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Abstract

We address the estimation of extreme quantiles of Weibull tail-distributions. Since such
quantiles are asymptotically larger than the sample maximum, their estimation requires extrap-
olation methods. In the case of Weibull tail-distributions, classical extreme-value estimators
are numerically outperformed by estimators dedicated to this set of light-tailed distributions.
The latter estimators of extreme quantiles are based on two key quantities: an order statistic
to estimate an intermediate quantile and an estimator of the Weibull tail-coefficient used to
extrapolate. The common practice is to select the same intermediate sequence for both esti-
mators. We show how an adapted choice of two different intermediate sequences leads to a
reduction of the asymptotic bias associated with the resulting refined estimator. This analy-
sis is supported by an asymptotic normality result associated with the refined estimator. A
data-driven method is introduced for the practical selection of the intermediate sequences and
our approach is compared to three estimators of extreme quantiles dedicated to Weibull tail-
distributions on simulated data. An illustration on a real data set of daily wind measures is
also provided.
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1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed random variables with cumulative
distribution function F and let X1,n ≤ . . . ≤ Xn,n denote the associated order statistics. We
consider the case where F belongs to the family of Weibull tail-distributions [12]:

(A.1) F is twice differentiable and F (·) = 1−exp(−H(·)) with V (t) := H←(t) = tθ`(t) for all t > 0,
where θ > 0 is called the Weibull tail-coefficient and where ` is a (positive) slowly-varying
function i.e. `(tx)/`(x)→ 1 as x→∞ for all t > 0.

Here, and in the following, Φ←(·) = inf{x ∈ R,Φ(x) > ·} denotes the generalized inverse of an
increasing function Φ. The inverse cumulative hazard function V is said to be regularly-varying at
infinity with index θ and this property is denoted by V ∈ RVθ, see [11] for a detailed account on this
topic. The shape parameter θ is referred to as the Weibull tail-coefficient. Weibull tail-distributions
are part of the Gumbel maximum domain of attraction, i.e. with extreme-value index γ = 0, see [19,
Proposition 2(ii)], and as such, are light-tailed distributions. They include for instance exponential
(θ = 1), Gamma (θ = 1), logistic (θ = 1), Gaussian (θ = 1/2) and Weibull distributions (θ is the
inverse of the shape parameter), see [20, Table 1]. We refer to [9] for an application to the modeling
of large claims in non-life insurance and to [27] for an analysis of neural networks distributional
properties.

Dedicated methods have been proposed to estimate the Weibull tail-coefficient θ since the rel-
evant information is localised in the extreme upper part of the sample. Most approaches rely on
the kn upper order statistics Xn−kn+1,n, . . . , Xn,n where kn → ∞ as n → ∞. Note that, since θ
is defined through a tail behavior, the associated estimator should only use the extreme-values of
the sample and thus the extra condition kn/n→ 0 is required. More specifically, recent estimators
are based on the log-spacings between the kn upper order statistics [10, 17, 19, 20] or on the mean
excess function [6, 7, 8]. The introduction of kernel based weights has been investigated for both
approaches, see [18, 21] for the log-spacings case and [22] for the mean excess function framework.
A bias reduction method adapted to the estimation of the Weibull tail-coefficient is proposed in [14]
and the adaptation to random censoring is achieved in [29].

We address the problem of estimating extreme quantiles of Weibull tail-distributions. Recall
that an extreme quantile q(αn) of order αn is defined by q(αn) = F←(1 − αn) with nαn → 0

as n → ∞. The latter condition implies that q(αn) is almost surely asymptotically larger than
Xn,n, the sample maximum. It is shown in [16] that classical extreme-value estimators of such large
quantiles are numerically outperformed by estimators dedicated to Weibull tail-distributions [15],
see also Lemma 2 in the Appendix for a theoretical argument. The latter methods estimate q(αn)

by combining two ingredients: an order statistic Xn−kn+1,n and an estimator of the Weibull tail-
coefficient θ used to extrapolate from this anchor point.

In this work, we show that the biases associated with the previous extrapolation method and
the estimator of θ may asymptotically cancel out in the extreme quantile estimator thanks to an
appropriate tuning of the number of upper order statistics involved in the Weibull tail-coefficient
estimator. The construction of the resulting estimator is presented in Section 2 and an asymptotic
normality result is provided, emphasizing that the proposed extreme quantile estimator is asymp-
totically less biased than the original one [16]. Its performances are illustrated on simulated data in
Section 3 and compared to three state-of-the-art competitors [8, 15, 16]. An illustration on a real
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data set of daily wind measures is provided in Section 4. Finally, a small conclusion is proposed in
Section 5 and the proofs are postponed to the Appendix.

2 A refined estimator of the extreme quantile

2.1 Extreme quantile estimators

Weibull-tail estimators of the extreme quantile q(αn) rely on an intermediate quantile q(kn/n)

where (kn) is an intermediate sequence of integers i.e. such that kn ∈ {1, . . . , n− 1}, kn →∞ and
kn/n→ 0 as n→∞, see for instance [15, 16]. Indeed, in view of (A.1), one has

q(αn)

q(kn/n)
=
V (log(1/αn))

V (log(n/kn))
'
(

log(1/αn)

log(n/kn)

)θ
=: τθn, (1)

as n→∞, where τn = log(1/αn)/log(n/kn) is the (logarithmic) extrapolation factor. From an in-
tuitive point of view, an extreme quantile can thus be approximated by multiplying an intermediate
quantile by an appropriate extrapolation term, namely:

q(αn) ' q(kn/n)τθn.

The intermediate quantile q(kn/n) can then be estimated by its empirical counterpart Xn−kn+1,n

while the extrapolation term depends on the tail heaviness through θ which has to be estimated as
well. Following the ideas of [4], we propose a refined Weissman [28] type estimator defined by:

q̂n(αn, kn, k
′
n) = Xn−kn+1,n

(
log(1/αn)

log(n/kn)

)θ̂n(k′n)
= Xn−kn+1,n τ

θ̂n(k
′
n)

n , (2)

with θ̂n(k′n) an estimator of the Weibull tail-coefficient θ depending on another intermediate se-
quence (k′n). Let us focus on the estimator of θ introduced in [17]:

θ̂RSH
n (k′n) =

1

µ(log(n/k′n))

1

k′n

k′n∑
i=1

(logXn−i+1,n − logXn−k′n+1,n), (3)

with, for t > 0,

µ(t) =

∫ +∞

0

log
(

1 +
x

t

)
e−xdx = etE1(t),

where E1 is the Exponential integral function [2, Page 228]. This estimator is motivated by the
remark that, in view of (1), the log-spacings between two quantiles are approximately proportional
to θ. This property is also used in the real data application (see the bottom panel of Figure 5) to
visually check the Weibull-tail assumption. Clearly, θ̂RSH

n (·) can be interpreted as a rescaled Hill
estimator since

θ̂RSH
n (k′n) =

γ̂Hn (k′n)

µ(log(n/k′n))
, (4)

where γ̂Hn (·) is the well-known Hill estimator [26] of the extreme-value index γ.
Let us note that k′n = kn yields back the extreme quantile estimator for Weibull tail-distributions

introduced in [16]. In the next paragraph, the asymptotic normality of q̂n(αn, kn, k
′
n) is established,

and it is shown that choosing k′n 6= kn can yield better results from an asymptotic point of view.
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A similar phenomenon occurs in the estimation of the endpoint of a distribution in the Weibull
maximum domain of attraction, see [1] for details. We also refer to [4] for an application to the
estimation of the tail-index in the Fréchet maximum domain of attraction.

