
HAL Id: hal-04022533
https://hal.science/hal-04022533

Submitted on 5 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

fundiversity: a modular R package to compute
functional diversity indices

Matthias Grenié, Hugo Gruson

To cite this version:
Matthias Grenié, Hugo Gruson. fundiversity: a modular R package to compute functional diversity
indices. Ecography, 2023, 2023 (3), pp.e06585. �10.1111/ecog.06585�. �hal-04022533�

https://hal.science/hal-04022533
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

www.ecography.org

ECOGRAPHY

Ecography

Page 1 of 10

© 2023 The Authors. Ecography published by John Wiley & Sons Ltd on behalf of Nordic Society
Oikos
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

Subject Editor:
F. Guillaume Blanchet
Editor-in-Chief: Miguel Araújo
Accepted 28 December 2022

doi: 10.1111/ecog.06585

2023

1–10

2023: e06585
Functional diversity is widely used and widespread. However, the main packages used
to compute functional diversity indices are not flexible and not adapted to the volume
of data used in modern ecological analyses. We here present fundiversity, an R
package that eases the computation of classical functional diversity indices. It leverages
parallelization and memoization (caching results in memory) to maximize efficiency
with data with thousands of columns and rows. We also did a performance compari-
son with packages that provide analog functions. In addition to being more flexible,
fundiversity was always an order of magnitude quicker than alternatives. fun-
diversity aims to be a lightweight, efficient tool to compute functional diversity
indices, which can be used in a variety of contexts. Because it has been designed fol-
lowing clear principles, it is easy to extend. We hope the wider community will adopt
it and we welcome all contributions.

Keywords: biodiversity, community ecology, diversity facet, functional biogeography,
functional ecology, R package

Introduction

Functional diversity, the diversity of traits across scales, is a major facet of biodiver-
sity (Pavoine and Bonsall 2011). It has been widely used across ecological contexts
(Cadotte et al. 2011) and has been shown to relate to ecosystem functioning (Díaz
and Cabido 2001; Leps et al. 2006). Many indices exist to characterize it across its
three dimensions: richness (how much?), evenness (how regular?) and divergence
(how different?) (Pavoine and Bonsall 2011). Ecologists rely on computational tools
to compute these indices in a reproducible fashion, mainly in the R programming
language (Lai et al. 2019; www.r-project.org). The FD package is the main tool avail-
able for functional diversity indices, having now accumulated more than 1200 cita-
tions (Laliberté et al. 2014). But FD was released in 2009 and received only minor

fundiversity: a modular R package to compute functional
diversity indices

Matthias Grenié ✉1,2 and Hugo Gruson 2,3

1German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
2CEFE, Univ. de Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
3Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK

Correspondence: Matthias Grenié (matthias.grenie@gmail.com)

Software note

10

https://doi.org/10.1111/ecog.06585
www.r-project.org
http://orcid.org/0000-0002-4659-7522
mailto:matthias.grenie@gmail.com

Page 2 of 10

updates that stopped in 2015. During this time, software
development practices have changed dramatically and new,
higher-performance tools have emerged in the R ecosystem.
Additionally, since 2009, the size of ecological datasets has
grown exponentially (Farley et al. 2018, Wüest et al. 2020)
and high-performance computing (HPC) environments have
become standard. There is, therefore, a dire need for a mod-
ern alternative using state-of-the-art software development
techniques and tools.

The main function of the FD package dbFD() lets users
compute a dozen functional diversity indices in a single call
from raw trait data (Laliberté et al. 2014). While great for
exploratory analyses, this can increase computation time
when only a single index is needed. Furthermore, it does not
enforce the good practice of choosing beforehand the appro-
priate functional diversity index for the question(s) asked
(Schleuter et al. 2010, Mason et al. 2013, Legras et al. 2018).
It encourages the user to fish for the functional diversity index
matching predicted relationships (a form of p-hacking). This
can lead users to report all computed functional diversity
indices even when there are no clear expectations about dif-
ferent functional diversity facets, or to report correlated indi-
ces (Schleuter et al. 2010, Mason et al. 2013, Legras et al.
2018, McPherson et al. 2018). Computing all indices in a
single function also makes long-term maintenance and addi-
tion of new indices harder.

