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Learning Optimal Edge Processing
with Offloading and Energy Harvesting

Andrea Fox∗, Francesco De Pellegrini∗ and Eitan Altman∗†

ABSTRACT
Modern portable devices can execute increasingly sophisticated AI
models on sensed data. The complexity of such processing tasks is
data-dependent and has relevant energy cost. This work develops an
Age of Information markovian model for a system where multiple
battery-operated devices perform data processing and energy har-
vesting in parallel. Part of their computational burden is offloaded
to an edge server which polls devices at given rate. The structural
properties of an optimal policy for a single device-server system
are derived. They permit to define a new model-free reinforcement
learning method specialized for monotone policies, namely Ordered
Q-Learning, providing a fast procedure to learn the optimal pol-
icy. The method is oblivious to the devices’ battery capacities, the
cost and the value of data batch processing and to the dynamics of
the energy harvesting process. Finally, the polling strategy of the
server is optimized by combining this policy improvement technique
with stochastic approximation methods. Extensive numerical results
provide insight into the system properties and demonstrate that the
proposed learning algorithms outperform existing baselines.
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1 INTRODUCTION
New generations of mobile access networks promise low delay and
high-speed throughput data connections paired with in-network pro-
cessing capabilities [1]. They will support mobile computing ser-
vices able to integrate AI-intensive processing tasks in their work-
loads such as, e.g., smart city services or virtual and augmented
reality applications. In the next future, the vast majority of enterprise
IoT projects are expected to have an AI component, up from less
than 10% in 2018 [2]. To support these applications, edge networks
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must evolve to solve the key challenges of such scenario [3]. In
fact, the energy consumption of AI applications is critical for battery
operated devices. On the other hand, they may require periodic up-
dates based on fresh data, settling specific requirements on the rate
at which data are fetched and processed. The standard metric to this
respect is the Age of Information (AoI), denoting the freshness of
information when received at the destination [4]. In the literature,
AoI performance has been studied for several queuing disciplines
determining the average system time of data reads. The standard
objective is to maximize some long term reward for the AoI of re-
trieved information [5, 6]. In the context of this paper, it is the long
term reward for processing data, also called age of processing [7].

Energy harvesting from renewable sources, such as solar cells or
piezoelectric generators, has becoming available on devices used,
e.g., for Internet of things (IoT) applications. In the literature, op-
timal policies for AoI minimization under energy harvesting have
been studied using Markov decision theory both in continuous and in
discrete time [8–12]. Most such studies focused on optimal policies
to optimize AoI subject to energy causality constraints. The problem
is to reserve the battery charge for moments when it is most needed,
e.g., for alarm generation events [12].

The scenario studied in this paper considers the uncertainty of
battery consumption and the uncertainty about the amount of energy
harvested over time. In fact, the energy cost of AI tasks depends
inherently on the statistical distribution of input data and on the
preference for lightweight or heavyweight models. Thus, when such
a computing task is launched on a batch of data, the energy required
to finish processing may exceed the available battery charge. In
this event, a further delay for data processing is needed in order to
harvest enough energy to complete the ongoing task.

Finally, in edge computing, task offloading to edge-servers miti-
gates the problem of energy consumption to run AI tasks on mobile
devices [7, 13–19]. Thus, a device can delegate computing tasks
to edge servers. However, in a realistic scenario, offloading is con-
strained by the availability of the edge-server, which may be support-
ing multiple devices. Moreover, not always task offloading proves
convenient, depending also on the delays it introduces.

Main contribution. This work develops a markovian modeling
framework where multiple battery-operated devices process data in
parallel and perform energy harvesting. Furthermore, an intermittent
edge-server supports task offloading. Events of battery depletion may
occur due to the unknown complexity of data processing and to the
randomness of the harvesting process. Hence, an optimal stationary
policy prescribes whether or not a device should process a new data
batch based on AoI and battery status. By proving that such policy
is monotone it is possible to design a lightweight reinforcement
learning (RL) algorithm, namely Ordered Q-learning. It applies to
the wide class of problems with monotone structure of the optimal
value function w.r.t. the state-action partial order. In this setting, it
outperforms standard baselines, including policy gradient methods.
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Table 1: List of symbols used in the paper.

Symbol Meaning
𝑡 time step 𝑡 = 1, 2, . . .
𝑥𝑡 age of information (AoI) 𝑥𝑡 ∈ {1, . . . , 𝑀 }
𝑒𝑡 buffer energy level 𝑒𝑡 ∈ {0, 1, . . . , 𝐵}
𝑧𝑡 server availability 𝑧𝑡 ∈ {0, 1}
𝑠𝑡 = (𝑥𝑡 , 𝑒𝑡 , 𝑧𝑡 ) device state
𝛾 discount factor
S state space
A = {0, 1} action set, action set of state 𝑠, A(𝑠 ) ⊂ A
𝑎𝑡 = {0, 1} action taken at time 𝑡
𝐵 battery capacity
𝑀 saturation bound on AoI
𝐶𝑡 batch processing cost at time 𝑡
𝐻𝑡 harvested energy at time 𝑡
𝛿 offloading roundtrip time

Finally, the polling probability vector of the server is optimized by
stochastic learning. To the best of the authors’ knowledge, this is
the first work to study the problem of AoI minimization in a system
where multiple battery operated devices perform energy harvesting
and rely on an edge-server for task offloading, incurring possibly in
battery depletion depending on data and battery status.

The paper is organized as follows. Sec. 2 describes the state of
the art. In Sec. 3 the basic server-device Markov decision model is
introduced. The monotone structure of an optimal policy is analyzed
in Sec. 4. Sec. 5 describes RL algorithms converging the optimal
solution. Sec. 6 extends analysis and algorithmic solutions to the
case of multiple devices. Numerical results are provided in Sec. 7
and a concluding section ends the paper.

2 RELATED WORKS
The term AoI was first used in [4] to denote freshness of data re-
ceived at the destination. Several later works on AoI focused on the
minimization of such metric [5]. The AoI minimization has been
studied in combination with energy harvesting to charge IoT devices
[8–12]. The energy-aware scheduling policies of the type studied in
this paper have been introduced to vary the sensing rate based on
the instantaneous battery charge [10]. Conversely, the effect of error
prone channels of the type studied in [8] and [9] is left for future
works. In the proposed model, as in [10, 11], measurements are pos-
sible only when the battery level is sufficiently high. As in [12], the
proposed model accounts for data-dependent energy consumption.
Moreover, it considers in detail the effect of battery depletion events.

Several works combine AoI minimization and task offloading to
external devices. Authors of [7], [17] and [18] studied the perfor-
mance of a device-server system where a local processor device is
supported by a remote server. As the present work, [13] and [14]
study the trade-off between energy consumption and execution de-
lays to offload applications to an edge server. In [15] and [16] deep
reinforcement learning (DRL) is used to compute optimal offloading
policies. As showed later, knowing the properties of the optimal
value function permits much less expensive solutions. With very
few exceptions, e.g., [19] and [6], AoI in multi-device systems of
the type studied in this paper are not addressed in the literature. In
[19] the average AoI is minimized by choosing whether to use the
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Figure 1: Device performing local processing of data batches with
energy harvesting and intermittent edge-server offloading.

local processor or an edge server according to the network status. [6]
provides lower bounds on the average AoI performance achievable
for several queuing disciplines on a single-hop network as the one
studied in this work. Note that the metric addressed in this work is
not the average AoI but rather the peak AoI [20].

The first Markovian model for the control of AoI appeared in [21].
MDP models were later used in [12, 16, 19, 22]. Works [7, 8] use
constrained MDPs, while [11, 23] use partially observable MDPs.
Including constraints and partial observations are interesting exten-
sions but out of the scope of the present work. Threshold policies for
the control of the AoI have been obtained before [7, 9, 11]. In [9] the
threshold is one-dimensional while the policy structure described in
[7] is only characterized numerically. In [11] the threshold regards
two incorrelated control variables: in the proposed model, state tran-
sitions for AoI and energy both depend on the chosen action.

3 SYSTEM MODEL
The device-server scheme is represented in Fig. 1: the device can
read data batches and process them, while the edge server can poll
the device to offload the computation. Thus, data batches are either
read and processed locally on the device or read and offloaded.
Time steps are discrete with index 𝑡 = 1, 2, . . .. Processing data
at time 𝑡 on the device requires 𝐶𝑡 energy units, which form a
sequence of i.i.d. random variables {𝐶𝑡 } with probability distribution
𝑝𝐶 (𝑐) = P{𝐶 = 𝑐}. When the device is polled by the edge server,
the data processing task is offloaded and it has zero energy cost for
the device. However, sending and retrieving processed data from the
server incurs in a constant delay of 𝛿 ≥ 0 time units. The device
has a battery of capacity 𝐵 > 0 energy units and it can harvest
a number of energy units 𝐻𝑡 per timestep 𝑡 . The energy fetched
per timestep, namely the harvesting rate, forms a sequence of i.i.d.
random variables {𝐻𝑡 } whose corresponding probability distribution
is 𝑝𝐻 (ℎ) = P{𝐻 = ℎ}.

Let introduce the Semi Markov Decision Process (SMDP) which
models the system. The state of the device at time 𝑡 is denoted as
𝑠𝑡 = (𝑥𝑡 , 𝑒𝑡 , 𝑧𝑡 ), where 𝑥𝑡 represents the AoI, 𝑒𝑡 is the device battery
level and 𝑧𝑡 is the server state. Binary variable 𝑧𝑡 indicates whether
the server has polled the device for offloading, 𝑧𝑡 = 1, or not, 𝑧𝑡 = 0.
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Figure 2: A sample path of the process 𝒔𝒕 = (𝒙𝒕 , 𝒆𝒕 , 0) for 𝑯 ≡ 1: in
red the vacation periods where the battery is empty. The duration of
timeslot starting at time 𝒕 = 6 is 4 timesteps.

The corresponding per slot transition probability is 𝑝𝑍 (𝑧′ |𝑧), e.g.,
𝑝𝑍 (1|0) is the probability for the server to poll the device at 𝑡 + 1
given that it did not at 𝑡 . Note that 𝑥𝑡 is the AoI of the last data
batch processed by a tagged device and the AoI is measured at the
end of each time slot. It holds 𝑥𝑡 = 1 when the device has just
processed fresh data. Afterwards, the AoI increases of one timestep
at every time slot 𝑡 until either the device fetches a new data batch
and performs the computation or the server polls the device and
offloading occurs. In both cases, at the end of the data processing
the AoI is reset to 1.

Freshness function 𝑢 (𝑥) is the utility for processing a data batch 𝑥
time units after the last one was processed; 𝑢 (·) is bounded and non-
increasing. It is assumed that there exists 𝑀 > 0 such that𝑢 (𝑀+𝑘) =
𝑢 (𝑀) for all 𝑘 > 0, so that the AoI takes values in {1, . . . , 𝑀}. The
state space is denoted S = {1, . . . , 𝑀} × {0, . . . , 𝐵} × {0, 1}.

Finally, it is possible that the battery available at timeslot 𝑡 is
not sufficient to terminate the computation immediately, namely,
𝜙𝑡 := 𝑐𝑡 − (ℎ𝑡 + 𝑒𝑡 ) > 0. In this case, a delay is incurred in order to
harvest a sufficient amount of energy and complete the processing of
the current batch. The corresponding timeslot has a random duration,
due to the stochastic nature of energy harvesting.

The action set is A = {0, 1}, where 0 means wait and 1 process.
The action taken at time 𝑡 is denoted 𝑎𝑡 . If 𝑎𝑡 = 1, the device fetches
a new data batch, which is processed at energy cost 𝑐𝑡 > 0. For
every state 𝑠𝑡 where 𝑧𝑡 = 0 the action set available at each device
is A(𝑠𝑡 ) = {0, 1}, i.e. it can process or not the information. On the
other hand, when 𝑧𝑡 = 1 the action set is A(𝑠𝑡 ) = {1}: thus if the
device is polled by the server, by default the data unit is processed.
Furthermore, the energy to transmit data to the server is assumed
to be negligible compared to local data processing. Finally, the
dynamics of the AoI for data batches is

𝑥𝑡+1 =

{
1 if 𝑎𝑡 = 1
[𝑥𝑡 + 1]𝑀 if 𝑎𝑡 = 0

where [𝑦]𝐴 := max{0,min{𝑦,𝐴}}. The AoI at the renewal instants
is also called peak AoI [20] in the literature: it corresponds to the
processing rate.

It now possible to characterize the transition probabilities for a
given action 𝑎 ∈ A(𝑠). Hereafter 𝐻 is considered to be deterministic
with 𝐻 ≡ 1 and the time index is omitted for notation’s sake. The
general case for stochastic harvesting rate is derived in (22) and (23).

