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ABSTRACT

Dimension reduction (DR) methods provide systematic
approaches for analyzing high-dimensional data. A key
requirement for DR is to incorporate global dependen-
cies among original and embedded samples while pre-
serving clusters in the embedding space. To achieve this,
we combine the principles of optimal transport (OT)
and principal component analysis (PCA). Our method
seeks the best linear subspace that minimizes recon-
struction error using entropic OT, which naturally en-
codes the neighborhood information of the samples.
From an algorithmic standpoint, we propose an efficient
block-majorization-minimization solver over the Stiefel
manifold. Our experimental results demonstrate that
our approach can effectively preserve high-dimensional
clusters, leading to more interpretable and effective
embeddings. Python code of the algorithms and experi-
ments is available online1.

Index Terms— Dimension reduction, PCA, Optimal
Transport, entropy, block-majorization-minimization

1. INTRODUCTION

Given a set of n samples of dimension d, denoted X =
[x1, · · · ,xn] ∈ Rd×n, a linear dimension reduction con-
sists in projecting the data onto a k-dimensional sub-
space (k < p) as U⊤X ∈ Rk×n, where U ∈ St(d, k) is
an orthonormal basis (as St(d, k) = {U ∈ Rd×k,U⊤U =
Ik} denotes the Stiefel manifold). The most celebrated
method in this framework is probably the principal com-
ponent analysis (PCA) that selects the k leading eigen-
vectors of X for the projection basis [1].

Interestingly, this basis appears as the solution to
many underlying optimization problems, whose formu-
lations offer points of view to generalize PCA and thus
alleviate several of its shortcomings. For example, PCA
minimizes the average squared distance between the

1https://github.com/antoinecollas/Entropic_
Wasserstein_Component_Analysis
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Fig. 1: Illustration of (EWCA) with 2D samples orga-
nized in two clusters (in green and orange). On the
left are the samples and their 1D projections, and on the
right is the corresponding OT transport plan.

samples and their projection on the subspace spanned
by U. Generalizations can then come from considering
the minimization of robust distances to be less sensitive
to outliers [2, 3]. A second example is that any formula-
tion of PCA as an optimization problem can be regular-
ized to promote certain properties of the solution. This
is the starting point of many sparse PCA algorithms that
aim to obtain a sparse basis U, i.e., promoting the pro-
jection to act as a variable selection [4].

In this work, we explore a reformulation of PCA as
the solution to an optimal transport (OT) problem [5].
We show that optimizing an entropic OT between sam-
ples X and their projected counterparts UU⊤X encodes
neighborhood information between samples. Interest-
ingly, optimizing exact OT (in the special case in the
absence of entropic regularization) is equivalent to stan-
dard PCA. Thanks to the underlying principles of OT, this
new approach is able to capture both global linear em-
beddings as well as local interactions between samples.

The contributions are the following: i) We refor-
mulate a subspace recovery problem with an OT objec-
tive and show that it indeed yields the standard PCA
when using least-squares cost and no regularization;
ii) We propose a block-coordinate descent (BCD) algo-
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rithm to solve the corresponding optimization problem
and a more efficient alternative using the majorization-
minimization framework [6]; iii) We perform numerical
experiments on genome data [7, 8] that show a gain in
accuracy compared to the standard PCA when used as a
preprocessing step for classification problems.

2. ENTROPIC WASSERSTEIN COMPONENT
ANALYSIS (EWCA)

Entropic Optimal Transport. Given two datasets X =
(x1, · · · ,xn),Y = (y1, · · · ,ym) with xi,yj ∈ Rd and c :
Rd×Rd → R+ a cost function. Consider two histograms
a ∈ Σn,b ∈ Σm (i.e. ai ≥ 0,

∑n
i=1 ai = 1) the entropic

OT problem aims at solving, for ε > 0,

OTε,c(a,b,X,Y)
∆
= min

π∈Π(a,b)

n,m∑
i,j=1

c(xi,yj)πij − εH(π) ,

where Π(a,b) = {π ∈ Rn×m
+ ; π1m = a,π⊤1n =

b} is the set of couplings between a,b and H(π) =
−
∑

ij log(πij/aibj)πij is the negative entropy. To sim-
plify the notations we write OTε,c(X,Y) when n = m
and a = b = 1

n1n. This problem can be solved using the
Sinkhorn-Knopp (SK) algorithm [9]. Specifically, given
the Gibbs kernel K = exp(−C/ε), SK alternates (until
convergence) the two steps

u← a⊘Kv // Update left scaling

v← b⊘K⊤u // Update right scaling

and returns the coupling π = diag(u)K diag(v). SK in-
volves simple iterations of matrix-vectors products that
can run efficiently on GPU.
Entropic Wasserstein Component Analysis. The
principle of our method is to consider the optimization
problem

min
U∈St(d,k)

