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Functional diversity is widely used and widespread. However, the main packages used 
to compute functional diversity indices are not flexible and not adapted to the volume 
of data used in modern ecological analyses. We here present fundiversity, an R 
package that eases the computation of classical functional diversity indices. It leverages 
parallelization and memoization (caching results in memory) to maximize efficiency 
with data with thousands of columns and rows. We also did a performance compari-
son with packages that provide analog functions. In addition to being more flexible, 
fundiversity was always an order of magnitude quicker than alternatives. fun-
diversity aims to be a lightweight, efficient tool to compute functional diversity 
indices, which can be used in a variety of contexts. Because it has been designed fol-
lowing clear principles, it is easy to extend. We hope the wider community will adopt 
it and we welcome all contributions.

Keywords: biodiversity, community ecology, diversity facet, functional biogeography, 
functional ecology, R package

Introduction

Functional diversity, the diversity of traits across scales, is a major facet of biodiver-
sity (Pavoine and Bonsall 2011). It has been widely used across ecological contexts 
(Cadotte et al. 2011) and has been shown to relate to ecosystem functioning (Díaz 
and Cabido 2001; Leps et al. 2006). Many indices exist to characterize it across its 
three dimensions: richness (how much?), evenness (how regular?) and divergence 
(how different?) (Pavoine and Bonsall 2011). Ecologists rely on computational tools 
to compute these indices in a reproducible fashion, mainly in the R programming 
language (Lai et al. 2019; www.r-project.org). The FD package is the main tool avail-
able for functional diversity indices, having now accumulated more than 1200 cita-
tions (Laliberté et al. 2014). But FD was released in 2009 and received only minor 
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updates that stopped in 2015. During this time, software 
development practices have changed dramatically and new, 
higher-performance tools have emerged in the R ecosystem. 
Additionally, since 2009, the size of ecological datasets has 
grown exponentially (Farley et al. 2018, Wüest et al. 2020) 
and high-performance computing (HPC) environments have 
become standard. There is, therefore, a dire need for a mod-
ern alternative using state-of-the-art software development 
techniques and tools.

The main function of the FD package dbFD() lets users 
compute a dozen functional diversity indices in a single call 
from raw trait data (Laliberté  et  al. 2014). While great for 
exploratory analyses, this can increase computation time 
when only a single index is needed. Furthermore, it does not 
enforce the good practice of choosing beforehand the appro-
priate functional diversity index for the question(s) asked 
(Schleuter et al. 2010, Mason et al. 2013, Legras et al. 2018). 
It encourages the user to fish for the functional diversity index 
matching predicted relationships (a form of p-hacking). This 
can lead users to report all computed functional diversity 
indices even when there are no clear expectations about dif-
ferent functional diversity facets, or to report correlated indi-
ces (Schleuter  et  al. 2010, Mason et  al. 2013, Legras  et  al. 
2018, McPherson et  al. 2018). Computing all indices in a 
single function also makes long-term maintenance and addi-
tion of new indices harder.

The average size of datasets analyzed in ecology increased 
severalfold in recent years (Wüest et al. 2020), calling for an 
increase in performance of computational tools. This increase 
is particularly urgent considering that many diversity analyses 
use null models that increase the data size by two or three 
orders of magnitude (Gotelli and Graves 1996). First, any 
improvement of the algorithmic efficiency to compute func-
tional diversity indices could save substantial amounts of 
time as it is repeated many times. For example, we noted that 
many R packages (www.r-project.org) that compute func-
tional diversity indices do not leverage the specifically opti-
mized matrix algebra packages included in R. Their use can 
cut the number of operations dramatically compared to using 
a loop directly in R. Second, functional diversity indices are 
generally computed over many mathematically independent 
sites. With the rise of multicore computers, parallelization 
(i.e. splitting independent computations between different 
computing processor units, CPUs), is becoming the norm. 
Very few functional diversity R packages natively implement 
parallelization, leaving the burden of doing so to the user. 
There have been tremendous new developments in this area 
in R over the last few years with the release of the future 
framework (Bengtsson 2020) that allows computations to be 
seamlessly parallelized on multiple cores on a single machine, 
across several machines or even on a remote cluster without 
changing execution code. Third, computations on the same 
input can be cached through a process called memoization 
(Wickham  et  al. 2021). This avoids wasting computing 
power on previously seen inputs. For example, many func-
tional diversity indices rely on the computation of convex 
hulls across a multi-dimensional space (Cornwell et al. 2006, 

Villéger et al. 2008). Caching the results of this costly com-
putation could save time and computing power when mea-
suring the diversity across similar sets, such as sites across a 
given region.