Let 𝑠 = (𝑥, 𝑒, 𝑧) be the current state of the device and 𝑠′ =

(𝑥 ′, 𝑒′, 𝑧′) the following state under action 𝑎.
The transition probability from 𝑠 to 𝑠′ is written, for 𝑎 = 0, as

𝑝 (𝑠′ |𝑠, 0) =


𝑝𝑍 (𝑧′ | 0)

𝑠 = (𝑥, 𝑒, 0),
𝑠′ = ( [𝑥 + 1]𝑀 , [𝑒 + 1]𝐵 , 𝑧′ ),

0 otherwise

(1)

Instead, when 𝑎 = 1, the transition probability from 𝑠 to 𝑠′ is

𝑝 (𝑠′ | 𝑠, 1) =



𝑝𝑍 (𝑧′ | 0)𝑝𝐶 (𝑒 + 1 − 𝑒′ )
𝑠 =(𝑥, 𝑒, 0),
𝑠′ =(1, 𝑒′, 𝑧′ ),
0 < 𝑒′ < 𝐵

𝑝𝑍 (𝑧 | 0)
∑∞
𝑐=𝑒+1 𝑝𝐶 (𝑐 )

𝑠 = (𝑥, 𝑒, 0),
𝑠′ = (1, 0, 𝑧′ )

𝑝𝑍 (𝑧 | 0)
∑𝑒+1−𝐵
𝑐=1 𝑝𝐶 (𝑐 )

𝑠 = (𝑥, 𝑒, 0),
𝑠′ = (1, 𝐵, 𝑧′ )

𝑝𝑍 (𝑧′ | 1)
𝑠 = (𝑥, 𝑒, 1),
𝑠′ = (1, [𝑒 + 1]𝐵 , 𝑧′ ),
𝑒 + ℎ < 𝐵

0 otherwise

(2)

The sojourn times 𝜏 (𝑠, 𝑠′) of the SMDP are associated to the
transition from an origin state 𝑠 = (𝑥, 𝑒, 𝑧) to a destination 𝑠′ =
(𝑥 ′, 𝑒′, 𝑧′). They are unitary except possibly those corresponding to
the transition to a renewal state, i.e., where 𝑥 ′ = 1. For that transition,
if 𝑧 = 1 the sojourn time is 𝜏 (𝑠, 𝑠′) = 1 + 𝛿 , due to the round-trip
delay for the edge-server offloading. If 𝑧 = 0 it is 𝜏 (𝑠, 𝑠′) = 1 when
𝜙 = 𝐶 − 𝑒 − 𝐻 ≤ 0. Otherwise, when 𝐶 − 𝑒 − 𝐻 > 0 it writes

𝜏 (𝑠, 𝑠′) = min

{
𝑘 |

𝑘∑︁
𝑟=1

𝐻𝑟 > 𝐶 − 𝑒 − 𝐻
}

(3)

that is the number of recharges required in order to complete the
computation. Note that during such sojourn time, the device cannot
be interrupted until the end of processing. In the case of deterministic
energy harvesting with 𝐻 ≡ 1, it holds 𝜏 (𝑠, 𝑠′) = (1 − 𝑧)max{1,𝐶 −
𝑒 − 𝐻 } + 𝑧 (1 + 𝛿).

In order to simplify the analysis, let consider the equivalent MDP
obtained by sampling the decision process at the time when actions
are taken. Its reward under the state action pair (𝑠𝑡 , 𝑎𝑡 ) at time 𝑡 is
proportional to the freshness of information at the end of process, as
well as on the initial level of energy and the server availability:

𝑟𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) =
{
𝑢 (𝑥𝑡 ) − 𝑑 (𝑐𝑡 − 𝑒𝑡 − ℎ𝑡 ) · 𝑎𝑡 if 𝑧𝑡 = 0
𝑢 ( [𝑥𝑡 + 𝛿]𝑀 ) if 𝑧𝑡 = 1

(4)

Function 𝑑 : R → R+ is a penalty that depends on the amount of
energy units required to complete the local processing if 𝑎 = 1 is
selected. It is further assumed that 𝑑 (𝑥) = 0 when 𝑥 ≤ 0 and that 𝑑
is a bounded non-decreasing function.
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3.1 Discounted Model
The processing policy 𝜋 for a tagged device is a probability dis-
tribution over the state-action space. The value function for policy
𝜋 is 𝑣𝜋 (𝑠) := E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠] where 𝐺𝑡 :=

∑∞
𝑡=0 𝛾

𝑘𝑟𝑡+1+𝑘 (𝑠𝑡 , 𝜋 (𝑠𝑡 ));
the 𝑄-function 𝑞𝜋 (𝑠, 𝑎) := E𝜋 [𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] is used later in Sec-
tion 5.2. In the discounted model presented next, the objective is to
maximize 𝑣𝜋 (𝑠) in the set of stationary policies, where 𝜋 = 𝜋 (𝑠) is
the probability that the device performs action 𝑎 = 1 in state 𝑠. As
showed in Sec. 4.2, the corresponding ergodic state occupancy prob-
ability permits to calculate the sampling rate based on the average
peak AoI. The optimal value function 𝑣∗ (𝑠) solves the the Bellman
optimality equation associated to the discounted reward problem

𝑣∗ (𝑥, 𝑒, 0) = max

{
𝑢 (𝑥) −

∞∑︁
𝑐=1

𝑝𝐶 (𝑐)
∞∑︁
ℎ=1

𝑝𝐻 (ℎ)𝑑 (𝑒 + ℎ − 𝑐)+

+ 𝛾
∞∑︁
𝑐=1

𝑝𝐶 (𝑐)
∞∑︁
ℎ=1

𝑝𝐻 (ℎ)E𝑍[𝑣∗ (1, [𝑒 + ℎ − 𝑐]𝐵 , 𝑧)] ,

𝑢 (𝑥) + 𝛾
∞∑︁
ℎ=1

𝑝𝐻 (ℎ)E𝑍[𝑣∗ ( [𝑥 + 1]𝑀 , [𝑒 + ℎ]𝐵 , 𝑧)]
}

in the case 𝑧 = 0. When 𝑧 = 1 the action set is a singleton, then

𝑣∗ (𝑥, 𝑒, 1) = 𝑢 ( [𝑥 + 𝛿]𝑀 ) +
∞∑︁
ℎ=1

𝑝𝐻 (ℎ)E𝑍[𝑣∗ (1, [𝑒 + ℎ]𝐵 , 𝑧)] (5)

Structural properties. The optimal policy and the corresponding
value functions have several properties that are exploited in the next
section. First, from (4) it is immediate that, if the harvesting process
{𝐻 ′𝑡 } is stochastically larger than {𝐻𝑡 }, also 𝑣 ′ (𝑠) ≥ 𝑣 (𝑠) for all
𝑠 ∈ S; similar observations hold w.r.t. process {𝐶𝑡 }.

Before proving the next result, a few definitions are introduced.
First, a policy is monotone if the action is either increasing or de-
creasing in the state, given an assigned partial order on the state space
S and on the action space 𝐴. In particular, the following partial order
is defined on the state space

(𝑥, 𝑒 + 1, 𝑧) ⪰ (𝑥, 𝑒, 𝑧′)
(𝑥 − 1, 𝑒, 𝑧) ⪰ (𝑥, 𝑒, 𝑧′)

(6)

whereas the obvious order is imposed on the action space 𝐴 = {0, 1}.
Let 𝑠+ be larger than 𝑠− if 𝑠+ ⪰ 𝑠− . The real function𝜓 : S×A → R
is supermodular if𝜓 (𝑥+, 𝑦+) +𝜓 (𝑥−, 𝑦−) ≥ 𝜓 (𝑥+, 𝑦−) +𝜓 (𝑥−, 𝑦+),
also equivalent to say that 𝜓 (𝑥+, 𝑦) − 𝜓 (𝑥−, 𝑦) is decreasing in 𝑦.
The tail transition probability 𝑤 (𝑠′ |𝑠, 𝑎) := ∑

𝜁 ⪰𝑠′ 𝑝 (𝜁 |𝑠, 𝑎) defines
the probability of making a transition to states larger than 𝑠 taking
action 𝑎.

LEMMA 1. i. 𝑣∗ (𝑥, 𝑒, 𝑧) is non increasing in 𝑥

ii. 𝑣∗ (𝑥, 𝑒, 𝑧) is non decreasing in 𝑒.

PROOF. The proof is made by verifying that the system model
adheres to the following three assumptions [24].
i. Non decreasing rewards. Let consider 𝑠+ = (𝑥, 𝑒, 𝑧), 𝑠− = (𝑥 +
1, 𝑒, 𝑧) and a fixed value of 𝑐. For 𝑎 = 1, 𝑟 (𝑠+, 1) = 𝑢 (𝑥)−𝑑 (𝑐−𝑒−ℎ) ≥
𝑢 (𝑥 + 1) − 𝑑 (𝑐 − 𝑒 − ℎ) = 𝑟 (𝑠−, 1), as 𝑢 is nonincreasing. For 𝑎 = 0
the same property holds since 𝑟 (𝑠+, 0) = 𝑢 (𝑥) ≥ 𝑢 (𝑥 + 1) = 𝑟 (𝑠−, 0).
Now assume 𝑠+ = (𝑥, 𝑒+1, 𝑧) and 𝑠− = (𝑥, 𝑒, 𝑧). For 𝑎 = 0 the reward
is equal for both states. For 𝑎 = 1, 𝑟 (𝑠+, 1) = 𝑢 (𝑥) −𝑑 (𝑐−𝑒−1−ℎ) ≥

𝑢 (𝑥)−𝑑 (𝑐−𝑒−ℎ) = 𝑟 (𝑠−, 1) since 𝑑 is by assumption nondecreasing.
ii. Supermodular rewards. This property can be easily verified for
both cases considered before;
iii. Increasing tail transition probability. First, let consider the case
𝑠+ = (𝑥, 𝑒, 𝑧) and 𝑠− = (𝑥 + 1, 𝑒, 𝑧). When 𝑎 = 1,

𝑤 (𝑠′ |𝑠+, 1) =
∑︁
𝜁 ⪰𝑠′

𝑝 (𝜁 |𝑠+, 1) =
∑︁
𝜁 ⪰𝑠′

𝑝 (𝜁 |𝑠−, 1) = 𝑤 (𝑠′ |𝑠−, 1)

as the final value of the AoI is always 1 after action 𝑎 = 1, while the
final energy level only depends on the initial energy 𝑒. If 𝑎 = 0, then
𝑤 (𝑠′ |𝑠+, 0) = 1{(𝑥 + 1, 𝑒 + ℎ, 𝑧) ≥ 𝑠′} ≥ 1{(𝑥 + 2, 𝑒 + ℎ, 𝑧) ≥ 𝑠′} =
𝑤 (𝑠′ |𝑠−, 0). The inequality is induced by the partial order of states.
Now, consider 𝑠+ = (𝑥, 𝑒 + 1, 𝑧) and 𝑠− = (𝑥, 𝑒, 𝑧). When 𝑎 = 1,
the inequality is verified because the final energy obtained with a
transition that starts in 𝑠+ is larger or equal than the one obtained
when starting in 𝑠− w.p.1. Conversely, when 𝑎 = 0, 𝑤 (𝑠′ | 𝑠+, 0) =
1{(𝑥 +1, 𝑒 +ℎ+1, 𝑧) ⪰ 𝑠′} ≥ 1{(𝑥 +1, 𝑒 +ℎ, 𝑧) ⪰ 𝑠′} = 𝑤 (𝑠′ | 𝑠−, 0)
and the inequality follows from (6). □

From Lemma 1 it follows easily a property of the optimal 𝑄-
function 𝑞∗ (𝑠, 𝑎) which will prove useful in order to develop suitable
learning algorithms.

COROLLARY 1. Fixed 𝑎 ∈ {0, 1}, then for 𝑠 = (𝑥, 𝑒, 𝑧) ∈ S
i. 𝑞∗ ((𝑥, 𝑒, 𝑧), 𝑎) ≤ 𝑞∗ ((𝑥, [𝑒 + 1]𝐵 , 𝑧), 𝑎)
ii. 𝑞∗ (( [𝑥 + 1]𝑀 , 𝑒, 𝑧), 𝑎) ≤ 𝑞∗ ((𝑥, 𝑒, 𝑧), 𝑎)

In all numerical tests, function 𝑄 appears indeed superadditive in
S ×A, a property that would be sufficient to prove the monotonicity
of the optimal policy. Unfortunately, the classic assumption on the
supermodularity of the tail transition probability (see Prop. 4.7.3 in
[24]) which grants the existence of a monotone policy can be easily
disproved.

THEOREM 1 (OPTIMAL POLICY STRUCTURE). A stationary
deterministic policy 𝜋 is optimal if and only if it is monotone. In
particular, there exist thresholds 𝑇 (𝑒), 0 ≤ 𝑇 (𝑒) ≤ 𝑀 such that :
i. 𝜋 (𝑒, 𝑥, 0) = 1 if and only if 𝑥 ≥ 𝑇 (𝑒);
ii. 𝑇 (𝑒) ≥ 𝑇 (𝑒 + 1) + 1;
iii. if 𝛾 = 0, then 𝑇 (𝑒) ≥ 𝑇 (𝑒 + 1)

PROOF. i. At first it is showed the existence of a threshold 𝑇 (𝑒)
for every level of energy 𝑒. Consider the function Δ𝑞∗ (𝑥, 𝑒, 𝑧) =
𝑞∗ ((𝑥, 𝑒, 𝑧), 1) − 𝑞∗ ((𝑥, 𝑒, 𝑧), 0): it holds

Δ𝑞∗ (𝑥, 𝑒, 0)=− E𝐶[𝑑 (𝑒 + ℎ − 𝑐)]+𝛾
{ ∞∑︁
𝑐=1

𝑝𝐶 (𝑐)E𝑍[𝑣∗ (1, [𝑒 + ℎ − 𝑐]𝐵 , 𝑧)]

− E
𝑍
[𝑣∗ ( [𝑥 + 1]𝑀 , [𝑒 + ℎ]𝐵 , 𝑧)]

}
(7)

The increment w.r.t. 𝑥 is nonnegative, due to Lemma 1:

Δ𝑞∗ (𝑥 + 1, 𝑒, 0) − Δ𝑞∗ (𝑥, 𝑒, 0)=− 𝛾
(
E
𝑍
[𝑣∗ ( [𝑥 + 2]𝑀 , [𝑒 + ℎ]𝐵 , 𝑧] −

− E
𝑍
[𝑣∗ ( [𝑥 + 1]𝑀 , [𝑒 + ℎ]𝐵 , 𝑧)]

)
ii. Observe that all states ( [𝑇 (𝑒) + 𝑘]𝑀 , [𝑒 + 1]𝐵 , 𝑧) are transient for
any integer 𝑘 > 1. Hence, one could replace the policy for those
states with no change in the state occupancy probability.
iii. Follows from the structure of the instantaneous reward. □
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From Thm. 1 it follows that an optimal policy is monotone with a
threshold structure.