2.2 Asymptotic analysis

The study of the limit distribution of q̂n(αn, kn, k
′
n) requires a second-order condition on the slowly-

varying function ` introduced in (A.1):

(A.2) There exist ρ ≤ 0 and b(t)→ 0 as t→∞, with ultimately constant sign, such that uniformly
locally on x ≥ 1,

lim
t→∞

1

b(t)
log

(
`(tx)

`(t)

)
= Kρ(x) :=

∫ x

1

uρ−1du.

It can be shown that necessarily |b| ∈ RVρ. The second-order Weibull parameter ρ ≤ 0 tunes
the rate of convergence of the ratio `(tx)/`(t) to 1. The closer ρ is to 0, the slower is the conver-
gence. Condition (A.2) is the cornerstone in all proofs of asymptotic normality for extreme-value
estimators. Again, we refer to [20, Table 1] for ρ parameters associated with usual Weibull tail-
distributions.

Our first result is a refinement of [17, Corollary 3.1]. It provides an asymptotic normality result
for the extreme quantile estimator (2) based on two intermediate sequences (kn) and (k′n).

Theorem 1. Assume (A.1) and (A.2) hold. Let (kn) and (k′n) be two intermediate sequences and
introduce (αn) a probability sequence such that αn → 0 as n→∞. Suppose, as n→∞,

(i)
√
k′nb(log(n/k′n))→ λ ∈ R,

(ii) log(n/k′n)/ log(n/kn)→ β ≥ 1,

(iii) τn → τ > β.

Then, as n→∞,√
k′n

(
q̂n(αn, kn, k

′
n)

q(αn)
− 1

)
d−→ N

(
λ(log(τ)− β−ρKρ(τ)), (θ log τ)2

)
. (5)

Let us first remark that condition (i) implies log(n/k′n) ∼ log(n) as n→∞ (see [17, Lemma 5.1]),
then condition (ii) yields log(n/kn) ∼ log(n)/β and therefore condition (iii) can be rewritten as
log(1/αn) ∼ (τ/β) log(n) as n → ∞. As a consequence, the condition τ > β in (iii) implies
nαn → 0 as n→∞ which, in turns, implies that q(αn) is an extreme quantile.

It follows from (5) that the asymptotic bias associated with q̂n(αn, kn, k
′
n) is given by(

log τ − β−ρKρ(τ)
)
b(log(n/k′n)) ∼ (βρ log(τ)−Kρ(τ)) b(log(n/kn)) =: B(β, τ, ρ)b(log(n/kn)),

since |b| ∈ RVρ. It thus appears that each choice of k′n yields an associated constant β in (ii) and
thus a corresponding bias factor

B(β, τ, ρ) = βρ log(τ)−Kρ(τ).

From the theoretical point of view, two cases can be considered.
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• The usual choice k′n = kn yields β = 1 and one thus recovers [17, Corollary 3.1] as a particular
case of Theorem 1. Moreover, for all τ > 1 and ρ ≤ 0,

B(1, τ, ρ) = log(τ)−Kρ(τ) ≥ 0, (6)

which is the (positive) bias factor associated with the extreme quantile estimator q̂n(αn, kn, kn)

investigated in [17]. Note that ρ 7→ B(1, τ, ρ) is a decreasing function such that B(1, τ, 0) = 0

which is an unusual situation in extreme-value theory. For instance, the bias factor associated
with the Weissman estimator [28] dedicated to heavy-tailed distributions is proportional to
1/(1− ρ) and increases with ρ, see [23, Theorem 3.2.5 and Theorem 4.3.8].

• The choice β?(τ, ρ) := (Kρ(τ)/ log(τ))1/ρ yields

B(β?(τ, ρ), τ, ρ) = 0. (7)

The associated intermediate sequence is given by k?n(τ, ρ) = bn(kn/n)β
?(τ,ρ)c and therefore

the extreme quantile estimator q̂n(αn, kn, k
?
n(τ, ρ)) is asymptotically unbiased. Note that this

estimator cannot be used in practice since the second-order Weibull parameter ρ is unknown.

Up to our knowledge, there is no estimator of the second-order Weibull parameter in the statistical
literature. In practice, one can replace the true unknown value of ρ by a misspecified value y ≤ 0

in the above β?(τ, ρ) leading to

β?(τ, y) = (Ky(τ)/ log(τ))1/y, (8)

k?n(τ, y) = bn(kn/n)β
?(τ,y)c, (9)

B(β?(τ, y), τ, ρ) = β?(τ, y)ρ log(τ)−Kρ(τ) (10)

= (Ky(τ)/ log(τ))ρ/y log(τ)−Kρ(τ),

with ρ ≤ 0 and τ > 1. This misspecification technique has been used both to deal with Pareto-
type distributions (γ > 0), see for instance [13], and Weibull tail-distributions (γ = 0) [15]. Some
properties of the intermediate sequence k?n(τ, y) are given in the next Lemma.

Lemma 1. Let β?(τ, y) and k?n(τ, y) be defined by (8) and (9) respectively. Then, for all τ > 1:

(i) β?(τ, y)→ 1 as y → −∞ and β?(τ, ·) can be extended by continuity by setting β?(τ, 0) :=
√
τ .

(ii) 1 < β?(τ, y) < τ for all y ≤ 0.

(iii) For all y ≤ 0, k?n(τ, y) is an increasing function of kn, k?n(τ, y) ≤ kn and k?n(τ, y)/kn → 0 as
n→∞.

(iv) k?n(τ, y) is a decreasing function of y ∈ (−∞, 0).

In particular, it appears in (iii) that the number of upper order statistics k?n(τ, y) used in the Weibull
tail-coefficient estimator should be asymptotically small compared to kn for all finite values of y.
From (iv), this is all the more true as y is large. When y → −∞, meaning that one does not take
into account the bias, (i) shows that k?n(−∞, τ) = kn is recovered as a limit case. These properties
are illustrated on the left panel of Figure 1, where k?n is drawn as a function of kn for several values
of y. The next Corollary shows that these choices indeed lead to a bias reduction in the estimation
of the extreme quantile.
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Figure 1: Left: Graphs of kn ∈ {2, . . . , 500} 7→ k?n(τn, y) for y ∈ {−∞,−2,−1,−1/2, 0} respectively
in {black, blue, red, violet, green}. Right: graphs of kn ∈ {2, . . . , 500} 7→ B(1, τn, ρ) (dotted
lines) and kn ∈ {2, . . . , 500} 7→ B(β?(τn, ρ

# = −1), τn, ρ) (solid lines) given in Equations (6)
and (10), with ρ ∈ {−2,−1,−1/2} respectively in {blue, red, violet}. On both panels: τn =

log(1/αn)/log(n/kn) with αn = 1/n and n = 500.

