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Abstract

Remote sensing satellites capture the cyclic dynamics of our Planet in regular time intervals recorded in satellite time
series data. End-to-end trained deep learning models use this time series data to make predictions at a large scale, for
instance, to produce up-to-date crop cover maps. Most time series classification approaches focus on the accuracy of
predictions. However, the earliness of the prediction is also of great importance since coming to an early decision can
make a crucial difference in time-sensitive applications.

In this work, we present an End-to-End Learned Early Classification of Time Series (ELECTS) model that estimates
a classification score and a probability of whether sufficient data has been observed to come to an early and still
accurate decision. ELECTS is modular: any deep time series classification model can adopt the ELECTS conceptual
idea by adding a second prediction head that outputs a probability of stopping the classification. The ELECTS loss
function then optimizes the overall model on a balanced objective of earliness and accuracy. Our experiments on four
crop classification datasets from Europe and Africa show that ELECTS allows reaching state-of-the-art accuracy while
reducing the quantity of data massively to be downloaded, stored, and processed. The source code is available at
https://github.com/marccoru/elects.

1. Introduction

Efficient large-scale agricultural monitoring and crop
type mapping is a prime example of time series analy-
sis in Earth observation: analyzing the temporal variation
of vegetation during a growing season is crucial for effi-
cient and accurate predictions. Models and algorithms
trained from satellite time series can distinguish differ-
ent crop types by observing differences in their respec-
tive phenology (life cycles). Traditionally, NDVI-based
temporal profiles [1, 2] are used to extract a fixed set
of hand-defined features, such as the date of the green-
up, or senescence phases [2]. Remote sensing experts of-
ten manually choose the observation period in these ap-
proaches to capture the entire vegetative period of the
crops in a particular region. The final classification is ex-
ecuted once at the end of this period to produce a crop
cover map. Early time series classification has been a
steady topic of interest in remote sensing but is often
seen as an auxiliary objective. In crop type classification,
the terms in-season- or early crop type mapping are com-
monly used. Several studies [3, 4, 5, 6] found that a high
classification accuracy for most crop types is achievable
within the growing season in a specific region. A common
strategy for assessing which accuracy is possible at what
day of the year is incremental classification, as termed by

Inglada et al., [5]: a supervised classifier performs a clas-
sification every time a new image becomes available. The
achievable accuracy is then recorded and related to the
length of the sequence. This process involves re-fitting the
classifier for different sub-sequences and provides region-
specific evidence across all crop types regarding the date
at which an accurate classification is possible. Recent
works have applied incremental classification for early crop
type mapping in Germany, [7, 8] and South Africa [9].
Other approaches avoid re-fitting the classifier by choos-
ing sequence-length invariant features [10], employing a
cluster-then-labeling strategy [11], or modeling simplified
two-dimensional feature space in a generative way from
historical data [12]. These approaches employ increasingly
sophisticated heuristics to hand-define features invariant
to the sequence length. Crucially, these approaches yield
a rough general knowledge of achievable accuracy given a
specific day of the year for a single region across multiple
crop types. Meanwhile, end-to-end deep learning archi-
tectures based on recurrence [13], self-attention [14], or
convolution [15] can map a variable length series into a
fixed-length representation natively. These deep neural
networks learn class-discriminative features solely from a
large dataset of labeled samples in an end-to-end scheme
by minimizing classification error as the objective function.
To our knowledge, no approach has explicitly optimized a
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Figure 1: Overview of datasets used in this work. All datasets show
a label imbalance, as dominant crops are common in the respective
areas. The European datasets BreizhCrops (France) and Bavarian-
Crops (Germany) provide large-scale data with several tens to hun-
dreds of thousands of time series samples. In contrast, the African
datasets are smaller and contain a few hundred to a few thousand
crop parcels.

model for the objective of an early classification in remote
sensing.

In this work, we address this research gap by End-to-
end Learned Early Classification of Time Series (ELECTS).
Our method provides early and accurate predictions for
each field parcel. To do so, we use a neural network with a
loss function optimizing for both objectives: earliness and
accuracy.

ELECTS augments and is compatible with recent ad-
vances in end-to-end trainable deep time series classifi-
cation models [13, 14, 15]. As these models produce a
fixed-size vector from a variable-length sequence, it does
not have to re-fit the classifier on shorter sub-sequences, as
earlier incremental classification approaches did [3, 4, 5, 6].
Optimizing on the joint loss objective of earliness and ac-
curacy is also conceptually more straightforward compared
to the cluster-then-labeling heuristic of Konduri et al.,
(2020) [11] or modeling transitions with two-dimensional
distributions from historical data, as Lin et al., (2022) [12].

2. Datasets

We evaluate ELECTS on four crop-type mapping datasets.
Annotations of two datasets originate from crop type statis-
tics collected in Europe and are available at a large scale
with several tens of thousand of samples. The annotations
of the two datasets in Africa originate from small-scale
surveys and contain only hundreds to few thousand anno-
tated time series samples. Figure 1 summarizes the crop-
type datasets used in this work. It shows the locations and
the label distribution of four crop datasets in Europe and
Africa.

2.1. BreizhCrops (France)

We use the BreizhCrops dataset [16] to compare the
LSTM model of Section 3.1 with several other regular
classification models. BreizhCrops contains time series of
608 263 field parcels of the year 2017 in Brittany, France.