4 OPTIMAL POLICY PERFORMANCE
An optimal policy 𝜋∗ can be obtained using standard dynamic pro-
gramming methods, under the assumption of having full information
on the transition probabilities; in the following 𝑝𝜋∗ is the stationary
distribution given by 𝜋∗. Efficient variants of value iteration or policy
iteration algorithms for monotone policies do exist. Alternatively,
the optimal solution can be found solving a suitable linear program
[24]. This section describes first how to evaluate the average peak
AoI of the optimal policy, which renders the actual sampling rate
of a device. It further introduces some properties of the discounted
reward for a given distribution over the initial state for a policy 𝜋 .

4.1 Average Peak AoI
Once determined an optimal policy, the corresponding average peak
AoI can be computed by considering the renewal process {𝑁 (𝑡), 𝑡 ≥
0} defined by the instants of visit to a state with AoI 𝑥 = 1 for the
corresponding Markov reward process. Let 𝑌𝑟 , 𝑟 = 1, 2, . . . be the
random variable describing the length of the 𝑟 -th renewal and the
corresponding renewal process [25]. Denote as Δ𝑁 = E [𝑁 (𝑡 + 1)]−
E [𝑁 (𝑡)] the average number of renewal events, i.e., of processing
events, per time unit. From Blackwell theorem [26], Δ𝑁

𝑡 →
1
E[𝑌 ] .

Let denote 𝐿 the number of transitions during renewal period 𝑌 : it
is the mean return time to a state with 𝑥 = 1, i.e., the inverse of the
stationary probability of being in a state 𝑠 where 𝜋∗ (𝑠) = 1:

𝐿 =
1∑

𝑠 :𝜋∗ (𝑠 )=1 𝑝𝜋∗ (𝑠)
(8)

By recalling the form of the sojourn times 𝜏 (𝑠, 𝑠′) of the SMDP, the
expected value of the length of the renewal cycle 𝑌 is computed as

E [𝑌 ] =
∑︁

{𝑠′ :𝑥 ′=1}
E 𝑠∼𝑝𝜋∗
𝜋∗ (𝑠 )=1

[
𝜏 (𝑠, 𝑠′)

]
𝑝𝜋∗ (𝑠′) +

1
𝐿
− 1

obtained using a partition of the possible renewal states. For nota-
tion’s sake, let

𝜒 (𝑒′) := E 𝑠∼𝑝𝜋∗ :
𝜋∗ (𝑠 )=1,𝑧

′

[
𝜏 (𝑠, (1, 𝑒′, 𝑧′))

]
the expected sojourn time when the transition ends in a state 𝑠′ =
(1, 𝑒,′ , 𝑧′). Computing 𝜒 (𝑒′) accounts for the possible sample paths
to renew to an energy state 𝑒′. Two possible cases are to be consid-
ered. If 𝑧 = 1, then 𝑒 +ℎ = 𝑒′ with 𝑝𝐻 (Δ𝑒) where Δ𝑒 = 𝑒′−𝑒. Else, if
𝑧 = 0, the possibility that 𝜙 > 0 requires to account for the recharges
needed to get to the final level of energy 𝑒′, which depends on the
distribution of both 𝐻 and 𝐶.

𝜒 (𝑒′ ) =𝑝𝑍 (1) (1+𝛿 )
𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒 )𝑝𝐻 (Δ𝑒 )+ (9)

+𝑝𝑍 (0)
(

𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒 )
∞∑︁
𝑟=1

Γ1,𝑟𝑝𝐶 (ℎ1−Δ𝑒 )

+
∞∑︁
𝑘=2

𝑘

𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒 )
∞∑︁
𝑟=1

Γ𝑘−1,𝑟

∞∑︁
𝑐=𝑒+∑𝑘−1

𝑗=1 ℎ 𝑗 +1

𝑝𝐶 (𝑐 )𝑝𝐻
(
Δ𝑒 + 𝑐 −

𝑘−1∑︁
𝑗=1

𝐻 𝑗

))
where 𝑝𝐸 (𝑒) indicates the probability that action 𝑎 = 1 is done when
the energy level is equal to 𝑒 (can be obtained from the stationary

distribution under a given policy) and Γ𝑘,𝑟 is the probability to harvest

𝑟 energy units in 𝑘 steps, namely Γ𝑘,𝑟 = P
(∑𝑘

𝑗=1 𝐻 𝑗 = 𝑟

)
. Note how

it has been assumed that ∀𝑧1, 𝑧2 P(𝑧1 | 𝑧2) = 𝑝𝑍 (𝑧1 | 𝑧2) = 𝑝𝑍 (𝑧1).
For the sake of notation, 𝑝𝑍 (0) = 1 − 𝑝𝑍 and 𝑝𝑍 (1) = 𝑝𝑍 , with
𝑝𝑍 ∈ [0, 1]. The same will be assumed throughout the remainder of
the work. Without loss of generality, let 𝑘 ≤ 𝐵: Γ𝑘,𝑟 is defined by the
following iteration

Γ𝑘,𝑟 =

{ ∑𝐵
𝑗=1 Γ𝑘−1,𝑟− 𝑗𝑝𝐻 ( 𝑗) 𝑘 ≤ 𝑟 ≤ 𝐵

0 otherwise
(10)

where Γ1,𝑟 = 𝑝𝐻 (𝑟 )1{1 ≤ 𝑟 ≤ 𝐵}. Finally, the expected value of 𝑋 is

E [𝑋 ] =
1∑︁

𝑧′=0

𝐵∑︁
𝑒′=0

𝑝𝜋∗ (1, 𝑒′, 𝑧′)∑𝐵
𝑗=0 𝑝𝜋∗ (1, 𝑗, 𝑧′)

𝜒 (𝑒′) + 1
𝐿
− 1

In Section 7 numerical results will explore extensively how the
model parameters influence the peak AoI.

4.2 Reward of a policy
The learning procedure for the multi-device model presented later
in Sec.6 pivots on the dependence of the discounted reward 𝑅𝛾,𝜋
of a tagged policy 𝜋 on the server polling probability 𝑝𝑍 . The per-
formance measure for a policy used by a device is the discounted
reward given a certain initial state distribution. In particular, sample
paths initiate on renewal states with AoI 𝑥 = 1, energy 𝑒 chosen
uniformly at random and expected server availability 𝑝𝑍 .

Fixed 𝜋 , let 𝑃𝜋 be the transition matrix of the corresponding
Markov Chain and let vector 𝑟𝜋 be the instantaneous reward attained
at each state by following the action indicated by the policy. Let
further define vector 𝑑0 describing the initial distribution of states.
The discounted reward of a device can be computed as

𝑅𝛾,𝜋 = 𝑑0
(
𝐼 + 𝛾𝑃𝜋 + 𝛾2𝑃2𝜋 + . . .

)
𝑟𝜋 (11)

Basic facts of MDP theory imply that the geometric series generated
by 𝛾𝑃𝜋 is always converging so that

𝑅𝛾,𝜋 = 𝑑0 (𝐼 − 𝛾𝑃𝜋 )−1 𝑟𝜋 (12)

To analyze this quantity it is useful to explicitly express the paramet-
ric dependence 𝑑0 = 𝑑0 (𝑝𝑍 ) and 𝑃𝜋 = 𝑃𝜋 (𝑝𝑍 ). In particular,

𝑑0 (𝑝𝑍 ) =


1

𝐵+1𝑝𝑍 𝑥 = 1, 𝑧 = 0
1

𝐵+1 (1 − 𝑝𝑍 ) 𝑥 = 1, 𝑧 = 1
0 otherwise

The bijective function 𝑓 : {1, . . . , 𝑀}×{0, . . . , 𝐵} → {1, . . . , 𝑀 (𝐵+
1)} maps each couple (𝑥, 𝑒) to an integer value and two matrixes
𝑃0, 𝑃1 ∈ M (𝐵+1)𝑀×(𝐵+1)𝑀 such that(

𝑃0
)
𝑖 𝑗

= P
{
𝑓 (𝑥 ′, 𝑒′) = 𝑗 | 𝑓 (𝑥, 𝑒) = 𝑖, 𝑧 = 0, 𝑎 = 𝜋 (𝑥, 𝑒, 0)

}
and (

𝑃1
)
𝑖 𝑗

= P
{
𝑓 (𝑥 ′, 𝑒′) = 𝑗 | 𝑓 (𝑥, 𝑒) = 𝑖, 𝑧 = 1, 𝑎 = 1

}
Both matrix will depend on the distribution of the random variables
𝐶 and 𝐻 , as well as on the fixed policy 𝜋 . The explicit dependence
of the transition matrix 𝑃𝜋 on the server’s polling probability writes

𝑃𝜋 (𝑝𝑍 ) =
(
(1 − 𝑝𝑍 )𝑃0 𝑝𝑍𝑃

0

(1 − 𝑝𝑍 )𝑃1 𝑝𝑍𝑃
1

)
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which provides an explicit form to

𝑅𝛾,𝜋 (𝑝𝑍 ) = 𝑑0 (𝑝𝑍 )
(
𝐼 − 𝛾𝑃𝜋 (𝑝𝑍 )

)−1
𝑟𝜋

Remark. For 𝛿 > 0 the function 𝑅𝛾,𝜋 (𝑝𝑍 ) appears concave on
the interval [0, 1] for all tested stationary policies and parameters
of the Markov decision process. The proof of the convergence of
the algorithm introduced in Section 6 assumes this fact to be true. A
formal proof is provided for a specific choice of parameters (𝑀 =

2, 𝐵 = 1) and a particular policy in Section C. Additionally, 𝑅𝛾,𝜋 (𝑝𝑍 )
is indeed continuous and differentiable since each term of the matrix
appearing in its explicit form has such property, as showed in C.

Finally, evaluating the optimal reward as a function of 𝑝𝑍 requires
to consider different optimal policies and to determine

𝑅𝛾 (𝑝𝑍 ) = max
𝜋

𝑅𝛾,𝜋 (𝑝𝑍 ) (13)

As it is a point-wise maximum, the continuity of 𝑅𝛾 (·) is true. How-
ever, even if the conjecture about the concavity of 𝑅𝛾,𝜋 is verified,
𝑅𝛾 (𝑝𝑍 ) is not necessarily concave as it is the maximum of a set of
concave functions.

5 LEARNING THE OPTIMAL POLICY
In a realistic setting, transition probabilities (1) and (2) may not be
available. Furthermore, rewards (4) depend on the model used for
the data-batch computation and also on data properties which may
be only learned at runtime. A new model-free algorithm, namely
Ordered Q-learning (OQL) is introduced next. It is a version of Q-
learning (QL) [27] adapted for MDPs with monotone value functions
under a given partial order imposed on the state space. As showed in
Section 7, OQL outperforms other reinforcement learning algorithms
such as policy gradient methods and yet retains the convergence
guarantees of QL. Two variants of OQL based on the structure of
the optimal policy are introduced next; they leverage two different
partial orders on the states to find the optimal policy.

5.1 Ordered Q-learning
In the OQL the vector of the estimates of the 𝑄-function are forced
to comply to the monotonicity properties of the optimal 𝑄-function.
The update rule (14) for each state-action pair (𝑠, 𝑎) ∈ S ×𝐴 hence
writes
𝑄𝑡+1 (𝑠, 𝑎) = (1 − 𝛼𝑡 )𝑄𝑡 (𝑠, 𝑎) + 𝛼𝑡

(
𝑟𝑡+1 (𝑠, 𝑎) + 𝛾 max𝑏 𝑄𝑡 (𝑠′, 𝑏)

)
𝑄𝑡+1 (𝑠′, 𝑎) = Π𝑠

(
𝑄𝑡+1 (𝑠′, 𝑎)

)
∀𝑠′ ∈ S

(14)
where projection Π𝑠 (·) at state 𝑠 is a projection adapted to specific

partial order imposed on the state space. Let 𝑓 : S → R: if 𝑠′ > 𝑠,
then Π𝑠 (𝑓 (𝑠′)) = max{𝑓 (𝑠′), 𝑓 (𝑠)} and if 𝑠′ ≤ 𝑠, then Π𝑠 (𝑓 (𝑠′)) =
min{𝑓 (𝑠′), 𝑓 (𝑠)}.