Corollary 1. Assume (A.1) and (A.2) hold. Let c > 0, τ > 1, y ≤ 0, λ 6= 0 such that
λb(·) is ultimately positive, and β?(τ, y) be defined as in (8). Let αn = c n−τ/β

?(τ,y), kn =

bn{λ2/(nb2(log n))}1/β?(τ,y)c and define k?n(τ, y) as in (9).

(i) Then, as n→∞,√
k?n(τ, y)

(
q̂n(αn, kn, k

?
n(τ, y))

q(αn)
− 1

)
d−→ N

(
λ(log(τ)− (Ky(τ)/ log(τ))−ρ/yKρ(τ)), (θ log τ)2

)
.

(ii) Moreover, for all τ > 1, y ≤ 0:

|B(β?(τ, y), τ, ρ)| < B(1, τ, ρ) for all ρ < 0,

B(β?(τ, y), τ, 0) = B(1, τ, 0) = 0.

Let us first highlight that
√
k?n(τ, y) ∼ λ/b(log n) as n → ∞ (see the proof of Corollary 1 in

the Appendix) which is the rate of convergence of usual extreme quantile estimators dedicated
to Weibull tail-distributions, see for instance [15, Theorem 1]. Surprisingly, as a consequence of
Corollary 1(ii), the extreme quantile estimator q̂n(αn, kn, k

?
n(τ, y)) computed with k?n(τ, y) defined

in (8) and (9) has a smaller asymptotic bias than the usual one q̂n(αn, kn, kn) whatever the chosen
value y ≤ 0. Let us recall that, from (7), the theoretical best choice would be y = ρ. In practice,
we use y = ρ# = −1 leading to β?(τ,−1) = τ log(τ)/(τ − 1). This "canonical" choice is also used
in [15], see Section 3.2 hereafter. Corollary 1(ii) is illustrated on the right panel of Figure 1 through
the graphical comparison of the bias factors associated with β = β?(τ,−1) (refined Weibull-tail
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estimator) and β = 1 (usual Weibull-tail estimator [17]). It clearly appears that, from the theoretical
point of view, the first choice yields small bias factors in absolute value than the second one. The
performance of the refined estimator in practice is assessed on simulated data in the next Section.

3 Validation on simulated data

The proposed refined extreme quantile estimator is compared on simulated data to the original
estimator [16] and to two other competitors described hereafter.

3.1 Experimental design

The focus is on the class of D(ζ, η, a)-distributions which is an adaptation of Hall’s class [24, 25] to
the Weibull-tail framework. In this family of distributions, the inverse cumulative hazard function
is defined for all x > 0 by

V (x) := x1/ζ
(

1 +
a

η
x−η

)
,

with a, ζ, η > 0 and ζη ≤ 1. Under these conditions, the above class of distributions fulfills as-
sumptions (A.1) and (A.2) with Weibull tail-coefficient θ = 1/ζ, second-order Weibull parameter
ρ = −η, slowly-varying function `(x) = 1 + (a/η)x−η and b(x) = −ax−η. Unlike classical distribu-
tions such as exponential (θ = 1, ρ = −∞), Gamma (θ = 1, ρ = −1), Gaussian (θ = 1/2, ρ = −1)
and Weibull distributions (ρ = −∞), it is thus possible to obtain D-distributions with arbitrary
Weilbull tail-coefficient θ > 0 and second-order Weibull parameter ρ ∈ [−θ, 0).

In the following, we set a = 10, θ ∈ {1/2, 3/4, . . . , 5/2}, ρ ∈ {−5/2,−2, . . . ,−1/2} and consider
the only 25 situations where ρ ≥ −θ to fulfill the constraint ζη ≤ 1, see Table 1. In each case,
N = 1, 000 replications of a data set of n = 500 i.i.d. realisations are simulated from the 25

considered parametric models. Finally, the same two cases as in [15] are investigated for the
order of the extreme quantile: αn ∈ {1/n2, 1/n4}. Summarizing, this experimental design includes
25× 2 = 50 configurations.

(ρ, θ) 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2
-5/2 X

-2 X X X

-3/2 X X X X X

-1 X X X X X X X

-1/2 X X X X X X X X X

Table 1: Considered (ρ, θ) configurations in the D(ζ = 1/θ, η = −ρ, a = 10)-distribution.

3.2 Competitors

The refined estimator dedicated to the estimation of extreme quantiles for Weibull tail-distributions
is compared to three competitors. All three estimators share the same structure and rely on three
quantities, i.e. the order statistic Xn−kn+1,n, an extrapolation term and an estimator of the Weibull
tail-coefficient:
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1. Let us first consider the classical estimator of the Weibull tail-coefficient given in (3) and
introduced in [17]. The extreme quantile estimator proposed in [16] can be interpreted as a
particular case of (2) with k′n = kn and θ̂n(·) = θ̂RSH

n (·), see (4):

q̂RSH
n (αn, kn) = Xn−kn+1,n τ

θ̂RSH
n (kn)
n . (11)

2. More recently, an estimator of the Weibull tail-coefficient based on the mean excess function
t 7→ m(t) = E(X − t | X > t) has been introduced in [8]. In practice, the authors estimate
m(Xn−j,n) for all j ∈ {1, . . . , kn} by its empirical counterpart:

m̂n(Xn−j,n) =
1

j

j∑
i=1

Xn−i+1,n −Xn−j,n,

which leads to the following estimator of θ based on log-spacings between the mean excesses:

θ̂MEF
n (kn) =

1− 1

γ̂Hn (kn)

1

kn

kn∑
j=1

log m̂n(Xn−j,n)− log m̂n(Xn−kn−1,n)

−1 .
Letting k′n = kn and θ̂n(·) = θ̂MEF

n (·) in (3) yields the following estimator of the extreme
quantile:

q̂MEF
n (αn, kn) = Xn−kn+1,n τ

θ̂MEF
n (kn)
n . (12)

3. Up to our knowledge there exists only one bias-reduced extreme quantile estimator dedi-
cated to Weibull tail-distributions. This estimator [15] is based on a least-squares approach
and involves a bias-reduced estimator of the Weibull tail-coefficient proposed by the same
authors [14]:

θ̂LSEn (kn) = Ȳkn − b̂(log(n/kn))x̄kn ,

where

Ȳkn =
1

kn

kn∑
j=1

Yj with Yj = j log(n/j)(logXn−j+1,n − logXn−j,n),

x̄kn =
1

kn

kn∑
j=1

xj with xj = log(n/kn)/ log(n/j),

and where

b̂(log(n/kn)) =

kn∑
j=1

(xj − x̄kn)Yj

/
kn∑
j=1

(xj − x̄kn)2 .