Discussions are increasingly being held regarding scientific 
software robustness and reliability in ecology (Poisot 2015, 
White 2015, Mislan et al. 2016, Wilson et al. 2017). Mainly 
because most ecologists are self-trained in programming 
(Farrell and Carey 2018), these virtuous practices are rarely 
applied in ecology (Barraquand  et  al. 2014). For example, 
unit tests use predefined inputs to compare outputs to expec-
tations (Poisot 2015). Unit tests have also become standard 
in R packages since the release of packages streamlining this 
process, such as testthat and tinytest (Wickham 
2011, van der Loo 2021). Very few R functional diversity 
packages provide unit tests to assess that the functions behave 
expectedly. Automatic tests of one’s code are crucial when 
developing a tool for a wider audience, as it may be used 
across different contexts.

Here, we propose a modern alternative to FD called fun-
diversity, which benefits from modern development 
practices, necessary features for large-sized datasets (modu-
larity, parallelization and memoization) and greater flex-
ibility. The package can be easily extended to accommodate 
additional diversity indices not covered by following a clear 
design pattern detailed in the next section. We go through a 
use case to show how it can be used. We then compare the 
performance of fundiversity against similar packages.

Main features of fundiversity

To ensure the consistency of its functions and to make it 
user-friendly, fundiversity follows clear design prin-
ciples. In this section, we expose its distinctive features and 
principles.

To give maximum flexibility to the users, we tried to 
build fundiversity to be as modular as possible. Each 
function in fundiversity computes a single functional 
diversity index, so that it only returns a single index and noth-
ing more. All functions in fundiversity are prefixed 
with fd_ to avoid conflict with similarly named functions 
in other packages, as it is becoming standard practice in R 
packages (rOpenSci et al. 2021). In line with its modularity, 
we focused on making the inputs and outputs of functions 
coherent. The functions use two main inputs: a species by 
traits matrix and a site by species matrix; all functions accept 
them as first arguments. Across functions, the outputs are 
always structured similarly: one site column that contains 
the name of its sites and one column named as the computed 
index (such as FRic when computing functional richness). 
The shape of the output is predictable and easily combined 
with other data.

We designed fundiversity so it minimally modifies 
the input data before computing the indices (Fig. 1). When 
computing functional diversity indices, upstream choices 
regarding trait standardization and trait space construction 
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are fully part of the scientific question (Leps et al. 2006, de 
Bello et al. 2013, Maire et al. 2015, Mammola et al. 2021). 
Several packages provide default options that automatically 
build multivariate spaces or dendrograms, and choose rel-
evant axes of variation. While useful for naive users, these 
abstract away part of the scientific process that should be 
considered when using functional diversity indices. These 
choices have been shown to have strong consequences on the 
values of downstream indices (Leps et al. 2006, de Bello et al. 
2013, Maire et al. 2015, Mammola et al. 2021). fundi-
versity chooses to enforce better practices by leaving trait 
space choices to the user.

Parallelization can vastly decrease computation speed by 
leveraging the architecture of modern computers. Most func-
tions in fundiversity can be parallelized out of the 
box. fundiversity provides parallelization through the 
future backend (Bengtsson 2020). Parallelization is toggled 
through a single function call using future::plan() 
before using fundiversity functions. Thanks to the 
flexibility given by the future backend, the code to use 
will not change whether parallelizing across several cores on 
a single computer, across multiple computers or on a remote 
high-performance cluster. The user only needs to update the 
call to future::plan(). Furthermore, the future 
backend provides load balancing so that no cores/units stay 
idle for too long and the parallelized tasks are split evenly. 
The package contains a dedicated vignette to guide the users 
through transforming unparallelized to parallelized code 
(accessible through vignette(“fundiversity_1-
parallel”, package = “fundiversity”)).