The average size of datasets analyzed in ecology increased
severalfold in recent years (Wüest et al. 2020), calling for an
increase in performance of computational tools. This increase
is particularly urgent considering that many diversity analyses
use null models that increase the data size by two or three
orders of magnitude (Gotelli and Graves 1996). First, any
improvement of the algorithmic efficiency to compute func-
tional diversity indices could save substantial amounts of
time as it is repeated many times. For example, we noted that
many R packages (www.r-project.org) that compute func-
tional diversity indices do not leverage the specifically opti-
mized matrix algebra packages included in R. Their use can
cut the number of operations dramatically compared to using
a loop directly in R. Second, functional diversity indices are
generally computed over many mathematically independent
sites. With the rise of multicore computers, parallelization
(i.e. splitting independent computations between different
computing processor units, CPUs), is becoming the norm.
Very few functional diversity R packages natively implement
parallelization, leaving the burden of doing so to the user.
There have been tremendous new developments in this area
in R over the last few years with the release of the future
framework (Bengtsson 2020) that allows computations to be
seamlessly parallelized on multiple cores on a single machine,
across several machines or even on a remote cluster without
changing execution code. Third, computations on the same
input can be cached through a process called memoization
(Wickham et al. 2021). This avoids wasting computing
power on previously seen inputs. For example, many func-
tional diversity indices rely on the computation of convex
hulls across a multi-dimensional space (Cornwell et al. 2006,

Villéger et al. 2008). Caching the results of this costly com-
putation could save time and computing power when mea-
suring the diversity across similar sets, such as sites across a
given region.

Discussions are increasingly being held regarding scientific
software robustness and reliability in ecology (Poisot 2015,
White 2015, Mislan et al. 2016, Wilson et al. 2017). Mainly
because most ecologists are self-trained in programming
(Farrell and Carey 2018), these virtuous practices are rarely
applied in ecology (Barraquand et al. 2014). For example,
unit tests use predefined inputs to compare outputs to expec-
tations (Poisot 2015). Unit tests have also become standard
in R packages since the release of packages streamlining this
process, such as testthat and tinytest (Wickham
2011, van der Loo 2021). Very few R functional diversity
packages provide unit tests to assess that the functions behave
expectedly. Automatic tests of one’s code are crucial when
developing a tool for a wider audience, as it may be used
across different contexts.

Here, we propose a modern alternative to FD called fun-
diversity, which benefits from modern development
practices, necessary features for large-sized datasets (modu-
larity, parallelization and memoization) and greater flex-
ibility. The package can be easily extended to accommodate
additional diversity indices not covered by following a clear
design pattern detailed in the next section. We go through a
use case to show how it can be used. We then compare the
performance of fundiversity against similar packages.

Main features of fundiversity

To ensure the consistency of its functions and to make it
user-friendly, fundiversity follows clear design prin-
ciples. In this section, we expose its distinctive features and
principles.

To give maximum flexibility to the users, we tried to
build fundiversity to be as modular as possible. Each
function in fundiversity computes a single functional
diversity index, so that it only returns a single index and noth-
ing more. All functions in fundiversity are prefixed
with fd_ to avoid conflict with similarly named functions
in other packages, as it is becoming standard practice in R
packages (rOpenSci et al. 2021). In line with its modularity,
we focused on making the inputs and outputs of functions
coherent. The functions use two main inputs: a species by
traits matrix and a site by species matrix; all functions accept
them as first arguments. Across functions, the outputs are
always structured similarly: one site column that contains
the name of its sites and one column named as the computed
index (such as FRic when computing functional richness).
The shape of the output is predictable and easily combined
with other data.

We designed fundiversity so it minimally modifies
the input data before computing the indices (Fig. 1). When
computing functional diversity indices, upstream choices
regarding trait standardization and trait space construction

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

www.r-project.org

Page 3 of 10

are fully part of the scientific question (Leps et al. 2006, de
Bello et al. 2013, Maire et al. 2015, Mammola et al. 2021).
Several packages provide default options that automatically
build multivariate spaces or dendrograms, and choose rel-
evant axes of variation. While useful for naive users, these
abstract away part of the scientific process that should be
considered when using functional diversity indices. These
choices have been shown to have strong consequences on the
values of downstream indices (Leps et al. 2006, de Bello et al.
2013, Maire et al. 2015, Mammola et al. 2021). fundi-
versity chooses to enforce better practices by leaving trait
space choices to the user.

Parallelization can vastly decrease computation speed by
leveraging the architecture of modern computers. Most func-
tions in fundiversity can be parallelized out of the
box. fundiversity provides parallelization through the
future backend (Bengtsson 2020). Parallelization is toggled
through a single function call using future::plan()
before using fundiversity functions. Thanks to the
flexibility given by the future backend, the code to use
will not change whether parallelizing across several cores on
a single computer, across multiple computers or on a remote
high-performance cluster. The user only needs to update the
call to future::plan(). Furthermore, the future
backend provides load balancing so that no cores/units stay
idle for too long and the parallelized tasks are split evenly.
The package contains a dedicated vignette to guide the users
through transforming unparallelized to parallelized code
(accessible through vignette(“fundiversity_1-
parallel”, package = “fundiversity”)).

