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Abstract

We address the problem of estimation extreme quantiles of Weibull tail-distributions. Since
such quantiles are asymptotically larger than the sample maxima, their estimation requires
extrapolation methods. In the case of Weibull tail-distributions, classical extreme-value esti-
mators are numerically outperformed by estimators dedicated to this set of light-tailed dis-
tributions. The latter estimators of extreme quantiles are based on two estimators: an order
statistic to estimate an intermediate quantile and an estimator of the Weibull tail-coefficient.
The common practice is to select the same intermediate sequence for both estimators. We
show how an adapted choice of two different intermediate sequences leads to a reduction of
the asymptotic bias associated with the resulting refined estimator. The asymptotic normality
of the refined estimator is established, and a data-driven method is introduced for the practi-
cal selection of the intermediate sequences. Our approach is compared to three estimators of
extreme quantiles dedicated to Weibull tail-distributions in a simulation study.
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1 Introduction

Let X1, X2, . . . , Xn be independent and identically distributed random variables with cumulative
distribution function F and let X1,n ≤ . . . ≤ Xn,n denote the associated order statistics. We
consider the case where F belongs to the family of Weibull tail-distributions [10]:

(A.1) F is twice differentiable and F (·) = 1−exp(−H(·)) with V (t) := H←(t) = tθ`(t) for all t > 0,
where θ > 0 is called the Weibull tail-coefficient and where ` is a (positive) slowly-varying
function i.e. `(tx)/`(x)→ 1 as x→∞ for all t > 0.

Here, and in the following, f←(·) = inf{x ∈ R, f(x) > ·} denotes the generalized inverse of the
function f . The inverse cumulative hazard function V is said to be regularly-varying at infinity
with index θ and this property is denoted by V ∈ RVθ, see [9] for a detailed account on this topic.
The shape parameter θ is referred to as the Weibull tail-coefficient. Weibull tail-distributions
include for instance exponential (θ = 1), Gamma (θ = 1), logistic (θ = 1), Gaussian (θ = 1/2)
and Weibull distributions (θ is the inverse of the shape parameter), see [18, Table 1]. Weibull tail-
distributions are included in the Gumbel maximum domain of attraction, i.e. with extreme-value
index γ = 0, see [17, Proposition 2(ii)], and as such, are light-tailed distributions. We refer to [7]
for an application to the modeling of large claims in non-life insurance and to [25] for an analysis
of neural networks distributional properties.

Dedicated methods have been proposed to estimate the Weibull tail-coefficient θ since the rel-
evant information is localised in the extreme upper part of the sample. Most approaches rely on
the kn upper order statistics Xn−kn+1,n, . . . , Xn,n where kn → ∞ as n → ∞. Note that, since θ
is defined through a tail behavior, the associated estimator should only use the extreme-values of
the sample and thus the extra condition kn/n→ 0 is required. More specifically, recent estimators
are based on the log-spacings between the kn upper order statistics [8, 15, 17, 18] or on the mean
excess function [4, 5, 6]. The introduction of kernel based weights has been investigated for both
approaches, see [16, 19] for the log-spacings case and [20] for the mean excess function framework.
A bias reduction method adapted to the estimation of the Weibull tail-coefficient is proposed in [12]
and the adaptation to random censoring is achieved in [26].

We address the problem of estimating extreme quantiles of Weibull tail-distributions. Recall that
an extreme quantile q(αn) of order αn is defined by the equation 1−F (q(αn)) = αn with nαn → 0

as n → ∞. The latter condition implies that q(αn) is almost surely asymptotically larger than
Xn,n, the sample maximum. It is shown in [14] that classical extreme-value estimators of such large
quantiles are numerically outperformed by estimators dedicated to Weibull tail-distributions [13],
see also Lemma 2 in the Appendix for a theoretical argument. The latter methods estimate q(αn)

by combining two ingredients: an order statistic Xn−kn+1,n and an estimator of the Weibull tail-
coefficient θ.

In this work, we show that the biases associated with the previous extrapolation method and
the estimator of θ may asymptotically cancel out in the extreme quantile estimator thanks to an
appropriate tuning of the number of upper order statistics involved in the Weibull tail-coefficient
estimator. The construction of the resulting estimator is presented in Section 2 and an asymptotic
normality result is provided, emphasizing that the proposed extreme quantile estimator is asymp-
totically less biased than the original one [14]. Its performances are illustrated on simulated data
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in Section 3 and compared to state-of-the-art competitors [6, 13, 14]. Proofs are postponed to the
Appendix.

2 A refined estimator of the extreme quantile

2.1 Extreme quantile estimators

Weibull-tail estimators of the extreme quantile q(αn) rely on an intermediate quantile q(kn/n)

where (kn) is an intermediate sequence of integers i.e. such that kn ∈ {1, . . . , n− 1}, kn →∞ and
kn/n→ 0 as n→∞, see i.e. [13, 14]. Indeed, in view of (A.1), one has

q(αn)

q(kn/n)
=
V (log(1/αn))

V (log(n/kn))
'
(

log(1/αn)

log(n/kn)

)θ
=: τθn,

as n → ∞, where τn = log(1/αn)/log(n/kn) is the (logarithmic) extrapolation factor. Following
the ideas of [3], we propose a refined Weissman type estimator defined by:

q̂n(αn, kn, k
′
n) = Xn−kn+1,n

(
log(1/αn)

log(n/kn)

)θ̂n(k′n)
= Xn−kn+1,n τ

θ̂n(k
′
n)

n , (1)

with θ̂n(k′n) an estimator of the Weibull tail-coefficient θ depending on another intermediate se-
quence (k′n). We focus on the classical estimator of θ introduced in [15]:

θ̂RSH
n (k′n) =

1

µ(log(n/k′n))

1

k′n

k′n∑
i=1

(log(Xn−i+1,n)− log(Xn−k′n+1,n)), (2)

with, for t > 0,

µ(t) =

∫ +∞

0

log
(

1 +
x

t

)
e−xdx = etE1(t),

where E1 is the Exponential integral function [2, Page 228]. Clearly, θ̂RSH
n can be interpreted as a

rescaled Hill estimator since

θ̂RSH
n (k′n) =

γ̂Hn (k′n)

µ(log(n/k′n))
,

where γ̂Hn (k′n) is the well-known Hill estimator [24] of the extreme-value index γ > 0.
Let us note that k′n = kn yields back the extreme quantile estimator for Weibull tail-distributions

introduced in [14]. In the next paragraph, the asymptotic normality of q̂n(αn, kn, k
′
n) is established,

and we show that choosing k′n 6= kn can yield better results from an asymptotic point of view. A
similar phenomenon occurs in the estimation of the endpoint of a distribution, see [1] for details.

2.2 Asymptotic analysis

The study of the limit distribution of q̂n(αn, kn, k
′
n) requires a second-order condition on `:

(A.2) There exist ρ ≤ 0 and b(t)→ 0 as t→∞, with ultimately constant sign, such that uniformly
locally on x ≥ 1,

lim
t→∞

1

b(t)
log

(
`(tx)

`(t)

)
= Kρ(x) :=

∫ x

1

uρ−1du.
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It can be shown that necessarily |b| ∈ RVρ. The second-order Weibull parameter ρ ≤ 0 tunes
the rate of convergence of the ratio `(tx)/`(t) to 1. The closer ρ is to 0, the slower is the conver-
gence. Condition (A.2) is the cornerstone in all proofs of asymptotic normality for extreme-value
estimators. Again, we refer to [18, Table 1] for ρ parameters associated with usual Weibull tail-
distributions.

Our first result is a refinement of [15, Corollary 3.1]. It provides an asymptotic normality result
for the extreme quantile estimator (1) based on two intermediate sequences (kn) and (k′n).

Theorem 1. Assume (A.1) and (A.2) hold. Let (kn) and (k′n) be two intermediate sequences such
that k′n ≤ kn and introduce (αn) a probability sequence such that αn → 0 as n → ∞. Suppose, as
n→∞,

(i)
√
k′nb(log(n/k′n))→ λ ∈ R,

(ii) log(n/k′n)/ log(n/kn)→ β ≥ 1,

(iii) τn → τ > β.

Then, as n→∞,

√
k′n

(
q̂n(αn, kn, k

′
n)

q(αn)
− 1

)
d−→ N

(
λ(log(τ)− β−ρKρ(τ)), (θ log τ)2

)
. (3)

Let us first remark that condition (i) implies that log(n/k′n) ∼ log(n) as n → ∞ (see [15,
Lemma 5.1]), then condition (ii) yields that log(n/kn) ∼ log(n)/β and therefore condition (iii)
can be rewritten as log(1/αn) ∼ (τ/β) log(n) as n→∞. As a consequence, the condition τ > β in
(iii) implies nαn → 0 as n→∞ which, in turns, implies that q(αn) is an extreme quantile.

It follows from (3) that the asymptotic bias associated with q̂n(αn, kn, k
′
n) is given by(

log τ − β−ρKρ(τ)
)
b(log(n/k′n)) ∼ (βρ log(τ)−Kρ(τ)) b(log(n/kn)) =: B(β, τ, ρ)b(log(n/kn)).

It thus appears that each choice of k′n yields an associated constant β and thus a corresponding
bias factor B(β, τ, ρ). From the theoretical point of view, two cases can be considered.

• The usual choice k′n = kn yields β = 1 and

B(1, τ, ρ) = log(τ)−Kρ(τ), (4)

which is the bias factor associated with the extreme quantile estimator q̂n(αn, kn, kn) investi-
gated in [14].

• The choice β?(τ, ρ) = (Kρ(τ)/ log(τ))1/ρ yields

B(β?(τ, ρ), τ, ρ) = 0. (5)

The associated intermediate sequence is given by k?n(τ, ρ) = bn(kn/n)β
?(τ,ρ)c and therefore

the extreme quantile estimator q̂n(αn, kn, k
?
n(τ, ρ)) is asymptotically unbiased. Note that this

estimator cannot be used in practice since the second-order Weibull parameter ρ is unknown.
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Up to our knowledge, there is no estimator of the second-order Weibull parameter in the statistical
literature. In practice, one can replace ρ by a misspecified value y < 0 in the above β?(τ, ρ) leading
to

β?(τ, y) = (Ky(τ)/ log(τ))1/y, (6)

k?n(τ, y) = bn(kn/n)β
?(τ,y)c, (7)

B(β?(τ, y), τ, ρ) = (Ky(τ)/ log(τ))ρ/y log(τ)−Kρ(τ). (8)

This misspecification technique has been used both to deal with Pareto-type distributions (γ > 0),
see for instance [11], and Weibull tail-distributions (γ = 0) [13]. Some properties of the intermediate
sequence k?n(τ, y) are given in the next Lemma.

Lemma 1. Let β?(τ, y) and k?n(τ, y) be defined by (6) and (7) respectively. Then, for all τ > 1:

(i) β?(τ, ·) can be extended by continuity by setting β?(τ, 0) :=
√
τ .