The time series contains all Sentinel-2 images from Jan-
uary to December. Both datasets typically contain be-
tween 71 (every 5 days) and 147 (every 2.5 days) Sentinel-
2 observations. The high acquisition frequency of 2.5 days
and 147 observations is possible for some fields in the
overlap area of two acquisition stripes. The BreizhCrops
dataset [16] is split regionally into training (FRH01, FRH02;
319 258 fields), validation (FRH03; 166 391 fields), and test
(FRH04; 122 614) partitions, where FRH{1, 2, 3, 4} refers
to NUTS-3 administrative boundaries. The Nomenclature
des unités territoriales statistiques (NUTS) system delin-
eates Europe in administrative boundaries at three levels:
country, state, and province. BreizhCrops uses the divi-
sion at the provincial level NUTS-3. The dataset contains
nine crop classes: barley, wheat, rapeseed, corn,
sunflower, orchards, nuts, permanent meadows,
temporary meadows. They are selected to contain both
frequent (barley, wheat) and rare classes (sunflower,
nuts), as well as semantically similar categories (permanent-
and temporary meadows).

2.2. BavarianCrops (Germany)

We performed ablation studies and the comparison to
one method from the early time-series community (SR2-
CF2[17] in Appendix B.1) on a crop type dataset near
Hollfeld in Bavaria, Germany, which is a subset of the
dataset used in [18]. We chose to subset the original
dataset for computational reasons in the initial develop-
ment and to compare it with existing early time series
classification approaches that are typically not designed for
large-scale datasets. Our subset of BavarianCrops covers a
40km× 35km area and contains 27 470 fields that are split
into training (16 600), validation (3057), and test (7813)
partitions, each one organised in blocks of 4.5km× 4.5km
with 500 meter margin between the blocks. All parcels
within one block are assigned to the same train-val-test
partition to avoid assigning neighboring fields to different
partitions [19]. Sentinel-2 scenes with same frequency as
Breizhcrops alongside associated labels are from January
to December 2018 and cover the 7 common crops meadow,
summer barley, corn, winter wheat, winter bar-
ley, clover, triticale.

2.3. Ghana and South Sudan

Rustowicz et al. [20] compiled the datasets of Ghana,
and South Sudan that were incorporated in the Sustain-
Bench dataset [21]. They share a common processing his-
tory and are described together in this section. In these
middle- and low-income countries, a substantial portion of
the population directly depends on agriculture. An early
estimate of the expected crop yield is crucial to evalu-
ate the economic markets and uncover potential shortages.
This dataset provides Sentinel-2, Sentinel-1, and Plan-
etScope images of size 64 by 64 pixels from the years 2016
and 2017 linearly interpolated to a time series of 365 days.
We take the imagery and field boundaries and average all
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pixels belonging to each field to obtain a time series. Fol-
lowing [20], the ten Sentinel-2 bands (10m and 20m chan-
nels) and NDVI and green chlorophyll vegetation index
(GCVI) features are combined with three Sentinel-1 bands
(VV, VH, and their ratio) and four PlanetScope bands
(RGB+NIR), which results in a 19-dimensional feature
vector for each field parcel. While the training and valida-
tion datasets were taken from 2016, the samples of the test
dataset were taken from the subsequent year 2017. The
crop types classified in Ghana are groundnut, maize,
rice, and soy bean, while information on sorghum,
maize, rice, and groundnut are available in South Su-
dan.

3. Methodology

This section describes the details of the proposed method.
It consists of a deep learning feature extractor with two
decision heads, detailed in Section 3.1 and a loss function
that optimizes for the dual objective of accuracy and ear-
liness outlined in Section 3.2. Throughout this section,
we denote vectors with bold-faced symbols, while matri-
ces are bold-faced and capitalized. In a time series, we use
t to indicate any time step, while T refers specifically to
the index of the last time step in the sequence, i.e., the
sequence length. Figure 2 shows a schematic view of the
model and loss functions with the associated equations of
this section.

3.1. Model

We use a time series classification model that consists
of i) a deep feature extractor based on recursion, fθ, that
ingests time series data one observation at a time and ii)
two output heads. This model can be implemented with
different deep learning architectures, but we focus on re-
current neural networks (RNNs) without loss of generality.
RNNs estimate a hidden representation ht at a given time
t from an input time series X→t = (x1, x2, . . . , xt) of obser-
vations x up to the image acquisition at time t. The model
can process a variable number of samples and ingest time
series with different sequence lengths T. A recurrent neu-
ral network

ht = fθh (xt, ht−1) (1)

updates its zero-initialized hidden representation ht−1 to
ht with each new observation xt. It is a natural choice
as a feature extractor, as it projects a variable-length in-
put sequence to a fixed-size representation. In practice,
to avoid vanishing gradients [22, 23], we choose a Long
Short-Term Memory (LSTM) [24] recurrent neural net-
work {ht, ct} = fθh (xt, {ht−1, ct−1}) that updates two hid-
den representations where we use the cell output ht for two
linear decision heads: one head produces a classification
probability for each class

ŷt = softmax ( fθc (ht)) (2)

and another one outputs a scalar probability of stopping

dt = σ
(

fθd (ht)
)

(3)

the classification decision. The σ symbol denotes the sig-
moid function that rescales the outputs of the stopping
head to a probability between 0 and 1. At test time, a hard
stopping decision is sampled from this stopping probabil-
ity. As an example: with a stopping probability dt = 0.2,
the classification is stopped with a 20% probability at this
time. In practice (see Fig. 3 in results), we observe that
dt raises sharply from 0 to 1 within a few time points on
a trained model.

3.2. ELECTS loss function

At each time t ≤ T, we compute the classification,
earliness-rewarded loss, LCER:

LCER(ŷt, y) = αLc(ŷt, y)− (1− α)Re(ŷt, y, t). (4)

We weight both terms with an α ∈ [0, 1] hyper-parameter
that trades off accuracy and earliness reward. The classi-
fication loss is the negative log-likelihood or cross-entropy
loss

Lc(ŷt, y) = −
C

∑
c=1

yc log ŷc,t, (5)

while the earliness reward is

Re(ŷt, y, t) = ŷ+
t

(
T − t

T

)
. (6)

As such, Re decreases linearly for later predictions when
t approaches T. This term is scaled with the probability
of the correct class y+

t = ∑C
c=1 ycŷc,t with y as one-hot

vector of C classes. This term applies the reward only if
the probability of the correct class is large.