The associated extreme quantile estimator is defined as

q̂LSEn (αn, kn) = Xn−kn+1,n τ
θ̂LSE
n (kn)
n exp

(
b̂(log(n/kn))Kρ̂n(τn)

)
. (13)

From a practical point of view, the authors suggest to choose ρ̂n = ρ# = −1. This estimator
features two bias corrections: a first one in the estimator of the Weibull tail-coefficient and
a second one in the extrapolation term. This estimator is built under the assumption that
x|b(x)| → ∞ as x → ∞ which leads to the constraint ρ ≥ −1. The latter assumption is
fulfilled by the class of D(ζ, η, a)-distributions when η ≤ 1.
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Finally, recall that our estimator is given by

q̂RWT
n (αn, kn, k

?
n(τn,−1)) = Xn−kn+1,n τ

θ̂RSH
n (k?n(τn,−1))
n , (14)

where k?n(τn,−1) = bn(kn/n)β
?(τn,−1)c and β?(τn,−1) = τn log(τn)/(τn − 1). For the sake of

simplicity, the above extreme quantile estimators (11)–(14) are respectively referred to as RSH,
MEF, LSE and RWT in the sequel.

3.3 Selection of the intermediate sequence

All four considered extreme quantile estimators (RWT, RSH, LSE, MEF) depend on the interme-
diate sequence kn. The selection of kn is a crucial point which has been widely discussed in the
extreme-value literature. A new algorithm for the selection of kn is proposed in [4], basing on a
bisection method inspired from random forests. The objective is to find the region with the small-
est variance in a given series {Z1, . . . , Zm}. The proposed method starts by randomly splitting the
series into two parts, computes the variance in each sub-region and repeats the action in the one
with smallest variance until getting a final single point, see [4, Algorithm 2]. The above procedure
is embedded in a bootstrap technique, see [4, Algorithm 1], and the final k†n is selected by taking the
median across the T = 10, 000 bootstrap samples. In the simulations, Zj = q̂(αn, kj,n), an estimator
(RWT, RSH, LSE or MEF) of the extreme quantile at level αn computed with the intermediate
sequence kj,n ∈ {15, 16, . . . , 3n/4}.

3.4 Results

The performance of the four extreme quantile estimators is assessed using the Mean absolute relative
error:

MARE (q̂n(αn)) =
1

N

N∑
i=1

∣∣∣∣∣ q̂(i)n (αn, k
(i,†)
n )

qn(αn)
− 1

∣∣∣∣∣ , (15)

where q̂(i)n (αn, k
(i,†)
n ) denotes the estimator computed on the ith replication, i ∈ {1, . . . , N = 1, 000}

with the intermediate sequence k(i,†)n selected using the above described procedure. The computed
MAREs are provided in Table 4 and Table 5 for respectively, αn = 1/n2 and αn = 1/n4. The
results are summarized in Table 2. We start by remarking that, as expected, the smaller the order
αn of the extreme quantile is, i.e. the more one extrapolates, the larger the error is. This is true for
all four considered estimators. The proposed RWT estimator is the most accurate one in average
since it provides the best results in 48% of cases. Let us remark that, since we fixed ρ# = −1 in the
RWT estimator, it performs best overall when ρ is close to −1. The second most accurate estimator
is RSH which provides the best results in 28% of the considered cases. It is remarkably efficient
when ρ = −1/2 where it obtains all its 14 best results. RSH performs well in this difficult case
despite the fact that it does not benefit from a bias reduction. This unexpected performance may
be explained by the relatively small bias factor, see the graph of B(1, ·,−1/2) in the right panel
of Figure 1. The four cases where RSH fails to obtain the best results when ρ = −1/2 correspond
to a Weibull tail-coefficient θ smaller than 1. The LSE estimator shares similar performances with
22% of best results (11 out of 50 situations). As expected, and similarly to the RWT estimator, it
performs well when ρ = −1. Finally, MEF yields poor estimations, with only 2% of best results. It
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does not seem to adapt well to the presence of second-order terms in the distribution. In particular,
it does not give acceptable results (with MARE ≥ 1) in 32% of the considered situations.

(ρ, θ) 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2
-5/2 LSE
-2 RWT RWT RWT

-3/2 RWT RWT RWT RWT RWT
-1 RWT RWT RWT LSE & MEF LSE LSE LSE

-1/2 RWT LSE RSH RSH RSH RSH RSH RSH RSH

Table 2: Summary of results obtained in Table 4 & Table 5. Best estimator of the extreme quantiles
q(αn = 1/n2) & q(αn = 1/n4) computed on simulated data from the D(ζ = 1/θ, η = −ρ, a = 10)-
distribution. The situations in bold are illustrated on Figure 3 and Figure 4.

As an illustration, the median and MARE associated with the RWT, RSH and LSE estimators
computed on a D(ζ, η, a = 10)-distribution for αn = 1/n2 are depicted on Figure 3 and Figure 4 as
functions of kn. In Figure 3, the Weibull tail-coefficient is fixed to θ = 3/2 and ρ ∈ {−1/2,−1,−3/2}
decreases (from top to bottom), while, in Figure 4, the second-order Weibull parameter is fixed to
ρ = −1 and θ ∈ {1, 3/2, 2} increases (from top to bottom). In most of these situations, the RWT
estimator has the smallest bias and thus the minimum value of the MARE is reached for larger
values of kn than RSH and LSE. To conclude, it appears on these experiments on simulated data
that, overall, the RWT estimator performs the best within the four considered estimators. One of
its main competitors is LSE, which, similarly to RWT, considers the two sources of bias (associated
with the Weibull tail-coefficient estimator and the extrapolation term).

4 Illustration on a real data set

We study a data set of daily wind measures (in m/s) at Reims (France) from 01/01/1981 to
04/30/2011. For seasonality reasons, only the months from October to March are considered,
resulting in n = 5, 371 measures, see the top panel of Figure 5 for a histogram representation of the
considered data. It is shown in [3] that the Weibull tail model represents fairly well the upper tail
of these data. The goal is to estimate the extreme quantile q(1/n) (with 1/n ' 1.86 · 10−4) and to
compare it to the maximum of the sample xn,n = 42.26 m/s.

To this end, the Weibull tail-coefficient is estimated first by θ̂RWT
n (k†n) = θ̂RSH

n (k̂?n) = 0.5597,
where k†n = 2, 877 has been selected following the procedure introduced in [4] and sketched in
Subsection 3.3. This yields k̂?n = k̂?n(τn,−1) = 961. As a visual check, a Weibull quantile-quantile
plot of the log-excesses (logXn−i+1,n − logXn−k̂?n+1,n) versus (log log(n/i) − log log(n/k̂?n)) for

i ∈ {1, . . . , k̂?n} is drawn on the bottom panel of Figure 5. The relationship appearing in this plot
is approximately linear, which constitutes an empirical evidence that the Weibull-tail assumption
makes sense and that k̂?n = 961 is a reasonable choice for the estimation of the Weibull tail-coefficient.
A line with the estimated value θ̂RWT

n (k†n) = 0.5597 as slope is added to the quantile-quantile plot
highlighting the linear relationship. The function kn 7→ θ̂RSH

n (kn) is plotted on the top panel
of Figure 6, it features as a nice stability for all kn ∈ {100, . . . , 4000}. A similar procedure is
carried out for the other three estimators to select k†n. The two Weibull tail-coefficient estimators
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RSH and MEF that do not benefit from a bias reduction provide respectively the smallest and the
largest estimation: θ̂RSH

n (k†n) = 0.5017 and θ̂MEF
n (k†n) = 0.6693, while the bias-reduced estimator

LSE gives a value θ̂LSEn (k†n) = 0.6077 close to the RWT estimate θ̂RWT
n (k†n) = 0.5597. These

results are reported in Table 3 with the corresponding estimated extreme quantiles q̂n(1/n). The
estimates of the extreme quantile provided by RSH and MEF seem to respectively underestimate
and overestimate q(1/n) with respectively RSH(1/n) = 33.89 m/s and MEF(1/n) = 49.53 m/s

while the sample maximum is xn,n = 42.26 m/s. It appears that LSE(1/n) = 37.08 is significantly
smaller than the sample maximum. Let us stress that the proposed refined estimator gives the closest
estimate to the maximum value of the sample: RWT(1/n) = 41.00 m/s. Finally, both sample paths
kn 7→RWT(1/n) and kn 7→LSE(1/n) enjoy a stable behaviour in a large neighbourhood of k†n, see
the bottom panel of Figure 6. As a conclusion, according to RWT(1/n) estimate, one can expect
a daily wind larger than 41.00 m/s to occur in average once every 30 years during the October to
March period.