The computation of functional diversity indices often 
involves null models, which require repeated operations 
across the same data subsets. This results in computing the 
same indices over exactly the same assemblages over and 
over. Memoization can leverage the already computed indi-
ces and avoid duplicated work. For example, to compute 
functional richness (FRic) the convex hull of the input data 
has to first be identified, and then the volume of this convex 
hull is computed. The first step, identifying the convex hull, 
takes the most time and, as such, storing the results of each 
computed convex hull can vastly cut computation time for a 
little memory footprint. If the set of input points is encoun-
tered a second time, the results will be taken from memory 
instead of being recomputed. Memoization trades a little bit 
of computer memory (keeping the convex hulls stored) for 
more computation speed. For now, fundiversity lever-
ages memoization only for computing convex hulls (as used 
when computing FDiv, FRic and FRic_intersect). 
It is activated by default. This behavior can be overridden by 
changing the fundiversity.memoise option before 
loading the package.

Packages depend on one another to avoid reinventing 
the wheel and thus reuse already developed functions. 
A higher number of dependencies means that a pack-
age requires more packages to be installed before its own 
installation. While having many dependencies minimizes 
code replication, it also comes with a high price, because 
if a single dependency breaks then the whole package can-
not be installed anymore (Cox 2019). Inflated dependen-
cies have been identified as a major risk in software, and 

Figure 1. Conceptual diagram showing the input and typical ouput data from fundiversity functions. Input data are generally a 
site–species table and a species–traits table, and the output returns a table of functional diversity index per site.
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especially in scientific software development (Claes et al. 
2014, Cox 2019). FD has only four dependencies but other 
functional diversity packages have many more depen-
dencies (up to 100 dependencies for hypervolume, 
Supporting information). This renders them quite brittle 
for the users after years of not being actively developed. 
fundiversity has been designed to only have mini-
mal external dependencies, it currently depends directly 
on four, carefully chosen, external packages (details on the 
criteria of choice in vignette(“fundiversity_4-
design-principles”, package = “fundi-
versity”)): future.apply which itself depends 
on two other packages, Matrix (which is shipped with 
R), and geometry and vegan, on which FD also 
depends. Considering direct and indirect dependencies, 
fundiversity depends on a total of 21 packages 
while similar packages depend on 65 packages on average 
(Supporting information).

Because user flexibility is key, fundiversity has 
minimal assumptions on the input data structure. All its 
functions work with data frames, matrices or sparse matri-
ces alike. Sparse matrices are a different formalization of 
matrices that do not store explicitly the cells that contain 
zero. They offer a reduced memory footprint and opti-
mized algebra library for computation (Bates and Maechler 
2021). These matrices are thus specifically relevant for 
occurrence/abundance matrices that contain many zeros. 
If the used data have a high proportion of zeros, using 
sparse matrices can vastly decrease computational time in 
fundiversity.

As we underlined in the introduction, automatic soft-
ware testing, while not 100% flawless, is needed to increase 
the confidence in the behavior of functions. It is widespread 
in professional software engineering but much less so in 
scientific software development (Kanewala and Bieman 
2014). This means that software behavior is seldom vali-
dated against known inputs to make sure that it behaves in 
expected ways. This fact does not mean that the software 
is of poor quality, but rather that some simple errors could 
introduce unnoticed changes in the behavior of functions. 
Most packages that compute functional diversity indices 

do not include any form of automatic testing (only 3 out 
of 11 do it following our assessment). We do want to point 
out that the lack of tests results from the lack of formal 
training in software development for ecologists (Farrell and 
Carey 2018). We designed fundiversity with many 
unit tests from the beginning, executing at least every single 
line of code once (i.e. achieving code coverage of 100%).
fundiversity mostly computes alpha functional 