LELECTS is computed for each time t in a training sam-
ple time series of length T to minimize a joint expression
of accuracy (via LCER) and explicit earliness (via Dt) as:

LELECTS(d̂→t, ŷt, y) = Dt(d̂→t)LCER(ŷt, y) (7)

where

D(d̂→t) = d̂t

t−1

∏
i=1

(1− d̂i) +
ε

T
(8)

can be interpreted as the joint probability of making a de-
cision d̂t at time t and not having made a decision before

∏t−1
i=1(1− d̂i). At the last time step, we set d̂T = 1 irrespec-

tively of the model output to make sure that the model has
taken a stopping decision in the interval [0, T]. In practice,
we add a small constant offset ε

T to each d̂t, with ε as an

hyper-parameter. This offset makes D(d̂→t) non-zero for
all t, which encourages the model to make accurate clas-
sifications for all time steps in Eq. (7). With ε = 0, only
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Eq. (3) Eq. (2)

ht−1

xt−1

d̂t−1

ht−2

xt−2

d̂t−2
. . .

. . .

. . . hT

xT

d̂T = 1

LCER(ŷt, y)
Eq. (4)

D(d̂→t)
Eq. (8)

Lt
ELECTS(d̂→t, ŷt, y)

Eq. (7)

Lt−1Lt−2. . .
LT

∑T
t=1 Lt

ELECTS
Eq. (9)

Model
(Section 3.1)

Losses
(Section 3.2)

Figure 2: Schematic illustration of model (blue) and losses (red) of this Section 3. Arrows indicate function inputs and outputs. Neural
network components are denoted by fθ . At test time, with fixed weights, θ, the model (blue) can process a time series up to any time t. At
training time, losses are calculated on the complete time series until the last time step T.

accurate classifications at the time steps close to the stop-
ping time, where D(d̂→t) is large, would be encouraged.
Without this offset, i.e., with ε = 0, we found experimen-
tally (see Appendix A) that a randomly-initialized model
tended to fall in a local minimum when optimizing Eq. (7)
by predicting early at low accuracy.

The learnable parameters θh, θd, θc are determined by
minimizing the overall objective

argmin
θh ,θd ,θc

∑
X,y

T

∑
t=1

LELECTS( f (X; θh, θd, θc)︸ ︷︷ ︸
d̂→t ,ŷt

, y) (9)

for each time t over a dataset of labeled samples X, y.

3.3. Implementation Details

For all results described in the Section 4, we used a
recurrent neural network with the same hyperparameters
for all datasets. An initial linear layer (and layer nor-
malization) projects the original input vector to a learned
32-dimensional feature representation at each time, fol-
lowed by two mono-directional LSTM layers. We imple-
ment each decision head as a linear layer with a sigmoid ac-
tivation function for the stopping decision and softmax for
the classification scores, respectively. The overall model
has 67 108 trainable parameters, making this implementa-
tion light weighted and trainable in any desktop machine
with a GPU graphics card. As stated above, researchers
can implement the ELECTS loss on any neural network
for time series making it adaptable for other time series
approaches. We used the Adam optimizer with a learning
rate of 0.001 and a dropout of 20%. We determined these
hyperparameters experimentally on the validation set of
the BavarianCrops dataset (described in the next section).

With a batch size of 256, we trained models in a few min-
utes (BavarianCrops) or a few hours (BreizhCrops) on a
GeForce RTX 3090. For BavarianCrops and BreizhCrops,
we randomly choose sequences of 70 observations from the
originally longer complete time series to obtain sequences
of equal length for training in batches. At test time, we
can run inference on the complete variable-length time se-
ries. For the Ghana and South Sudan datasets, we train
on the interpolated 365-day sequences, similar to [20]. We
used an ε = 10 offset parameter throughout the experi-
ments with a fixed sequence length of the respective train-
ing dataset.

3.4. Model Evaluation

We evaluate the model on the four different crop type
mapping datasets in Europe and Africa, described in Sec-
tion 2. We train, validate, and evaluate the model for
each dataset on spatially disjoint training, validation, and
test regions. For BavarianCrops, training and evaluation
fields were separated by blocks, while different adminis-
trative boundaries were used in BreizhCrops. For Ghana
and South Sudan, we followed the split of Rustowicz et al.,
(2019) [20]. For each dataset, we re-train the ELECTS-
LSTM model from scratch on the respective training dataset
and evaluate the performance on the test set. We do not
vary the hyper-parameters (network layers, hidden dimen-
sions, learning rates) across the datasets in these experi-
ments and keep the identical model architecture through-
out this work.

4. Results

This section presents the results obtained with the ELECTS-
trained LSTM neural network described in Section 3. We
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structure this section in three parts: First, Section 4.1
shows the prediction process on individual field parcels
qualitatively and quantitatively. Section 4.2 focuses on
the dates of stopped decisions and relates these to pheno-
logical events. It provides interpretations of the model pre-
dictions on two crop classes (rapeseed and barley). For
these experiments, we used the large BreizhCrops dataset
in Sections 4.1 and 4.2. Finally, we expand the scope in
Section 4.3, where we train the ELECTS recurrent neu-
ral network on multiple datasets in Europe (BreizhCrops,
BavarianCrops) and Africa (Ghana, South Sudan), as out-
lined in Section 2. Further model comparisons developed
in the time series community and ablations on the loss
design on the BavarianCrops dataset are reported in Ap-
pendix A and Appendix B, respectively.

4.1. Accuracy Evaluation

Sections 4.1.1 and 4.1.2 illustrate the prediction pro-
cess, while Section 4.1.3, analyzes the classification accu-
racy of the stopped fields quantitatively throughout the
year on all field parcels in the BreizhCrops test set.

