
∑
j∈Z

̂J [U − P(U)]j+ 1
2
[P(e)]j+ 1

2

≤ 10

1− γ
∑
j∈Z
||(U − P(U))x||2L2(Ij)

+
1− γ

10

∑
j∈Z
||P(e)x||2L2(Ij)

+
12∆x

α

∑
j∈Z

( ̂U − P(U))2
x

+
α

12

∑
j∈Z

[P(e)]2
j+ 1

2

∆x
+

10

1− γ
∑
j∈Z
||J [U − P(U)]||2L2(Ij)

+
1− γ

10

∑
j∈Z
||P(e)x||2L2(Ij)

+
12∆x

α

∑
j∈Z

̂J [U − P(U)]
2

j+ 1
2

+
α

12

∑
j∈Z

[P(e)]2
j+ 1

2

∆x

≤ 10

1− γ
∑
j∈Z
||(U − P(U))x||2L2(Ij)

+
12∆x

α

∑
j∈Z

( ̂U − P(U))2
x +

10

1− γ
∑
j∈Z
||J [U − P(U)]||2L2(Ij)

+
12∆x

α

∑
j∈Z

̂J [U − P(U)]
2

j+ 1
2

+
1− γ

5

∑
j∈Z
||P(e)x||2L2(Ij)

+
α

6

∑
j∈Z

[P(e)]2
j+ 1

2

∆x
.

For the term T2, since e = P(e)− (U − P(U)), we have,

T2 = Bf (−e,P(e)) = Bf (U − P(U),P(e))− Bf (P(e),P(e))

and since the monotone numerical flux (16) is a quadratic entropy flux (see [17, 25]) :

(22) Bf (P(e),P(e)) ≥ 0

then

T2 ≤ Bf (U − P(U),P(e))

Moreover from the definition of L2 projection (14) and Hölder’s inequality we obtain

|T2| ≤
∑
j∈Z

f̂(U − P(U))j+1/2[P(e)]j+ 1
2

≤ 12

α
∆x
∑
j∈Z

f̂(U − P(U))2
j+1/2 +

12

α

∑
j∈Z

[P(e)]2
j+ 1

2

∆x

Using now [15, Lemma 2.16], we have

|T2| ≤
12

α
ck∆x2k+2|U(t, ·)|2k+1 +

α

12

∑
j∈Z

[P(e)]2
j+ 1

2

∆x

where the constant ck depends solely on k.
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For the third term T3, thanks to Lemma 2.2 and Lemma 2.3 we obtain

|T3| ≤
5

1− γ
∑
j∈Z
||J [P(e)]||2L2(Ij)

+
1− γ

5

∑
j∈Z
||(P(e))x||2L2(Ij)

≤ 5

1− γ
C(r−2/3)||P(e)||2L2(R) +

5

1− γ
C(r1/3)

∑
j∈Z

[P(e)]2
j+ 1

2

∆x

+
5

1− γ
C(r4/3)

∑
j∈Z
||P(e)x||2L2(Ij)

+
1− γ

5

∑
j∈Z
||P(e)x||2L2(Ij)

.

Again from Lemma 2.2, Lemma 2.3 and inverse inequality (6) we get the following estimate for
T4

|T4| ≤ 12
∆x

α

∑
j∈Z
Ĵ [P(e)]

2

j+ 1
2

+
α

12

∑
j∈Z

[P(e)]2j
∆x

≤ 12

α
C(r−2/3)||P(e)||2L2(R) +

12

α
C(r1/3)

∑
j∈Z

[P(e)]2
j+ 1

2

∆x
+
α

12
C(r4/3)

∑
j∈Z
||P(e)x||2L2(Ij)

+
α

12

∑
j∈Z

[P(e)]2
j+ 1

2

∆x
.