RSH RWT LSE MEF

θ̂n(k†n) 0.5017 0.5597 0.6077 0.6693
q̂n(1/n, k†n) 33.89 41.00 37.078 49.53

k†n 2,206 2,877 2,792 2,202

Table 3: Comparison of the four estimators on the daily wind data set: Estimates of the Weibull
tail-coefficient θ and extreme quantile q(1/n). The selected intermediate sequence k†n is also given
for each estimator.

5 Conclusion

As a conclusion, the RWT estimator is an efficient tool for estimating extreme quantiles fromWeibull
tail-distributions. It relies on the ideas of [4], consisting in selecting carefully two intermediate
sequences to reduce the asymptotic bias of a Weissman type estimator. In contrast to this previous
work, the proposed approach does not rely on a preliminary estimate of the second-order parameter;
Any negative value may be used, and does yield an asymptotic bias reduction, as shown in our
theoretical results. Other surprising features of Weibull tail-distributions can be found in [5]. The
proposed method provides satisfying results in our numerical experiments and outperforms all its
competitors in half of the considered situations. This work could be extended by investigating the
adaptation of this bias reduction principle to other estimators of extreme quantiles from Weibull
tail-distributions.
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A Appendix: Proofs

Proofs of main results are collected in Subsection A.1. Some auxiliary results are provided in
Subsection A.2 and proved in Subsection A.3.

A.1 Proofs of main results

Proof of Theorem 1. Clearly, the following expansion holds√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= T (1)

n + T (2)
n + T (3)

n ,

with

T (1)
n =

√
k′n

(
Xn−kn+1,n

V (log(n/kn))

)
,

T (2)
n =

√
k′n(log τn)(θ̂RSH

n (k′n)− θ),

T (3)
n =

√
k′n

(
`(log(n/kn))

`(log(1/αn))

)
.

Let us consider the three terms separately. First, [16, Lemma 1] shows that, under (A.1), kn →∞,
kn/n→ 0 and condition (iii):

T (1)
n =

√
k′n/kn

log(n/kn)
θξ′n +OP

( √
k′n

kn log2(n/kn)

)
, (16)

where ξ′n
d−→ N (0, 1). Second, [17, Proposition 2.1] entails that, under assumptions (A.1), (A.2),

k′n →∞ and k′n/n→ 0, the following expansion holds:

T (2)
n = θ log(τ)ξn + θ log(τ)µ(log(n/k′n))ξ′′n + log(τ)

√
k′nb(log(n/k′n))(1 + o(1)), (17)

where ξn
d−→ N (0, 1) and ξ′′n

d−→ N (0, 1). Third, using (A.2) and condition (iii), one obtains

T (3)
n = −Kρ(τ)

√
k′nb(log(n/kn))(1 + o(1)). (18)

Collecting (16), (17) and (18), one has

√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn + θ log(τ)µ(log(n/k′n))ξ′′n +

√
k′n/kn

log(n/kn)
θξ′n

+
√
k′n {log(τ)b(log(n/k′n))(1 + o(1))−Kρ(τ)b(log(n/kn))(1 + o(1))}

+ OP

( √
k′n

kn log2(n/kn)

)
.

Recalling that, from [17, Lemma 5.3], µ(t) ∼ 1/t as t→∞, the above expansion can be simplified
as√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn +

√
k′n/kn

log(n/kn)
θξ′n

+
√
k′n {log(τ)b(log(n/k′n))(1 + o(1))−Kρ(τ)b(log(n/kn))(1 + o(1))}

+ OP

( √
k′n

kn log2(n/kn)

)
.

14



Finally, remark that assumption (ii) implies k′n ≤ kn eventually and b(log(n/kn)) ∼ β−ρb(log(n/k′n))

as n→∞ so that√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn +

√
k′nb(log(n/k′n))

(
log(τ)− β−ρKρ(τ) + o(1)

)
(1 + o(1))

+ oP (1) .

Assumption (i) then yields√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
d−→ N

(
λ(log τ − β−ρKρ(τ)), (θ log τ)2

)
and a first order Taylor expansion proves the result.

Proof of Lemma 1 (i) Remarking that Ky(τ) ∼ −1/y as y → −∞ for all τ > 1 yields
β?(y, τ) → 1 as y → −∞. The result β?(τ, 0) :=

√
τ follows from a second-order Taylor ex-

pansion.
(ii) First, Lemma 4(iii) implies that, for all τ > 1 and y < 0, hy(τ) > 1 and thus β?(τ, y) =

hy(τ)−1/y > 1. Second, Lemma 4(iii) implies that, for all τ > 1 and y < 0, hy(τ) < τ−y/2 < τ−y

when y < 0. This straightforwardly implies that Ky(τ)/ log(τ) > τy which is equivalent to
β?(τ, y) < τ . In the particular case where y = 0, from (i), one can take β?(τ, 0) :=

√
τ < τ

since τ > 1 and the result is proved.
(iii) Let us first consider k̃n(τ, y) = n(kn/n)β

?(τ,y) such that k?n(τ, y) = bk̃n(τ, y)c. Clearly,
k̃n(τ, y)/kn = (kn/n)β

?(τ,y)−1 and β?(τ, y) > 1 in view of (ii). As a consequence, for all y ≤ 0,
k̃n(τ, y) is an increasing function of kn, k̃n(τ, y) ≤ kn and k̃n(τ, y)/kn → 0 as n→∞. These prop-
erties can be extended to k?n(τ, y) without difficulty since the integer part is an increasing function
and k?n(τ, y) ≤ k̃n(τ, y).
(iv) Routine calculations give for all τ > 1 and y < 0,

∂

∂y
log(β∗(τ, y)) =

1

y2(τy − 1)

(
τy log(τy)− τy + 1− τy log

(
τy − 1

log(τy)

)
+ log

(
τy − 1

log(τy)

))
=:

1

y2(τy − 1)
ϕ(τ, y).

