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Learning Optimal Edge Processing
with Offloading and Energy Harvesting

Andrea Fox∗, Francesco De Pellegrini∗ and E. Altman∗†

ABSTRACT
Modern portable devices can execute increasingly sophisticated AI
models on sensed data. The complexity of such processing tasks is
data-dependent and has relevant energy cost. This work develops an
Age of Information markovian model for a system where multiple
battery-operated devices perform data processing and energy har-
vesting in parallel. Part of their computational burden is offloaded
to an edge server which polls devices at given rate. The structural
properties of the optimal policy for a single device-server system
are derived. They permit to derive a new model-free reinforcement
learning method specialized for monotone policies, namely Ordered
Q-Learning, providing a fast procedure to learn the optimal policy.
The method is oblivious to the devices’ battery capacities, the cost
and the value of data batch processing and to the dynamics of the
energy harvesting process. Finally, the polling strategy of the server
is optimized by combining such policy improvement techniques
with stochastic approximation methods. Extensive numerical results
provide insight into the system properties and demonstrate that the
proposed learning algorithms outperform existing baselines.
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1 INTRODUCTION
New generations of mobile access networks promise low delay and
high-speed throughput data connections paired with in-network pro-
cessing capabilities [1]. They will support mobile computing ser-
vices able to integrate AI-intensive processing tasks in their work-
loads such as, e.g., smart city services or virtual and augmented
reality applications. In the next future, the vast majority of enterprise
IoT projects are expected to have an AI component, up from less
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than 10% in 2018 [2]. To support these applications, edge networks
must evolve to solve the key challenges of such scenario [3]. In
fact, the energy consumption of AI applications is critical for battery
operated devices. On the other hand, they may require periodic up-
dates based on fresh data, settling specific requirements on the rate
at which data are fetched and processed. The standard metric to this
respect is the Age of Information (AoI), denoting the freshness of
information when received at the destination [4]. In the literature,
AoI performance has been studied for several queuing disciplines
determining the average system time of data reads. The standard
objective is to maximize some long term reward for the AoI of re-
trieved information [5, 6]. In the context of this paper, it is the long
term reward for processing data, also called age of processing [7].

Energy harvesting from renewable sources such as solar cells or
piezoelectric generators has becoming available on devices used for
Internet of things (IoT) applications. In the literature, AoI optimal
policies under energy harvesting have been studied using Markov
decision theory both in continuous and in discrete time [8–12]. Most
such studies focused on optimal policies to optimize AoI subject
to energy causality constraints. The problem is to reserve the bat-
tery charge for moments when it is most needed, e.g., for alarm
generation events [12].

The scenario studied in this paper considers the uncertainty of
the battery consumption and the uncertainty of the amount of energy
harvested over time. In fact, the energy cost of AI tasks depend
inherently on the statistical distribution of input data and on the
preference for lightweight or heavyweight models. Thus, when such
a computing task is launched on a batch of data, the energy required
to finish processing may exceed the available battery charge. In
this event, a further delay for data processing is needed in order to
harvest enough energy to complete the ongoing task.

Finally, in edge computing, task offloading to edge-servers miti-
gates the problem of energy consumption to run AI tasks on mobile
devices [7, 13–19]. Thus, a device can delegate computing tasks
to edge servers. However, in a realistic scenario, offloading is con-
strained by the availability of the edge-server, which may be serving
multiple devices. Not always task offloading proves convenient,
depending also on the delays it introduces.

Main contribution. This work develops a markovian modeling
framework where multiple battery-operated devices process data in
parallel and perform energy harvesting. Furthermore, an intermittent
edge-server supports task offloading. Events of battery depletion may
occur due to the unknown complexity of data processing and to the
randomness of the harvesting process. Hence, an optimal stationary
policy prescribes whether or not a device should process a new data
batch based on AoI and battery status. By proving that such policy
is monotone it is possible to design a lightweight reinforcement
learning (RL) algorithm, namely Ordered Q-learning. It applies to
the wide class of problems with monotone structure of the optimal
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Table 1: List of symbols used in the paper.