We then choose r ∈ (0, 1) such that the following condition are satisfied
C(r1/3)

(
10

1− γ
+

12

α

)
≤ α

12

C(r4/3)

(
10

1− γ
+

12

α

)
≤ 1− γ

10

and substituting the above estimates for all terms Ti, i = 1, 2, 3, 4 into (21), we obtain for small
∆x

1

2

d

dt
||P(e)(t, ·)||2L2(R) + (1− γ)

∑
j∈Z
||P(e)x||2L2(Ij)

+ α
∑
j∈Z

[P(e)]2
j+ 1

2

∆x

≤ 10

1− γ
∑
j∈Z
||(U − P(U))x||2L2(Ij)

+
12∆x

α

∑
j∈Z

( ̂U − P(U))2
x +

10

1− γ
∑
j∈Z
||J [U − P(U)]||2L2(Ij)

+
12∆x

α

∑
j∈Z

̂J [U − P(U)]j+ 1
2

+ C(α)||J [U(t, ·)||L2(R) + C(k, γ, α, c)∆x2k|U |2k+1

+
1− γ

2

∑
j∈Z
||P(e)x||2L2(Ij)

+
α

2

∑
j∈Z

[P(e)]2
j+ 1

2

∆x
.

Finally from Lemma 2.2, Lemma 2.3, Lemma 5.1 and Gronwall’s Lemma, we obtain

|||P(e)(T, ·)|||2 ≤ C(k, γ, α, c, T )(∆x)2k|U(T, ·)|2k+1.

�

5.2. Nonlinear case. Let us now assume that f is nonlinear and let us prove the convergence
of the proposed scheme (7).
To deal with the nonlinear term f , we argue as [11, 33] by defining∑

j∈Z
Hj(f ;U, u, v) =

∑
j∈Z

∫
Ij

(f(U)− f(u))vx dx+
∑
j∈Z

(f(U)− f̂)[v]j+ 1
2
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and we use the following result:

Lemma 5.4 ([33]). For Hj(f ;U, u, v) defined above, we have the following estimate:∑
j

Hj(f ;U, u, v) ≤ −1

4
κ(f̂ ;u)[v]2 + (C + C?(||v||∞ + ∆x−1||eu||2∞))||v||2L2

+ (C + C?∆x
−1||eu||2∞)∆x2k,

with eu = U − u and

κ(f̂ ;w) ≡ κ(f̂ ;w−, w+) :=

{
[w]−1(f(w)− f̂(w)) if [w] 6= 0
1
2 |f
′(w)| if [w] = 0.

It has been proved that κ(f̂ ;w) is nonnegative and bounded for any (w−, w+) ∈ R2 [34].
Following the lines of [11, 33], we assume that for ∆x small and k ≥ 1 the following assumption

(23) ||U − u||L2(R) ≤ ∆x.

(24) ||eu||∞ ≤ C∆x1/2 and ||PU − u||∞ ≤ C∆x1/2

Theorem 5.5. Let U be a regular solution of (1) and u ∈ C1([0, T ];V k ∩L2(R)) be the discrete
solution of the DDG scheme (7) with the numerical fluxes defined in section 3. We have for ∆x
small enough satisfying (23)-(24) and k ≥ 1,

|||U − u||| ≤ C∆xk.

Proof. The proof follows the same lines as the previous proof for the linear case. Only the term
T2 needs to be treated differently. Indeed, using previous notations T2 can be rewritten as:

T2 = Bf (U,P(e))− Bf (u,P(e)) =
∑
j∈Z
Hj(f ;U, u,P(e))

As previously, for r ∈ (0, 1) judiciously chosen, we obtain for small ∆x

1

2

d

dt
||P(e)(t, ·)||2L2(R) +

1− γ
2

∑
j∈Z
||P(e)x||2L2(Ij)

+
α

2

∑
j∈Z

[P(e)]2
j+ 1

2

∆x

≤ C(k, γ, α)∆x2k|U |2k+1 +
∑
j∈Z
Hj(f ;U, u,P(e)).