The computation of functional diversity indices often
involves null models, which require repeated operations
across the same data subsets. This results in computing the
same indices over exactly the same assemblages over and
over. Memoization can leverage the already computed indi-
ces and avoid duplicated work. For example, to compute
functional richness (FRic) the convex hull of the input data
has to first be identified, and then the volume of this convex
hull is computed. The first step, identifying the convex hull,
takes the most time and, as such, storing the results of each
computed convex hull can vastly cut computation time for a
little memory footprint. If the set of input points is encoun-
tered a second time, the results will be taken from memory
instead of being recomputed. Memoization trades a little bit
of computer memory (keeping the convex hulls stored) for
more computation speed. For now, fundiversity lever-
ages memoization only for computing convex hulls (as used
when computing FDiv, FRic and FRic_intersect).
It is activated by default. This behavior can be overridden by
changing the fundiversity.memoise option before
loading the package.

Packages depend on one another to avoid reinventing
the wheel and thus reuse already developed functions.
A higher number of dependencies means that a pack-
age requires more packages to be installed before its own
installation. While having many dependencies minimizes
code replication, it also comes with a high price, because
if a single dependency breaks then the whole package can-
not be installed anymore (Cox 2019). Inflated dependen-
cies have been identified as a major risk in software, and

Figure 1. Conceptual diagram showing the input and typical ouput data from fundiversity functions. Input data are generally a
site–species table and a species–traits table, and the output returns a table of functional diversity index per site.

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 4 of 10

especially in scientific software development (Claes et al.
2014, Cox 2019). FD has only four dependencies but other
functional diversity packages have many more depen-
dencies (up to 100 dependencies for hypervolume,
Supporting information). This renders them quite brittle
for the users after years of not being actively developed.
fundiversity has been designed to only have mini-
mal external dependencies, it currently depends directly
on four, carefully chosen, external packages (details on the
criteria of choice in vignette(“fundiversity_4-
design-principles”, package = “fundi-
versity”)): future.apply which itself depends
on two other packages, Matrix (which is shipped with
R), and geometry and vegan, on which FD also
depends. Considering direct and indirect dependencies,
fundiversity depends on a total of 21 packages
while similar packages depend on 65 packages on average
(Supporting information).

Because user flexibility is key, fundiversity has
minimal assumptions on the input data structure. All its
functions work with data frames, matrices or sparse matri-
ces alike. Sparse matrices are a different formalization of
matrices that do not store explicitly the cells that contain
zero. They offer a reduced memory footprint and opti-
mized algebra library for computation (Bates and Maechler
2021). These matrices are thus specifically relevant for
occurrence/abundance matrices that contain many zeros.
If the used data have a high proportion of zeros, using
sparse matrices can vastly decrease computational time in
fundiversity.

As we underlined in the introduction, automatic soft-
ware testing, while not 100% flawless, is needed to increase
the confidence in the behavior of functions. It is widespread
in professional software engineering but much less so in
scientific software development (Kanewala and Bieman
2014). This means that software behavior is seldom vali-
dated against known inputs to make sure that it behaves in
expected ways. This fact does not mean that the software
is of poor quality, but rather that some simple errors could
introduce unnoticed changes in the behavior of functions.
Most packages that compute functional diversity indices

do not include any form of automatic testing (only 3 out
of 11 do it following our assessment). We do want to point
out that the lack of tests results from the lack of formal
training in software development for ecologists (Farrell and
Carey 2018). We designed fundiversity with many
unit tests from the beginning, executing at least every single
line of code once (i.e. achieving code coverage of 100%).
fundiversity mostly computes alpha functional

diversity indices, because other recent packages exist to
compute other types of functional diversity indices (Hill
numbers, Li 2018; beta-diversity indices, Baselga and
Orme 2012). We focused on indices available through the
dbFD() function in the FD package and on indices that
could benefit from faster implementations. The included
indices cover the three dimensions of functional diver-
sity: richness (how much total diversity within the set?),
evenness (how regularly are species situated along the trait
space?) and divergence (how different are species com-
pared to an average position?) (Pavoine and Bonsall 2011).
fundiversity contains the following alpha functional
diversity indices: functional richness (FRic), functional
dispersion (FDis), functional divergence (FDiv), func-
tional evenness (FEve) and Rao’s quadratic entropy (Q).
We included Q as we identified the potential for important
performance improvements relative to existing packages.
fundiversity also contains a beta-diversity index
(named FRic_intersect) as it can be useful to compare
the overlap between convex hulls between sites. Thanks
to its design, fundiversity can be easily extended to
include more indices; we include below the list of available
indices in the current version of fundiversity.