(ii) 1 < β?(τ, y) < τ for all y ≤ 0.

(iii) For all y ≤ 0, k?n(τ, y) is an increasing function of kn, k?n(τ, y) ≤ kn and k?n(τ, y)/kn → 0 as
n→∞.

In particular, it appears in (iii) that the number of upper order statistics k?n(τ, y) used in the Weibull
tail-coefficient estimator should be asymptotically small compared to kn. The next Corollary shows
that these choices indeed lead to a bias reduction in the estimation of the extreme quantile.

Corollary 1. Assume (A.1) and (A.2) hold. Let c > 0, τ > 1, y < 0, λ 6= 0 such that
λb(·) is ultimately positive, and β?(τ, y) be defined as in (6). Let αn = c n−τ/β

?(τ,y), kn =

bn{λ2/(nb2(log n))}1/β?(τ,y)c and define k?n(τ, y) as in (7).

(i) Then, as n→∞,√
k?n(τ, y)

(
q̂n(αn, kn, k

?
n(τ, y))

q(αn)
− 1

)
d−→ N

(
λ(log(τ)− (Ky(τ)/ log(τ))−ρ/yKρ(τ)), (θ log τ)2

)
.

(9)

(ii) Moreover, for all τ > 1, ρ ≤ 0 and y ≤ 0, |B(β?(τ, y), τ, ρ)| ≤ |B(1, τ, ρ)|.

Let us first highlight that
√
k?n ∼ λ/b(log n) as n → ∞ (see the proof of Corollary 1 in the Ap-

pendix) which is the rate of convergence of usual extreme quantile estimators dedicated to Weibull
tail-distributions, see for instance [13, Theorem 1]. Surprisingly, as a consequence of Corollary 1(ii),
the extreme quantile estimator q̂n(αn, kn, k

?
n(τ, y)) computed with k?n(τ, y) = bn(kn/n)β

?(τ,y)c and
β?(τ, y) = (Ky(τ)/ log(τ))1/y has a smaller asymptotic bias than the usual one q̂n(αn, kn, kn) what-
ever the chosen value y ≤ 0. Let us recall that, from (5), the theoretical best choice would be y = ρ.
In practice, we use y = ρ# = −1 leading to β?(τ,−1) = τ log(τ)/(τ − 1). This "canonical" choice is
also used in [13], see Section 3.2 hereafter. The performance of the associated estimator is assessed
on simulated data in the next Section.

3 Validation on simulated data

Our estimator is compared on simulated data to the original estimator and to three other bias-
reduced estimators of the extreme quantile.
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3.1 Experimental design

We focus on the class of D(α, β, a)-distributions which is an adaptation of Hall’s class ([22, 23]) to
the Weibull-tail framework. In this family of distributions, the inverse cumulative hazard function
is defined for all x > 0 by

V (x) := x1/α
(

1 +
a

β
x−β

)
,

with a, α, β > 0 and αβ ≤ 1. Under these conditions, the above class of distributions fulfills
assumptions (A.1) and (A.2) with Weibull tail-coefficient θ = 1/α, second-order parameter ρ = −β,
slowly-varying function `(x) = 1 + (a/β)x−β and b(x) = −ax−β . Unlike classical distributions such
as exponential (θ = 1, ρ = −∞), Gamma (θ = 1, ρ = −1), Gaussian (θ = 1/2, ρ = −1) and Weibull
distributions (ρ = −∞), it is thus possible to obtain D-distributions with arbitrary Weilbull tail-
coefficient θ > 0 and second-order parameter ρ ∈ (0,−θ].

In the following, we set a = 10, θ ∈ {1/2, 3/4, . . . , 5/2}, ρ ∈ {−5/2,−2, . . . ,−1/2} and we only
consider the 25 situations where ρ ≤ −θ to fulfill the constraint αβ ≤ 1, see Table 1. In each
case, we simulate N = 1, 000 replications of a data set of n = 500 i.i.d. realisations from the 25

considered parametric models. Finally, same two cases as in [13] are investigated for the order of the
extreme quantile: αn ∈ {1/n2, 1/n4}. Summarizing, this experimental design includes 25× 2 = 50

configurations.

(ρ, θ) 1/2 3/4 1 5/4 3/2 7/4 2 9/4 5/2
-5/2 yes
-2 yes yes yes

-3/2 yes yes yes yes yes
-1 yes yes yes yes yes yes yes

-1/2 yes yes yes yes yes yes yes yes yes

Table 1: Considered (ρ, θ) configurations in the D(α = 1/θ, β = −ρ, a = 10)-distribution.

3.2 Competitors

Our refined estimator dedicated to the estimation of extreme quantiles for Weibull tail-distributions
is compared to three competitors. All three estimators share the same structure and rely on three
terms, i.e. an order statistic, an extrapolation factor and an estimator of the Weibull tail-coefficient:

q̂n(αn, kn) = Xn−kn+1,n τ
θ̂n(kn)
n . (10)

Since all considered estimators depend on an estimator of the Weibull tail-coefficient, we will start
by describing the latter.

1. We first consider the classical estimator of the Weibull tail-coefficient given in (2) and in-
troduced in [15]. The authors constructed in [14] an estimator of the extreme quantile by
plugging θ̂RSH

n in (10) to obtain

q̂RSH
n (αn, kn) = Xn−kn+1,n τ

θ̂RSH
n (kn)
n . (11)

The resulting estimator does not include a bias reduction.
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2. In [6] the authors proposed an estimator of the Weibull tail-coefficient based on the mean
excess function defined by t 7→ m(t) = E(X− t | X > t). In practice, they consider t = Xn−j,n

and estimate m(Xn−j,n) by

m̂n(Xn−j,n) =
1

j

j∑
i=1

Xn−i+1,n −Xn−j,n,

for j ∈ {1, . . . , kn}, which leads to the following estimator of θ based on log-spacings between
the mean excesses:

θ̂MEF
n (kn) =

(
1−

1
kn

∑kn
j=1 log(m̂n(Xn−j,n))− log(m̂n(Xn−kn−1,n))

1
kn

∑kn
j=1 log(Xn−j,n)− log(Xn−kn−1,n)

)−1
.