Letting x := τy ∈ (0, 1) yields

ϕ̃(x) := ϕ(τ, y) = x log(x)− x+ 1− x log

(
x− 1

log(x)

)
+ log

(
x− 1

log(x)

)
,

and differentiating, one gets

ϕ̃′(x) = − log

((
1− 1

x

)
1

log(x)

)
+

(
1− 1

x

)
1

log(x)
− 1 = − log(u(x)) + u(x)− 1,

where u(x) := (1− 1/x) / log(x) > 0. It thus appears that ϕ̃′(x) ≥ 0 for all x ∈ (0, 1) since
− log(u) + u − 1 ≥ 0 for all u > 0. As a consequence, ϕ̃(·) is an increasing function on (0, 1).
Moreover, taking account of ϕ̃(x) → 0 as x → 1− shows that ϕ̃(x) ≤ 0 for all x ∈ (0, 1). Finally,
τy − 1 < 0 and ϕ(τ, y) ≤ 0 for all τ > 1 and y < 0 imply that β∗(τ, y) is an increasing function of
y which in turns shows that k?n(τ, y) is a decreasing function of y.
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Proof of Corollary 1. (i) To prove the convergence in distribution, it is sufficient to show that
conditions (i), (ii) and (iii) of Theorem 1 hold. Let y ≤ 0 and τ > 1. First, one can easily check that
k?n(τ, y)b2(log n) → λ2 as n → ∞ and thus

√
k?n(τ, y)b(log n) → λ in view of the sign assumption

on λ. Besides,

log(n/k?n(τ, y)) = logn+ 2 log |b(log n)| − 2 log |λ|+ o(1) ∼ log n, (19)

since b(·) is regularly-varying so that b(log(n/k?n(τ, y))) ∼ b(log n) and thus√
k?n(τ, y)b(log(n/k?n(τ, y)))→ λ,

as n→∞. Theorem 1(i) is thus proved. Second, observe that

τn =
log(1/αn)

log(n/kn)
=

log(1/c)

log(n/kn)
+

τ

β?(τ, ρ)

log n

log(n/kn)

and
log(n/kn) =

1

β?(τ, ρ)
(log n+ 2 log |b(log n)| − 2 log |λ|) + o(1) ∼ 1

β?(τ, ρ)
log n, (20)

as n → ∞. It is thus clear that τn → τ as n → ∞, which is Theorem 1(ii). Third, Theorem 1(iii)
is a straightforward consequence of (19) and (20).
(ii) Proposition 1 concludes the proof.

A.2 Auxiliary results

Let us begin with a Lemma that establishes that the strict Weibull distribution belongs to the Gum-
bel maximum domain of attraction (γ = 0), and more importantly, with a second-order parameter
ψ = 0. This result illustrates why inference on Weibull-tail distributions may be difficult since the
situation γ = ψ = 0 is the most complicated one for classical extreme-value estimators. Let us
also recall that, in contrast, the second-order Weilbull parameter is ρ = −∞, see [20, Table 1] and
therefore strict Weibull distributions are an easy situation for dedicated Weibull-tail estimators.

Lemma 2. Suppose F is the cumulative distribution function of a strict Weibull distribution with
shape parameter β > 0, β 6= 1 and scale parameter λ > 0. Then, the associated tail quantile function
U(·) := F←(1− 1/·) verifies the second-order condition

1

A(t)

(
U(tx)− U(t)

a(t)
−Kγ(x)

)
→
∫ x

1

sγ−1Kψ(s)ds,

as t → ∞, for all x > 0, see [23, Equation (3.4.5)], with γ = 0, ψ = 0, a(t) = (λ/β)(log t)1/β−1

and A(t) = (1− β)/(β log t).

The following three analytical results are used to prove Proposition 1 below.

Lemma 3. Let us define for all (u, β) ∈ (0, 1]× [0, 1/2], gβ(u) := log(u)(1 + uβ)− 2(u− 1). Then,
∀β ∈ [0, 1/2] one has gβ(u) < 0 if u ∈ (0, 1) and gβ(1) = 0.

Lemma 4. Let us define, for all τ > 1 and y ≤ 0,

hy(τ) :=
K0(τ)

Ky(τ)
=
y log(τ)

τy − 1
if y < 0 and h0(τ) := 1 otherwise.

Then,
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(i) hy(·) can be extended by continuity letting hy(1) = 1 for all y ≤ 0.

(ii) hy(·) is an increasing function on [1,∞) for all y < 0 (and h0(·) is a constant function).

(iii) 1 < hy(τ) < τ−y/2 for all τ > 1 and y < 0 (all three quantities coincide at y = 0).

Lemma 5. Let us define, for all τ > 1 and y ≤ 0,

fy(τ) := − log(hy(τ))

y log(τ)
if y < 0 and f0(τ) = 1/2 otherwise.

Then,

(i) fy(·) can be extended by continuity letting fy(1) = 1/2 for all y ≤ 0.

(ii) fy(·) is a decreasing function on [1,∞) for all y < 0 (f0(·) is a constant function).

(iii) 0 < fy(τ) < 1/2 for all τ ≥ 1 and y < 0 (the last two quantities coincide at y = 0).

The next Proposition establishes two unexpected results. First, the bias associated with the refined
estimator of extreme quantiles is strictly smaller than the bias associated with the original one, even
though a misspecification of the second-order Weibull parameter is used. Second, both (asymptotic)
biases vanish at ρ = 0.

Proposition 1. For all τ > 1, y ≤ 0 and ρ < 0, |B(β?(τ, y), τ, ρ)| < B(1, τ, ρ) where both quantities
are defined in (6) and (10). Besides, B(β?(τ, y), τ, 0) = B(1, τ, 0) = 0 for all τ > 1 and y ≤ 0.

A.3 Proofs of auxiliary results

Proof of Lemma 2. Let θ = 1/β and x > 0. A second-order Taylor expansion yields, as t→∞,

U(tx)− U(t) = λ(log t)θ

((
1 +

log x

log t

)θ
− 1

)

= λθ(log x)(log t)θ−1
(

1 +
θ − 1

2

log x

log t
(1 + o(1))

)
.

Remarking that K0(x) = log x and letting a(t) = λθ(log t)θ−1, it follows

U(tx)− U(t)

a(t)
− log x =

θ − 1

2

(log x)2

log t
(1 + o(1)) = A(t)

∫ x

1

log s

s
ds (1 + o(1)),

where A(t) := (θ − 1)/ log t, the result is thus proved.

Proof of Lemma 3. The result is straightforwardly true for β = 0. Let us then focus on the
case where β ∈ (0, 1/2] and consider u ∈ (0, 1]. Differentiating three times, one gets

g′β(u) =
1

u
(1− 2u+ uβ(1 + β log(u))) =:

g̃β(u)

u
,

g̃′β(u) = −2 + βuβ−1(2 + β log(u)),

g̃′′β(u) = βuβ−2(3β − 2 + (β2 − β) log(u)).
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Let u0(β) = exp
(

2−3β
β(β−1)

)
be the unique point in u ∈ (0, 1] such that g̃′′β(u) = 0 when β ∈ (0, 1/2].

It is easily checked that g̃′′β(u) ≥ 0 when u ∈ (0, u0(β)] while g̃′′β(u) ≤ 0 when u ∈ [u0(β), 1]. As a
consequence, g̃′β(·) has a global maxima m(β) on (0, 1] at u0(β) given by

m0(β) := g̃′β(u0(β)) = −2− β2

β − 1
exp

(
2− 3β

β

)
.