Using Lemma 5.4, we get

1

2

d

dt
||P(e)(t, ·)||2L2(R) +

1− γ
2

∑
j∈Z
||P(e)x||2L2(Ij)

+
α

2

∑
j∈Z

[P(e)]2
j+ 1

2

∆x

≤ C(k, γ, α)∆x2k|U |2k+1+(C+C?(||P(e)||∞ + ∆x−1||eu||2∞))||P(e)||2L2 + (C + C?∆x
−1||eu||2∞)∆x2k.

We then estimate |||P(e)(T, ·)||| by using (23)-(24) and by applying the Gronwall’s Lemma

|||P(e)(T, ·)|||2 ≤ C(k, γ, α, T )(∆x)2k|U(T, ·)|2k+1.

Finally, the result follows from (20) and Lemma 5.1.
�
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6. Implementation of the numerical method

We conclude this paper by presenting some experimental results obtained using the numerical
scheme (7). We consider Legendre polynomials {φjl }l=0,··· ,k−1 as a local orthogonal basis of the

space P k(Ij) and we denote by {φl}l=0,··· ,k−1 the orthogonal basis of the space P k(−1, 1).
Therefore the numerical solution u for x ∈ Ij in space V k can be approximated by

(25) u(t, x) =

k∑
l=0

cjl (t)φ
j
l (x) = CTj (t)Φj(x),

where Φj = [φj0, · · · , φ
j
k]T and Cj(t) = [cj0, c

j
1, · · · , c

j
k]T is the unknown to be determined from the

numerical scheme (7).
From (7) with v = φjp, p = 0, · · · , k we have

k∑
l=0

d cjl (t)

dt

∫
Ij

φjlφ
j
p(x) dx−

∫
Ij

f(u)(φjp)
′(x) dx+

k∑
l=0

cjl (t)

∫
Ij

(φjl )
′(φjp)

′(x) dx

+f̂(u)φjp(x
−
j+1)− f̂(u)φjp(x

+
j )− ûx(xj+1)φjp(x

−
j+1) + ûx(xj)φ

j
p(x

+
j )

−
∫
Ij

J [u]
(
φjp
)′

+ Ĵ [u](xj+1)φjp(x
−
j+1)− Ĵ [u](xj)φ

j
p(x

+
j ) = 0.(26)

Using the following Legendre properties

φjl (xj−1/2) = (−1)l, φjl (xj+1/2) = 1,∫
Ij

φjlφ
j
p(x) dx =

∆x

2 p+ 1
δlp = αpδlp,

we obtain from (26) for all p = 0, · · · , k,

αp
dcjp(t)

dt
−
∫
Ij

f(u)(φjp)
′(x) dx+

k−1∑
l=0

cjl (t)

∫
Ij

(φjl )
′(φjp)

′(x) dx−
∫
Ij

J [u]
(
φjp
)′

+f̂(u−j+1/2, u
+
j+1/2)− (−1)pf̂(u−j−1/2, u

+
j−1/2)− ûx(xj+1/2) + ûx(xj−1/2)(−1)p

+Ĵ [u](xj+1/2)− Ĵ [u](xj−1/2)(−1)p = 0.

Test 1: We first test the numerical convergence of the DDG method (7) for linear and quadratic
elements with explicit third order Runge-Kutta time discretization. We also use quadrature rules
to compute all integrals. We consider here the following problem:

(27)

{
∂u(t,x)
∂t + c ∂u(t,x)

∂x − ∂2u(t,x)
∂x2 + ∂xJ [u(t, ·)](x) = g(t, x), x ∈ (−1, 1), t > 0

u(0, x) = u0(x)

with the initial condition u0(x) = e−50 x2

, c = 0.1 and the corresponding forcing term g(t, x) is
given by

g(t, x) = e−t (−u0(x) + c u′0(x)− u′′0(x) + ∂xJ [u0](x)) .

In Figure 1 we plot the logarithm of the error (in norm L2) in function of the logarithm of
the number of element N . The convergence numerical order is then given by the slope of the
curve. We observe that the numerical rate of convergence is consistent with the theoretical result.
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Figure 1. Test 1: Convergence curves for k = 1 (solid blue line) and k = 2 (solid red line).
Dashed lines represent slopes of order 1 (in blue) and of order 2 (in red).