We can then build an estimator based on the mean excess function and dedicated to the
extreme quantiles by replacing θ̂MEF

n in (10), which yields

q̂MEF
n (αn, kn) = Xn−kn+1,n τ

θ̂MEF
n (kn)
n . (12)

3. Up to our knowledge there exists only one bias-reduced extreme quantile estimator [13] ded-
icated to Weibull tail-distributions. This estimator is based on a bias-reduced estimator of
the Weibull tail-coefficient proposed by the same authors in [12]. They estimated the Weibull
tail-coefficient θ through a least-squares estimator given by

θ̂LSEn (kn) = Ȳkn − b̂(log(n/kn))x̄kn ,

where

Ȳkn =
1

kn

kn∑
j=1

Yj and Yj = j log(n/j)(log(Xn−j+1,n)− log(Xn−j,n)),

and with

b̂(log(n/kn)) =

kn∑
j=1

(xj − x̄kn)Yj

/
kn∑
j=1

(xj − x̄kn)2 ,

where

x̄kn =
1

kn

kn∑
j=1

xj and xj = log(n/kn)/ log(n/j).

Finally, they obtain

q̂LSEn (αn, kn) = Xn−kn+1,n τ
θ̂LSE
n (kn)
n exp

(
b̂(log(n/kn))Kρ̂n(τn)

)
. (13)

From a practical point of view, the authors suggested to choose ρ̂n = ρ# = −1. This estimator
features two bias corrections: a first one in the estimator of the Weibull tail-coefficient and a
second one in the extrapolation factor. This estimator is built under the assumption x|b(x)| →
∞ as x→∞ which leads to the constraint ρ ≥ −1. The latter assumption is fulfilled by the
class of D(α, β, a)-distributions when β ≤ 1.

Recall that our estimator is given by

q̂RWT
n (αn, kn, k

?
n(τn,−1)) = Xn−kn+1,n τ

θ̂RSH
n (k?n(τn,−1))
n , (14)

where k?n(τn,−1) = bn(kn/n)β
?(τn,−1)c and β?(τn,−1) = τn log(τn)/(τn − 1). For the sake of

simplicty, the above extreme quantile estimators (11)–(14) are respectively referred to as RSH,
MEF, LSE and RWT in the sequel.

7



3.3 Selection of the thresholds

All considered extreme quantile estimators (RWT, RSH, LSE, MEF) depend on the intermediate
sequence kn. The selection of kn is a crucial point which has been widely discussed in the extreme-
value literature. A new algorithm for the selection of kn is proposed in [3], basing on a bisection
method inspired from random forests. The objective is to find the region with the smallest variance
in a given series {Z1, . . . , Zm}. The proposed method starts by randomly splitting the series into two,
compute the variance in each sub-region and repeat the action in the one with smallest variance
until getting a final single point, see [3, Algorithm 2]. The above procedure is embedded in a
bootstrap technique, see [3, Algorithm 1], and the final k†n is selected by taking the median across
the T = 10, 000 bootstrap samples. In the simulations, we used Zj = q̂(αn, kj,n) an estimator of
the extreme quantile at level αn computed with the intermediate sequence kj,n ∈ {15, . . . , 3n/4}.

3.4 Results

The performance of the four extreme quantile estimators is assessed using the Mean absolute relative
error:

MARE (q̂n(αn)) =
1

N

N∑
i=1

∣∣∣∣∣ q̂(i)n (αn, k
(i,†)
n )

qn(αn)
− 1

∣∣∣∣∣ , (15)

where q̂(i)n (αn, k
(i,†)
n ) denotes the estimator computed on the ith replication, i ∈ {1, . . . , N} with

the selected intermediate sequence k(i,†)n . The results are provided in Table 2 and Table 3 for
respectively, αn = 1/n2 and αn = 1/n4. We start by remarking that, as expected, the smaller the
order αn of the extreme quantile is, i.e. the more we extrapolate, the larger the error is. This is
true for the four considered estimators.

The proposed RWT estimator is the most accurate one since it provides the best results in 44%

of cases, especially when ρ ≤ −1, except for the case θ = −ρ = 1/2. Let us remark that, since we
fixed ρ# = −1 in our estimator, it performs globally better, for a given value of the Weibull tail-
coefficient θ, when ρ is close to −1. Surprisingly, the LSE estimator, which also uses the same fixed
value ρ# = −1, behaves differently: It performs best when ρ is large. The second most accurate
estimator is RSH which provides the best results in 28% of the considered cases. It is only efficient
when ρ = −1/2 where it obtains all its 14 best results. Unexpectedly, RSH performs well in this
difficult case despite the fact that it does not benefit from a bias reduction. The four cases where
it fails to obtain the best results when ρ = −1/2 correspond to a Weibull tail-coefficient smaller
than 1. The LSE estimator obtains similar results with 22% of best results (11 out of 50 situations).
As expected, the constraint ρ ≥ −1, inherent in the design of LSE, corresponds to 9 out of its 11
cases where it obtains the best results. Finally, MEF yields poor estimations, with only 6% of best
results. It does not seem to adapt well to the presence of bias in the distribution. In particular,
when θ is close to 1 it does not give acceptable results, in the sense that MARE ≥ 1.