Symbol Meaning
t time step t = 1, 2, . . .
xt age of information (AoI) xt ∈ {1, . . . ,M }
et buffer energy level et ∈ {0, 1, . . . , B }
zt server availability zt ∈ {0, 1}
st = (xt , et , zt ) device state
γ discount factor
S state space
A = {0, 1} action set, action set of state s , A(s) ⊂ A
at = {0, 1} action taken at time t
B battery capacity
M saturation bound on AoI
Ct batch processing cost at time t
Ht harvested energy at time t
δ offloading roundtrip time

value function with respect to the state-action partial order. In this
setting, it outperforms standard baselines including policy gradient
methods. Finally, the polling rate vector of the server is optimized
by stochastic learning. To the best of the authors’ knowledge, this is
the first work to study the problem of AoI minimization in a system
where multiple battery operated devices perform energy harvesting
and rely on an edge-server for task offloading, incurring possibly in
battery depletion depending on data and battery status.

The paper is organized as follows. Sec. 2 describes the state of
the art. In Sec. 3 the basic server-device Markov decision model is
introduced. The monotone structure of the optimal policy is analyzed
in Sec. 4. Sec. 5 describes RL algorithms converging the optimal
solution. Sec. 6 extends analysis and algorithmic solutions to the
case of multiple devices. Numerical results are provided in Sec. 7
and a concluding section ends the paper.

2 RELATED WORKS
The term AoI was first used in [4] to denote freshness of data re-
ceived at the destination. Most works in the literature minimize the
average or the peak AoI [5]. AoI minimization has been studied in
combination with energy harvesting to charge IoT devices. Energy-
aware scheduling policies of the type studied in this paper have been
introduced to vary the sensing rate based on the instantaneous battery
charge [10]. Conversely, the effect of error prone channels of the
type studied in [8] and [9] is left for future works. In the proposed
model, as in [10, 11], measurements are possible only when the
battery level is sufficiently high. As in [12], the model accounts for
data-dependent energy consumption. However, in all those works,
events of battery depletion are not considered.

Several works combine AoI minimization and task offloading to
external devices. In [7], [17] and [18] is studied the performance of a
device-server system where a local processor device is supported by
a remote server. As the present work, [13] and [14] study the trade-
off between energy consumption and execution delays to offload
applications to an edge server. In [15] and [16] deep reinforcement
learning (DRL) is used to compute optimal offloading policies. As
showed later, knowing the properties of the optimal value function
permits much less expensive solutions. With very few exceptions,
e.g., [19] and [6], AoI in multi-device systems of the type studied
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Figure 1: Device performing local processing of data batches with en-
ergy harvesting and intermittent edge-server offloading.

in this paper are not addressed in the literature. In [19] the average
AoI is minimized by choosing whether to use the local processor
or an edge server according to the network status. [6] provides
lower bounds on the average AoI performance achievable for several
queuing disciplines on a single-hop network as the one studied in
this work. Note that the metric addressed in this work is not the
average AoI but the peak AoI [20].

The first Markovian model for the control of AoI appeared in [21].
MDP models were later used in [12, 16, 19, 22]. Works [7, 8] use
constrained MDPs, while [11, 23] use partially observable MDPs.
Including constraints and partial observations are interesting exten-
sions but out of the scope of the present work. Threshold policies
for the control of the AoI have been obtained before [7, 9, 11]. In
[9] the threshold is one-dimensional while the policy structure de-
scribed in [7] is only characterized numerically. In [11] the threshold
regards two incorrelated control variables: here, transitions for AoI
and energy state variables both depend on the chosen action.