Thus, the basic Q-learning iteration is followed by a state-dependent
projection on the set of allowed estimates. Alg. 1 reports on the com-
plete algorithm for the version of the algorithm with a constant
stepsize 𝛼𝑡 = 𝛼 . The convergence of the OQL can be ensured under
the assumption that 𝛼𝑡 = 𝛼𝑡 (𝑠, 𝑎) appearing in (14) is a standard
stepsize i.e.,

∑+∞
𝑡=1 𝛼𝑡 (𝑠, 𝑎) = +∞ w.p.1. and

∑+∞
𝑡=1 𝛼𝑡 (𝑠, 𝑎)2 < +∞

w.p.1. It holds the following result:

Algorithm 1 Ordered Q-learning

Require: step size 𝛼 ∈ (0, 1], discount factor 𝛾 ∈ [0, 1)
1: 𝑄 (𝑠, 𝑎) ∈ R,∀𝑠 ∈ S
2: 𝑄 (𝑠′, 𝑎) ← 0 for 𝑠′ terminal state
3: for each episode
4: initialize 𝑠 ∈ S
5: for each step of the episode
6: choose 𝑎 ∈ A(𝑠) given by 𝑄 (e.g., 𝜖-greedy)
7: take action 𝑎 and observe reward 𝑅 and 𝑠′

8: 𝑄 (𝑠, 𝑎)← (1 − 𝛼)𝑄 (𝑠, 𝑎) + 𝛼 [𝑅 + 𝛾 max𝑎 𝑄 (𝑠′, 𝑎)]
9: 𝑄 (𝑠, 𝑎)←Π𝑠 (𝑄 (𝑠, 𝑎)), ∀𝑠 ∈ S

10: 𝑠 ← 𝑠′

11: end for
12: end for

THEOREM 2. Consider the Ordered Q-learning algorithm de-
scribed by the update rule in (14). Let 𝛾 < 1. Let 𝑞∗ be mono-
tone, i.e., if 𝑠1 ≤ 𝑠2 according to some order on the states, then
𝑞∗ (𝑠1, 𝑎) ≤ 𝑞∗ (𝑠2, 𝑎). Then 𝑄𝑡 (𝑠, 𝑎) converges to 𝑞∗ (𝑠, 𝑎) w.p.1. for
every state 𝑠 ∈ S and for every action 𝑎 ∈ A(𝑠).

PROOF. A sketch of the proof of Theorem 5 is based on the Policy
Improvement theorem’s [28]. Let consider a generic step of the OQL
algorithm. Let 𝜋 be the current policy and 𝜋 ′ be the policy obtained
at the iteration of OQL. Let assume that 𝜋 ′ improves the current
policy, i.e., 𝑞𝜋 (𝑠, 𝜋 ′ (𝑠)) ≥ 𝑣𝜋 (𝑠) for all 𝑠 ∈ S. As showed in [28],
this implies that 𝑣 ′𝜋 (𝑠) ≥ 𝑣𝜋 (𝑠) ∀𝑠 ∈ S.

Now let consider any state 𝑠+ ⪰ 𝑠. After applying the projection,
it holds 𝑞𝜋 (𝑠+, 𝜋 ′ (𝑠)) ≥ 𝑞𝜋 (𝑠, 𝜋 ′ (𝑠)). Finally, since both 𝜋 ′ (𝑠) and
𝜋 ′ (𝑠+) ∈ A(𝑠+), it is possible to write

𝑣𝜋 ′ (𝑠+) = 𝑞𝜋 ′ (𝑠+, 𝜋 ′ (𝑠+)) = max{𝑞𝜋 ′ (𝑠+, 𝜋 ′ (𝑠)), 𝑞𝜋 ′ (𝑠+, 𝜋 (𝑠+))}
≥ 𝑞𝜋 ′ (𝑠+, 𝜋 ′ (𝑠)) ≥ 𝑞𝜋 ′ (𝑠, 𝜋 ′ (𝑠)) = 𝑣𝜋 ′ (𝑠)

which concludes the proof. □

The above proof sketch is based on the simplifying assumption
that the true values of the 𝑄-function are available at each iteration;
this assumption permits to use dynamic programming arguments.
The complete proof of Theorem 5 is rooted in the original argument
of convergence for Q-learning, developed by Tsitsiklis in [29], which
is based on stochastic approximations. It is presented in Section D.
For OQL, the technical difficulty is to account for the use of state-
dependent projection Π𝑠 .

It is further possible to define the 𝑛-step version of OQL, where
the first equation in (14) is replaced by the one of 𝑛-step QL [28].

5.2 Stairway Q-Learning
Stairway Q-learning (SQL) is defined imposing on the state space
the natural partial order considered in Cor. 1 so that the assumptions
of Thm. 5 automatically hold for the system at hand. For every pair
of states 𝑠1 = (𝑥1, 𝑒1, 𝑧) and 𝑠2 = (𝑥2, 𝑒2, 𝑧) and for every vector
𝑣 ∈ R |S | , the explicit form of the projection operator on the set of
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vectors that suit the partial order considered is

Π𝑠1 (𝑣 (𝑠2)) =



max (𝑣 (𝑠1), 𝑣 (𝑠2))
if 𝑥1 < 𝑥2 and 𝑒1 ≥ 𝑒2 or
𝑥1 ≤ 𝑥2 and 𝑒1 > 𝑒2

𝑣 (𝑠1) if 𝑥1 = 𝑥2 and 𝑒1 = 𝑒2

min (𝑣 (𝑠1), 𝑣 (𝑠2))
if 𝑥1 > 𝑥2 and 𝑒1 ≤ 𝑒2 or
𝑥1 ≥ 𝑥2 and 𝑒1 < 𝑒2

𝑣 (𝑠2) otherwise

In Section 7 it will be showed that the performance of SQL improves
significantly compared to the standard QL, both in the 1-step version
here introduced and in the 𝑛-step version.

5.3 Threshold Q-learning
Threshold Q-learning (TQL) considers a simplified partial order of
the type (𝑥, 𝑒, 𝑧) ⪰ (𝑥 + 1, 𝑒, 𝑧′) for 𝑥 = 1, . . . , 𝑀 − 1: it imposes the
partial order only w.r.t. energy. The monotonicity condition writes

𝑞∗ ((𝑥, 𝑒, 𝑧), 𝑎) ≤ 𝑞∗ (( [𝑥 + 1]𝑀 , 𝑒, 𝑧), 𝑎) ∀𝑥, 𝑒, 𝑧, 𝑎 (15)

The convergence follows from Theorem 5. The projection function
w.r.t. a certain state 𝑠, Π𝑠 : R→ R, can be written as

Π𝑠1 (𝑣 (𝑠2)) =


max (𝑣 (𝑠1), 𝑣 (𝑠2)) if 𝑥1 < 𝑥2
𝑣 (𝑠1) if 𝑥1 = 𝑥2
min (𝑣 (𝑠1), 𝑣 (𝑠2)) if 𝑥1 > 𝑥2
𝑣 (𝑠2) otherwise

(16)

for every pair of states 𝑠1 = (𝑥1, 𝑒, 𝑧) and 𝑠2 = (𝑥2, 𝑒, 𝑧). Note that
in this case only states with same energy and server availability
are compared: this significantly reduces the number of projection
operations compared to SQL, especially when 𝐵 is large. Despite
its reduced complexity, in many cases this algorithm has showed
similar convergence speed as SQL. Note how for both SQL and TQL
it is not possible to guarantee the corresponding policy to have the
threshold structure at each timestep. However, the numerical results
show that policy displays the threshold structure after a rather small
number of iterations.

5.4 Reinforce
One of the baselines algorithms used for comparison is Reinforce
(RF) [30]. RF performs a basic policy-gradient iteration in the form

𝜃t+1 = 𝜃𝑡 + 𝛼𝑡𝐺𝑡
∇𝜃𝜋 (𝑎𝑡 |𝑠𝑡 , 𝜃t)
𝜋 (𝑎𝑡 |𝑠𝑡 , 𝜃t)

(17)

where 0 < 𝛼𝑡 < 1 is a stepsize and𝐺𝑡 is the policy reward estimation.
The gradient is operated on the following policy parametrization
based on the threshold structure of the optimal policy

𝜋 (𝑥, 𝑒, 𝑧) =


0 𝑥 < ⌊𝜃𝑒 ⌋

1
1+exp{𝑘 (𝜃𝑒−𝑥−0.5) } 𝑥 = ⌊𝜃𝑒 ⌋
1 𝑥 > ⌈𝜃𝑒 ⌉

(18)

where 𝑘 > 0 is a suitable hyperparameter.

6 MULTI-DEVICE MODEL
The model is now extended to the case of 𝑁 devices connected
to the edge server. Each device 𝑘 ∈ {1, . . . , 𝑁 } follows the single
device-server model described in Section 3. At each timeslot the

Algorithm 2 Pseudocode of APPI

Require: 𝜖 > 0
1: initial polling probability 𝑝𝑍,new

2: while
��𝑝𝑍,old − 𝑝𝑍,new

�� > 𝜖

3: 𝑝𝑍,old ← 𝑝𝑍,new

4: Optimal policy learning: find optimal policy 𝜋∗
𝑘
(𝑝𝑍,old) for ∀𝑘

5: Polling optimization: find 𝑝𝑍,new ≥ 0 such that{
𝑝𝑍,new = argmax𝑝𝑍

∑
𝑘 𝑅𝛾𝑘 ,𝜋∗𝑘 (𝑝𝑍,𝑘,old ) (𝑝𝑍 )∑

𝑘 𝑝𝑍,new = 1

6: end while
7: return 𝑝𝑍,new

server polls device 𝑘 with probability 𝑝𝑍,𝑘 , where 𝑝𝑍 ∈ 𝑃𝑍 = {𝑝𝑍 ∈
[0, 1]𝑁 :

∑𝑁
𝑘=0 𝑝𝑍,𝑘 = 1} and 𝑘 = 0 denotes the null device, i.e., no

polling. All the devices are assumed to be independent of each other:
by doing so, the optimal policy of each device is not influenced by
the state of the other devices at a given timestep; the interesting
case of correlated harvesting or data samples is left as part of future
works. Moreover, the polling decision of the server is feedforward,
i.e., the state of a device is only known once the device is polled, so
that the polling action is independent of the state of devices.

The server seeks the optimal random polling probability 𝑝𝑍,𝑘
that maximizes the sum of the rewards of the devices, i.e., 𝑅(𝑝𝑍 ) :=∑𝑁
𝑘=1 𝑅𝛾𝑘 (𝑝𝑍,𝑘 ), where 𝑅𝛾𝑘 (𝑝𝑍,𝑘 ) obeys to (13), subject to the polling

capacity constraint, i.e.,

maximize: 𝑅(𝑝𝑍 ) =
𝑁∑︁
𝑘=1

𝑅𝛾𝑘 (𝑝𝑍,𝑘 ) (MD)

subj. to:
𝑁∑︁
𝑘=0

𝑝𝑍,𝑘 = 1 (19)

𝑝𝑍,𝑘 ≥ 0 𝑘 = 0, . . . , 𝑁

In order to solve problem (MD), since the discounted reward
(13) cannot be computed (unless all the transition probabilities are
known), stochastic approximation might be used to find a solution.
Furthermore, as already observed in Section 4.2, 𝑅𝛾 (·) cannot be
assumed differentiable or concave, ruling out stochastic approxima-
tion methods requiring differentiable objective functions, such as
SPSA [31]. Other direct methods with less strict requirements, such
as Enhanced Localized Random Search do exist [32].
The proposed algorithm, namely the Alternating Polling and Policy
Improvement (APPI) algorithm, is summarized in Alg. 2. It alter-
nates two steps: 1) a policy learning step (line 4) for a given polling
probability vector 𝑝𝑍 , and 2) a polling optimization step (line 5)
optimizing 𝑝𝑍 for a given policy using stochastic approximation
methods. For the policy learning step it is sufficient to use one of the
learning methods proposed in Sec. 5, e.g., Stairway Q-learning for
the efficiency’s sake. Conversely, as observed before, if the policy for
each device is fixed, the objective function is

∑
𝑘 𝑅𝛾𝑘 ,𝜋𝑘 (𝑝𝑍,𝑘 ) with

𝜋𝑘 = 𝜋∗
𝑘
(𝑝𝑍,𝑘,𝑜𝑙𝑑 ), i.e., the optimal policy according to the previous

value of the polling probability vector. As showed in Section 7.3,
this algorithm is both faster and more accurate than general methods
for the problem studied.
In order to discuss the polling optimization step, recall that the
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objective function is concave in 𝑝𝑍 (and so a.e. continuously differ-
entiable) suggesting the use of stochastic gradient ascent methods of
the Kiefer-Wolfowitz family [33]. The iteration scheme is

𝑝𝑛+1𝑍 = ΠΘ
(
𝑝𝑛𝑍 − 𝛼𝑛𝑔𝑛

)
(20)

where 𝑝𝑛
𝑍

is the 𝑛th iterate of the parameter, 𝑔𝑛 represents an esti-
mate of the gradient of the objective function, {𝛼𝑛}𝑛 is a sequence
converging to 0 and ΠΘ is a projection on the 𝑁 +1-dimensional sim-
plex Θ = {𝑝𝑍 ≥ 0|∑𝑝𝑍,𝑘 = 1}, i.e., the space of possible polling
probability vectors, including the null action when polling is not
active. The projection activates when 𝑝𝑍 ± 𝑐𝑛Δ𝑛 lies outside the
constraint set and reverts to the nearest point in Θ.