To conclude, it appears on these experiments on simulated data that, in average, the RWT
estimator performs the best within the four considered estimators. One of its main competitors is
LSE, which, similarly to RWT, considers the two sources of bias (associated with the Weibull tail
coefficient estimator and the extrapolation term).
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A Appendix: Proofs

Proofs of main results are collected in Subsection A.1. Some auxiliary results are provided in
Subsection A.2 and proved in Subsection A.3.

A.1 Proofs of main results

Proof of Theorem 1. Clearly,√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= T (1)

n + T (2)
n + T (3)

n

with

T (1)
n =

√
k′n

(
Xn−kn+1,n

V (log(n/kn))

)
,

T (2)
n =

√
k′n(log τn)(θ̂RSH

n (k′n)− θ),

T (3)
n =

√
k′n

(
`(log(n/kn))

`(log(1/αn))

)
.

Let us consider the three terms separately. First, [14, Lemma 1] shows that, under (A.1), kn →∞,
kn/n→ 0 and (iii):

T (1)
n =

√
k′n/kn

log(n/kn)
θξ′n +OP

( √
k′n

kn log2(n/kn)

)
, (16)

where ξ′n
d−→ N (0, 1). Second, [15, Proposition 2.1] entails that, under assumptions (A.1), (A.2),

k′n →∞ and k′n/n→ 0, the following expansion holds:

T (2)
n = θ log(τ)ξn + θ log(τ)µ(log(n/k′n))ξ′′n + log(τ)

√
k′nb(log(n/k′n))(1 + o(1)), (17)

where ξn
d−→ N (0, 1) and ξ′′n

d−→ N (0, 1). Third, using (A.2) and (iii), one obtains

T (3)
n = −Kρ(τ)

√
k′nb(log(n/kn))(1 + o(1)). (18)

Collecting (16), (17) and (18), we obtain

√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn + θ log(τ)µ(log(n/k′n))ξ′′n +

√
k′n/kn

log(n/kn)
θξ′n

+
√
k′n {log(τ)b(log(n/k′n))(1 + o(1))−Kρ(τ)b(log(n/kn))(1 + o(1))}

+ OP

( √
k′n

kn log2(n/kn)

)
.

Recalling that, from [15, Lemma 5.3], µ(t) ∼ 1/t as t→∞, the above expansion can be simplified
as√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn +

√
k′n/kn

log(n/kn)
θξ′n

+
√
k′n {log(τ)b(log(n/k′n))(1 + o(1))−Kρ(τ)b(log(n/kn))(1 + o(1))}

+ OP

( √
k′n

kn log2(n/kn)

)
,
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Finally, remark that assumption (ii) implies k′n ≤ kn eventually and b(log(n/kn)) ∼ β−ρb(log(n/k′n))

so that√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
= θ log(τ)ξn +

√
k′nb(log(n/k′n))

(
log(τ)− β−ρKρ(τ) + o(1)

)
(1 + o(1))

+ oP (1) .

Assumption (i) then yields

√
k′n log

(
q̂n(αn, kn, k

′
n)

q(αn)

)
d−→ N

(
λ(log τ − β−ρKρ(τ)), (θ log τ)2

)
and a first order Taylor expansion proves the result.

Proof of Lemma 1 (i) The result follows from a second-order Taylor expansion.
(ii) First, Lemma 4(iii) implies that, for all τ > 1 and y ≤ 0, hy(τ) > 1 and thus β?(τ, y) =

hy(τ)−1/y > 1. Second, Lemma 4(iii) implies that, for all τ ≥ 1 and y ≤ 0, hy(τ) ≤ τ−y/2 ≤ τ−y

when y < 0. This straightforwardly implies that Ky(τ)/ log(τ) > τy which is equivalent to
β?(τ, y) < τ . In the particular case where y = 0, from (i), one can take β?(τ, 0) :=

√
τ < τ

since τ > 1 and the result is proved.
(iii) Let us first consider k̃n(τ, y) = n(kn/n)β

?(τ,y) such that k?n(τ, y) = bk̃n(τ, y)c. Clearly,
k̃n(τ, y)/kn = (kn/n)β

?(τ,y)−1 and β?(τ, y) > 1 in view of (ii). As a consequence, for all y ≤ 0,
k̃n(τ, y) is an increasing function of kn, k̃n(τ, y) ≤ kn and k̃n(τ, y)/kn → 0 as n→∞. These prop-
erties can be extended to k?n(τ, y) without difficulty since the integer part is an increasing function
and k?n(τ, y) ≤ k̃n(τ, y).

Proof of Corollary 1. (i) To prove the convergence in distribution (9), it is sufficient to show
that conditions (i), (ii) and (iii) hold. First, one can easily check that k?n(τ, y)b2(log n) → λ2 as
n→∞ and thus

√
k?n(τ, y)b(log n)→ λ in view of the sign assumption on λ. Besides,

log(n/k?n(τ, y)) = logn+ 2 log |b(log n)| − 2 log |λ|+ o(1) ∼ log n, (19)

since b(·) is regularly-varying so that b(log(n/k?n(τ, y))) ∼ b(log n) and thus√
k?n(τ, y)b(log(n/k?n(τ, y)))→ λ,

as n→∞. (i) is thus proved. Second, observe that

τn =
log(1/αn)

log(n/kn)
=

log(1/c)

log(n/kn)
+

τ

β?(τ, ρ)

log n

log(n/kn)

and
log(n/kn) =

1

β?(τ, ρ)
(log n+ 2 log |b(log n)| − 2 log |λ|) + o(1) ∼ 1

β?(τ, ρ)
log n, (20)

as n → ∞. It is thus clear that τn → τ as n → ∞, which is (ii). Third, (iii) is a straightforward
consequence of (19) and (20).
(ii) Proposition 1 concludes the proof.
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A.2 Auxiliary results