3 SYSTEM MODEL
The device-server scheme is represented in Fig. 1: the device can
read data batches and process them, while the edge server can poll
the device to offload the computation. Thus, data batches are either
read and processed locally on the device or read and offloaded.
Time steps are discrete with index t = 1, 2, . . .. Processing data
at time t on the device requires Ct energy units, which form a
sequence of i.i.d. random variables {Ct } with probability distribution
pC (c) = P{C = c}. When the device is polled by the edge server,
the data processing task is offloaded and it has zero energy cost for
the device. However, sending and retrieving processed data from the
server incurs in a constant delay of δ ≥ 0 time units. The device
has a battery of capacity B > 0 energy units and it can harvest
a number of energy units Ht per timestep t . The energy fetched
per timestep, namely the harvesting rate, forms a sequence of i.i.d.
random variables {Ht } whose corresponding probability distribution
is pH (h) = P{H = h}.

Let introduce the Semi Markov Decision Process (SMDP) which
models the system. The state of the device at time t is denoted
as st = (xt , et ,vt ), where xt represents the age of information
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Figure 2: A sample path of the process st = (xt , et , 0) for costant
H = 1: in red the vacation periods where the battery is empty. The
duration of timeslot starting at time t = 6 is 4 timesteps.

(AoI), et is the device battery level and zt is the server state. Binary
variable zt indicates whether the server has polled the device for
offloading, zt = 1, or not, zt = 0. The corresponding per slot
transition probability is pZ (z′ |z), e.g., pZ (1|0) is the probability for
the server to poll the device at t + 1 given that it did not at t . Note
that xt is the age of information of the last data batch processed
by a tagged device and the age of information is measured at the
end of each time slot. It holds xt = 1 when the device has just
processed fresh data. Afterwards, the AoI increases of one timestep
at every time slot t until either the device fetches a new data batch
and performs the computation or the server polls the device and
offloading occurs. In both cases, at the end of the data processing
the AoI is reset to 1.

Freshness function u(x) is the utility for processing of a data
batch x time units after the last one was processed; u(·) is bounded
and non-increasing. It is assumed that there exists M > 0 such that
u(M + k) = u(M) for all k > 0 so that the age of information takes
values in {1, . . . ,M}. The state space is denoted S = {1, . . . ,M} ×
{0, . . . ,B} × {0, 1}.

Finally, it is possible that the battery available at timeslot t is
not sufficient to terminate the computation immediately, namely,
ϕt := ct − (ht + et ) > 0. In this case, a delay is incurred in order to
harvest a sufficient amount of energy and complete the processing of
the current batch. The corresponding timeslot has a random duration,
due to the stochastic nature of energy harvesting. The action set
A = {0, 1}, where 0 means wait and 1 process. The action taken
at time t is denoted at . If at = 1, the device fetches a new data
batch which is processed at energy cost ct > 0. For every state st
where zt = 0 the action set available at each device is to process or
not the information, i.e., A(st ) = {0, 1}. On the other hand, when
zt = 1 the action set is A(st ) = {1}, i.e., when the device is polled
by the server, by default the data unit is processed. Furthermore,
the energy to transmit data to the server is assumed to be negligible
compared to local data processing. Finally, the dynamics of the age

of information for data batches is

xt+1 =

{
1 if at = 1
[xt + 1]M if at = 0

where [y]A := max{0,min{y,A}}. The AoI at the renewal instants
is also called peak age of information [20] in the literature: it corre-
sponds to the processing rate.

It now possible to characterize the transition probabilities for a
given action a ∈ A(s). Hereafter H is considered to be deterministic
with H ≡ 1 and the time index is omitted for notation’s sake. The
general case for stochastic harvesting rate is derived in [24].

Let s = (x, e, z) be the current state of the device and let next state
s ′ = (x ′, e ′, z′) under action a.