We made sure the indices were numerically exact by
using the test dataset available in Villéger et al. (2008). The
functions in fundiversity gave identical results to the
one found in Fig. 2 of Villéger et al. (2008). We summa-
rize our comparisons in the numerical correctness vignette
accessible through vignette(“fundiversity_3-
correctness”, package = “fundiversity”).
We furthermore compared the obtained results with func-
tions in other packages and made sure that similar values
were obtained.

Case study

In this section, we show how to use fundiversity in practice. As an example dataset, we included in fundiversity
site-species and trait data from Nowak et al. (2019). It is accessible through calls to site_sp_birds and traits_
birds when fundiversity is loaded with library() or the use of the data(“site_sp_birds”, pack-
age = “fundiversity”) and data(“traits_birds”, package = “fundiversity”) functions when
fundiversity is not loaded. This dataset describes the presence/absence of bird species in South America at different
elevations and four of their morphological traits.

The trait values show species in rows (species are specified as row names) and traits in columns with trait names as
column names (Fig. 1). Similarly, the site-species matrix contains sites as rows (site names are row names) and species as
columns (species names are column names).

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 5 of 10

Now that we have obtained trait and occurrence data we need to compute the trait dissimilarity between each pair of
species. As all traits are quantitative: we first scale them to zero mean and standard deviation of one (z-score), then we
compute the Euclidean distance between pairs of species.

We want to emphasize here that fundiversity does not assume anything in the upstream of the computation of
functional diversity indices. Trait standardization and computation of a trait dissimilarity are left to the user’s discretion.
They are provided here as a full workflow example. The specific functions used in the previous chunk can vary depending
on the scientific question, the nature of the traits or the transformation needed. fundiversity does not provide any
functions to deal with these upstream choices as it is the user’s responsibility to carefully examine them.

Then, we compute the functional richness at each location using the fd_fric() function. It expects quantitative trait
values as the first argument and a site-species matrix as the second argument.

If the site–species matrix is not provided, fundiversity considers that all species present in the trait matrix are all
present in a single site:

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 6 of 10

Using parallel computation

As specified above, fundiversity allows for parallel com-
putation of functional diversity metrics through the future
framework. We here demonstrate how to use it in practice
with the case study. A more detailed explanation is provided
in the “Parallelization” vignette of fundiversity (avail-
able through vignette(“fundiversity_1-par-
allel”, package = “fundiversity”)).

We first have to check if the function in fundiver-
sity is parallelizable: all functions except fd_raoq()
are (Table 1). Then we define the parallel setting using the
future::plan() function. This allows users to define
how the parallel computation should be split: across cores,
across computers, across jobs of a high-performing cluster, etc.
Here, we split the computation locally across the 4 cores of the
computer using the future::multisession() func-
tion. We specify the number of cores to use with the workers
argument in the call to the future::plan() function.

To use a different backend, you can invoke a different argu-
ment in the future::plan() function. All possible argu-
ments are detailed in the overview vignette of the future
package (accessible through vignette(“future-
1-overview”, package = “future”) once
future has been installed).

The parallel computations are split across sites, so paral-
lelization can drastically improve performance when having a
large number of sites. However, given the efficiency of fun-
diversity functions, and the overhead costs of parallel
computation, we recommend parallelizing only with matri-
ces of at least 10 000 sites, or when hitting a performance
limit of the default sequential execution.

Also, parallelization should never be used in con-
junction with memoization because of the risk of cache
corruption if several cores access the memoized cache simul-
taneously (make sure to use options(fundiversity.
memoise = FALSE) before loading fundiversity
when using parallel computations).

Performance comparison

To test the performance improvements realized by fun-
diversity, we compared computation time on
standardized datasets across similar functions in other
packages. We only compared packages that provide origi-
nal functions, not wrappers that depend on other pack-
ages to compute functional diversity indices. Six packages
computed similar indices to fundiversity. Most
indices are also computed by the FD::dbFD() func-
tion, but the comparison would be unfair as it computes
many indices in a single call, while functions in fun-
diversity only compute single indices. We con-
sidered functions from: adiv (Pavoine 2020), BAT

All other functions in fundiversity use a similar structure: the first input is trait data, the second is a site–species
matrix (Fig. 1). For Rao’s quadratic entropy, computed through fd_raoq(), functional dissimilarities can be specified
as the third argument:

If not all traits are quantitative, it is possible to transform them back into independent quantitative ‘traits’ through the
use of Gower’s distance (Gower 1971; and its extensions: Podani 1999, Pavoine et al. 2009) then applying multivariate
analysis to obtain orthogonal dimensions (Maire et al. 2015). But there are many other ways to convert qualitative traits
and, as such, this is out of the scope of fundiversity. We leave it to the user to decide how to proceed to obtain
independent quantitative traits.