We begin with a Lemma that establishes that the strict Weibull distribution belongs to the Gumbel
maximum domain of attraction (γ = 0), and more importantly, with a second-order parameter
ψ = 0. This result illustrates why inference on Weibull-tail distributions may be difficult since the
situation γ = ψ = 0 is the most complicated one for classical extreme-value estimators. Let us
also recall that, in contrast, the second-order Weilbull parameter is ρ = −∞, see [18, Table 1] and
therefore strict Weibull distributions are an easy situation for dedicated Weibull-tail estimators.

Lemma 2. Suppose F is the cumulative distribution function of a strict Weibull distribution with
shape parameter β > 0, β 6= 1 and scale parameter λ > 0. Then, the associated tail quantile function
U(·) := F←(1− 1/·) verifies the second-order condition

U(tx)−U(t)
a(t) −Kγ(x)

A(t)
→
∫ x

1

sγ−1Kψ(s)ds,

as t → ∞, for all x > 0, see [21, Equation (3.4.5)], with γ = 0, ψ = 0, a(t) = (λ/β)(log t)1/β−1

and A(t) = (1− β)/(β log t).

The following three analytical results are used to prove Proposition 1 below.

Lemma 3. ∀u ∈ [0, 1] and ∀β ∈ [0, 1/2] we have gβ(u) := log(u)(1 + uβ)− 2(u− 1) ≤ 0.

Lemma 4. Let us define, for all τ > 1 and y ≤ 0,

hy(τ) :=
K0(τ)

Ky(τ)
=
y log(τ)

τy − 1
if y < 0 and h0(τ) = 1 otherwise.

Then, for all y ≤ 0:

(i) hy(·) can be extended by continuity letting hy(1) = 1.

(ii) hy(·) is an increasing function on [1,∞).

(iii) 1 < hy(τ) ≤ τ−y/2 for all τ > 1.

Lemma 5. Let us define, for all τ > 1 and y ≤ 0,

fy(τ) := − log(hy(τ))

y log(τ)
if y < 0 and f0(τ) = 1/2 otherwise.

Then, for all y ≤ 0:

(i) fy(·) can be extended by continuity letting fy(1) = 1/2.

(ii) fy(·) is a decreasing function on [1,∞).

(iii) 0 ≤ fy(τ) ≤ 1/2 for all τ ≥ 1.

The next Proposition establishes that the bias associated with the refined estimator of extreme
quantiles is smaller than the bias associated with the original one, even though a misspecification
of the second-order Weibull parameter is used.

Proposition 1. For all τ > 1, ρ ≤ 0 and y ≤ 0, |B(β?(τ, y), τ, ρ)| ≤ |B(1, τ, ρ)| where both
quantities are defined in (4) and (8).
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A.3 Proofs of preliminary results

Proof of Lemma 2. Let θ = 1/β. A second-order Taylor expansion yields, as t→∞,

U(tx)− U(t) = λ(log t)θ

((
1 +

log x

log t

)θ
− 1

)

= λθ(log x)(log t)θ−1
(

1 +
θ − 1

2

log x

log t
(1 + o(1))

)
.

Remarking that K0(x) = log x and letting a(t) = λθ(log t)θ−1, it follows

U(tx)− U(t)

a(t)
− log x =

θ − 1

2

(log x)2

log t
(1 + o(1)) = A(t)

∫ x

1

log s

s
ds (1 + o(1)),

where we have defined A(t) = (θ − 1)/ log t, the result is thus proved.

Proof of Lemma 3. Differentiating three times, one gets

g′β(u) =
1

u
(1− 2u+ uβ(1 + β log(u))) =:

g̃β(u)

u
,

g̃′β(u) = −2 + βuβ−1(2 + β log(u)),

g̃′′β(u) = βuβ−2(3β − 2 + (β2 − β) log(u)).

Let u0(β) = exp
(

2−3β
β(β−1)

)
be the unique point in u ∈ [0, 1] such that g̃′′β(u) = 0 when β ∈ [0, 1/2].

It is easily checked that g̃′′β(u) ≥ 0 when u ∈ [0, u0(β)] while g̃′′β(u) ≤ 0 when u ∈ [u0(β), 1]. As a
consequence, g̃′β(·) has a global maxima m(β) on [0, 1] at u0(β) given by

m0(β) := g̃′β(u0(β)) = −2− β2

β − 1
exp

(
2− 3β

β

)
.

The sign of m0(β) depends on β ∈ [0, 1/2]. Observe that m0(β) → +∞ as β → 0, m0(1/2) =

−2 + e/2 < 0 and

m′0(β) = −β
2 − 4β + 2

(β − 1)2
exp

(
2− 3β

β

)
< 0

for all β ∈ [0, 1/2]. As a consequence, there exists a unique β0 ∈ [0, 1/2] such that m0(β) = 0 and
m0(β) ≥ 0 for all β ∈ [0, β0] while m0(β) ≤ 0 when β ∈ [β0, 1/2]. Two cases appear:

• If β ∈ [β0, 1/2], then m0(β) ≤ 0 and consequently g̃′β(u) ≤ 0 for all u ∈ [0, 1]. The function
g̃β(·) is thus decreasing on [0, 1], and taking account of g̃β(1) = 0 yields g̃β(u) ≥ 0 for all
u ∈ [0, 1].