The specific technique to determine 𝑔𝑛 in (20) is based on simul-
taneous random increments (SPSA) [31]. This technique estimates
two increments, one in the positive and one in the negative direction.
Due to the independence between different devices, each component
of the gradient depends only on the parameter 𝑝𝑍,𝑘 of the device
considered. Let 𝑅𝛾𝑘 ,𝜋𝑘 denote the approximated reward for device 𝑘 .
The corresponding component of the gradient estimate writes

(𝑔𝑛)𝑘 =
𝑅𝛾𝑘 ,𝜋𝑘

(
𝑝𝑍,𝑘 + 𝑐𝑛 (Δ𝑛)𝑘

)
− 𝑅𝛾𝑘 ,𝜋𝑘

(
𝑝𝑍,𝑘 − 𝑐𝑛 (Δ𝑛)𝑘

)
2𝑐𝑛 (Δ𝑛)𝑘

(21)
where {𝑐𝑛} is a sequence converging to 0 and {Δ𝑛} is an i.i.d. vector
sequence of perturbations of i.i.d. components {(Δ𝑛)𝑖 , 𝑖 = 1, . . . , 𝑁 }
with zero mean and where E

[
| (Δ𝑛)−2𝑖

|
]

is uniformly bounded.
The following proposition estabilishes the conditions on the objec-
tive function, on the step-size sequence {𝛼𝑛} and on the gradient
estimates 𝑔𝑛 for which the SPSA iteration converges to the global
maximum of the corresponding total discounted reward when a
policy is fixed for each device.

PROPOSITION 1. Let {𝛼𝑛} and {𝑐𝑛} be such that
∑
𝑛 𝛼𝑛 = ∞,∑

𝑛

(
𝛼𝑛
𝑐𝑛

)2
< ∞. Moreover, assume that E

[
| (Δ𝑛)𝑖 |−2

]
is uniformly

bounded on 𝑃𝑍 and that 𝑅𝛾𝑘 ,𝜋𝑘 (𝑝𝑍,𝑘 ) is concave. Then the iteration
(20) converges to the optimal parameter 𝑝∗

𝑍
w.p.1.

PROOF. The desired result is obtained by verifying the assump-
tions of Proposition 1 in [34], whose proof is a consequence of
Theorem 5.3.1 in [33].
i. the objective function is differentiable and either concave or uni-
modal: its differentiability is proved in Section C, while the other
condition is assumed to be verified;
ii. 𝑏𝑛 = E [𝑔𝑛 |𝑝𝑍 , 𝑠𝑛] − ∇𝐽 (𝑝𝑍 ) → 0 w.p.1: it holds from Lemma 2
in [31] and condition i.;
iii.

∑∞
𝑛=1 𝛼

2
𝑛 ·E

[
𝑒2𝑛

]
< ∞ w.p.1, where 𝑒𝑛 := 𝑔𝑛−E [𝑔𝑛 | 𝜃𝑛, 𝑠𝑛]; this

condition holds by Lemma 2 in [31] and by the fact that 𝑅((𝑝𝑍 )𝑘 , 𝜔),
representing the reward of sample path 𝜔 has second moment uni-
formly bounded in 𝑝𝑍 : we can notice that it is independent of 𝑝𝑍 .
Indeed, given a path, since 𝑥 ≤ 𝑀 and 𝑝𝑍 ∈ [0, 1], the reward is up-
per bounded by a constant, therefore its second moment is uniformly
bounded, which concludes the proof. □

Hence, fixed the policy for each device, the corresponding optimal
polling probability vector is attained. Thanks to the convergence
properties of the learning methods (see Section 5) for a fixed vector
𝑝𝑍 , and since the number of policies is finite, this proves that APPI
converges w.p.1.

Parameter Subsec. 7.1 Subsec. 7.2 and 7.3
M 15 {10, . . . , 25}
B 15 {10, . . . , 25}
𝛾 0.95 {0.9, . . . , 0.99}
𝑝𝑍 0.05 {0.01, . . . , 0.1}
𝛿 1 1
Reward 𝑟 (𝑥 ) = 𝑀 − 𝑥 𝑟 (𝑥 ) = 𝑀 − 𝑥
Discharge Penalty 𝑑 (𝑒 ) = 𝑒4 · 1{𝑒 ≥ 0} 𝑑 (𝑒 ) = 1𝑒<0 (−𝑒 )𝑘 ,

with 𝑘 ∈ {1, 2, 3, 4}
Harvesting Poisson (𝜆 = 1) Poisson (𝜆 = 1)
Processing Cost uniform, binary and

symmetric for 𝜇 ∈
{1, 4, 8.5}

symmetric with
𝜇 ∈ {1, . . . , 𝐵/2}
𝜎 ∈ {1, 2, 3, 4}

Table 2: The system parameters used in the numerical experiments.

Unfortunately, this does not imply the convergence to the globally
optimal polling probability vector, as the function to optimize is not
concave, but rather just the pointwise maximum of a set of concave
functions. Due to its particular structure, only convergence to the
local optimum of the objective function can be ensured.

7 NUMERICAL RESULTS
The numerical experiments are divided into 3 parts. The first one de-
scribes the performance of the single device-server system tested on
a range of system parameters. The second one compares the Ordered
Q-learning methods introduced in Sec. 5 with baseline RL algo-
rithms. Finally, the performance of the APPI algorithm introduced in
Sec. 6 is assessed against alternative general methods. The devices
and server parameters, namely 𝑀, 𝐵,𝛾, 𝛿, 𝑝𝑍 , 𝑟 (·), 𝑑 (·), 𝑝𝐻 and 𝑝𝐶 ,
constitute the environment. For the data processing cost 𝐶 three pos-
sible probability distributions will be considered: the uniform one in
{1, . . . , 𝐵 + 1}, the binary one where 𝑝𝐶 (1) = 𝑝𝐶 (𝐵 + 1) = 1/2 and fi-
nally the symmetric one obtained as 𝑝𝐶 (𝑐) = 𝐴·exp{− 1

2 ((𝑐−𝜇)/𝜎)
2}

for 𝑐 ∈ {1, . . . , 𝐵 + 1}: 𝜇 and 𝜎 shape the distribution, whereas 𝐴 is
an appropriate normalization constant. In Table 2 the first column
represents the environment used in Subsec. 7.1. The second column
reports the sets from which the system parameters are drawn uni-
formly at random in the experiments of Subsec. 7.2 and Subsec. 7.3.

7.1 Device-server performance evaluation
Fig. 3a describes the impact of the server availability 𝑝𝑍 onto the
average (peak) AoI in a single device system. Excluding the case
𝜇 = 1, i.e., for lower values of the average batch processing cost, the
average AoI is maximal for 𝑝𝑍 = 0 and attains its minimum close to
𝑝𝑍 = 1 (the optimal 𝑝𝑍 is highlighted with dots in Fig. 3a). In fact,
for higher processing cost, a larger server polling probability permits
to select action 𝑎 = 1 more often, as the possible battery discharge
due to data processing is compensated by frequent task offloading
events. For lower cost figures, instead, it is the roundtrip delay 𝛿

that renders the offloading less convenient: when 𝛿 = 0, actually,
the corresponding curve (not reported for the space’s sake) becomes
strictly decreasing.

Fig. 3b plots the value of the optimal polling probability 𝑝𝑍 for
increasing values of 𝛿 . These are obtained by means of an appro-
priate stochastic optimization. The results show, as expected, that
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a) b) c)

Figure 3: a) Average peak AoI for increasing polling probability 𝒑𝒁 ; b) optimal 𝒑𝒁 for increasing round-trip delay 𝜹; c) Average peak AoI for
increasing average harvesting rate 𝝀.

the optimal value of 𝑝𝑍 decreases as 𝛿 increases, irrespective of the
distribution of the processing cost. Fig. 3b shows that offloading
can be detrimental for larger values of 𝛿: indeed, for lower batch
processing costs (𝜇 = 1 and 𝜇 = 3) the value that minimizes the
average peak AoI is 𝑝𝑍 = 0. In these cases the risk of emptying the
battery is sufficiently low to choose action 𝑎 = 1 very frequently. In
turn, the presence of the server, and the additional delay required by
task offloading, becomes a penalty.

Finally, Fig. 3c depicts the average AoI for increasing average
harvesting rates, i.e., for increasing values of 𝜆 (note that here 𝜆 = 0
indicates the deterministic case𝐻 ≡ 1). Irrespective of the processing
cost distribution 𝑝𝐶 , the average peak AoI is monotone decreasing,
as expected and approaches 1 + 𝛿 𝑝𝑍 for large recharging rates.

7.2 Learning the optimal policy
The RL algorithms introduced in Section 5 are compared with two
baselines, namely QL and RF. Each test is repeated over 50 different
environments where the system’s parameters are drawn uniformly
at random, as reported in Table 2. Each experiment consists in a se-
quence of 3000 episodes. At the end of each episode, the discounted
reward is calculated using a policy evaluation step. The evaluation
is truncated when the weight discount falls below 0.001. The esti-
mation of the optimal reward (12) is collected starting from a state
𝑠0 = (1, 𝑒, 𝑧), with 𝑒 and 𝑧 drawn uniformly at random. In order to
compare results of different runs, the rewards have been normalized
against the baseline stationary policy which chooses action 𝑎 = 1 if
the state is such that either 𝑧 = 1 or 𝑠 = (𝑀, 𝐵, 0).

Finally, for each tested algorithm several sets of hyperparame-
ters have been probed to determine the configuration ensuring the
highest discounted reward; in fact, such parameters are observed to
influence heavily the performance of the different algorithms. For
the Q-learning type of algorithms (QL, TQL and SQL), these consist
of 𝑛, determining the adopted 𝑛-steps variant, and 𝜙 and 𝛽, which
determine the learning rate 𝛼𝑡 (𝑠𝑡 ) = 𝜙 · (#visits in state 𝑠𝑡 )−𝛽 . For
Reinforce the hyperparameter are 𝑘 , appearing in (18), as well as 𝑛
and𝑚 defining stepsize 𝛼𝑡 = 𝑛/(𝑡 + 1)𝑚 .

The results of the experiments are summarized in Table 3. In
particular, RF appears to converge quickly, but to a suboptimal

250 episodes 1000 episodes 3000 episodes
QL 0.723 ± 0.254 0.796 ± 0.220 0.810 ± 0.208

TQL 0.752 ± 0.255 0.857 ± 0.181 0.880 ± 0.117
SQL 0.850 ± 0.209 0.943 ± 0.051 0.964 ± 0.060

Reinforce 0.893 ± 0.225 0.893 ± 0.227 0.893 ± 0.224
Table 3: RL tests: discounted reward for increasing number of episodes;
best performance results are marked bold.

policy. In order to avoid this, in policy gradient RL it is possible
to introduce multiple simultaneous state-action perturbations, e.g.,
trust-region techniques [35], at the price of increased complexity.
Finally, SQL outperforms the other methods attaining a gain of 10%.

7.3 Multi-device system
The two last experiments evaluate the performance of the APPI learn-
ing procedure introduced in Sec. 6. To this aim, three alternative
algorithms to be compared to APPI have been implemented. They
replace the polling probability improvement step with Naive Ran-
dom Search (NRS), Enhanced Random Search (ENRS) and SPSA,
respectively. Details on those procedures are found in [32].

The first test covers a scenario with 𝑁 = 3 devices. For each
run of the experiment, a set of parameters is generated at random
for each device (i.e., 𝑀 , 𝐵, 𝛾 , 𝑝𝑍 , 𝛿 𝑟 (·), 𝑑 (·), 𝑝𝐶 and 𝑝𝐻 ) and an
initial polling probability distribution is imposed on the edge server.
The device parameters are drawn uniformly at random from the
sets described in Table 2, second column. For each algorithm it is
recorded 1) the total discounted reward and 2) number of policy
learning iterations performed. The results are averaged over 50 runs,
by considering each time different initial polling distributions and
different environments. Also, all the reward values are normalized
to fall into an interval [𝑅min, 𝑅max]. 𝑅max is the reward obtained by
an ideal APPI implementation which finds the optimal policy using
value iteration, while 𝑅min is the reward obtained averaging 10 runs
under a random polling probability and the corresponding device’s
optimal policies. The numerical results are collected in Table 4: APPI
consistently outperforms the other algorithms by attaining higher
discounted reward and requiring much fewer policy improvement
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Algorithm Discounted reward Policy learning steps
NRS 0.423 ± 0.237 4.98 ± 1.378

ENRS 0.678 ± 0.184 10.06 ± 3.331
SPSA 0.449 ± 0.276 5.54 ± 1.846
APPI 0.747 ± 0.143 2.98 ± 1.086

Table 4: Comparison of different polling improvement algorithms for
𝑵 = 3.

N Discounted reward Policy learning steps
1 0.794 ± 0.222 2.18 ± 0.77
3 0.747 ± 0.143 2.98 ± 1.086
5 0.699 ± 0.192 3.78 ± 1.221
7 0.724 ± 0.222 4.08 ± 1.074
10 0.714 ± 0.237 5.06 ± 1.302

Table 5: Performance of APPI for increasing number of devices con-
nected to the edge server.

steps as well. The last experiment tests the scalability of APPI by
increasing the number of devices 𝑁 . The outcomes are reported in
Table 5. Those are the average of 50 simulations per value of 𝑁 .
As before, in each simulation the environment is drawn at random
using the distributions indicated in Table 2. The normalized reward
attained by APPI appears marginally affected by the number of
devices, whereas the number of policy improvement steps is in the
order of a few units and increases linearly.