OTε,c(X,UU⊤X) , (EWCA)

with the classical squared ℓ2 cost function c(x,y) =
∥x − y∥22. Problem (EWCA) is a non-convex problem
that equivalently writes

min
π∈Π( 1

n1n,
1
n1n)

U∈St(d,k)

n,n∑
i,j=1

∥xi −UU⊤xj∥22 πij − εH(π). (1)

The objective function shares similarities with PCA but
with key differences: the OT plan π assigns weights be-
tween original and projected samples, while the entropic
regularization adjusts the spread of mass between them.
Therefore, as shown in Figure 1, the OT plan weights
the samples within the neighborhood of the projected
points, promoting the clustering of these points. Note

Algorithm 1 BCD for solving (1) when ε > 0

1: nit,a, b, ϵ > 0, U(0)

2: while not converged do
3: Let C(t) = (c(xi,U

(t)(U(t))⊤xj))ij
4: Find π(t) with Sinkhorn-Knopp algorithm
5: Let M(t) = X

(
2 sym(π(t))− 1

nI
)
X⊤

6: Find u1, · · · ,uk the eigenvectors corresponding
the the k highest eigenvalues of M(t)

7: U(t+1) = (u1, · · · ,uk)
8: t = t+ 1
9: end while

10: return U(t),π(t)

that a similar strategy was used in Wasserstein Discrim-
inant Analysis [10] to find a discriminant subspace for
the data with a different objective. (EWCA) is a difficult
non-convex problem, and we propose two algorithms to
solve it in the next section.

Limit cases. Interstingly, when ε → 0, we have π →
1
nIn and we recover the PCA objective. Conversely when
ε → +∞, π → 1

n1n1
⊤
n . From the reformulation (3)

in the next section and when the data are centered (i.e.
X1n = 0), solving (1) in U when ε → +∞ corresponds
to minU∈St(d,k) tr

(
U⊤[ 1nXX⊤]U

)
that is finding the k

eigenvectors corresponding to the k lowest eigenvalues
of the empirical covariance matrix. Therefore, ε allows
to interpolate between estimating eigenvectors of the
empirical covariance matrix for the k highest and low-
est eigenvalues.

3. OPTIMIZATION ALGORITHMS FOR ENTROPIC
WASSERSTEIN COMPONENT ANALYSIS

Block coordinate descent (BCD). A first approach to
tackle the optimization problem (EWCA) is presented
with BCD algorithm. Indeed, the cost function in (1)
can be minimized by alternating a minimization over
π ∈ Π( 1n1n,

1
n1n) (with SK algorithm) and a minimiza-

tion over U ∈ St(d, k) with fixed π. The latter step re-
quires solving

min
U∈St(d,k)

n,n∑
i,j

∥xi −UU⊤xj∥22πij . (2)

As described in Lemma 1, problem (2) is min-
imized by finding the k eigenvectors of M ≜
X

(
2 sym(π)− 1

nI
)
X⊤ associated with the k highest

eigenvalues. Consequently, the BCD procedure, sum-
marized in Algorithm 1, alternates between Sinkhorn-
Knopp and computing the eigenvectors of M. The com-
plexity of the BCD is presented in Table 1.



Lemma 1. For any π ∈ Π( 1n1n,
1
n1n) the problem (2) is

equivalent to
max

U∈St(d,k)
tr
(
U⊤MU

)
(3)

where

M ≜ X

(
2 sym(π)− 1

n
I

)
X⊤ (4)

with sym(π) ≜
(
π + π⊤) /2. Hence, the solution of (2) is

given by U⋆ = (u1, · · · ,uk) where the ui’s are the eigen-
vectors corresponding the the k highest eigenvalues of M.