The transition probability from s to s ′ is written, for a = 0, as

p(s ′ |s, 0) =

pZ (z′ | 0)

s = (x , e , 1),
s′ = ([x + 1]M , [e + 1]B , z′),

0 otherwise
(1)

Instead, when a = 1, the transition probability from s to s ′ is

p(s′ | s , 1) =



pZ (z′ | 0)pC (e + 1 − e′)

s =(x , e , 0),
s′ =(1, e′, z′),
0 < e′ < B

pZ (z | 0)
∑∞
c=e+1 pC (c)

s = (x , e , 0),
s′ = (1, 0, z′)

pZ (z | 0)
∑e+1−B
c=1 pC (c)

s = (x , e , 0),
s′ = (1, B, z′)

pZ (z′ | 1)
s = (x , e , 1),
s′ = (1, [e + 1]B , z′),
e + h < B

0 otherwise

(2)

The sojourn times τ (s, s ′) of the SMDP are associated to the
transition from an origin state s = (x, e, z) to a destination s ′ =
(x ′, e ′, z′). They are unitary except possibly those corresponding to
the transition to a renewal state, i.e., where x ′ = 1. For that transition,
if z = 1 the sojourn time is τ (s, s ′) = 1 + δ , due to the round-trip
delay for the edge-server offloading. If z = 0 it is τ (s, s ′) = 1 when
ϕ = C − e − H ≤ 0. Otherwise, when C − e − H > 0 it writes

τ (s, s ′) = min

{
k |

k∑
r=1

Hr > C − e − H

}
(3)

that is the number of recharges required in order to complete the
computation. In the case of deterministic energy harvesting with
H ≡ 1, it holds τ (s, s ′) = (1 − z)max{1,C − e − H } + z(1 + δ ).
Note that, in the AoI literature, what is here defined as sojourn time
corresponds to the notion of system time. The reward under the
state action pair (st ,at ) at time t is proportional to the freshness of
information of the data unit when it ends to be processed, as well as
on the initial level of energy. Formally it writes

rt+1(st ,at ) =

{
u(xt ) − d(ct − et − ht ) · at if zt = 0
u([xt + δ ]M ) if zt = 1

(4)

where function d : R→ R+ is a penalty that depends on the amount
of energy units required to complete the local processing after a = 1
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is selected. It is further assumed that d(x) = 0 when x ≤ 0 and that
d is a bounded non-decreasing function.

3.1 Discounted Model
The processing policy π for a tagged device is a probability distri-
bution over the state-action space. The value function for policy π
is vπ (s) := Eπ [Gt |st = s] where Gγ

t :=
∑∞
t=0 γ

krt+1+k (st ,at ); the
Q-function qπ (s,a) := Eπ [Gt |st = s,at = a] is used later in Sec-
tion 5.2. In the discounted model presented next, the objective is to
maximize vπ (s) in the set of stationary policies, where π = π (s) is
the probability that the device performs action a = 1 in state s. As
showed in Sec. 4.2, the corresponding ergodic state occupancy prob-
ability permits to calculate the sampling rate based on the average
peak AoI. The optimal value function v∗(s) solves the the Bellman
optimality equation associated to the discounted reward problem

v∗(x, e, 0) = max

{
u(x) −

∞∑
c=1

pC (c)
∞∑
h=1

pH (h)d(e + h − c)+

+

∞∑
c=1

pC (c)
∞∑
h=1

pH (h)γEZ[v∗ (1, [e + h − c]B , z)] ,

u(x) + γ
∞∑
h=1

pH (h)EZ[v∗ ([x + 1]M , [e + h]B , z)]

}
in the case z = 0. When z = 1 the action set is a singleton, then

v∗(x, e, 1) = u([x + δ ]M ) +
∞∑
h=1

pH (h)EZ[v∗(1, [e + h]B , z)] (5)

Structural properties. The optimal policy and the corresponding
value functions have several properties that are exploited in the next
section. First, from (4) it is immediate that, if the harvesting process
{Ht } is stochastically larger than {H ′t }, also vH (s) ≥ vH ′(s) for all
s ∈ S; similar observations hold w.r.t. to process {Ct }.