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 7 of 10

(Cardoso et al. 2015), betapart (Baselga and Orme
2012), hillR (Li 2018), mFD (Magneville et al. 2022)
and FD (Laliberté et al. 2014) (see Table 2 for the cor-
respondence between packages). A continuously updated
version of this section can be found in the performance
comparison vignette within the fundiversity pack-
age with vignette(“fundiversity_2-per-
formance”, package = “fundiversity”).

For testing purposes, we used datasets of increasing size
with the number of species being 200, 500 or 1000; the
number of traits 2, 4 or 10; and the number of sites 50, 100
or 500. For each set of parameters, we generated a fictional
site–species matrix and species–trait matrix containing only
continuous traits. We used these simulated data to perform
benchmarks across comparable functions (Table 2). The
benchmark was run 30 times through the bench package
(Hester and Vaughan 2021) (Fig. 2). The full results detailing
the timings for each combination of parameters and func-
tions are available in the Supporting information.

For all the indices and functions tested, fundiversity
is at least one order of magnitude faster than alternative pack-
ages. For functional dispersion (FDis), fundiversity is
two orders of magnitude faster compared to BAT and mFD.
For functional divergence (FDiv), fundiversity is one
order of magnitude faster than mFD. For functional even-
ness (FEve), fundiversity is two orders of magnitude
faster than mFD with sequential and parallelized versions hav-
ing similar performances. For Rao’s quadratic entropy (Q),
fundiversity is one order of magnitude faster than
hillR and mFD, two orders faster than adiv and three

orders of magnitude faster than BAT. For functional rich-
ness (FRic), fundiversity is half an order of magnitude
faster than the hull version of BAT, as well as being one and a
half orders of magnitude faster than its tree version and mFD.
For functional richness intersection (beta functional diver-
sity), fundiversity is two orders of magnitude faster
than betapart and hillR.

T﻿﻿he parallelized versions of fundiversity functions
executed on average one order of magnitude faster than the
sequential versions (Fig. 3). For functional richness we even
observed a difference of two orders of magnitude. However,
for functional dispersion, parallelization increased the over-
all computation time. This may be due to inherent parallel-
ization issues: there is an overhead cost when splitting tasks
across multiple cores of a computer. The efficiency of paral-
lelization depends on the difficulty of the tasks that are split
between cores. In the case of functional richness, the main
task is computing the convex hull, which is computationally
costly, which is why parallelization increases performance in
this case. However, computing functional dispersion is sim-
pler and, as such, does not benefit from being split across
different cores. Different values for the number of cores, spe-
cies, traits or sites produce qualitatively the same results (full
results in Supporting information).

One important note regarding parallelization in fundi-
versity is that it is important to avoid doing both memoiza-
tion and parallelization simultaneously. Memoization creates
a cache to avoid recomputing results, and the cache may
be corrupted if several cores access the same results at the
same time. We noticed that toggling memoization while

Table 1. List of functions available in fundiversity to compute functional diversity indices. The last two columns specify which functions
are parallelizable and memoizable.

Function name Index name Source Parallelizable Memoizable

fd_fdis() Functional dispersion (FDis) Laliberté and Legendre (2010) Yes No
fd_fdiv() Functional divergence (FDiv) Villéger et al. (2008) Yes Yes
fd_feve() Functional evenness (FEve) Villéger et al. (2008) Yes No
fd_fric() Functional richness (FRic) Villéger et al. (2008) Yes Yes
fd_fric_intersect() Functional β-diversity Villéger et al. (2013) Yes Yes
fd_raoq() Rao’s quadratic entropy (Q) Rao (1982) No No

Table 2. List of fundiversity functions with corresponding functions in other packages. The name of the package is indicated before the
:: while the name of the functions (including specified arguments) follows.