Test 2. In this test case we simulate the initial problem (1) where parameters are added to
amplify the effects of the nonlocal operator on the diffusion term :

(28) ut +

(
u2

2
− εux + ηJ [u]

)
x

= 0, x ∈ (−5, 5), t > 0

with the following discontinuous initial data

u0(x) =

{
1 |x| < 0.5,
0 otherwise

The numerical solutions for t = 0.1 and t = 0.5 of the problem (28) are shown in Figure 2.
From this figure it is clear that the maximum principle is not satisfied as it has been proved in
[3] and that the nonlocal operator generates instabilities.

Test 3: Finally in this last case, we simulate the original problem (1) for two initial data:

• We first want to simulate the effect of the nonlocal term on the well-known travelling
wave solution of the viscous Burgers equation. We then consider the following initial
data:

(29) u0(x) =
1

2
− 1

2
tanh(

1

4
x)

We expose in Figure 3 the numerical solutions for different times. We note that the shape
of the wave is not preserved due to the nonlocal operator.

• We now want to simulate the evolution of a dune morphodynamic by considering the
following initial data:

(30) u0(x) = e−x
2

We plot for different times the evolution of this initial data and we observe that with time, the
dune deepens, which reflects the phenomenon of erosion related to the model of morphodynamics.
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Figure 2. Test 2: Numerical solutions of (28) with η = 1, ε = 0.01 and N = 100

Figure 3. Test 3: Numerical solutions for different times of (1) with the initial
data (29)
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Figure 4. Test 3. Numerical solutions of the morphodynamics model (1) with
initial condition (30) for t ∈ (0.1, 1)
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[3] N. Alibaud, P. Azerad, and D. Isèbe, A non-monotone nonlocal conservation law for dune morphodynam-

ics, Differential Integral Equations, 23 (2010), pp. 155–188.

[4] P. Azerad, A. Bouharguane, and J.-F. Crouzet, Simultaneous denoising and enhancement of signals by
a fractal conservation law, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), pp. 867–881.

[5] F. Betancourt, R. Bürger, K. H. Karlsen, and E. M. Tory, On nonlocal conservation laws modelling
sedimentation, Nonlinearity, 24 (2011), p. 855.

[6] S. Blandin and P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow
modeling, Numerische Mathematik, 132 (2016), pp. 217–241.

[7] A. Bouharguane, Finite element method for a space-fractional anti-diffusive equation, Journal of Compu-
tational and Applied Mathematics, 328 (2018), pp. 497–507.

[8] A. Bouharguane and R. Carles, Splitting methods for the nonlocal fowler equation, Mathematics of Com-
putation, 83 (2014).

[9] A. Bouharguane and N. Seloula, The local discontinuous galerkin method for convection-diffusion-
fractional anti-diffusion equations, Applied Numerical Mathematics, 148 (2020), pp. 61–78.

[10] C. Chalons, P. Goatin, and L. M. Villada, High-order numerical schemes for one-dimensional nonlocal
conservation laws, SIAM Journal on Scientific Computing, 40 (2018), pp. A288–A305.

[11] Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for time dependent partial
differential equations with higher order derivatives, Mathematics of Computation, 77 (2008), pp. 699–730.

[12] P. G. Ciarlet, Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics,
USA, 2002.

[13] S. Cifani, E. R. Jakobsen, and K. H. Karlsen, The discontinuous Galerkin method for fractal conservation

laws, IMA Journal of Numerical Analysis, 31 (2010), pp. 1090–1122.



DDG FOR A HIGH ORDER NONLOCAL CONSERVATION LAW 17

[14] , The discontinuous galerkin method for fractional degenerate convection-diffusion equations, BIT Nu-

merical Mathematics, 51 (2011), pp. 809–844.
[15] B. Cockburn, An introduction to the Discontinuous Galerkin method for convection-dominated problems,

Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 150–268.