Proof. The cost can be written as 1
n

∑
i ∥xi∥22 +

1
n

∑
i ∥UU⊤xi∥22 − 2

∑
ij⟨xi,UU⊤xj⟩πij . The second

term writes 1
n

∑
i tr(UU⊤xix

⊤
i ) = tr(UU⊤ 1

nXX⊤)
and the third term −2tr(UU⊤XπX⊤) =
−2tr(UU⊤X sym(π)X⊤) since X⊤UU⊤X is sym-
metric. By combining both, we obtain (3). To conclude,
we used the Ky-Fan theorem.

Block-majorization-minimization (block-MM). BCD
is a simple approach but can become slow on high di-
mensional data due to the computational complexity of
O(d3). To alleviate this problem, we seek to solve (2)
without actually computing a p × p matrix by relying
on block-MM algorithms over St(d, k) [6]. In the next
Lemma, we first formulate a problem that is equivalent
to (2) when restricted to St(d, k), but whose objective
can be globally majorized on Rd×k by a linear function.

Lemma 2. For any π ∈ Π( 1n1n,
1
n1n) the problem (2) is

equivalent to the following minimization problem

min
U∈St(d,k)

tr
(
U⊤PU

)
(5)

where P ≼ 0 is the matrix defined as

P ≜ απ

(
Σ− 1απ>0λ

Σ
maxI

)
− 2X

(
sym(π)− λ

sym(π)
min I

)
X⊤, (6)

and where λΣ
max is the largest eigenvalue of Σ ≜ 1

nXX⊤,
λ
sym(π)
min is the smallest eigenvalue of sym(π), απ ≜ 1 −

2nλ
sym(π)
min , and 1απ>0 is equal to 1 if απ > 0 and 0 other-

wise.

Proof. The problem (3) is rewritten as

min
U∈St(d,k)

tr
(
U⊤ΣU

)
− 2tr

(
U⊤X sym(π)X⊤U

)
which can also be rewritten as

min
U∈St(d,k)

απtr
(
U⊤ΣU

)
− 2tr

(
U⊤X

(
sym(π)− λ

sym(π)
min I

)
X⊤U

)
.

Algorithm 2 Block-MM for solving (1) when ε > 0

1: nit,mit,a, b, ϵ > 0, U(0)

2: while not converged do
3: Let C(t) = (c(xi,U

(t)(U(t))⊤xj))ij
4: Find π(t) with Sinkhorn-Knopp algorithm
5: for U(l=0) = U(t), l = 1, . . . ,mit do
6: Compute P(t)U(l) as in (9)
7: U(l+1) = qf(P(t)U(l)) # QR orth.
8: end for
9: U(t) = U(l+1)

10: t = t+ 1
11: end while
12: return U(t),π(t)

Finally, we observe that when απ is non-positive U 7→
απtr

(
U⊤ΣU

)
is concave over Rd×k since Σ ≽ 0. Other-

wise (i.e. απ is positive), we remark that the restriction
of απtr

(
U⊤ΣU

)
to St(d, k) coincide with the concave

function U 7→ απtr
(
U⊤ (

Σ− λΣ
maxI

)
U
)
+ kλΣ

max.

Given the current iterate P ≼ 0, the objective of (5) is
concave over Rd×k, so it can be majorized by its first
order Taylor expansion at the point U(l) ∈ St(d, k):

tr
(
U⊤PU

)
≤ 2tr

(
U⊤PU(l)

)
+ const. (7)

The minimizer of the above upper bound on St(d, k)
is the orthogonal projection of −PU(l) ∈ Rd×k onto
St(d, k), i.e.

U(l+1) = pf(−PU(l)) (8)

where pf(A) is the orthogonal factor from the polar fac-
torization of A ∈ Rd×k. Multiple iterations of (8) corre-
spond to an MM algorithm that reaches a critical point
of (2) [6]. Moreover, the cost function (2) is invariant
to the action of St(k, k). Consequently, any operator that
yields the span of −PU(l) (e.g., a QR decomposition) is
a valid alternative to pf(·) in order to compute the up-
date (8). An additional reduction in computational cost
is realized by directly computing the product PU(l) as

PU(l) = απ

[
1

n
X

(
X⊤U(l)

)
− 1απ>0λ

Σ
maxU

(l)

]
− 2X

[
sym(π)− λ

sym(π)
min I

] (
X⊤U(l)

)
. (9)

Hence, we transformed the BCD update that computes a
d × d matrix and its SVD by computing a d × k matrix
and its QR decomposition. This strategy proves effec-
tive when k ≪ d. The overall block-MM procedure with
the qf function that returns the orthogonal factor of the
QR decomposition and its complexity are summarized in
Algorithm 2 and Table 1 respectively.