Index name fundiversity functions Equivalent functions

Functional dispersion (FDis) fd_fdis() FD::fdisp()
mFD::alpha.fd.multidim(..., ind_vect = “fdis”)

Functional divergence (FDiv) fd_fdiv() mFD::alpha.fd.multidim(..., ind_vect = “fdiv”)
Functional evenness (FEve) fd_feve() mFD::alpha.fd.multidim(..., ind_vect = “feve”)
Functional richness (FRic) fd_fric() BAT::alpha() (tree)

BAT::hull.alpha() (hull)
mFD::alpha.fd.multidim(..., ind_vect = “fric”)

Rao’s quadratic entropy (Q) fd_raoq() adiv::QE()
BAT::rao()
hillR::hill_func()
mFD::alpha.fd.hill(..., q = 2, tau = “max”)

Functional β-diversity fd_fric_intersect() betapart::functional.beta.pair()
hillR::hill_func_parti_pairwise()

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 8 of 10

Figure 2. Timing comparison across functional diversity indices between packages. Each point represents the execution time of one run
using a simulated dataset; the points are transparent and jittered to avoid overplotting. We show here the performance results considering
only a single set of parameters with 4 traits, 500 species and 100 sites, repeated 30 times.

Figure 3. Timing comparison between parallel and sequential version of fundiversity functions across functional diversity indices.
Each point represents the execution time of one run using simulated datasets with fixed properties (4 traits, 100 sites, 500 species); the
points are transparent and jittered to avoid overplotting. The parallel version ran across 6 cores.

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Page 9 of 10

performing parallelization severely increases total computa-
tional time compared to sequential performance.

Note that these benchmarks only assess the packages’ com-
putation speed and in no way assess the intrinsic quality or
usefulness of any package. We are comparing fundiver-
sity, a package whose main goal is performance, with other
packages that may have other primary goals and offer other
benefits. For example, several packages offer nice default
visualization functions to plot the different diversity indices,
while we explicitly considered that visualization functions
were not part of fundiversity and let the users decide
how they want to plot their indices.

Conclusion

We proposed a modern alternative R package to compute
functional diversity indices. This package follows current best
development practices and leverages modern features like
parallelization and memoization to increase its performance.
This is only made possible by recent developments that were,
for the most part, not available at the time when alternative
packages came out. fundiversity does not propose
to replace the entire toolkit for the researcher interested in
functional diversity (including the upstream selection of the
traits and the building of a functional space), but instead
focuses on improving the most computationally costly step:
computing functional diversity indices. We hope it will be a
useful contribution to this toolkit. To ensure its long-term
maintainability, we made the package available on GitHub;
it is perennially archived on Zenodo; sits in an independent
GitHub organization; and is written following clear design
principles. This package aims to always be a work in progress,
and as such we welcome contributions from interested users
and developers.

To cite fundiversity or acknowledge its use, cite this
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0’:
Grenié, M. and Gruson, H. 2023. fundiversity: a modular

R package to compute functional diversity indices. – Ecography
2023: e06585 (ver. 1.0).

Acknowledgements – Both authors thank Shan Kothari and two
anonymous reviewers for their comments, which helped improve
the manuscript.
Funding – M.G. gratefully acknowledges the support of iDiv funded
by the German Research Foundation (DFG-FZT 118, 202548816).
The authors acknowledge support from the iDiv Open Science
Publication Fund and from the Open Access Publishing Fund of
Leipzig University, which is supported by the German Research
Foundation within the program Open Access Publication Funding.

Author contributions

Matthias Grenié: Conceptualization (equal); Methodology
(equal); Software (equal); Supervision (equal); Writing – origi-
nal draft (equal); Writing – review and editing (equal). Hugo

Gruson: Conceptualization (equal); Methodology (equal);
Software (equal); Writing – review and editing (equal).

Transparent peer review

The peer review history for this article is available at https://
publons.com/publon/10.1111/ecog.06585.

Data availability statement

fundiversity is available on CRAN through install.
packages(“fundiversity”) as well as on GitHub at
https://github.com/funecology/fundiversity, for archival all
releases are available on Zenodo at https://doi.org/10.5281/
zenodo.4761754. The data used in this article are available
from the package, through data(package = “fundi-
versity”) call.

Supporting information

The Supporting information associated with this article is
available with the online version.

References

Barraquand, F., Ezard, T. H. G., Jørgensen, P. S., Zimmerman, N.,
Chamberlain, S., Salguero-Gómez, R., Curran, T. J. and Poisot,
T. 2014. Lack of quantitative training among early-career ecol-
ogists: a survey of the problem and potential solutions. – PeerJ
2: e285.

Baselga, A. and Orme, C. D. L. 2012. Betapart: an R package for
the study of beta diversity. – Methods Ecol. Evol. 3: 808–812.

Bates, D. and Maechler, M. 2021. Matrix: sparse and dense matrix
classes and methods (Manual). – https://cran.r-project.org/
package=Matrix.

Bengtsson, H. 2020. A unifying framework for parallel and distrib-
uted processing in R using futures . – https://arxiv.org/
abs/2008.00553.