4.1.1. Single Field Prediction

Figure 3 illustrates the prediction process with the ELECTS-
trained LSTM on a single time series sample from the
BreizhCrops test set. The time series of this temporary
meadow field is represented on the left as its NDVI pro-
file. However, note that our model uses thirteen spectral
bands’ complete signal at each observation. This profile
shows that this field parcel is photosynthetically active
(high NDVI) across the year. These high-NDVI obser-
vations in this time series are interrupted by negative out-
liers caused by cloud cover (low NDVI). The ELECTS-
trained LSTM neural network ingests this time series one-
time step at a time and estimates a probability for each
crop class (top right) and a probability of stopping (bot-
tom right). The model estimates a high probability for
the class wheat (orange) during the first hundred days of
the year. If the model stopped the classification decision
this early, it would incorrectly predict the class wheat.
Further, during the first hundred days, the probability of
stopping remains low, indicating that more data is neces-
sary for a confident decision. From the day of year 100
onwards, the model assigns the highest classification prob-
ability to the correct class temporary meadow. The
probability of stopping remains low until day-of-year 150
when a rapid increase indicates that the model is suffi-
ciently confident to stop the classification.

4.1.2. Classification of Fields at Different Times

Figure 4 shows a crop cover map of 250 field parcels
from a 2.5km × 2.5km area of interest within Brittany,
France, from the BreizhCrops test set. It illustrates the
prediction process in the deployment setting where the
predictions of some fields are stopped at different times
compared to others in the same geographic area. The

top row presents RGB images from this area alongside the
ground truth crop type. The other rows show the model
predictions at each date (second row), the correct/incor-
rect predictions (third row, with blue being correct and
red incorrect), and the active (white) vs. stopped (black)
status of each parcel. The rightmost column shows the
predictions after recombining all predictions obtained at
the respective stopping time (second and third row) and a
summary of the per parcel stopping date. For ELECTS,
only a stopped field (black) classification decision is rele-
vant, as active fields (shown in white) require more data.
In rows two and three’s prediction and correctness fig-
ures, we present parcels still active in the decision process
with transparent colors. The field parcels where the model
stopped the classification process are drawn with opaque
colors without transparency.

On April 12th (first column in Fig. 4), most parcels
were covered homogeneously with green vegetation. The
model predicted most fields as temporary meadow and
corn, among the dataset’s most frequent classes. The
overall accuracy for these parcels was 54%. These early,
incorrect classifications (red) are frequent, as not enough
time series could be observed this early in the year. The
ELECTS-LSTM model did not stop any fields at this point
(no black fields in the bottom row). More time steps are
required for a confident classification decision. On May
22nd (second column in Fig. 4), the overall accuracy has
increased to 74%. At this date, several parcels of corn
(in red) and one of rapeseed (green) were stopped and
correctly classified. The model predictions did not vary
noticeably in June 21st (third row in Fig. 4) concerning
April 12th. However, the number of stopped parcels in-
creased steadily, as shown in the bottom row. The model
classified most fields within the year’s first half (shown in
day-of-stopping; last row and column). However, single
fields were still classified later in the year, emphasizing
the need for a stopping decision for each field parcel, as
the ELECTS-LSTM model provides.

4.1.3. Quantitative Prediction Accuracy

Figure 5 shows the classification accuracy up to a spe-
cific day of the year for all field parcels (orange) and only
the stopped field parcels (blue) in the test set of BreizhCrops
in Brittany, France. The horizontal axis represents the
prediction date within the year until data is accessible to
the classifier. The blue shaded area shows the number of
stopped fields at each respective date. The orange line
shows the classification accuracy calculated on all fields
and represents the performance of a regular accuracy-only
time series model. The blue line shows the classification
accuracy only of the stopped fields, as provided by an early
classification approach, such as the ELECTS-LSTM model
in this work.

Early in the year, only a low accuracy between 30%
and 50% on all fields is possible before March 1st, the
day-of-year (doy) 60. The model can observe no fine-
grained classification-relevant features this early, as this
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probability of stopping remains low, more data is necessary to obtain an accurate classification result.
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wards in the early season. The stopped fields are classified more
accurately compared to all fields in the test region. A user can ex-
pect an accurate prediction of a stopped field.

period falls in the winter season. The stopping decision
of the early classification model reflects this by declaring
no fields as stopped before doy 60. From doy 60 onwards,
an increasing number of fields are declared as stopped, as
indicated by the blue shaded area. Notably, the few fields
the model stopped in the early season between March and
June (doys 60 and 150) are predicted at high accuracy,
as shown by the blue line. Later during the year, the ac-
curacy decreases when the classification of the majority of
fields is stopped. The high accuracy of early-stopped fields
reflects the intuition that the stopping decision is related
to the model’s confidence, as presumably easier-to-classify
fields are stopped first, leading to the high accuracy in the
early season. The more ambiguous and difficult fields are
stopped in the late season. Wrong classifications become
more common, and the accuracy drops to the same level
as expected by an accuracy-only classifier.

From a practical deployment perspective, this result
demonstrates that a user can be confident that the predic-
tions are accurate for the stopped fields. This allows the
user to make decisions for these individual field parcels
early in the season.

4.2. Earliness Evaluation

Fig. 6 analyses the dates in which the ELECTS model
stopped the classification from a phenological perspective
concerning a local crop calendar of France. Figure 6a
shows that stopping dates vary for individual crop types
where the classification of all crops has been stopped in
the agriculturally relevant period between planting and
harvest. The average classification time of most crops,
i.e., wheat, rapeseed, corn, sunflower, lies in the
mid-season period. Notably, all crops except barley (dis-
cussed later) were classified before the harvest period, which
domain experts often consider the end-of-series date for
accuracy-only classifiers when knowledge of local crop cal-
endars is available.