Common steps to BCD (Alg. 1)
and Block-MM (Alg. 2)

Computation of C(t) = (c(xi,U
(t)(U(t))⊤xj))ij O(n2d)

Computation of π(t) O(n2)

BCD: scales with n (Alg. 1)
Computation of M(t) (Eq. (4)) O(n2d+ nd2)

Computation of the eigenvectors of M O(d3)
Overall complexity O(n2d+ nd2 + d3)

Block-MM: scales with d (Alg. 2)
Computation of P(t)U(l) (Eq. (9)) O(ndk + n3)
Projection of P(t)U(l) onto St(d, k) O(dk2)

Overall complexity O(n2d+ n3)

Table 1: Comparison of the computation complexities of Algorithms 1 and 2 with respect to the executed steps.

Computation of λΣ
max and λ

sym(π)
min . Finally, we re-

mark that the computation of the eigenvalues λΣ
max and

λ
sym(π)
min is not a limitation. Indeed, in practice, both

Algorithms 1 and 2 are initialized with the PCA. Thus,
the λΣ

max is obtained from this initialization. Then,
λ
sym(π)
min can be replaced by any lower bound. Since

sym(π) ∈ Π( 1n ,
1
n ), and using the Gershgorin circle the-

orem, a lower bound of λsym(π)
min is − 1

n . This replacement
is convenient when n is large since it avoids the com-
putation of the SVD of sym(π). As the corresponding
majorizer is less tight, we observed in practice a slightly
lower rate of convergence in iterations when replacing
λ
sym(π)
min by − 1

n in Equation (9).

4. NUMERICAL EXPERIMENTS

To assess the performance of the developed Algorithms 1
and 2, we leverage two classification datasets: Breast [8]
and khan2001 [7]. The Breast dataset contains n = 151
samples with d = 54675 gene expressions each. The
goal is to classify these data into 6 classes correspond-
ing to breast cancer subtypes and normal tissues. The
Khan2001 dataset contains n = 63 samples of d = 2308
gene expression profiles to classify into 4 types of tu-
mors of childhood. Notice that the interpolation effect
induced by ϵ in EWCA trades some explained variance
(maximized by the PCA) for an alternate representation
of the data. The relevance and quality of this represen-
tation are analyzed through quantitative and qualitative
experiments on both datasets. Moreover, the speed of
the block-MM algorithm (Alg. 2) over the BCD algorithm
(Alg. 1) is shown in an experiment on the Breast dataset.
Classification performance. We first compute the
misclassification rate, over 100 train-test splits (50% −
50%), of a 1 nearest neighbor classifier on the raw
data (x1, · · · ,xn). Then, we estimate subspaces with
PCA and EWCA across their respective hyperparameters,
i.e.the subspace dimension k and the intensity of the en-
tropy regularization ε. For each value of k, we com-
pute the misclassification rates, over 100 train-test splits
(50% − 50%), of a 1 nearest neighbor classifier applied
on the projected data (U⊤x1, · · · ,U⊤xn). The hyperpa-
rameter ε of EWCA is chosen over 20 splits on the train

set. The mean misclassification rates, as well as the 1st

and 3rd quartiles, are reported across the different tested
subspace dimensions k in the Figure 2. We observe that
EWCA and PCA give better accuracies than the 1 nearest
neighbor classifier applied directly on raw data, show-
ing interest in considering dimension reduction meth-
ods. Then, EWCA outperforms PCA on a wide range of
values of k on both datasets. For certain values of k,
the improvement in classification performance is large.
Indeed, on the Breast dataset, at k = 5, the misclassifi-
cation rate is down from 14% to 8%; i.e. a reduction of
half of the error. On the Khan2001 dataset, at k = 8, the
misclassification rate is down from 11% to 7.5%; i.e. a re-
duction of a third of the error. This improvement in dis-
criminative capabilities indicates that EWPCA provides
linear embeddings that favor clusters within samples in
an unsupervised way.