The sign of m0(β) depends on β ∈ (0, 1/2]. Observe that m0(β) → +∞ as β → 0, m0(1/2) =

−2 + e/2 < 0 and

m′0(β) = −β
2 − 4β + 2

(β − 1)2
exp

(
2− 3β

β

)
< 0,

for all β ∈ (0, 1/2]. As a consequence, there exists a unique β0 ∈ (0, 1/2] such that m0(β) = 0 and
m0(β) ≥ 0 for all β ∈ (0, β0] while m0(β) ≤ 0 when β ∈ [β0, 1/2]. Two cases appear:

• If β ∈ [β0, 1/2], then m0(β) ≤ 0 and consequently g̃′β(u) ≤ 0 for all u ∈ [0, 1]. The function
g̃β(·) is thus decreasing on (0, 1], and taking account of g̃β(1) = 0 yields g̃β(u) > 0 for all
u ∈ (0, 1).

• If β ∈ (0, β0], then m0(β) ≥ 0 and there exist two unique points u1(β) ∈ (0, u0(β)] and
u2(β) ∈ [u0(β), 1] such that g̃′β(u) = 0. The function g̃β(·) is thus decreasing on (0, u1(β)],
increasing on [u1(β), u2(β)] and decreasing on [u2(β), 1] see Figure 2 for an illustration. It
has two local minima given by

g̃β(u1(β)) = 1− uβ1 (β) + 2u1(β)

(
1− β
β

)
> 0,

and g̃β(1) = 0. This proves that g̃β(u) > 0 for all u ∈ (0, 1).

As a conclusion, in both cases, g̃β(u) > 0 and g′β(u) > 0 for all u ∈ (0, 1) which implies that gβ(·) is
an increasing function on (0, 1). Since gβ(1) = 0 then gβ(u) < 0 for all u ∈ (0, 1) and β ∈ (0, 1/2].

Proof of Lemma 4. (i) A first-order Taylor expansion shows that hy(·) can be extended by
continuity letting hy(1) = 1 for all y ≤ 0.
(ii) Differentiating twice, one gets for all y < 0 and τ > 1:

h′y(τ) =
y

(τy − 1)2

(
τy − 1

τ
− yτy−1 log(τ)

)
=

y

τ(τy − 1)2
(τy − 1− yτy log(τ)) =:

y

τ(τy − 1)2
h̃y(τ).

with h̃′y(τ) = −y2τy−1 log(τ) < 0, for all y < 0 and τ > 1. As a consequence h̃y(·) is a decreasing
function for all y < 0. Besides, since h̃y(1) = 0, it follows that h̃y(τ) < 0 and a′y(τ) > 0 for all
y < 0 and τ > 1. This proves that hy(·) is an increasing function for all y < 0.
(iii) hy(τ) > 1 for all τ > 1 and y < 0 is a direct consequence of Lemma 4(i,ii). To prove the second
inequality, let ∆y(τ) := hy(τ)τy/2 − 1 for all τ > 1 and y < 0. Differentiating three times yields

∆′y(τ) =
yτy/2−1

(τy − 1)2

(
τy − 1− 1

2
y log τ(τy + 1)

)
=:

yτy/2−1

(τy − 1)2
∆̃y(τ),

∆̃′y(τ) =
y

2τ
(τy(1− y log τ)− 1) =:

y

2τ

≈
∆y(τ),

≈
∆′y(τ) = −y2(log τ)τy−1 < 0.
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u

g̃′′β(u)

g̃′β(u)

g̃′β(u)

g̃β(u)

0 u1(β) u0(β) u2(β) 1

+ + 0 − −

−∞−∞

m0(β) ≥ 0m0(β) ≥ 0

2β − 22β − 2

0 0

− 0 + 0 −

11

g̃β(u1(β)) > 0g̃β(u1(β)) > 0

g̃β(u2(β)) > 0g̃β(u2(β)) > 0

00

Figure 2: Variations of the function g̃β(·), β ∈ (0, 1/2] studied in the proof of Lemma 3.

It thus appears that
≈
∆y(·) is a decreasing function on (1,∞) with

≈
∆y(1) = 0 so that

≈
∆y(τ) < 0

for all τ > 1. As a consequence ∆̃′y(τ) > 0 and ∆̃y(·) is an increasing function on (1,∞) with
∆̃y(1) = 0 so that ∆̃y(τ) > 0 for all τ > 1. Finally, ∆′y(τ) < 0 and ∆y(·) is thus a decreasing
function on (1,∞) with ∆y(1) = 0 so that ∆y(τ) < 0 for all τ > 1. The result is proved.

Proof of Lemma 5. (i) A second-order Taylor expansion shows that fy(·) can be extended by
continuity letting fy(1) = 1/2 for all y ≤ 0.
(ii) Let y < 0 and τ > 1. Differentiating twice, one has:

f ′y(τ) = − 1

τy log(τ)2
(1− log hy(τ)− τyhy(τ)) =: − f̃y(τ)

τy log(τ)2
,

f̃ ′y(τ) =
h2y(τ)τy − 1

τ log τ
< 0,

in view of Lemma 4(iii). This implies that f̃y(·) is a decreasing function on (1,∞). Besides f̃y(1) = 0

since hy(1) = 1 from Lemma 4(i), and therefore f̃y(τ) < 0 and f ′y(τ) < 0 for all τ > 1 which implies
that fy(·) is a decreasing function on (1,∞).
(iii) fy(τ) < 1/2 for all y < 0 and τ > 1 is a direct consequence of Lemma 5(i,ii) while fy(τ) > 0

follows from Lemma 4(iii).

Proof of Proposition 1. First, note that for all τ > 1, ρ ≤ 0 and y ≤ 0, one has

B(1, τ, ρ)−B(β?(τ, y), τ, ρ) = log(τ)−Kρ(τ)− log(τ)

(
Ky(τ)

log(τ)

)ρ/y
+Kρ(τ)

= log(τ)(1− hy(τ)−ρ/y).
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Clearly, B(1, τ, 0)−B(β?(τ, y), τ, 0) = 0 and B(1, τ, 0) = 0 in view of (6). Let us thus focus on the
case where τ > 1, ρ < 0 and y ≤ 0. Combining log(τ) > 0, ρ/y > 0 and Lemma 4(iii) yields

B(1, τ, ρ)−B(β?(τ, y), τ, ρ) > 0. (21)

Second,

ρ{B(1, τ, ρ) +B(β?(τ, y), τ, ρ)} = ρ

(
log(τ) + log(τ)

(
Ky(τ)

log(τ)

)ρ/y
− 2Kρ(τ)

)
,

for all τ > 1, ρ < 0 and y ≤ 0. The change of variable ρ 7→ u = τρ yields

ρ{B(1, τ, ρ) +B(β?(τ, y), τ, ρ)} = log(u) + log(u)

(
Ky(τ)

log(τ)

)log(u)/(y log(τ))

− 2(u− 1)

= log(u)
(

1 + ufy(τ)
)
− 2(u− 1),

= gfy(τ)(u),

with

gβ(u) = log(u)(1 + uβ)− 2(u− 1), (see Lemma 3),

hy(τ) =
K0(τ)

Ky(τ)
, (see Lemma 4),

fy(τ) =
1

y log(τ)
log

(
Ky(τ)

log(τ)

)
= − log(h(τ))

y log(τ)
, (see Lemma 5).