Rapeseed parcels were classified particularly early:
towards the end of April until mid-May, two months before
the harvest period. We analyze these crop fields qualita-
tively in Fig. 6b where several rapeseed fields are high-
lighted by a white outline on images from April 22nd,

June 21st, and July 16th. Rapeseed fields blossom in a
characteristic yellow color, as visible in the image of April
22nd. This blossoming period falls into the window where
the classification of the majority of rapeseed parcels has
been stopped. Hence, we can deduce that the model uses
this blossoming event as a characteristic feature to clas-
sify these parcels as rapeseed and stop the classification
confidently. In Fig. 6a, barley was the only crop type
where the model stopped the prediction during the har-
vest period end of June. We analyze this period quali-
tatively in the second row of Fig. 6b that shows barley
parcels outlined in white color. In particular, the effects
of harvest are visible on June 21st, where barley fields
are the only field parcels that were recently harvested. Af-
ter that date, bare soil is observed in the parcel, while all
neighboring field parcels are covered by vegetation. From
this analysis, we can deduce that these harvest operations
cause the stopping decisions of the barley crops, as the
stopping dates of barley parcels fall narrowly into this
period. This analysis shows that the stopping times pro-
duced by the ELECTS-LSTM early classification model
fall into a meaningful phenological period for this region.
The interpretation of the crop calendar and explanation of
the barley and rapeseed parcels show that the model
learned to utilize meaningful features (e.g., the blossom-
ing event of rapeseed) to come to the stopping decision.
Notably, this is learned without any direct temporal su-
pervision as the model is optimized end-to-end solely on
crop labels without any labels on time or crop cycles for
this area.

4.3. Applicability of ELECTS across datasets

The proposed model can be trained end-to-end on any
time series classification problem if sufficient class-labeled
data is available. This enables us to train models for dif-
ferent geographic areas without requiring region-specific
expert knowledge aside from the labeled samples in the
respective datasets. Hence, in this section, we test the
applicability of the ELECTS-LSTM model with identical
hyper-parameters to different datasets in Europe (France
and Germany) in Fig. 7 and Africa (Ghana and South Su-
dan) in Fig. 8.

We organize this section in two parts. First, we discuss
the model performance on large-scale European datasets
where several ten to hundred thousands of field annota-
tions are available. Then, we train and test the model
on two African datasets where substantially less training
data is available for end-to-end optimization of this deep
learning model.

4.3.1. Large-scale datasets in Europe

Fig. 7 shows the accuracy as a confusion matrix and the
earliness as a histogram of stopping times of field parcels in
France (BreizhCrops) and Germany (BavarianCrops). All
crop classes within the BavarianCrops dataset (Fig. 7a)
were classified accurately with an overall accuracy of 86%.
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(a) Quantitative evaluation of stopping times per crop type in Brittany,
France, overlayed with planting, mid-season, and harvest dates from the
crop calendar for France by the USDA Foreign Agricultural Service.
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(b) Images of barley and rapeseed fields on three selected dates. The
model stopped the classification of rapeseed fields end of April when the
characteristic yellow blossoms were visible, shown in the April 22nd image.
Barley field classifications were stopped end of June during the harvest,
as visible in June 21st, where bare soil is visible on the field parcels.

Figure 6: Stopping times of individual crops classes related to the local crop calendar in Brittany, France and examples of barley and
rapeseed fields that reveal that specific machining and blossoming events cause early classifications of these crop categories.

Systematic confusions were present between wheat, win-
ter barley, and triticale, as these crops share biolog-
ical ancestry and clover and meadows which are cul-
tivated in a similar way and cut periodically throughout
the year. Most notably, the model achieves this accuracy
with only 40% of the entire sequence length. While the
entire time series spans from January to December, most
field parcels were classified within a two-month window
(65 days) around May 24th. This highlights the potential
of the ELECTS early classification approach to come to
early and still accurate classification decisions within the
year.

In Fig. 7b, we show the accuracy and earliness results
on the BreizhCrops with fields of Brittany, France. Here,
all crops are classified with an overall accuracy (OA) of
80% with an average stopping period of one month around
June 7th. The ELECTS-LSTM model used only 32% of
the overall time series on average. Most notably, regular
accuracy-only models, which make predictions at the end
of the entire time series, achieve comparable accuracies of
80% OA score, as shown in Fig. B.11a of Appendix B.2.
In terms of classifications, systematic confusions are visible
between permanent meadows and temporary mead-
ows. Infrequent classes, such as nuts and sunflow-
ers are not predicted correctly, as they have little effect
on the overall loss objective. This classification of very
imbalanced class distributions falls beyond the scope of
this work. Overall, these results show that the ELECTS-
modified LSTM model matches the accuracy of regular
non-early classification models while predicting substan-
tially earlier within the season.

4.3.2. Small-scale datasets in Africa

Figure 8 shows confusion matrices and (class-wise) stop-
ping times of the ELECTS-LSTM model in Ghana and
South Sudan. The model finds accurate and early solu-
tions on these datasets even though training a deep learn-
ing model on dataset sizes of 3837 and 737 individual field
samples is inherently difficult. In South Sudan (Fig. 8a),