diversity indices, because other recent packages exist to 
compute other types of functional diversity indices (Hill 
numbers, Li 2018; beta-diversity indices, Baselga and 
Orme 2012). We focused on indices available through the 
dbFD() function in the FD package and on indices that 
could benefit from faster implementations. The included 
indices cover the three dimensions of functional diver-
sity: richness (how much total diversity within the set?), 
evenness (how regularly are species situated along the trait 
space?) and divergence (how different are species com-
pared to an average position?) (Pavoine and Bonsall 2011). 
fundiversity contains the following alpha functional 
diversity indices: functional richness (FRic), functional 
dispersion (FDis), functional divergence (FDiv), func-
tional evenness (FEve) and Rao’s quadratic entropy (Q). 
We included Q as we identified the potential for important 
performance improvements relative to existing packages. 
fundiversity also contains a beta-diversity index 
(named FRic_intersect) as it can be useful to compare 
the overlap between convex hulls between sites. Thanks 
to its design, fundiversity can be easily extended to 
include more indices; we include below the list of available 
indices in the current version of fundiversity.

We made sure the indices were numerically exact by 
using the test dataset available in Villéger et al. (2008). The 
functions in fundiversity gave identical results to the 
one found in Fig. 2 of Villéger et al. (2008). We summa-
rize our comparisons in the numerical correctness vignette 
accessible through vignette(“fundiversity_3-
correctness”, package = “fundiversity”). 
We furthermore compared the obtained results with func-
tions in other packages and made sure that similar values 
were obtained.

Case study

In this section, we show how to use fundiversity in practice. As an example dataset, we included in fundiversity 
site-species and trait data from Nowak et al. (2019). It is accessible through calls to site_sp_birds and traits_
birds when fundiversity is loaded with library() or the use of the data(“site_sp_birds”, pack-
age = “fundiversity”) and data(“traits_birds”, package = “fundiversity”) functions when 
fundiversity is not loaded. This dataset describes the presence/absence of bird species in South America at different 
elevations and four of their morphological traits.

The trait values show species in rows (species are specified as row names) and traits in columns with trait names as 
column names (Fig. 1). Similarly, the site-species matrix contains sites as rows (site names are row names) and species as 
columns (species names are column names).
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Now that we have obtained trait and occurrence data we need to compute the trait dissimilarity between each pair of 
species. As all traits are quantitative: we first scale them to zero mean and standard deviation of one (z-score), then we 
compute the Euclidean distance between pairs of species.

We want to emphasize here that fundiversity does not assume anything in the upstream of the computation of 
functional diversity indices. Trait standardization and computation of a trait dissimilarity are left to the user’s discretion. 
They are provided here as a full workflow example. The specific functions used in the previous chunk can vary depending 
on the scientific question, the nature of the traits or the transformation needed. fundiversity does not provide any 
functions to deal with these upstream choices as it is the user’s responsibility to carefully examine them.

Then, we compute the functional richness at each location using the fd_fric() function. It expects quantitative trait 
values as the first argument and a site-species matrix as the second argument.

If the site–species matrix is not provided, fundiversity considers that all species present in the trait matrix are all 
present in a single site:
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Using parallel computation

As specified above, fundiversity allows for parallel com-
putation of functional diversity metrics through the future 
framework. We here demonstrate how to use it in practice 
with the case study. A more detailed explanation is provided 
in the “Parallelization” vignette of fundiversity (avail-
able through vignette(“fundiversity_1-par-
allel”, package = “fundiversity”)).

We first have to check if the function in fundiver-
sity is parallelizable: all functions except fd_raoq() 
are (Table 1). Then we define the parallel setting using the 
future::plan() function. This allows users to define 
how the parallel computation should be split: across cores, 
across computers, across jobs of a high-performing cluster, etc. 
Here, we split the computation locally across the 4 cores of the 
computer using the future::multisession() func-
tion. We specify the number of cores to use with the workers 
argument in the call to the future::plan() function.

To use a different backend, you can invoke a different argu-
ment in the future::plan() function. All possible argu-
ments are detailed in the overview vignette of the future 
package (accessible through vignette(“future-
1-overview”, package = “future”) once 
future has been installed).

The parallel computations are split across sites, so paral-
lelization can drastically improve performance when having a 
large number of sites. However, given the efficiency of fun-
diversity functions, and the overhead costs of parallel 
computation, we recommend parallelizing only with matri-
ces of at least 10 000 sites, or when hitting a performance 
limit of the default sequential execution.