8 CONCLUSIONS
This work has provided a theoretical framework to model edge de-
vices running AI applications whose energy footprint depends on the
data being processed. It factors in energy harvesting and edge-server
task offloading. The optimal processing policy on edge devices is
hence derived and its key structural features are proved. This is the
basis for a model-based, specialized reinforcement learning method,
namely Ordered Q-learning. The learning procedure is hence applied
to the multidevice setting where the server’s offloading rate vector
is optimized by alternating stochastic gradient ascent and policy
learning. Numerical tests performed against the ground-truth, i.e., an
actual optimal policy, show that existing baselines are systematically
outperformed both in accuracy and convergence speed. This con-
firms that by rooting RL techniques into the structural properties of
the optimal solution, important performance margins against generic
RL solutions are attained. Several extension of the proposed models
are indeed possible in the multi-device setting. In particular, one
could include capacity constraints. This in turn requires to study
optimal randomized stationary policies for constrained MDPs. Also,
to improve the learning procedure of the polling probability, one
could use the history on the device state retrieved at polling instants.
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A TRANSITION PROBABILITIES: STOCHASTIC HARVESTING RATE
This section derives the transition probabilities (1) to the case of a stochastic harvesting sequence of i.i.d. random variables {𝐻𝑡 }. Here, both
both 𝐻𝑡 and 𝐶𝑡 may have unbounded support [0, +∞). When the action is 𝑎 = 0 they write

𝑝 (𝑠′ |𝑠, 0) =


𝑝𝑍 (𝑧′ | 0)𝑝𝐻 (ℎ) if 𝑠 = (𝑥, 𝑒, 0), 𝑠′ = ( [𝑥 + 1]𝑀 , 𝑒 + ℎ, 𝑧′), and 𝑒 + ℎ < 𝐵

𝑝𝑍 (𝑧′ | 0)
∑∞
ℎ=𝐵−𝑒 𝑝𝐻 (ℎ) if 𝑠 = (𝑥, 𝑒, 0), and 𝑠′ = ( [𝑥 + 1]𝑀 , 𝐵, 𝑧′)

0 otherwise
(22)

The generalization of (2), for the case when 𝑎 = 1, writes:

𝑝 (𝑠′ | 𝑠, 1) =



𝑝𝑍 (𝑧′ | 0)
( ∞∑︁
𝑟=0

Γ1,𝑟𝑝𝐶 (𝑒 + 𝑟 − 𝑒′) +
∞∑︁
𝑘=2

∞∑︁
𝑟=𝑘−1

Γ𝑘−1,𝑟

∞∑︁
𝑡=𝑒+𝑟+1

𝑝𝐶 (𝑐)𝑝𝐻 (𝑒′ + 𝑐 − 𝑟 − 𝑒)
) 𝑠 = (𝑥, 𝑒, 0),

𝑠′ = (1, 𝑒′, 𝑧′),
0 ≤ 𝑒′ < 𝐵

𝑝𝑍 (𝑧 | 0)
∑∞
𝑐=1 𝑝𝐶 (𝑐)

∑∞
ℎ=𝐵−𝑒+𝑐 𝑝𝐻 (ℎ)

𝑠 = (𝑥, 𝑒, 0),
𝑠′ = (1, 𝐵, 𝑧′)

𝑝𝑍 (𝑧′ | 1)𝑝𝐻 (ℎ)
𝑠 = (𝑥, 𝑒, 1),
𝑠′ = (1, 𝑒 + ℎ, 𝑧′),
𝑒′ < 𝐵

𝑝𝑍 (𝑧′ | 1)
∑∞
ℎ=𝐵−𝑒 𝑝𝐻 (ℎ)

𝑠 = (𝑥, 𝑒, 1),
𝑠′ = (1, 𝐵, 𝑧′)

0 otherwise

(23)

where Γ𝑘,𝑟 has been defined in (10). For what concerns the instantaneous reward, it depends on the difference a 𝐻𝑡 −𝐶𝑡 , that is

𝑟𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) =


𝑢 (𝑥𝑡 ) −

+∞∑︁
ℎ𝑡=1

+∞∑︁
𝑐𝑡=1

𝑑 (𝑒𝑡 + ℎ𝑡 − 𝑐𝑡 ) · 𝑎𝑡 if 𝑧𝑡 = 0

𝑢 ( [𝑥𝑡 + 𝛿]𝑀 ) if 𝑧𝑡 = 1

(24)

B DERIVATION OF THE AVERAGE SOJOURN TIME
This section shows how to derive the expression (9) for 𝜒 (𝑒′), i.e., the expected sojourn time when the transition leads to a state 𝑠′ = (1, 𝑒,′ , 𝑧′).
In particular from the law of total probability it follows

𝜒 (𝑒′) = (1 + 𝛿)𝑝𝑍 (1)P
(
𝑒 + ℎ1 = 𝑒′

)
+ 𝑝𝑍 (0)

(
P
(
𝑒 + ℎ1 − 𝑐 = 𝑒′

)
+ 2P(𝑒 + ℎ1 − 𝑐 < 0) P

(
𝑒 + ℎ1 + ℎ2 − 𝑐 = 𝑒′

)
+ . . .

)
= (1 + 𝛿)𝑝𝑍 (1)P

(
𝑒 + ℎ1 = 𝑒′

)
+ 𝑝𝑍 (0)

©­«P
(
𝑒 + ℎ − 𝑐 = 𝑒′

)
+
∞∑︁
𝑘=2

𝑘P
©­«𝑒 +

𝑘−1∑︁
𝑗=2

ℎ 𝑗 − 𝑐 < 0ª®¬P©­«ℎ𝑘 = 𝑒′ + 𝑐 −
𝑘−1∑︁
𝑗=2

ℎ 𝑗 − 𝑒
ª®¬ª®¬

= (1 + 𝛿)𝑝𝑍 (1)
𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒)𝑝𝐻 (𝑒′ − 𝑒) + 𝑝𝑍 (0)
(

𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒)
∞∑︁

ℎ1=1
𝑝𝐻 (ℎ1)𝑝𝐶 (𝑒 + ℎ1 − 𝑒′)+

+
∞∑︁
𝑘=2

𝑘

𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒)
∞∑︁

ℎ1=1
𝑝𝐻 (ℎ1) · · · · ·

∞∑︁
ℎ𝑘−1=0

𝑝𝐻 (ℎ𝑘 )
∞∑︁

𝑐=𝑒+∑𝑘−1
𝑗=1 ℎ 𝑗+1

𝑝𝐶 (𝑐)𝑝𝐻 (𝑒′ + 𝑐 −
𝑘−1∑︁
𝑗=1

ℎ 𝑗 − 𝑒)
)

= (1 + 𝛿)𝑝𝑍 (1)
𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒)𝑝𝐻 (𝑒′ − 𝑒) + 𝑝𝑍 (0)
(

𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒)
∞∑︁
𝑟=1

Γ1,𝑟𝑝𝐶 (𝑒 + ℎ1 − 𝑒′)+

+
∞∑︁
𝑘=2

𝑘

𝐵∑︁
𝑒=0

𝑝𝐸 (𝑒)
∞∑︁
𝑟=1

Γ𝑘−1,𝑟

∞∑︁
𝑐=𝑒+∑𝑘−1

𝑗=1 ℎ 𝑗+1
𝑝𝐶 (𝑐)𝑝𝐻 (𝑒′ + 𝑐 −

𝑘−1∑︁
𝑗=1

ℎ 𝑗 − 𝑒)
)
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C PROPERTIES OF THE DISCOUNTED REWARD
The APPI learning procedure is based on the assumptions that function 𝑅𝛾,𝜋 (𝑝𝑍 ) which describes the discounted reward for a fixed policy 𝝅 is
smooth and concave.

Continuity and differentiability
As recalled in Section 4.2, the function 𝑅𝛾,𝜋 (𝑝𝑍 ) which describes the discounted reward for a fixed policy 𝝅 and a given initial state distribution
is continuous in [0, 1] and differentiable in (0, 1). The following theorem formally proves the result.

THEOREM 3. 𝑅𝛾,𝜋 (𝑝𝑍 ) is continuous in [0, 1] and differentiable in (0, 1) w.r.t. 𝑝𝑍 for every fixed policy 𝜋 .

PROOF. To show the continuity of 𝑅𝛾,𝜋 (𝑝𝑍 ) we consider the equivalent formulation (11). First of all notice that 𝑑0 (𝑝𝑍 ) and 𝑃𝜋 (𝑝𝑍 ) are
componentwise continuous and differentiable in 𝑝𝑍 . By recalling the expression for the average reward

𝑅𝛾,𝜋 (𝑝𝑍 ) = 𝑑0 (𝑝𝑍 )
(
𝐼 + 𝛾𝑃𝜋 (𝑝𝑍 ) + 𝛾2𝑃2𝜋 (𝑝𝑍 ) + . . .

)
𝑟𝜋

and recalling that 𝑟𝜋 is a vector in R |S | and whose terms are independent on 𝑝𝑍 , the statement follows. □

Concavity
Extensive numerical experiments have showed that 𝑅𝛾,𝜋 (𝑝𝑍 ) is concave for a fixed the discount factor 𝛾 and and the policy 𝜋 when 𝛿 > 0. The
case with 𝛾 = 0 gives that 𝑅0,𝜋 (𝑝𝑍 ) = ⟨𝑑0 (𝑝𝑍 ), 𝑟𝜋 ⟩, which is a linear combination of concave functions and will therefore not be considered
in the following. The result is demonstrated for a specific example. Backed by the variety of experiments tested, it is likely that a similar
conclusion can be reached also in general.

The example is represented by a system with 𝐵 = 1 and 𝑀 = 2. This corresponds to the case when battery of the device is either full or
empty while the information can just be new, i.e., 𝑥 = 1, or old, i.e., 𝑥 = 2. Moreover, assume a deterministic harvesting rate 𝐻 ≡ 1 and cost
distribution

𝑝𝐶 (𝑐) =


1
4 𝑐 = 1
3
4 𝑐 = 2
0 otherwise

(25)

Finally, consider 𝛿 = 1 and 𝛾 ∈ (0, 1). The policy studied is the trivial one, 𝜋 , such that

𝜋 (𝑥, 𝑒, 𝑧) =
{
1 𝑧 = 1 or 𝑠 = (𝑀, 𝐵, 0)
0 otherwise

(26)

Consider now an By assuming an initial distribution where 𝑧 = 0, the transition towards a state 𝑠′ = (𝑥, 𝑒, 𝑧) having AoI 𝑥 , energy 𝑒 and any
value if 𝑧 is described by

𝑃0 =
©­­­«
0 0 0 1
0 0 0 1
0 0 0 1
3
4 0 1

4 0

ª®®®¬ (27)

where states are indexed using index function index(1, 0) = 1, index(2, 0) = 2, index(1, 1) = 3, index(2, 1) = 4. The transitions from states
𝑠 = (𝑥, 𝑒, 1) are described by the matrix

𝑃1 =
©­­­«
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0

ª®®®¬ (28)

Now, let the states be ordered according to function 𝑖𝑛𝑑𝑒𝑥 and the server availability, i.e., by having states with 𝑧 = 0 first. The resulting
transition probability of the Markov chain given by policy 𝜋

𝑃𝜋 (𝑝𝑍 ) =
(
(1 − 𝑝𝑍 )𝑃0 𝑝𝑍𝑃

0

(1 − 𝑝𝑍 )𝑃1 𝑝𝑍𝑃
1

)
(29)
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As seen in (12), in order to compute the discounted reward it has to be defined the inverse of the matrix 𝐼 − 𝛾𝑃𝜋 , which will not be reported
here, but can be computed by standard means. The product between the initial distribution 𝑑0 (𝑝𝑍 ) and the latter matrix gives

𝑑0 (𝑝𝑍 )
(
𝐼 − 𝛾𝑃𝜋

)−1
=

(
1−𝑝𝑍
2 0 1−𝑝𝑍

2 0 𝑝𝑍
2 0 𝑝𝑍

2 0
) (
𝐼 − 𝛾𝑃𝜋

)−1 (30)

=
1

4𝛾2 − 4𝛾2𝑝𝑍 + 4𝛾𝑝𝑍 − 4

©­­­­­­­­­­­­«

−𝛾2 + 3𝛾2𝑝3
𝑍
− 7𝛾2𝑝2

𝑍
− 2𝛾𝑝2

𝑍
+ 5𝛾2𝑝𝑍 + 2𝛾𝑝𝑍 + 2𝑝𝑍 − 2

0
𝛾2 − 3𝛾2𝑝3

𝑍
+ 7𝛾2𝑝2

𝑍
+ 2𝛾𝑝2

𝑍
− 5𝛾2𝑝𝑍 − 2𝛾𝑝𝑍 + 2𝑝𝑍 − 2

4(−𝛾 − 𝛾𝑝2
𝑍
+ 2𝛾𝑝𝑍

−3𝛾2𝑝3
𝑍
+ 4𝛾2𝑝2

𝑍
+ 2𝛾𝑝2

𝑍
− 𝛾2𝑝𝑍 − 2𝑝𝑍 )

0
3𝛾2𝑝3

𝑍
− 4𝛾2𝑝2

𝑍
− 2𝛾𝑝2

𝑍
+ 𝛾2𝑝𝑍 − 2𝑝𝑍

4(𝛾𝑝2
𝑍
− 𝛾𝑝𝑍 )

ª®®®®®®®®®®®®¬

𝑇

For the system at hand, the instantaneous reward can be written as 𝑟 ((𝑥, 𝑒, 𝑧), 𝑎) = 𝑢 (𝑥). Finally, direct computation show that

𝑅𝛾,𝜋 (𝑝𝑍 ) =
𝑥 (𝑢 (1) + 𝛾𝑢 (2) − 𝑢 (2)) − (𝑢 (1) + 𝛾𝑢 (2))

(𝛾 − 𝛾2)𝑥 + 𝛾2 − 1
(31)

This function is concave for 𝛾 ∈ (0, 1) as its second derivative can be explicitly computed and it is always non positive for 𝑢 (1) ≥ 𝑢 (2):

𝑑2

𝑑𝑝2
𝑍

𝑅𝛾,𝜋 (𝑝𝑍 ) =
2(𝛾 − 𝛾2)

(
(𝛾 − 𝛾2) (−𝑢 (1) − 𝛾𝑢 (2)) − (𝑢 (1) + 𝛾𝑢 (2) − 𝑢 (2)) (𝛾2 − 1)

)
(𝛾2 − 𝛾2𝑝𝑍 + 𝛾𝑝𝑍 − 1)3

=
2(𝛾 − 𝛾2) (𝑢 (1) (1 − 𝛾) − 𝑢 (2) (1 − 𝛾))

(𝛾2 − 𝛾2𝑝𝑍 + 𝛾𝑝𝑍 − 1)3

=
2(𝛾 − 𝛾2) (1 − 𝛾) (𝑢 (1) − 𝑢 (2))
(𝛾2 − 𝛾2𝑝𝑍 + 𝛾𝑝𝑍 − 1)3

For 𝛾 ∈ [0, 1), 𝑢 (1) ≥ 𝑢 (2) and 𝑝𝑍 ∈ [0, 1] the numerator is clearly nonnegative, while the denominator is always negative, thus implying that
the second derivative of 𝑅𝛾,𝜋 (𝑝𝑍 ) is nonThen-positive and the function itself is concave in the case studied.