an overall accuracy of 83% is achieved with average predic-
tions on the day of year 61 (March 2nd). These very early
classifications are driven mainly by rice and sorghum
fields that can be classified in January and February in this
region. This overall accuracy is on a similar level to a con-
volutional LSTM model with 82.6% overall accuracy re-
ported by Rustowicz et al., (2019) [20]. Note that their un-
derlying classification model is advantaged: the kernels in
their convolutional LSTM model can make use of the pixel-
neighborhood. In comparison, the LSTM implementation,
which we modified for ELECTS, can only classify individ-
ual pixels separately from each other. Note, however, that
ELECTS can be modified to incorporate spatio-temporal
data by changing the feature extractor to the same classi-
fier as Rustowicz et al., (2019) [20]. On a dataset of this
comparatively small size, both deep learning models per-
formed 5.7% and 6.1% worse compared to a regular ran-
dom forest classifier (concatenates all time points to one
large feature vector) with 88.7% overall accuracy. Overall,
the ELECTS-LSTM still compares well to the accuracy-
only models from Rustowicz et al., (2019) [20] while only
requiring a fraction of the time series to come to an ac-
curate and early decision. A similar trend is visible in
the Ghana dataset shown in Fig. 8b where the ELECTS-
LSTM model achieves an overall accuracy of 54% while
classifying the fields on average on day of year 78 (March
19th). This accuracy is 7.1% and 5.9% worse compared to
the random forest, and convolutional LSTM model from
Rustowicz et al., (2019) [20] that achieve 61.1%, and 59.9%
accuracy, respectively. These accuracy-only models, how-
ever, can only predict after observing the entire time se-
ries, while the ELECTS-LSTM model used only 20% of
the overall time series with an average stopping date of
the 78th day of the year.

Overall, these results demonstrate that the ELECTS-
LSTM model converges to a meaningful solution without
any region-specific tuning. It produces early and still ac-
curate predictions at a fraction of the entire time series.
While the early classification model matched the accuracy
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Figure 7: Class-wise accuracy and earliness of the predictions on the two large-scale European datasets, BavarianCrops (a) and BreizhCrops
(b). The ELECTS model predicts most classes accurately at a fraction of the required length of the time series in both datasets.

of accuracy-only models on the large BreizhCrops dataset,
the model achieved a marginally lower accuracy on the
substantially smaller datasets in Africa. Still, early and ac-
curate predictions have been achieved without any region-
specific parameter tuning with the ELECTS-LSTM model,
which demonstrates the applicability in unexplored areas
where sufficient training data is available.

5. Discussion

In this work, we demonstrated that a regular long short-
term memory (LSTM) recurrent neural network can be ef-
fectively modified with ELECTS for early and accurate
classifications on various crop-type datasets. On suffi-
ciently large datasets, the performance is on par with that
of accuracy-only models with only a fraction of the se-
quence length. The ELECTS-LSTM does not require refit-
ting or predicting with different sub-sequences, conversely
to related work [8? , 9] based on incremental classifica-
tion. Other approaches [12, 11] are often developed and
targeted towards one specific deployment area, often fo-
cused on the continental US, while we demonstrated the
applicability of ELECTS on different continents. ELECTS
inherits the limitations of deep learning: predominantly,
the requirements of large annotated datasets for end-to-
end optimization. This was evident in the predictions on
small datasets (Ghana and South Sudan) where the accu-
racy of the ELECTS-LSTM was marginally worse than an

accuracy-only model, while it matched the accuracy at the
European large-scale datasets. Sensitivity to label imbal-
ance is a further limitation where wrong classifications of
infrequent classes are penalized less than frequent ones.

Deploying an ELECTS model on applications beyond
crop type mapping would be a natural extension, as this
model can be trained on any class-annotated time series
dataset. Extending ELECTS for spatio-temporal data is
feasible with little effort and can be done by modifying the
feature extractor, for instance, by adding 2D convolutional
layers.

The implications of an automated end-to-end trainable
model, such as ELECTS, are manifold: acquiring pre-
dicted and accurate class labels for a subset of stopped
crop parcels has direct practical implications for the con-
trol of European agricultural subsidies. In practice, sam-
ple on-site inspections often control the European subsidy
after a specific pre-determined date. Field-wise, in-season
predictions, as ELECTS provides, allow the start of this
process weeks and months in advance. Further, the po-
tential to save computational and storage resources is sub-
stantial: ELECTS provided accurate predictions using be-
tween 16% (South Sudan) to 40% (BavarianCrops) of the
overall time series. For instance, when scaling the aver-
age earliness of predictions in BavarianCrops to the 43TB
of Sentinel-2 imagery acquired in Europe each year, 26TB
of downloading and processing satellite can be avoided.
While Sentinel-2 data is free of charge, an increasing amount
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Figure 8: Accuracy and Earliness on datasets in Africa from [20] that was recently integrated in the SustainBench dataset [21]. The trained
ELECTS-LSTM finds a generally accurate and early solution for both datasets without changing the training configuration even though the
dataset sizes are substantially smaller compared to the large-scale European datasets of France and Germany.

of daily high-resolution imagery is available today [8]. This
data needs to be acquired at a substantial cost and mo-
tivates the need to make confident decisions with data-
efficient algorithms. Training and deploying an ELECTS-
LSTM model is not expensive in terms of computational
efforts. Deep learning models for 1D time series are small
compared to standard 2D convolutional models for images.
We trained the ELECTS-LSTM models within one hour
on a single GPU on BavarianCrops. A researcher can make
predictions using the trained ELECTS-LSTM model on a
CPU with a regular notebook.

6. Conclusion

We presented a training framework for End-to-end Learned
Early Classification of Time Series (ELECTS) that aug-
ments a regular deep time series classification model by
a second decision head informing about prediction uncer-
tainty and leading to early stopping. The core contribution
is a loss function that incorporates both model outputs
such that the two objectives of earliness and accuracy are
balanced. Thanks to the earliness objective, ELECTS pro-
vides indirect insight into its decision process. We showed
that the model linked the stopping decision to the phe-
nological events of the plants for two crop types. Stopped
classifications early in the season were also particularly ac-
curate, highlighting that the model connects the stopping
decisions to predictive confidence. ELECTS goes beyond
crop types classification, as it can be applied to potentially

any data where temporally coarse labels are available that
are not aligned with the events, e.g., one label per year. In
general, with satellites providing a constant stream of data
that is necessary to monitor time-dependent processes at
the surface [25], a variety of deployments are feasible, from
dynamically determining cloud categories [26] to the de-
tection of deforested areas [27] in a time-sensitive manner.
The source code to the models, the ELECTS loss func-
tion, and to reproduce the experiments are available at
https://github.com/marccoru/elects.
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α accuracy κ earliness

0.0 0.25±0.22 0.12±0.19 0.90±0.17
0.2 0.81±0.03 0.71±0.04 0.60±0.02
0.4 0.80±0.09 0.71±0.10 0.53±0.03
0.6 0.85±0.02 0.77±0.03 0.12±0.07
0.8 0.84±0.01 0.76±0.02 0.07±0.05
1.0 0.83±0.03 0.75±0.04 0.00±0.00

(a) BavarianCrops.