Cadotte, M. W., Carscadden, K. and Mirotchnick, N. 2011.
Beyond species: functional diversity and the maintenance of
ecological processes and services. – J. Appl. Ecol. 48: 1079–1087.

Cardoso, P., Rigal, F. and Carvalho, J. C. 2015. BAT – biodiversity
assessment tools, an R package for the measurement and estima-
tion of alpha and beta taxon, phylogenetic and functional diver-
sity. – Methods Ecol. Evol. 6: 232–236.

Claes, M., Mens, T. and Grosjean, P. 2014. On the maintainability
of CRAN packages. – In: 2014 software evolution week – IEEE
conference on software maintenance, reengineering and reverse
engineering (CSMR-WCRE), pp. 308–312. IEEE.

Claes, M., Mens, T., & Grosjean, P. (2014, February). On the
maintainability of CRAN packages. In 2014 Software Evolu-
tion Week-IEEE Conference on Software Maintenance, Reen-
gineering, and Reverse Engineering (CSMR-WCRE) (pp. 308-
312). IEEE.

Cornwell, W. K., Schwilk, D. W. and Ackerly, D. D. 2006. A trait-
based test for habitat filtering: convex hull volume. – Ecology
87: 1465–1471.

Cox, R. 2019. Surviving software dependencies. – Commun. ACM
62: 36–43.

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://publons.com/publon/10.1111/ecog.06585
https://publons.com/publon/10.1111/ecog.06585
https://github.com/funecology/fundiversity
https://doi.org/10.5281/zenodo.4761754
https://doi.org/10.5281/zenodo.4761754
https://cran.r-project.org/package=Matrix
https://cran.r-project.org/package=Matrix
https://arxiv.org/abs/2008.00553
https://arxiv.org/abs/2008.00553

Page 10 of 10

de Bello, F., Carmona, C. P., Mason, N. W. H., Sebastià, M.-T. and
Lepš, J. 2013. Which trait dissimilarity for functional diversity:
trait means or trait overlap? – J. Veg. Sci. 24: 807–819.

Díaz, S. and Cabido, M. 2001. Vive la différence: plant functional
diversity matters to ecosystem processes. – Trends Ecol. Evol.
16: 646–655.

Farley, S. S., Dawson, A., Goring, S. J. and Williams, J. W. 2018.
Situating ecology as a big-data science: current advances, chal-
lenges and solutions. – BioScience 68: 563–576.

Farrell, K. J. and Carey, C. C. 2018. Power, pitfalls and potential
for integrating computational literacy into undergraduate ecol-
ogy courses. – Ecol. Evol. 8: 7744–7751.

Gotelli, N. J. and Graves, G. R. 1996. Null models in ecology. –
Smithsonian Institution Press.

Gower, J. C. 1971. A general coefficient of similarity and some of
its properties. – Biometrics 27: 857–871.

Hester, J. and Vaughan, D. 2021. Bench: high precision timing of
R expressions. – https://CRAN.R-project.org/package=
bench.

Kanewala, U. and Bieman, J. M. 2014. Testing scientific software:
a systematic literature review. – Inform. Softw. Technol. 56:
1219–1232.

Lai, J., Lortie, C. J., Muenchen, R. A., Yang, J. and Ma, K. 2019.
Evaluating the popularity of R in ecology. – Ecosphere 10:
e02567.

Laliberté, E. and Legendre, P. 2010. A distance-based framework
for measuring functional diversity from multiple traits. – Ecol-
ogy 91: 299–305.

Laliberté, E., Legendre, P. and Shipley, B. 2014. FD: measuring
functional diversity from multiple traits, and other tools for
functional ecology. – https://cran.r-project.org/package=FD.

Legras, G., Loiseau, N. and Gaertner, J.-C. 2018. Functional rich-
ness: overview of indices and underlying concepts. – Acta
Oecol. 87: 34–44.

Leps, J., Bello, F., Lavorel, S. and Berman, S. 2006. Quantifying
and interpreting functional diversity of natural communities:
practical considerations matter. – Preslia 78: 481–501.

Li, D. 2018. hillR: taxonomic, functional and phylogenetic diver-
sity and similarity through hill numbers. – J. Open Source
Softw. 3: 1041.

Magneville, C., Loiseau, N., Albouy, C., Casajus, N., Claverie, T.,
Escalas, A., Leprieur, F., Maire, E., Mouillot, D. and Villéger,
S. 2022. mFD: an R package to compute and illustrate the
multiple facets of functional diversity. – Ecography 2022:
e05904.

Maire, E., Grenouillet, G., Brosse, S. and Villéger, S. 2015. How
many dimensions are needed to accurately assess functional
diversity? A pragmatic approach for assessing the quality of
functional spaces. – Global Ecol. Biogeogr. 24: 728–740.