• If β ∈ [0, β0], then m0(β) ≥ 0 and there exists two unique points u1(β) ∈ [0, u0(β)] and
u2(β) ∈ [u0(β), 1] such that g̃′β(u) = 0. The function g̃β(·) is thus decreasing on [0, u1(β)],
increasing on [u1(β), u2(β)] and decreasing on [u2(β), 1] see Figure 1 for an illustration. It
has two local minima given by

g̃β(u1(β)) = 1− uβ1 + 2u1

(
1− β
β

)
> 0

and g̃β(1) = 0. This proves that g̃β(u) ≥ 0 for all u ∈ [0, 1].

As a conclusion, in both cases g̃β(u) ≥ 0 and g′β(u) > 0 for all u ∈ [0, 1] which implies that gβ(·) is
an increasing function on [0, 1]. Since gβ(1) = 0 then gβ(u) ≤ 0 for all u ∈ [0, 1] and β ∈ [0, 1/2].
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u

g̃′′β(u)

g̃′β(u)

g̃′β(u)

g̃β(u)

0 u1(β) u0(β) u2(β) 1

+ + 0 − −

−∞−∞

m0(β) ≥ 0m0(β) ≥ 0

2β − 22β − 2

0 0

− 0 + 0 −

11

g̃β(u1(β)) > 0g̃β(u1(β)) > 0

g̃β(u2(β)) > 0g̃β(u2(β)) > 0

00

Figure 1: Variations of the function g̃β(·), β ∈ [0, 1/2] studied in the proof of Lemma 3.

Proof of Lemma 4. (i) A first-order Taylor expansion yields hy(1) = 1.
(ii) Differentiating twice, one gets for all y ≤ 0 and τ ≥ 1:

a′y(τ) =
y

(τy − 1)2

(
τy − 1

τ
− yτy−1 log(τ)

)
=

y

τ(τy − 1)2
(τy − 1− yτy log(τ)) =:

y

τ(τy − 1)2
ãy(τ).

with ã′y(τ) = −y2τy−1 log(τ) ≤ 0, for all y ≤ 0 and τ ≥ 1. As a consequence ãy(·) is a decreasing
function for all y ≤ 0. Besides, since ãy(1) = 0, it follows that ãy(τ) ≤ 0 and a′y(τ) > 0 for all y ≤ 0

and τ ≥ 1. This proves that hy(·) is an increasing function for all y ≤ 0.
(iii) hy(τ) ≥ 1 is a direct consequence of (i) and (ii). To prove the second inequality, let ∆y(τ) :=

hy(τ)τy/2 − 1 for all τ ≥ 1 and y ≤ 0. Differentiating three times yields

∆′y(τ) =
yτy/2−1

(τy − 1)2

(
τy − 1− 1

2
y log τ(τy + 1)

)
=:

yτy/2−1

(τy − 1)2
∆̃y(τ),

∆̃′y(τ) =
y

2τ
(τy(1− y log τ)− 1) =:

y

2τ

≈
∆y(τ),

≈
∆′y(τ) = −y2(log τ)τy−1 ≤ 0.

It thus appears that
≈
∆y(·) is a decreasing function on [1,∞) with

≈
∆y(1) = 0 so that

≈
∆y(τ) ≤ 0 for

all τ ≥ 1. As a consequence ∆̃′y(τ) ≥ 0 and ∆̃y(·) is an increasing function on [1,∞) with ∆̃y(1) = 0

so that ∆̃y(τ) ≥ 0 for all τ ≥ 1. Finally, ∆′y(τ) ≤ 0 and ∆y(·) is thus a decreasing function on
[1,∞) with ∆y(1) = 0 so that ∆y(τ) ≤ 0 for all τ ≥ 1. The result is proved.
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Proof of Lemma 5. (i) A second-order Taylor expansion yields fy(1) = 1/2.

(ii) Differentiating twice, one has:

f ′y(τ) = − 1

τy log(τ)2
(1− log hy(τ)− τyhy(τ)) =: − f̃y(τ)

τy log(τ)2
,

f̃ ′y(τ) =
a2y(τ)τy − 1

τ log τ
≤ 0,

in view of Lemma 4(iii). This implies that f̃y(·) is a decreasing function on [1,∞). Besides f̃y(1) = 0

since hy(1) = 1 from Lemma 4(i)), and therefore f̃y(τ) < 0 and f ′y(τ) < 0 for all τ ≥ 1 which implies
that fy(·) is a decreasing function on [1,∞).
(iii) fy(τ) ≤ 1/2 is a direct consequence of (i) and (ii) while fy(τ) ≥ 0 follows from Lemma 4(iii).

Proof of Proposition 1. First, note that for all τ > 1, ρ ≤ 0 and y ≤ 0, one has

B(1, τ, ρ)−B(β?(τ, y), τ, ρ) = log(τ)−Kρ(τ)− log(τ)

(
Ky(τ)

log(τ)

)ρ/y
+Kρ(τ)

= log(τ)(1− hy(τ)−ρ/y)

≥ 0, (21)

since log(τ) ≥ 0, ρ/y ≥ 0 and in view of Lemma 4(iii). Second,

ρ{B(1, τ, ρ) +B(β?(τ, y), τ, ρ)} = ρ

(
log(τ) + log(τ)

(
Ky(τ)

log(τ)

)ρ/y
− 2Kρ(τ)

)
.

for all τ ≥ 1, ρ < 0 and y ≤ 0. The change of variable ρ 7→ u = τρ yields

ρ{B(1, τ, ρ) +B(β?(τ, y), τ, ρ)} = log(u) + log(u)

(
Ky(τ)

log(τ)

)log(u)/(y log(τ))

− 2(u− 1)

= log(u)
(

1 + ufy(τ)
)
− 2(u− 1),

= gfy(τ)(u),

with

gβ(u) = log(u)(1 + uβ)− 2(u− 1), (see Lemma 3),

fy(τ) =
1

y log(τ)
log

(
Ky(τ)

log(τ)

)
= − log(a(τ))

y log(τ)
, (see Lemma 5),

hy(τ) =
K0(τ)

Ky(τ)
, (see Lemma 4).