Before proving the next result, a few definitions are introduced.
First, a policy is monotone if the action is either increasing or de-
creasing in the state, given an assigned partial order on the state space
S and on the action space A. In particular, the following partial order
is defined on the state space

(x, e + 1, z) ⪰ (x, e, z′)
(x − 1, e, z) ⪰ (x, e, z′)

(6)

whereas the obvious order is imposed on the action space A = {0, 1}.
Let s+ be larger than s− if s+ ⪰ s−. The real functionψ : S×A → R
is supermodular ifψ (x+,y+) +ψ (x−,y−) ≥ ψ (x+,y−) +ψ (x−,y+),
also equivalent to say thatψ (x+,y)−ψ (x−,y) is decreasing in y. The
tail transition probability w(s ′ |s,a) :=

∑
ζ ⪰s ′ p(ζ |s,a) defines the

probability of making a transition to states larger than s taking action
a.

LEMMA 1. i. v∗(x, e, z) is non increasing in x
ii. v∗(x, e, z) is non decreasing in e.

PROOF. The proof is made by verifying that the system model
adheres to the following three assumptions [25].
i. Non decreasing rewards. Let consider s+ = (x, e, z), s− = (x +
1, e, z) for a fixed value of c. For a = 1, r (s+, 1) = u(x)−d(c−e−h) ≥
u(x + 1)−d(c −e −h) = r (s−, 1), as u is nonincreasing. For a = 0 the

same property holds since r (s+, 0) = u(x) ≥ u(x+1) = r (s−, 0). Now
assume s+ = (x, e + 1, z) and s− = (x, e, z). For a = 0 the reward is
equal for both states. For a = 1, r (s+, 1) = u(x) − d(c − e − 1 − h) ≥
u(x)−d(c−e−h) = r (s−, 1) since d is by assumption nondecreasing.
ii. Supermodular rewards. This property can be easily verified for
both cases considered before;
iii. Increasing tail transition probability. First, let consider the case
s+ = (x, e, z) and s− = (x + 1, e, z). When a = 1,

w(s ′ |s+, 1) =
∑
ζ ⪰s ′

p(ζ |s+, 1) =
∑
ζ ⪰s ′

p(ζ |s−, 1) = w(s ′ |s−, 1)

as the final level of age of information is always 1 after action a = 1,
while the final energy level only depends on the initial energy e. If
a = 0, then w(s ′ |s+, 0) = 1{(x + 1, e + h, z) ≥ s ′} ≥ 1{(x + 2, e +
h, z) ≥ s ′} = w(s ′ |s−, 0) where the inequality is induced by the
partial order of states.
Now, consider s+ = (x, e + 1, z) and s− = (x, e, z). When a = 1,
the inequality is verified because the final energy obtained with a
transition that starts in s+ is larger or equal than the one obtained
when starting in s− w.p.1. Conversely, when a = 0, w(s ′ | s+, 0) =
1{(x +1, e+h+1, z) ⪰ s ′} ≥ 1{(x +1, e+h, z) ⪰ s ′} = w(s ′ | s−, 0)
and the inequality follows from (6). □

From Lemma 1 it follows a property of optimal Q-function
q∗(s,a), that will later be used to develop suitable learning algo-
rithms. From Lemma 1 it follows easily

COROLLARY 1. Fixed a ∈ {0, 1}, then for s = (x, e, z) ∈ S
i. q∗ ((x, e, z),a) ≤ q∗ ((x, [e + 1]B , z),a)
ii. q∗ (([x + 1]M , e, z),a) ≤ q∗ ((x, e, z),a)

In all numerical tests, function Q appears indeed superadditive in
S ×A, a property that would be sufficient to prove the monotonicity
of the optimal policy. The classic assumption for the supermodularity
of the tail probabilities (see Prop. 4.7.3 in [25]) which grants the
existence of a monotone policy can be easily disproved.