Also, parallelization should never be used in con-
junction with memoization because of the risk of cache 
corruption if several cores access the memoized cache simul-
taneously (make sure to use options(fundiversity.
memoise = FALSE) before loading fundiversity 
when using parallel computations).

Performance comparison

To test the performance improvements realized by fun-
diversity, we compared computation time on 
standardized datasets across similar functions in other 
packages. We only compared packages that provide origi-
nal functions, not wrappers that depend on other pack-
ages to compute functional diversity indices. Six packages 
computed similar indices to fundiversity. Most 
indices are also computed by the FD::dbFD() func-
tion, but the comparison would be unfair as it computes 
many indices in a single call, while functions in fun-
diversity only compute single indices. We con-
sidered functions from: adiv (Pavoine 2020), BAT 

All other functions in fundiversity use a similar structure: the first input is trait data, the second is a site–species 
matrix (Fig. 1). For Rao’s quadratic entropy, computed through fd_raoq(), functional dissimilarities can be specified 
as the third argument:

If not all traits are quantitative, it is possible to transform them back into independent quantitative ‘traits’ through the 
use of Gower’s distance (Gower 1971; and its extensions: Podani 1999, Pavoine et al. 2009) then applying multivariate 
analysis to obtain orthogonal dimensions (Maire et al. 2015). But there are many other ways to convert qualitative traits 
and, as such, this is out of the scope of fundiversity. We leave it to the user to decide how to proceed to obtain 
independent quantitative traits.
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(Cardoso  et  al. 2015), betapart (Baselga and Orme 
2012), hillR (Li 2018), mFD (Magneville  et  al. 2022) 
and FD (Laliberté  et  al. 2014) (see Table 2 for the cor-
respondence between packages). A continuously updated 
version of this section can be found in the performance 
comparison vignette within the fundiversity pack-
age with vignette(“fundiversity_2-per-
formance”, package = “fundiversity”).

For testing purposes, we used datasets of increasing size 
with the number of species being 200, 500 or 1000; the 
number of traits 2, 4 or 10; and the number of sites 50, 100 
or 500. For each set of parameters, we generated a fictional 
site–species matrix and species–trait matrix containing only 
continuous traits. We used these simulated data to perform 
benchmarks across comparable functions (Table 2). The 
benchmark was run 30 times through the bench package 
(Hester and Vaughan 2021) (Fig. 2). The full results detailing 
the timings for each combination of parameters and func-
tions are available in the Supporting information.

For all the indices and functions tested, fundiversity 
is at least one order of magnitude faster than alternative pack-
ages. For functional dispersion (FDis), fundiversity is 
two orders of magnitude faster compared to BAT and mFD. 
For functional divergence (FDiv), fundiversity is one 
order of magnitude faster than mFD. For functional even-
ness (FEve), fundiversity is two orders of magnitude 
faster than mFD with sequential and parallelized versions hav-
ing similar performances. For Rao’s quadratic entropy (Q), 
fundiversity is one order of magnitude faster than 
hillR and mFD, two orders faster than adiv and three 

orders of magnitude faster than BAT. For functional rich-
ness (FRic), fundiversity is half an order of magnitude 
faster than the hull version of BAT, as well as being one and a 
half orders of magnitude faster than its tree version and mFD. 
For functional richness intersection (beta functional diver-
sity), fundiversity is two orders of magnitude faster 
than betapart and hillR.

T﻿﻿he parallelized versions of fundiversity functions 
executed on average one order of magnitude faster than the 
sequential versions (Fig. 3). For functional richness we even 
observed a difference of two orders of magnitude. However, 
for functional dispersion, parallelization increased the over-
all computation time. This may be due to inherent parallel-
ization issues: there is an overhead cost when splitting tasks 
across multiple cores of a computer. The efficiency of paral-
lelization depends on the difficulty of the tasks that are split 
between cores. In the case of functional richness, the main 
task is computing the convex hull, which is computationally 
costly, which is why parallelization increases performance in 
this case. However, computing functional dispersion is sim-
pler and, as such, does not benefit from being split across 
different cores. Different values for the number of cores, spe-
cies, traits or sites produce qualitatively the same results (full 
results in Supporting information).