Transport plan interpretation. Then, Figure 3 dis-
plays the transport plans π estimated by EWCA at k = 5
with ε chosen as the best performing on the 20 splits
of the train set. The data are ordered by class, and
those that belong to the same class are enclosed in a
red box. We observe on both datasets that the transport
plans values πij are higher within data that belong to
the same class than within data that belong to different
classes. This means that given a point xi that belongs to
the class yi, the estimated subspace minimizes the dis-
crepancy between xi and the projected points UU⊤xj

that belong to the class yi. This enforces, in an unsu-
pervised way, that points that belong to the same class
are close to each other once projected in the estimated
subspace. Furthermore, using the transport plan from
the Khan2001 dataset, several clusters can be identified.
Indeed, in the red square on the top left corner (class 1)
of Figure 3b, two clusters are distinguishable. These two
clusters are also observable in the samples from class 1 in
Figure 4. The latter plots a TSNE [11] of projected data
(U⊤x1, · · · ,U⊤xn) and the transport plan values. This
again indicates that EWCA identifies clusters by jointly
estimating the transport plan and the subspace to project
data on.
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Fig. 2: Misclassification rate (%) versus subspace dimension k (the lower the better). Data are classified using
a 1 nearest neighbor classifier on 100 splits train-test (50% − 50%). In addition to the raw data (no preprocessing),
two preprocessing are considered: PCA and EWCA (proposed in Algorithm 2). The value of ε of EWCA is chosen as
the best performing on 20 splits of the train set. The mean misclassification and the 1st and 3rd quartiles are reported.
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Fig. 3: Transport plan π (%) computed on the Breast dataset with EWCA (Alg. 2) between raw data (x1, · · · ,xn)
and their projected counterparts (UU⊤x1, · · · ,UU⊤xn). k = 5 and the values of ε are the one performing the
best on Figure 2. The red squares enclose the data belonging to the same class. Classes are ordered from left to right
and top to bottom, i.e.the red square on the top left corner is class 1, and the red square on the bottom right corner
is the last class.

Computation cost: block-MM versus BCD. So far, we
have shown the good performance of EWCA in terms of
precisions and given an interpretation of the estimated
transport plan. We now leverage the Breast dataset to
analyze the computational time of the proposed Algo-
rithms 1 and 2. Indeed, we subsample d ∈ J500, 54675K
genes and run the two algorithms until convergence.
The mean computation time in seconds and the 1st and
3rd quartiles are reported. When d ≤ 2000, the BCD is
faster than the block-MM thanks to its closed form for-
mula on the U-step. However, when d > 2000, the block-
MM algorithm is much faster than the BCD with a much
lower rate of increase. This illustrates the lower compu-
tation complexity in d of the block-MM compared to the
BCD one (see Table 1).

Sensitivity to hyperparameter ε. In the classification
tasks, we selected the hyperparameter ε as the best per-

forming one for a 1 nearest neighbor classifier on 20
splits of the train set. To mitigate this necessity of testing
many values of ε, we plot in Figure 6 the heat map of the
misclassification rates with respect to k and ε using the
same protocol as the one used in Figure 2. On a wide
range of ε, we observe that EWCA has similar misclassi-
fication rates as PCA, if not better. Hence, EWCA is not
too sensitive to the choice of ε.

5. CONCLUSION

We reformulated the PCA algorithm as the minimizer of
the squared 2-Wasserstein distance between a dataset
and its projected counterpart. Adding an entropy
regularizer enabled us to consider pairs of points
(xi,UU⊤xj), with i ̸= j in this new optimization prob-
lem called EWCA. To solve it, we proposed two algo-
rithms, a BCD and a block-MM. The latter showed faster
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computed with EWCA (Alg. 2) on the Khan2001
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and the used subspace corresponds to the entropy inten-
sity ε performing the best on Figure 2b. The grey links
represent the intensity of the values of the transport plan
presented in Figure 3b (values under a certain threshold
are set to 0).

convergence in high-dimensional regimes. When lever-
aged as a preprocessing step for classification problems
on gene expression datasets, we showed that EWCA
yields a projection that favors clusters within the data
in an unsupervised way. The joint use of EWCA and its
achieved transport map thus offers an interesting alter-
native to PCA for exploratory data analysis.
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