α accuracy κ earliness

0.0 0.31 0.00 1.00 ±0.00
0.2 0.80 0.74 0.73 ±0.07
0.4 0.80 0.74 0.69 ±0.07
0.6 0.81 0.75 0.66 ±0.09
0.8 0.80 0.74 0.60 ±0.12
1.0 0.81 0.75 0.00 ±0.00

(b) BreizhCrops.

Table A.1: Varying the weighting factor α that trades-off classifica-
tion loss and earliness reward. An α = 1 corresponds to a high weight
on earliness, while α = 0 switches off the earliness reward. Results
for BavarianCrops are averaged over three runs. Standard deviations
of earliness refer to stopping times of single fields.

mation Processing Systems, pages 5998–6008, 2017. 14

Appendix A. Ablation Experiments

Appendix A.1. Ablations on Hyperparameters and Loss
Design

In this group of experiments, we test the individual
model components. In Appendix A.1.1, we vary the trade-
off between accuracy and earliness while we focus in Ap-
pendix A.1.2 on the offset parameter ε.

Appendix A.1.1. Controlling Earliness versus Accuracy

In this experiment, we study the effect of α of Eq. (4)
on both the BavarianCrops and BreizhCrops datasets. For
the BavarianCrops dataset, we observed some variance
when training models from different weight initializations.
Hence, we report the mean and standard deviation of 3
model runs in Table A.1a. For BreizhCrops, a similar ac-
curacy level between 80% and 85% was achieved for a wide
range of α values while the earliness decreased from 0.6 to
0.07. The accuracy-only (α = 1) runs did not achieve the
best accuracy (83%) compared to 85% with α = 0.6. This
result indicates that an earlier classification, temporally
closer to the classification-relevant features, may have also
been beneficial for the achieved accuracy.

These observations are mirrored in the BreizhCrops
dataset in Table A.1b. Consistent accuracy of 80-81%
is achieved for all α > 0.2. Similarly, larger weights on
earliness reward with larger α values lead to slightly ear-
lier classifications of 13% of the overall sequence length.
Comparing BreizhCrops and BavarianCrops, we observe
that the accuracies in BreizhCrops were more consistent
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(a) ε = 10. Normal training with early and accurate solutions. Observed in
all 20 runs with ε = 10.
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(b) ε = 0. Failure case 1. Model only optimized earliness. Observed in 2/20
runs.
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(c) ε = 0. Failure case 2. The model only optimized for accuracy, which was
observed in 1/20 runs.

Figure A.9: We show normal training behavior (a) compared to two
failure cases (b,c) we observed in some training runs with ε = 0. In
failure case 1 (b), the model only optimized the earliness, while in
failure case 2 (c) only accuracy was optimized. None of the runs with
ε = 10 experienced these failure cases.

throughout the entire α-range, which we associate with
the 20-times larger training set size. This larger quantity
in labeled samples helps the model to find the optimum
classification-relevant features in a certain time regardless
of the model initialization and α-weights.

Appendix A.1.2. Effect of the Offset Parameter ε

We trained ELECTS-LSTM 40 times for 100 epochs
on the BavarianCrops dataset in this experiment. In 20
training runs, we set ε = 0 leading to no offset in Eq. (8).
In the second set of 20 runs, we set ε = 10. In 37 of 40
runs, we observed a normal training behavior, as shown
in Fig. A.9a where classification accuracy and earliness
increased throughout the training. All 20 training runs
with ε = 10 showed this normal training behavior, while in
20 runs with ε = 0, we experienced two rare failure cases.
Two of twenty runs experienced failure case 1, as shown in
Fig. A.9b. In these runs, the earliness increased to 1 early
in the training leading to classification at the beginning
of the sequence. The accuracy did not improve upon the
initial epoch at 50%, which lies between the accuracy of
a random predictor of 16% and predicting only the most
frequent class (meadow) at an accuracy of 57%. Here, the
model fell in a local optimum where it solely minimized the
earliness reward. In Fig. A.9c, we show a second failure
case that appeared one of twenty times on the runs with
ε = 0. The accuracy increased steadily, but the predictions
remained at the end of the sequence with an earliness of
0. In this case, the model minimized the classification loss
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(b) balanced dataset

Figure A.10: This figure shows the evaluation of ELECTS (ours) and SR2-CF2 performance on class-balanced subsets of the BavarianCrops
dataset. The x-axis refers to the size of the training data to train both models. We can observe that SR2-CF2 does not converge to a
meaningful solution on imbalanced data (a) where it predicts at the beginning of the sequence (earliness = 0) at a low accuracy (as it could
not observe any classification-relevant features that early). We needed to artificially balance the dataset in (b) for SR2-CF2 to predict early
and accurately. In comparison, the ELECTS-LSTM converges to a meaningful solution in both cases and is computationally more efficient.
With 5000 training time series in the balanced case, it required four minutes to train, while SR2-CF2 required 104 hours.

but did not improve upon the earliness objective. None
of these failure cases were observed in the runs of ε =
10 leading to a more stable convergence to an early and
accurate solution with this offset parameter.