THEOREM 1 (OPTIMAL POLICY STRUCTURE). A stationary
deterministic policy π is optimal if and only if it is monotone. In
particular, there exist thresholds T (e), 0 ≤ T (e) ≤ M such that :
i. π (e, x, 0) = 1 if and only if x ≥ T (e);
ii. T (e) ≥ T (e + 1) + 1;
iii. if γ = 0 then T (e) ≥ T (e + 1)

PROOF. i. At first it is showed the existence of a threshold T (e)
for every level of energy e. Consider the function ∆q∗(x, e, z) =
q∗((x, e, z), 1) − q∗((x, e, z), 0): it holds

∆q∗(x, e, 0)=− EC[d(e + h − c)]+γ
{ ∞∑
c=1

pC (c)EZ[v∗(1, [e + h − c]B , z)]

− EZ[v∗([x + 1]M , [e + h]B , z)]
}

(7)
The increment with regard to x is nonnegative, due to Lemma 1:

∆q∗(x + 1, e, 0) − ∆q∗(x, e, 0)=− γ
(
EZ[v∗([x + 2]M , [e + h]B , z] −

− EZ[v∗([x + 1]M , [e + h]B , z)]
)

ii. Observe that all states ([T (e) + k]M , [e + 1]B , z) are transient for
any integer k > 1. Hence, one could replace the policy for those
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states with no change in the state occupancy probability.
iii. Follows from the structure of the instantaneous reward. □

From Thm. 1 it follows that an optimal policy is deterministic
and monotone with a threshold structure.

4 OPTIMAL POLICY PERFORMANCE
The optimal policy π∗ can be obtained using standard dynamic pro-
gramming methods, under the assumption of having full information
on the transition probabilities; in the following pπ ∗ is the stationary
distribution given by π∗. Efficient variants of value iteration or pol-
icy iteration algorithms for monotone policies do exist; alternatively,
the optimal solution can be found solving a suitable linear program
[25]. This section introduces an evaluation method for any policy π ,
using a formulation that will be used throughout the work.

4.1 Optimal Peak AoI
Once determined the optimal policy, the average peak AoI can be
computed by considering the renewal process {N (t), t ≥ 0} defined
by the instants of visit to a state with age of information x = 1 for
the corresponding Markov reward process. Let Yr , r = 1, 2, . . . be
the random variable describing the length of the r th renewal and the
corresponding renewal process [26]. Denote as ∆N = E [N (t + 1)]−
E [N (t)] the average number of renewal events, i.e., of processing
events, per time unit. From Blackwell theorem [27], ∆N

t →
1
E[Y ] .

Let denote L the number of transitions during renewal period Y : it
is the mean return time to a state with x = 1, i.e., the inverse of he
stationary probability of being in a state s where π∗(s) = 1:

L =
1∑

s :π ∗(s)=1 pπ ∗ (s)
(8)

By recalling the form of the sojourn times τ (s, s ′) of the SMDP, the
expected value of the renewal cycle Y is computed as

E [Y ] =
∑

{s ′:x ′=1}
E s∼pπ ∗
π ∗(s)=1

[
τ (s, s ′)

]
pπ ∗ (s

′) +
1
L
− 1

where the last equality applies a partition of the possible renewal
states. For notation’s sake, let

χ (e ′) := E s∼pπ ∗
π ∗(s)=1,z

′

[
τ (s, (1, e ′, z′))

]
the expected sojourn time when the transition ends in a state s ′ =
(1, e,′ , z′). Computing χ (e ′) accounts for the possible sample paths
to renew to an energy state e ′. Two possible cases are possible. If
z = 1, then e + h = e ′ with pH (∆e) where ∆e = e ′ − e. Else, if
z = 0, the possibility that ϕ > 0 requires to account for the recharges
needed to get to the final level of energy e ′, which depends on the
distribution of both H and C.

χ (e′)=pZ (1)(1+δ )
B∑
e=0

pE (e)pH (∆e)+pZ (0)

(
B∑
e=0

pE (e)
∞∑
r=1

Γ1,rpC (h1−∆e)

+

∞∑
k=2

k
B∑
e=0

pE (e)
∞∑
r=1

Γk−1,r

∞∑
c=e+

∑k−1
j=1 hj+1

pC (c)pH
(
∆e + c −

k−1∑
j=1

hj
))

where pE (e) indicates the probability that action a = 1 is done when
the energy level is equal to e (can be easily obtained from the sta-
tionary distribution under a given policy) and Γk ,r is the probability

to harvest r energy units in k steps, namely Γk ,r = P
(∑k

j=1 hj = r
)
.