[16] B. Cockburn and C.-W. Shu, The local discontinuous galerkin method for time-dependent convection-
diffusion systems, SIAM Journal on Numerical Analysis, 35 (1998), pp. 2440–2463.

[17] B. Cockburn and C.-W. Shu, Runge–kutta discontinuous galerkin methods for convection-dominated prob-

lems, Journal of Scientific Computing, 16 (2001), pp. 173–261.
[18] W. Deng, Finite element method for the space and time fractional fokker–planck equation, SIAM Journal on

Numerical Analysis, 47 (2009), pp. 204–226.
[19] Deng, W.H. and Hesthaven, J.S., Local discontinuous galerkin methods for fractional diffusion equations,

ESAIM: M2AN, 47 (2013), pp. 1845–1864.

[20] J. Droniou, A numerical method for fractal conservation laws, Mathematics of Computation, 79 (2010),
pp. 95–124.

[21] A. C. Fowler, Dunes and drumlins, in Geomorphological fluid mechanics, A. Provenzale and N. Balmforth,

eds., vol. 211, Springer-Verlag, Berlin, 2001, pp. 430–454.
[22] Y. Huang and A. Oberman, Numerical methods for the fractional laplacian: A finite difference-quadrature

approach, SIAM Journal on Numerical Analysis, 52 (2014), pp. 3056–3084.

[23] K. K. Kouakou and P.-Y. Lagrée, Stability of an erodible bed in various shear flows, The European Physical
Journal B - Condensed Matter and Complex Systems, 47 (2005), pp. 115–125.

[24] C. Li and S. Zhao, Efficient numerical schemes for fractional water wave models, Computers and Mathe-

matics with Applications, 71 (2016), pp. 238–254.
[25] H. Liu, Optimal error estimates of the direct discontinuous galerkin method for convection-diffusion equa-

tions, Mathematics of computation, 84 (2015), pp. 2263–2295.
[26] H. Liu and J. Yan, The direct discontinuous galerkin (ddg) methods for diffusion problems, SIAM Journal

on Numerical Analysis, 47 (2009), pp. 675–698.

[27] A.-M. Matache, C. Schwab, and T. P. Wihler, Fast numerical solution of parabolic integrodifferential
equations with applications in finance, SIAM Journal on Scientific Computing, 27 (2005), pp. 369–393.

[28] M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion

flow equations, Journal of Computational and Applied Mathematics, 172 (2004), pp. 65 – 77.
[29] K. Mustapha and W. McLean, Superconvergence of a discontinuous galerkin method for fractional diffusion

and wave equations, SIAM Journal on Numerical Analysis, 51 (2013), pp. 491–515.

[30] J. Shen, On a new pseudocompressibility method for the incompressible navier-stokes equations, Applied
Numerical Mathematics, 21 (1996), pp. 71–90.

[31] H. M. Soner, Optimal control with state-space constraint. ii, SIAM Journal on Control and Optimization,

24 (1986), pp. 1110–1122.
[32] Q. Xu and J. S. Hesthaven, Discontinuous Galerkin method for fractional convection-diffusion equations,

SIAM Journal on Numerical Analysis, 52 (2014), pp. 405 – 423.

[33] Y. Xu and C.-W. Shu, Error estimates of the semi-discrete local discontinuous galerkin method for nonlin-
ear convection–diffusion and kdv equations, Computer Methods in Applied Mechanics and Engineering, 196

(2007), pp. 3805–3822.
[34] Q. Zhang and C. Shu, Error estimates to smooth solutions of runge–kutta discontinuous galerkin method for

symmetrizable systems of conservation laws, SIAM Journal on Numerical Analysis, 44 (2006), pp. 1703–1720.

[35] Y. Zheng, C. Li, and Z. Zhao, A note on the finite element method for the space-fractional advection
diffusion equation, Computers & Mathematics with Applications, 59 (2010), pp. 1718–1726.
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