Appendix B. Model Comparison

In parallel, early classification has been discussed in
the time series classification community, as summarized in
the review of Gupta et al. [28]. Here, early time series
classification approaches are tested on a set of benchmark
datasets in the UCR Archive [29]. While these datasets
cover a diverse range of applications, their small size of
at most a few thousand examples favors shallow learning
solutions. In this application space, several approaches in-
troduced the idea to explicitly model the maximization of
earliness in the optimization objective function [30, 31].
In particular, Mori et al. [17] also consider explicitly opti-
mizing the trade-off between earliness and accuracy. Their
SR2-CF2 model variant first independently trains a Gaus-
sian Process Classifier for each sub-sequence length. It
then uses a genetic algorithm to find the parameter for
a stopping rule that takes prediction confidence for each
class into account.

Appendix B.1. Comparison to SR2-CF2

In this first comparison, we use the BavarianCrops
dataset. The source code of SR2-CF2 was explicitly de-
signed for uni-variate and class-balanced data in the UCR
Time Series archive [29]. We extended it to multi-variate
time series in the modified source code1. We could not

1the extended source code to multi-variate time series of Mori et
al., (2017) [17] is available as fork https://github.com/marccoru/

earlyclassification

successfully run SR2-CF2 on the complete BavarianCrops
dataset and sampled sub-datasets of 50, 100, 250, 500,
750, 1000, 2500, 5000, 7500, and 10 000 samples where
we successfully ran SR2-CF2 on subsets up to 1000 sam-
ples. Results are presented in Fig. A.10a where the SR2-
CF2 method struggled to converge to a good solution. It
predicted the most common class very late (small earli-
ness) throughout differently-sized subsets of the crop type
mapping dataset. We connect this to the class imbal-
ance present in the dataset. To alleviate this class im-
balance, we sampled a second class-balanced dataset by
undersampling frequent classes (e.g., meadow) and over-
sampling rare ones (e.g., triticale). We created differ-
ently sized subsets of this balanced variant with 50, 75,
100, 250, 500, 750, 1000, 2500, 5000 samples and show the
results in Fig. A.10b. Here, the SR2-CF2 model achieved
accurate and early classifications consistent with results
reported on the UCR archives [29]. The ELECTS-trained
model provided accurate but late (small earliness) clas-
sifications for datasets smaller than 2500 samples. For
datasets with 2500 training series or more, ELECTS and
SR2-CF2 achieve comparable earliness, whereas the ELECTS-
trained LSTM model predicted the classes more accurately.
While accuracy and earliness were generally comparable
for datasets with more than 2500 samples, the difference
in runtime, as shown in the last column, became a sub-
stantial factor. The computational complexity of SR2-CF2
is O(N2T2) where N refers to the number of samples in
the dataset and T to the sequence length. The ELECTS-
trained LSTM model relies on vanilla gradient descent
that can utilize modern automatic differentiation libraries
with a complexity of O(nepochsNT). In total, with a 5000
sample-sized dataset, ELECTS required 4 minutes while
SR2-CF2 104 hours.
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model accuracy kappa earliness average date of classification

Random Forest 0.78 0.69 0 (fixed) Dec 28th (fixed)

TempCNN [15] 0.79 0.73 0 (fixed) Dec 28th (fixed)

MS-ResNet [32] 0.77 0.70 0 (fixed) Dec 28th (fixed)

Inceptiontime [33] 0.77 0.73 0 (fixed) Dec 28th (fixed)

LSTM [24] 0.80 0.74 0 (fixed) Dec 28th (fixed)

Transformer [34] 0.80 0.74 0 (fixed) Dec 28th (fixed)

ELECTS-LSTM 0.80 0.74 0.68 ± 0.07 June 7th ± 28 days

(a) Comparison with regular classification models on the BreizhCrops
dataset.
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(b) Frequency of dates where the classification has been stopped.

Figure B.11: Comparison of the ELECTS-LSTM model with other
accuracy-only methods. ELECTS-LSTM matched the accuracy of
the other models (a) while predicting at an earliness of 0.68± 0.07,
meaning that only 32%± 7% of the time series was necessary. The
average time of stopping is June 7th ± 28 days (earliness 0.68 ± 0.07)
which lies in the greenup period in Brittany (b), as indicated by the
four highlighted dates which correspond to the images (and analysis)
in Fig. 4.

Appendix B.2. Comparison to non-early classification mod-
els on BreizhCrops

In this section, we compare the ELECTS-trained LSTM
model with several models from the literature, optimiz-
ing for accuracy (Random Forest, TempCNN [15], MS-
ResNet [32], Inceptiontime [33], accuracy-only LSTM [24],
Transformer [34]). For such a comparison, we focus on
the BreizhCrops benchmark. The results are shown in
Fig. B.11a. The accuracy and kappa score measure the
classification performance. In contrast, earliness 1 − t

T
measures how much data from the original T-length se-
quence was not needed to come to a prediction. The
accuracy-only comparison models are always classified at
the end of the sequence (t = T), which corresponds to a
hard-coded earliness of 0. From Fig. B.11a, we see that
the ELECTS-trained LSTM model matches the accuracies
of the comparison models while predicting before the end
of the sequence. But additionally to matching accuracy,
ELECTS allows for earlier predictions (and the related
savings in data download, storage, and processing time):
in BreizhCrops, ELECTS achieves an earliness of 0.68 ±
0.07, meaning that only 32%± 7% of the time series was
necessary for the classification. This also means that the
classification was stable (and stopped on June 7th ±28
days rather than on December 28 for the other methods,
which need the entire time series.

Given that the evaluated earliness is early, we investi-
gated the nature of the stopping period in greater detail in
Fig. B.11b. Here, we show the frequency of stopped dates
of the ELECTS-LSTM model. We see that no classifica-
tions have been stopped before March (the 60th day of
the year), which lies in the non-informative winter period.

Most classifications have been made between the end of
May and early June.
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