Mammola, S., Carmona, C. P., Guillerme, T. and Cardoso, P. 2021.
Concepts and applications in functional diversity. – Funct.
Ecol. 35: 1869–1885.

Mason, N. W. H., de Bello, F., Mouillot, D., Pavoine, S. and Dray,
S. 2013. A guide for using functional diversity indices to reveal
changes in assembly processes along ecological gradients. – J.
Veg. Sci. 24: 794–806.

McPherson, J. M., Yeager, L. A. and Baum, J. K. 2018. A simula-
tion tool to scrutinise the behaviour of functional diversity
metrics. – Methods Ecol. Evol. 9: 200–206.

Mislan, K. A. S., Heer, J. M. and White, E. P. 2016. Elevating the
status of code in ecology. – Trends Ecol. Evol. 31: 4–7.

Nowak, L., Kissling, W. D., Bender, I. M. A., Dehling, D. M., Töp-
fer, T., Böhning-Gaese, K. and Schleuning, M. 2019. Data from:
Projecting consequences of global warming for the functional
diversity of fleshy-fruited plants and frugivorous birds along a
tropical elevational gradient. – Data Dryad Digital Repository.

Pavoine, S. 2020. Adiv: an R package to analyse biodiversity in
ecology . – Methods Ecol. Evol. 11: 1106–1112.

Pavoine, S. and Bonsall, M. B. 2011. Measuring biodiversity to
explain community assembly: a unified approach. – Biol. Rev.
86: 792–812.

Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S. and Daniel, H.
2009. On the challenge of treating various types of variables:
application for improving the measurement of functional diver-
sity. – Oikos 118: 391–402.

Podani, J. 1999. Extending Gower’s general coefficient of similarity
to ordinal characters. – Taxon 48: 331–340.

Poisot, T. 2015. Best publishing practices to improve user confi-
dence in scientific software. – Ideas Ecol. Evol. 8: 50–54.

Rao, C. R. 1982. Diversity and dissimilarity coefficients: a unified
approach. – Theor. Popul. Biol. 21: 24–43.

rOpenSci, Anderson, B., Chamberlain, S., DeCicco, L., Gustavsen,
J., Krystalli, A., Lepore, M., Mullen, L., Ram, K., Ross, N.,
Salmon, M. and Vidoni, M. 2021. rOpenSci packages: develop-
ment, maintenance and peer review (ver. 0.6.0). – Zenodo,
https://doi.org/10.5281/zenodo.4554776.

Schleuter, D., Daufresne, M., Massol, F. and Argillier, C. 2010. A
user’s guide to functional diversity indices. – Ecol. Monogr. 80:
469–484.

van der Loo, M. P. J. 2021. The R Journal: A method for deriving
information from running R code. – R J. 13: 42–52.

Villéger, S., Mason, N. W. H. and Mouillot, D. 2008. New mul-
tidimensional functional diversity indices for a multifaceted
framework in functional ecology. – Ecology 89: 2290–2301.

Villéger, S., Grenouillet, G. and Brosse, S. 2013. Decomposing
functional β-diversity reveals that low functional β-diversity is
driven by low functional turnover in European fish assemblages.
– Global Ecol. Biogeogr. 22: 671–681.

White, E. 2015. Some thoughts on best publishing practices for
scientific software. – Ideas Ecol. Evol. 8: 55–57.

Wickham, H. 2011. Testthat: get started with testing. – R J. 3: 5–10.
Wickham, H., Hester, J., Chang, W., Müller, K. and Cook, D.

2021. Memoise: memoisation of functions (Manual). – https://
CRAN.R-project.org/package=memoi.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L. and
Teal, T. K. 2017. Good enough practices in scientific comput-
ing. – PLoS Comput. Biol. 13: e1005510.

Wüest, R. O., Zimmermann, N. E., Zurell, D., Alexander, J. M.,
Fritz, S. A., Hof, C., Kreft, H., Normand, S., Cabral, J. S.,
Szekely, E., Thuiller, W., Wikelski, M. and Karger, D. N. 2020.
Macroecology in the age of big data – where to go from here?
– J. Biogeogr. 47: 1–12.

 16000587, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ecog.06585 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [05/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://CRAN.R-project.org/package=
bench
https://CRAN.R-project.org/package=
bench
https://cran.r-project.org/package=FD
https://doi.org/10.5281/zenodo.4554776
https://CRAN.R-project.org/package=memoi
https://CRAN.R-project.org/package=memoi

	Introduction
	Main features of fundiversity
	Case study
	Using parallel computation

	Performance comparison
	Conclusion
	References