Note how this example also proves that 𝛿 > 0 is a necessary condition to have the concavity of the discounted reward 𝑅𝛾,𝜋 . Indeed, if 𝛿 = 0
it can be showed that

𝑅𝛾,𝜋 (𝑝𝑍 ) =
𝛾𝑢 (2)𝑝𝑍 − (𝑢 (1) + 𝛾𝑢 (2))
(𝛾 − 𝛾2)𝑝𝑍 + 𝛾2 − 1

which is not concave for 𝑝𝑍 ∈ (0, 1).

D CONVERGENCE OF ORDERED Q-LEARNING
The proof of the convergence of the Ordered Q-learning algorithm introduced in Section 5.1 follows the same path as the one for Q-learning
introduced in [29], of which this is a mere adaptation to the particular structure of the functions involved in the case studied. This section
is divided into two parts: in the first one, it will be proved a results for generic sequences, while in the latter it will be showed how Ordered
Q-learning’s convergence is a consequence of the first result.
The general algorithm consists in an alternation of noisy updates of one single component of a vector 𝑥 ∈ R𝑛 and an update of other elements
of the vector, with the goal of maintaining a certain (possibly partial) order on the values of all the components of 𝑥 . Let 𝑥 (𝑡) be the vector at
time 𝑡 and denote as 𝑥𝑖 (𝑡) its 𝑖-th component. The update equation is

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝛼𝑖 (𝑡) (𝐹𝑖 (𝑥 (𝑡)) − 𝑥𝑖 (𝑡) +𝑤𝑖 (𝑡))
𝑥 𝑗 (𝑡) = Π𝑖 (𝑥𝑖 (𝑡)) ∀𝑗 ∈ S

(32)

with the function Π𝑖 (·) indicating the projection on the space of ordered vectors.
Before stating the convergence result for (32), some assumption required in its proof will be described.
The first one refers to the statistics of the random variable 𝑤𝑖 involved in the algorithm.

ASSUMPTION 1. (i): 𝑥 (0) is F (0)-measurable
(ii): for every 𝑖 and 𝑡 , 𝑤𝑖 (𝑡) is F (𝑡)-measurable

(iii): for every 𝑖 and 𝑡 , 𝛼𝑖 (𝑡) is F (𝑡)-measurable
(iv): for every 𝑖 and 𝑡 , E [𝑤𝑖 (𝑡) |F (𝑡)] = 0
(v): there exist deterministic constants 𝐴 and 𝐵 such that

E
[
𝑤2
𝑖 (𝑡) |F (𝑡)

]
≤ 𝐴 + 𝐵max

𝑗
max
𝜏≤𝑡

��𝑥 𝑗 (𝜏)�� ∀𝑖, 𝑡

It follows an assumption on the values of the sequence of learning rates {𝛼𝑖 }𝑖 :
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ASSUMPTION 2. (i): for every 𝑖,
∞∑︁
𝑡=0

𝛼𝑖 (𝑡) = ∞ 𝑤.𝑝.1

(ii): there exists some deterministic constant C such that for every 𝑖,
∞∑︁
𝑡=0

𝛼2𝑖 (𝑡) ≤ 𝐶 𝑤.𝑝.1

Finally, some assumptions on the structure of the iteration mapping 𝐹 are required.

ASSUMPTION 3. (i): 𝐹 is monotone
(ii): the mapping 𝐹 is continuous

(iii): the mapping 𝐹 has an unique fixed point 𝑥∗

(iv): if 𝑒 ∈ R𝑛 is the vector with all components equal to 1 and 𝑟 is positive and scalar, then

𝐹 (𝑥) − 𝑟𝑒 ≤ 𝐹 (𝑥 − 𝑟𝑒) ≤ 𝐹 (𝑥 + 𝑟𝑒) ≤ 𝐹 (𝑥) + 𝑟𝑒
(v): for every value of 𝑖 ∈ S and for every vector 𝑣 ∈ R𝑛

𝐹 (Π𝑖 (𝑣)) = Π𝑖 (𝐹 (Π𝑖 (𝑣)) (33)

The last assumption requires that the mapping 𝐹 maintains the order on the values when applied to an already ordered vector 𝑣 = Π𝑖 (𝑣).
We can now state and prove the general result that will be later used to find the convergence of Ordered Q-learning.

THEOREM 4. Assume that Assumptions 1, 2 and 3 hold, and suppose that 𝑥 (𝑡) is bounded with probability 1. Then 𝑥 (𝑡) computed according
to (32) converges to 𝑥★ with probability 1.

The proof of Theorem 4 requires the use of additional lemmas that will be stated when needed.

LEMMA 2. Let {F (𝑡)} be an increasing sequence of 𝜎-fields. For each 𝑡 , let 𝛼 (𝑡),𝑤 (𝑡) and 𝐵(𝑡) be F (𝑡)-measurable scalar random
variables. Let 𝐶 be a deterministic constant. Suppose that the following hold with probability 1:

(1) E [𝑤 (𝑡) | F (𝑡)] = 0
(2) E

[
𝑤2 (𝑡) | F (𝑡)

]
≤ 𝐵(𝑡)

(3) 𝛼 (𝑡) ∈ [0, 1]
(4)

∑∞
𝑡=0 𝛼 (𝑡) = ∞

(5)
∑∞
𝑡=0 𝛼

2 (𝑡) ≤ 𝐶

Suppose that the sequence {𝐵(𝑡)} is bounded with probability 1. Let𝑊 (𝑡) satisfy the recursion

𝑊 (𝑡 + 1) = (1 − 𝛼 (𝑡))𝑊 (𝑡) + 𝛼 (𝑡)𝑤 (𝑡)
Then lim𝑡→∞𝑊 (𝑡) = 0 with probability 1.

The proof is found in [29].

It is then proved that the sequence 𝑥 (𝑡) is bounded:

PROPOSITION 2. The sequence 𝑥 (𝑡) given by (32) is bounded with probability 1.

PROOF. This can proved by induction. First of all, observe that to have 𝑥 (0) bounded, it is sufficient to choose a bounded initial vector and
thus it is trivially proved.
Then, assume 𝑥 (𝑡) bounded. To prove the boundedness of 𝑥 (𝑡 + 1) it is sufficient to observe that 𝑥 (𝑡 + 1) is bounded, as the update rule is
the same as in Q-learning (and it is known, for Theorem 1 in [29] that Q-learning gives a bounded sequence). The desired result is then a
consequence of the definition of the projection Π𝑖 for a certain 𝑖. □

From the bounded sequence {𝑥 (𝑡)} one can further define two additional sequences, {𝑈 𝑘 } and {𝐿𝑘 }. Let 𝑟 be a scalar such that 𝑥★ − 𝑟𝑒 ≤
𝑥 (𝑡)𝑥★ + 𝑟𝑒 for every 𝑡 , with 𝑒 being the vector with unitary value in each component. The first term of each sequence is defined, respectively,
as 𝑈 0 = 𝑥★ + 𝑟𝑒 and 𝐿0 = 𝑥★ − 𝑟𝑒, while the other terms are defined in a recursive way:

𝑈 𝑘+1 =
𝑈 𝑘 + 𝐹 (𝑈 𝑘 )

2
𝑘 ≥ 0

and

𝐿𝑘+1 =
𝐿𝑘 + 𝐹 (𝐿𝑘 )

2
𝑘 ≥ 0

Note how, due to (33) and the vectors 𝑈 0 and 𝐿0 being ordered, for every 𝑘 ≥ 0 and for every 𝑖, the following equalities are verified:

Π𝑖 (𝑈 𝑘 ) = 𝑈 𝑘 , Π𝑖 (𝐿𝑘 ) = 𝐿𝑘
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Lemma 3, Lemma 4 and Lemma 6 will be simply stated. Their proof can be found in [29].

LEMMA 3. For every 𝑘 ≥ 0, the inequalities
𝐹 (𝑈 𝑘 ) ≤ 𝑈 𝑘+1 ≤ 𝑈 𝑘

and
𝐹 (𝐿𝑘 ) ≥ 𝐿𝑘+1 ≥ 𝐿𝑘

are verified.

LEMMA 4. The sequences of ordered elements {𝑈 𝑘 } and {𝐿𝑘 } converge to 𝑥★.

To conclude the proof of theorem 4, it will be sufficient to show that for every 𝑘 there exists some 𝑡𝑘 such that

𝐿𝑘 ≤ 𝑥 (𝑡) ≤ 𝑈 𝑘 ∀𝑡 ≥ 𝑡𝑘 (34)

Once again, a proof by means of induction will be build.
For 𝑘 = 0, equation (34) is always verified with 𝑡0 = 0.
Now, fix a certain 𝑘 for which (34) is true. Let𝑊𝑖 (0) = 0 and

𝑊𝑖 (𝑡 + 1) = (1 − 𝛼𝑖 (𝑡))𝑊𝑖 (𝑡) + 𝛼𝑖 (𝑡)𝑤𝑖 (𝑡)
Due to Lemma 2, lim𝑡→∞𝑊𝑖 (𝑡) = 0. Moreover, for every time 𝑡0, can be further defined𝑊𝑖 (𝑡0; 𝑡0) = 0 and

𝑊𝑖 (𝑡 + 1; 𝑡0) = (1 − 𝛼𝑖 (𝑡))𝑊𝑖 (𝑡 ; 𝑡0) + 𝛼𝑖 (𝑡)𝑤𝑖 (𝑡) 𝑡 ≥ 𝑡0

Following the same argument as above, it is proved that lim𝑡→∞𝑊𝑖 (𝑡 ; 𝑡0) = 0.
Then, one can design a sequence 𝑋𝑖 (𝑡), 𝑡 ≥ 𝑡 ′

𝑘
, by letting 𝑋𝑖 (𝑡 ′𝑘 ) = 𝑈 𝑘

𝑖
and

𝑋𝑖 (𝑡 + 1) = (1 − 𝛼𝑖 (𝑡))𝑋𝑖 (𝑡) + 𝛼𝑖 (𝑡)𝐹𝑖 (𝑈 𝑘 ) 𝑡 ≥ 𝑡 ′
𝑘

With these definitions, the following lemma can be proved.

LEMMA 5. 𝑥𝑖 (𝑡) ≤ 𝑋𝑖 (𝑡) +𝑊𝑖 (𝑡 ; 𝑡 ′𝑘 ) 𝑡 ≥ 𝑡 ′
𝑘

PROOF. This lemma is analogous to Lemma 6 in [29], where the inequality was proved for 𝑥𝑖 (𝑡) with the corresponding definition. It can be
equally proved in our case following the same proof, with the care of considering 𝑥𝑖 (𝑡) at each step in spite of 𝑥 (𝑡). □

Now, let 𝛿𝑘 be equal to the minimum of
(
𝑈 𝑘
𝑖
− 𝐹𝑖 (𝑈 𝑘 )

)
/4, where the minimum is taken over all 𝑖 for which𝑈 𝑘

𝑖
− 𝐹𝑖 (𝑈 𝑘 ) is positive. Clearly

𝛿𝑘 is well-defined and positive, unless 𝑈 𝑘 = 𝐹 (𝑈 𝑘 ), but this would imply that convergence has been reached.
Let 𝑡 ′′

𝑘
≥ 𝑡 ′

𝑘
be such that

𝑡 ′′
𝑘
−1∏

𝜏=𝑡 ′
𝑘

(1 − 𝛼𝑖 (𝜏)) ≤
1
4

and
𝑊𝑖 (𝑡 ; 𝑡 ′𝑘 ) ≤ 𝛿𝑘

for all 𝑡 ≥ 𝑡 ′′
𝑘

. Such value of 𝑡 ′′
𝑘

exists due to the first assumption on the sequence of 𝛼s and the convergence of𝑊𝑖 (𝑡 ; 𝑡 ′𝑘 ) to 0.

LEMMA 6. 𝑥𝑖 (𝑡) ≤ 𝑈 𝑘+1
𝑖

for all 𝑖 and 𝑡 ≥ 𝑡 ′′
𝑘

.

The proof of this lemma is the same as the one of Lemma 7 in [29], considering 𝑥𝑖 (𝑡) instead of 𝑥𝑖 (𝑡). Finally, thanks to the knowledge on
the structure of the solution, it can further be proved the following lemma.