Lemma 5(iii) shows that 0 < fy(τ) ≤ 1/2 for all y ≤ 0, τ > 1 and thus one can apply Lemma 3 to
obtain gfy(τ)(u) < 0 and consequently

B(1, τ, ρ) +B(β?(τ, y), τ, ρ) =
gfy(τ)(τ

ρ)

ρ
> 0. (22)

Collecting (21) and (22) concludes the proof.

B Appendix: Tables and Figures
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RWT RSH LSE MEF

θ = 1/2

ρ = −1/2 0.0133 0.0441 0.0203 0.0969
θ = 3/4

ρ = −1/2 0.0702 0.0459 0.0412 0.2543
θ = 1

ρ = −1 0.1125 0.3449 0.1814 -
ρ = −1/2 0.1317 0.0640 0.0715 0.3015

θ = 5/4

ρ = −1 0.1430 0.3386 0.1846 0.5964
ρ = −1/2 0.1937 0.0857 0.1029 0.2283

θ = 3/2

ρ = −3/2 0.2116 0.7095 0.3844 -
ρ = −1 0.1874 0.3374 0.1900 0.4198
ρ = −1/2 0.2517 0.1090 0.1332 0.2076

θ = 7/4

ρ = −3/2 0.2470 0.6989 0.3831 -
ρ = −1 0.2442 0.3330 0.1986 0.2705
ρ = −1/2 0.3154 0.1349 0.1663 0.3809

θ = 2

ρ = −2 0.3236 0.8833 0.4406 -
ρ = −3/2 0.2869 0.6945 0.3833 -
ρ = −1 0.2934 0.3311 0.2136 0.3168
ρ = −1/2 0.3744 0.1586 0.1971 0.5915

θ = 9/4

ρ = −2 0.3710 0.8783 0.4365 -
ρ = −3/2 0.3274 0.6915 0.3847 0.6088
ρ = −1 0.3401 0.3303 0.2301 0.4946
ρ = −1/2 0.4359 0.1818 0.2262 0.7415

θ = 5/2

ρ = −5/2 0.8958 0.9493 0.3713 -
ρ = −2 0.4301 0.8754 0.4420 -
ρ = −3/2 0.3824 0.6891 0.3874 0.4998
ρ = −1 0.4050 0.3309 0.2526 0.7070
ρ = −1/2 0.5086 0.2101 0.2629 0.8675

Table 4: MAREs associated with the four estimators of the extreme quantile q(αn = 1/n2) computed
on simulated data from the D(ζ = 1/θ, η = −ρ, a = 10)-distribution. The best result is emphasized
in bold. MAREs larger than 1 are not reported.
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RWT RSH LSE MEF

θ = 1/2

ρ = −1/2 0.0363 0.0835 0.0498 0.0871
θ = 3/4

ρ = −1/2 0.1049 0.0823 0.0685 0.2907
θ = 1

ρ = −1 0.2797 0.5471 0.3746 -
ρ = −1/2 0.1928 0.0964 0.1075 0.3572

θ = 5/4

ρ = −1 0.2941 0.5408 0.1471 0.4404
ρ = −1/2 0.2768 0.1201 0.1495 0.2738

θ = 3/2

ρ = −3/2 0.3973 0.8691 0.6227 -
ρ = −1 0.3316 0.5384 0.3743 0.3368
ρ = −1/2 0.3548 0.1467 0.1923 0.2555

θ = 7/4

ρ = −3/2 0.4242 0.8629 0.6135 -
ρ = −1 0.3813 0.5359 0.3744 0.3286
ρ = −1/2 0.4454 0.1785 0.2406 0.4611

θ = 2

ρ = −2 0.4764 0.9609 0.6591 -
ρ = −3/2 0.4616 0.8601 0.6109 -
ρ = −1 0.4351 0.5340 0.3796 0.4767
ρ = −1/2 0.5256 0.2088 0.2883 0.6809

θ = 9/4

ρ = −2 0.5542 0.9591 0.6429 -
ρ = −3/2 0.4977 0.8585 0.6088 0.6181
ρ = −1 0.4869 0.5316 0.3878 0.6607
ρ = −1/2 0.6005 0.2355 0.3304 0.8201

θ = 5/2

ρ = −5/2 - 0.9865 0.5552 -
ρ = −2 0.6308 0.9578 0.6388 -
ρ = −3/2 0.5603 0.8568 0.6047 0.6947
ρ = −1 0.5557 0.5298 0.4045 0.8317
ρ = −1/2 0.7019 0.2698 0.3847 0.9216

Table 5: MAREs associated with the four estimators of the extreme quantile q(αn = 1/n4) computed
on simulated data from the D(ζ = 1/θ, η = −ρ, a = 10)-distribution. The best result is emphasized
in bold. MAREs larger than 1 are not reported.
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Figure 3: Illustration on simulated data sets of size n = 500 from a D(ζ = 1/θ = 2/3, η =

−ρ, a = 10)-distribution with ρ ∈ {−1/2,−1,−3/2} (from top to bottom) computed on N = 1000

replications. Medians (left panel) and MAREs (right panel) as functions of kn ∈ {2, . . . , n − 1},
associated with estimators RWT (orange), RSH (blue) and LSE (green) of the extreme quantile
q(αn = 1/n2) (black dashed line).
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Figure 4: Illustration on simulated data sets of size n = 500 from a D(ζ = 1/θ, η = −ρ = 1, a = 10)-
distribution with θ ∈ {1, 3/2, 2} (from top to bottom) computed on N = 1000 replications. Medians
(left panel) and MAREs (right panel) as functions of kn ∈ {2, . . . , n−1}, associated with estimators
RWT (orange), RSH (blue) and LSE (green) of the extreme quantile q(αn = 1/n2) (black dashed
line).

24



0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Illustration on the daily wind data set. Top: Histogram of the data set. Bottom: Weibull
quantile-quantile plot (horizontally: (log log(n/i) − log log(n/k̂?n)), vertically: (logXn−i+1,n −
logXn−k̂?n+1,n) for i ∈ {1, . . . , k̂?n = 961}). A line with slope θ̂RWT

n (k†n) = 0.5597 is superimposed in
red.

25



0 500 1000 1500 2000 2500 3000 3500 4000
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0 500 1000 1500 2000 2500 3000 3500 4000

30

35

40

45

50

55

60

Figure 6: Illustration on the daily wind data set. Top: Estimates of the Weibull-tail coefficient RSH
(blue), LSE (green) and MEF (red) as functions of kn. The range is limited to kn ∈ {100, . . . , 4000}
for the sake ok readability. The pair (k†n, θ̂n(k†n)) associated with the selected value k†n is emphasized
by a circle. The RWT estimate is represented by an orange circle on the RSH curve. Bottom:
Estimates of the extreme quantile q(αn = 1/n) by RWT (orange), RSH (blue),LSE (green) and
MEF (red) as functions of kn with their associated k†n emphasized by a circle. The sample maximum
xn,n is depicted by an horizontal black dashed line.
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