One important note regarding parallelization in fundi-
versity is that it is important to avoid doing both memoiza-
tion and parallelization simultaneously. Memoization creates 
a cache to avoid recomputing results, and the cache may 
be corrupted if several cores access the same results at the 
same time. We noticed that toggling memoization while 

Table 1. List of functions available in fundiversity to compute functional diversity indices. The last two columns specify which functions 
are parallelizable and memoizable.

Function name Index name Source Parallelizable Memoizable

fd_fdis() Functional dispersion (FDis) Laliberté and Legendre (2010) Yes No
fd_fdiv() Functional divergence (FDiv) Villéger et al. (2008) Yes Yes
fd_feve() Functional evenness (FEve) Villéger et al. (2008) Yes No
fd_fric() Functional richness (FRic) Villéger et al. (2008) Yes Yes
fd_fric_intersect() Functional β-diversity Villéger et al. (2013) Yes Yes
fd_raoq() Rao’s quadratic entropy (Q) Rao (1982) No No

Table 2. List of fundiversity functions with corresponding functions in other packages. The name of the package is indicated before the 
:: while the name of the functions (including specified arguments) follows.

Index name fundiversity functions Equivalent functions

Functional dispersion (FDis) fd_fdis() FD::fdisp()
mFD::alpha.fd.multidim(..., ind_vect = “fdis”)

Functional divergence (FDiv) fd_fdiv() mFD::alpha.fd.multidim(..., ind_vect = “fdiv”)
Functional evenness (FEve) fd_feve() mFD::alpha.fd.multidim(..., ind_vect = “feve”)
Functional richness (FRic) fd_fric() BAT::alpha() (tree)

BAT::hull.alpha() (hull)
mFD::alpha.fd.multidim(..., ind_vect = “fric”)

Rao’s quadratic entropy (Q) fd_raoq() adiv::QE()
BAT::rao()
hillR::hill_func()
mFD::alpha.fd.hill(..., q = 2, tau = “max”)

Functional β-diversity fd_fric_intersect() betapart::functional.beta.pair()
hillR::hill_func_parti_pairwise()
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Figure 2. Timing comparison across functional diversity indices between packages. Each point represents the execution time of one run 
using a simulated dataset; the points are transparent and jittered to avoid overplotting. We show here the performance results considering 
only a single set of parameters with 4 traits, 500 species and 100 sites, repeated 30 times.

Figure 3. Timing comparison between parallel and sequential version of fundiversity functions across functional diversity indices. 
Each point represents the execution time of one run using simulated datasets with fixed properties (4 traits, 100 sites, 500 species); the 
points are transparent and jittered to avoid overplotting. The parallel version ran across 6 cores.
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performing parallelization severely increases total computa-
tional time compared to sequential performance.

Note that these benchmarks only assess the packages’ com-
putation speed and in no way assess the intrinsic quality or 
usefulness of any package. We are comparing fundiver-
sity, a package whose main goal is performance, with other 
packages that may have other primary goals and offer other 
benefits. For example, several packages offer nice default 
visualization functions to plot the different diversity indices, 
while we explicitly considered that visualization functions 
were not part of fundiversity and let the users decide 
how they want to plot their indices.

Conclusion

We proposed a modern alternative R package to compute 
functional diversity indices. This package follows current best 
development practices and leverages modern features like 
parallelization and memoization to increase its performance. 
This is only made possible by recent developments that were, 
for the most part, not available at the time when alternative 
packages came out. fundiversity does not propose 
to replace the entire toolkit for the researcher interested in 
functional diversity (including the upstream selection of the 
traits and the building of a functional space), but instead 
focuses on improving the most computationally costly step: 
computing functional diversity indices. We hope it will be a 
useful contribution to this toolkit. To ensure its long-term 
maintainability, we made the package available on GitHub; 
it is perennially archived on Zenodo; sits in an independent 
GitHub organization; and is written following clear design 
principles. This package aims to always be a work in progress, 
and as such we welcome contributions from interested users 
and developers.

To cite fundiversity or acknowledge its use, cite this 
Software note as follows, substituting the version of the appli-
cation that you used for ‘version 1.0’:
Grenié, M. and Gruson, H. 2023. fundiversity: a modular 

R package to compute functional diversity indices. – Ecography 
2023: e06585 (ver. 1.0).
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