Lemma 5(iii) shows that 0 ≤ fy(τ) ≤ 1/2 and thus one can apply Lemma 3 to obtain gfy(τ)(u) ≤ 0

and consequently

B(1, τ, ρ) +B(β?(τ, y), τ, ρ) =
gfy(τ)(u)

ρ
≥ 0. (22)

Collecting (21) and (22) concludes the proof.

B Appendix: Tables

16



Diebolt RWT RSH LSE MEF

θ = 1/2

ρ = −1/2 0.0134 0.0442 0.0204 0.3601
θ = 3/4

ρ = −1/2 0.0705 0.0461 0.0413 -
θ = 1

ρ = −1 0.1133 0.3455 0.1819 -
ρ = −1/2 0.1318 0.0639 0.0717 -

θ = 5/4

ρ = −1 0.1427 0.3391 0.1852 -
ρ = −1/2 0.1919 0.0853 0.1024 0.8001

θ = 3/2

ρ = −3/2 0.2118 0.7104 0.3858 0.4408
ρ = −1 0.1889 0.3362 0.1893 0.8957
ρ = −1/2 0.2486 0.1079 0.1330 0.1175

θ = 7/4

ρ = −3/2 0.2474 0.6997 0.3843 0.1889
ρ = −1 0.2406 0.3337 0.1990 0.1022
ρ = −1/2 0.3099 0.1351 0.1655 0.6295

θ = 2

ρ = −2 0.3203 0.8839 0.4438 0.8286
ρ = −3/2 0.2866 0.6953 0.3846 0.5759
ρ = −1 0.2941 0.3317 0.2135 0.5930
ρ = −1/2 0.3734 0.1603 0.1971 0.8609

θ = 9/4

ρ = −2 0.3784 0.8781 0.4388 0.8840
ρ = −3/2 0.3350 0.6919 0.3861 0.8253
ρ = −1 0.3495 0.3304 0.2339 0.8536
ρ = −1/2 0.4488 0.1872 0.2315 0.9509

θ = 5/2

ρ = −5/2 0.8869 0.9498 0.3756 0.9611
ρ = −2 0.4341 0.8745 0.4384 0.9376
ρ = −3/2 0.3783 0.6901 0.3884 0.9221
ρ = −1 0.4045 0.3298 0.2529 0.9384
ρ = −1/2 0.5098 0.2095 0.2623 0.9776

Table 2: MARE associated with 4 estimators of the extreme quantile q(αn = 1/n2) computed on
simulated data from the D(α = 1/θ, β = −ρ, a = 10)-distribution. The best result is emphasized in
bold. MAREs larger than 1 are not reported.
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Diebolt RWT RSH LSE MEF

θ = 1/2

ρ = −1/2 0.0364 0.0836 0.0500 0.4395
θ = 3/4

ρ = −1/2 0.1040 0.0825 0.0683 -
θ = 1

ρ = −1 0.2803 0.5477 0.3753 -
ρ = −1/2 0.1916 0.0961 0.1070 -

θ = 5/4

ρ = −1 0.2954 0.5413 0.3765 -
ρ = −1/2 0.2765 0.1199 0.1491 -

θ = 3/2

ρ = −3/2 0.3994 0.8696 0.6239 0.6051
ρ = −1 0.3338 0.5390 0.3752 0.7545
ρ = −1/2 0.3531 0.1466 0.1925 0.1618

θ = 7/4

ρ = −3/2 0.4250 0.8634 0.6149 0.5039
ρ = −1 0.3799 0.5365 0.3749 0.3113
ρ = −1/2 0.4400 0.1775 0.2412 0.7275

θ = 2

ρ = −2 0.4661 0.9612 0.6624 0.9438
ρ = −3/2 0.4610 0.8606 0.6124 0.7907
ρ = −1 0.4327 0.5345 0.3800 0.7539
ρ = −1/2 0.5179 0.2075 0.2869 0.9194

θ = 9/4

ρ = −2 0.5578 0.9589 0.6436 0.9631
ρ = −3/2 0.5078 0.8588 0.6094 0.9310
ρ = −1 0.4949 0.5323 0.3911 0.9324
ρ = −1/2 0.6062 0.2408 0.3414 0.9767

θ = 5/2

ρ = −5/2 - 0.9866 0.5616 0.9907
ρ = −2 0.6339 0.9574 0.6336 0.9828
ρ = −3/2 0.5578 0.8576 0.6060 0.9745
ρ = −1 0.5529 0.5305 0.4063 0.9761
ρ = −1/2 0.6987 0.2700 0.3833 0.9910

Table 3: MARE associated with 4 estimators of the extreme quantile q(αn = 1/n4) computed on
simulated data from the D(α = 1/θ, β = −ρ, a = 10)-distribution. The best result is emphasized in
bold. MAREs larger than 1 are not reported.
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