LEMMA 7. 𝑥𝑖 (𝑡) ≤ 𝑈 𝑘+1
𝑖

for all 𝑖 and 𝑡 ≥ 𝑡 ′′
𝑘

.

PROOF. Lemma 6 gives that 𝑥𝑖 (𝑡) ≤ 𝑈 𝑘+1
𝑖
∀𝑡 ≥ 𝑡 ′′

𝑘
Now consider 𝑥 (𝑡) = Π𝑖 (𝑥 (𝑡)), where 𝑖 represents the state visited at time 𝑡 for which the updated estimate has been computed in the first
equation.

𝑥 𝑗 (𝑡) =


max

(
𝑥 𝑗 (𝑡), 𝑥𝑖 (𝑡)

)
𝑗 > 𝑖

𝑥𝑖 (𝑡) 𝑖 = 𝑗

min
(
𝑥 𝑗 (𝑡), 𝑥𝑖 (𝑡)

)
𝑗 < 𝑖

𝑥 𝑗 (𝑡) otherwise

(35)
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Now, to prove the desired result each of the cases described in (35) has to be studied: clearly when 𝑖 = 𝑗 the result is immediately proved.
When 𝑗 > 𝑖, if 𝑥 𝑗 (𝑡) < 𝑥𝑖 (𝑡) ≤ 𝑈 𝑘+1

𝑖
≤ 𝑈 𝑘+1

𝑖
then 𝑥 𝑗 (𝑡) = 𝑥𝑖 (𝑡) ≤ 𝑈 𝑘+1

𝑗
. Clearly the result is also proved when 𝑥 𝑗 (𝑡) = 𝑥 𝑗 (𝑡).

On the other hand, when 𝑗 < 𝑖, if 𝑥 𝑗 (𝑡) > 𝑥𝑖 (𝑡) then one gets

𝑥 𝑗 (𝑡) = 𝑥𝑖 (𝑡) < 𝑥 𝑗 (𝑡) ≤ 𝑈 𝑘+1
𝑗

which proves the desired result. To conclude the prove it is sufficient to observe that the result is clearly still valid when 𝑥 𝑗 (𝑡) = 𝑥 𝑗 (𝑡). □

By symmetrical argument one can also establish that 𝑥𝑖 (𝑡) ≥ 𝐿𝑘+1
𝑖

for all values of 𝑡 ≥ 𝑡 ′′′
𝑘

for a certain 𝑡 ′′′
𝑘

.
This proves equation (34) for 𝑘 + 1, thus completing the proof of the theorem.

Note how in the case studied for every pair of states 𝑠+, 𝑠− such that 𝑠+ ≥ 𝑠− , one has:

(1) non decreasing reward function: 𝑟 (𝑠+, 𝑎) ≥ 𝑟 (𝑠−, 𝑎) ∀𝑎
(2) superaddittive reward function: 𝑟 (𝑠+, 𝑎+) + 𝑟 (𝑠−, 𝑎−) ≥ 𝑟 (𝑠+, 𝑎−) + 𝑟 (𝑠−, 𝑎+)
(3) increasing tail trandition probability: 𝑤 (𝑠′ |𝑠+, 𝑎) = ∑

𝜁 ⪰𝑠′ 𝑝 (𝜁 |𝑠+, 𝑎) ≥
∑
𝜁 ⪰𝑠′ 𝑝 (𝜁 |𝑠−, 𝑎) = 𝑤 (𝑠′ |𝑠−, 𝑎)

Using the result in Theorem 4, it is now possible to prove the convergence of Ordered Q-learning:

THEOREM 5. Consider the Ordered Q-learning algorithm described by the update rule in (14). Let 𝛾 < 1. Assume that, for every pair of
states 𝑠+, 𝑠− such that 𝑠+ ≥ 𝑠− , one has:

(1) non decreasing reward function: 𝑟 (𝑠+, 𝑎) ≥ 𝑟 (𝑠−, 𝑎) ∀𝑎
(2) superaddittive reward function: 𝑟 (𝑠+, 𝑎+) + 𝑟 (𝑠−, 𝑎−) ≥ 𝑟 (𝑠+, 𝑎−) + 𝑟 (𝑠−, 𝑎+)
(3) increasing tail trandition probability: 𝑤 (𝑠′ |𝑠+, 𝑎) = ∑

𝜁 ⪰𝑠′ 𝑝 (𝜁 |𝑠+, 𝑎) ≥
∑
𝜁 ⪰𝑠′ 𝑝 (𝜁 |𝑠−, 𝑎) = 𝑤 (𝑠′ |𝑠−, 𝑎)

Then 𝑞∗ is a monotone function, i.e., if 𝑠1 ≤ 𝑠2 according to some order on the states, then 𝑞∗ (𝑠1, 𝑎) ≤ 𝑞∗ (𝑠2, 𝑎). Moreover, 𝑄𝑡 (𝑠, 𝑎) converges to
𝑞∗ (𝑠, 𝑎) w.p.1. for every state 𝑠 ∈ S and for every action 𝑎 ∈ A(𝑠).

PROOF. As already observed in the proof of Lemma 1, the conditions on the reward and on the transition probabilities imply the monotonicity
of the optimal value function 𝑣∗. Moreover, applying Lemma 4.7.2 in [24] (with the sequence 𝑥 𝑗 given by the tail transition probabilities and
the non decreasing optimal value function) yields the following condition on the transition probability for every action 𝑎:

E𝑠′∼𝑝𝑠+ · (𝑎)
[
𝑣 (𝑠′)

]
≥ E𝑠′∼𝑝𝑠− · (𝑎)

[
𝑣 (𝑠′)

]
(36)

with 𝑣 denoting any non decreasing function, such as the optimal value function 𝑣∗. This easily implies that even the optimal Q-function 𝑞∗ is
non decreasing for every action 𝑎.

To prove the convergence of the Ordered Q-learning algorithm it is then sufficient to show that all the assumptions of Theorem 4 are
verified.
Consider a problem described by a Markov Decision process defined on a finite space state S. For every states 𝑠 ∈ S there is a finite set A(𝑠)
of possible actions and a set of transition probabilities 𝑝𝑖 𝑗 (𝑎) ∈ [0, 1], 𝑖, 𝑗 ∈ S, 𝑎 ∈ A(𝑖) such that

∑
𝑗∈S 𝑝𝑖 𝑗 (𝑠) = 1 for all 𝑎 ∈ A(𝑖) and ∀𝑖 ∈ S.

For every state 𝑠 ∈ S and every action 𝑎 ∈ A(𝑠) can be defined a random variable 𝑟𝑠𝑎 which represents the reward obtained when applying
action 𝑎 at state 𝑠. It can further be assumed that the variance of 𝑟𝑠𝑎 is finite for every state 𝑠 and action 𝑎 ∈ A(𝑠).
Recall that the goal is to evaluate the optimal function 𝑣∗ = max𝜋 𝑣𝜋 , defined for each state 𝑠 ∈ S as

𝑣∗ (𝑠) = max
𝜋

𝑣𝜋 (𝑠) = max
𝜋

max
𝑎∈A(𝑠 )

E𝑠′∼𝜋
[
𝑟𝑠𝑎 + 𝛾𝑣𝜋 (𝑠′)

]
= max

𝜋
max

𝑎∈A(𝑠 )
𝑞𝜋 (𝑠, 𝑎)

= max
𝜋

max
𝑎∈A(𝑠 )

E𝑠′∼𝑝𝑠 · (𝑎)

[
𝑟𝑠𝑎 + 𝛾 max

𝑏∈A(𝑠′ )
𝑞𝜋 (𝑠′, 𝑏)

]
Recall that the positive constant value 𝛾 ∈ R is assumed to be strictly smaller than 1.
Now define the dynamic programming operator 𝑇 : R |S | → R |S | with components 𝑇𝑖 by letting

𝑇𝑖 (𝑉 ) = max
𝑎∈A(𝑖 )

E [𝑟𝑖𝑎] + 𝛾
∑︁
𝑗∈S

𝑝𝑖 𝑗 (𝑎)𝑉𝑗


It is well known that if 𝛾 < 1 the operator 𝑇 is a contraction with respect to the norm ∥·∥∞ and 𝑣∗ is its unique fixed point.
The Ordered Q-learning algorithm previously described is a method for computing 𝑣∗ based on a reformulation of the Bellman equation
𝑣∗ = 𝑇 (𝑣∗).
In order to prove the convergence of the method it is sufficient to show that equation (14) has the form of (32) and it satisfies all the assumptions
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of Theorem 4.
Let 𝐹 : R |S | |A | → R |S | |A | be the mapping whose components 𝐹𝑠𝑎 is defined as

𝐹𝑠𝑎 (𝑄) = 𝑟𝑠𝑎 + 𝛾E
[

max
𝑏∈A(𝑠′ )

𝑄 (𝑠′, 𝑏)
]

(37)

where the expected value is expressed in terms of the state 𝑠′ reached from the initial state 𝑠 with a probability equal to 𝑝𝑠,𝑠′ . Note how,
differently to the case studied in [29], this time the reward is deterministic given state and action.
Clearly if 𝑄 is a fixed point of 𝐹 , then the vector with components𝑉𝑠 = max𝑎∈A(𝑠 ) 𝑄𝑠𝑎 is also a fixed point of𝑇 . The definition of the mapping
𝐹 allows to rewrite equation (14) as {

𝑄𝑡+1 (𝑠, 𝑎) = 𝑄𝑡 (𝑠, 𝑎) + 𝛼𝑡 (𝑠, 𝑎) (𝐹𝑠𝑎 (𝑄𝑡 ) −𝑄𝑡 (𝑠, 𝑎) +𝑤𝑡 (𝑠, 𝑎))
𝑄𝑡+1 (𝑠, 𝑎) = Π𝑠 (𝑄𝑡+1 (𝑠′, 𝑎)) ∀𝑠′

(38)

where

𝑤𝑡 (𝑠, 𝑎) = 𝛾

(
max

𝑏∈A(𝑠′ )
𝑄𝑡 (𝑠′, 𝑏) − E

[
max

𝑏∈A(𝑠′ )
𝑄𝑡 (𝑠′, 𝑏) | F (𝑡)

] )
(39)

with the expected value expressed in terms of the reached state 𝑠′.
It remains to show that the Assumptions 1, 2 and 3 previously described are verified in the framework considered.
Let the filtration F (𝑡) represent the history of the algorithm up to time 𝑡 . This implies that (1.i), (1.ii) and (1.iii) are naturally verified. Moreover,
(1.iv) is a natural consequence of the definition of the random variable 𝑤𝑖 in (39). Finally, assumption (1.v) is verified as the conditional
variance of 𝑤𝑖 can always be bounded by max𝑠′∈S max𝑎∈A(𝑠 ) 𝑄2

𝑡 (𝑠, 𝑎), which is itself a bounded quantity.
Assumption 2 can be imposed by choosing an appropriate definition of the random variable 𝛼 describing the stepsizes in the Ordered Q-learning
algorithm.
Finally, it remains to prove that Assumption 3 is verified. Proving (3.i) and (3.ii) is trivial, as both are a natural consequence of the definition of
the mapping 𝐹 . If 𝛾 < 1 it can also be observed how

|𝐹𝑠𝑎 (𝑄1) − 𝐹𝑠𝑎 (𝑄2) | ≤ 𝛾 max
𝑠′∈S,𝑏∈A(𝑠′ )

|𝑄1 (𝑠′, 𝑏) −𝑄2 (𝑠′, 𝑏) | ∀𝑄1, 𝑄2 ∈ R |S |

which yields that the mapping 𝐹 is a contraction and verifies (3.iii).
The validity of (3.iv) is a consequence of the linearity of 𝐹 and of the expected value, while to prove (3.v) it can be directly showed that
∀𝑣 ∈ R𝑛 one has

𝑣 = Π 𝑗 (𝑣) ⇒ Π 𝑗 (𝐹 (Π 𝑗 (𝑣))) = 𝐹 (Π 𝑗 (𝑣))

Π 𝑗𝑎 (𝐹 (𝑣)) =
[
Π 𝑗𝑎

(
𝑟𝑠𝑎 + 𝛾E𝑠′∼𝑝𝑠 · (𝑎)

[
max
𝑏

𝑣 (𝑠′, 𝑏)
] )]

𝑠𝑎

=



max

(
𝑟𝑠𝑎 + E𝑠′∼𝑝𝑠 · (𝑎) [max𝑏 𝑣 (𝑠′, 𝑏)] , 𝑟 𝑗𝑎 + 𝛾E𝑠′∼𝑝 𝑗 · (𝑎) [max𝑏 𝑣 (𝑠′, 𝑏)]

)
s > j

𝑟𝑠𝑎 + 𝛾E𝑠′∼𝑝𝑠 · (𝑎) [max𝑏 𝑣 (𝑠′, 𝑏)] s = j

min
(
𝑟𝑠𝑎 + 𝛾E𝑠′∼𝑝𝑠 · (𝑎) [max𝑏 𝑣 (𝑠′, 𝑏)] , 𝑟 𝑗𝑎 + 𝛾E𝑠′∼𝑝 𝑗 · (𝑎) [max𝑏 𝑣 (𝑠′, 𝑏)]

)
s < j

𝑠𝑎
★
=

[
𝑟𝑠𝑎 + 𝛾E𝑠′∼𝑝𝑠 · (𝑎)

[
max
𝑏

𝑣 (𝑠′, 𝑏)
] ]

𝑠𝑎

= 𝐹 (𝑣)
where ★ is a consequence of (36). Further note how the components different to 𝑠, 𝑎 remain unchanged and are not reported for space’s sake.
This concludes the proof. □
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