Note how it has been assumed that∀z1, z2 P (z1 | z2) = pZ (z1 | z2) =
pZ (z1). Without loss of generality, let k ≤ B: Γk ,r is defined by the
following iteration

Γk ,r =

{∑B
j=1 Γk−1,r−jpH (j) k ≤ r ≤ B

0 otherwise

where Γ1,r = pH (r )1{1 ≤ r ≤ B}. Finally, the expected value of X is

E [X ] =
1∑

z=0

B∑
e ′=0

pπ ∗ (1, e ′, z)∑B
j=0 pπ ∗ (1, j, z)

χ (e ′) +
1
L
− 1

In Section 7 numerical results will explore how the model parameters
influence the Peak Age of Information.

4.2 Reward of a policy
The learning procedure for multi-device model presented in Sec.6
pivots on the dependence of the discounted reward Rγ ,π of a tagged
policy π on the server polling ratepZ . The performance measure for a
policy used by a device is the discounted reward given a certain initial
state distribution. In particular, sample paths initiate on renewal
states with age of information x = 1, energy e chosen uniformly at
random and expected server availability pZ .

Fixed π , let Pπ be the transition matrix of the corresponding
Markov Chain and let vector rπ be the instantaneous reward attained
at each state by following the action indicated by the policy. Let
further define vector d0 describing the initial distribution of states.
The discounted reward of a device can be computed as

Rγ ,π = d0
(
I + γPπ + γ

2P2π + . . .
)
rπ (9)

Basic facts of MDP theory imply that the geometric series generated
by γPπ is always converging so that

Rγ ,π = d0 (I − γPπ )
−1 rπ (10)

To analyze this quantity it is useful to explicitly express the paramet-
ric dependence d0 = d0(pZ ) and Pπ = Pπ (pZ ). In particular,

d0(pZ ) =


1

B+1pZ x = 1, z = 0
1

B+1 (1 − pZ ) x = 1, z = 1
0 otherwise

The bijective function f : {1, . . . ,M}×{0, . . . ,B} → {1, . . . ,M(B+
1)} maps each couple (x, e) to an integer value and two matrixes
P0, P1 ∈ M(B+1)M×(B+1)M such that(

P0
)
i j
= P

{
f (x ′, e ′) = j | f (x, e) = i, z = 0,a = 0

}
and (

P1
)
i j
= P

{
f (x ′, e ′) = j | f (x, e) = i, z = 1,a = 1

}
Both matrix will depend on the distribution of the random variables
C and H , as well as on the fixed policy π . The explicit dependence
of the transition matrix Pπ on the server’s polling control writes

Pπ (pZ ) =

(
(1 − pZ )P0 pZ P

0

(1 − pZ )P1 pZ P
1

)
which provides an explicit form to

Rγ ,π (pZ ) = d0(pZ )
(
I − γPπ (pZ )

)−1
rπ
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Remark. For δ > 0 the function Rγ ,π (pZ ) appears concave on
the interval [0, 1] for all tested stationary policies and parameters
of the Markov decision process. The proof of the convergence of
the algorithm introduced in Section 6 assumes this fact to be true.
A formal proof can be provided for a specific choice of parameters
(M = B = 2) and a particular policy [24]. Additionally, Rγ ,π (pZ )
is indeed continuous and differentiable since each block matrix
appearing in its explicit form has such property, as showed in [24].

Finally, evaluating the optimal reward as a function of pZ requires
to consider different optimal policies and to determine

Rγ (pZ ) = max
π

Rγ ,π (pZ ) (11)

As it is a point-wise maximum, the continuity of γ (·) is true. How-
ever, even if the conjecture about the concavity of Rγ ,π is verified,
Rγ (pZ ) is not necessarily concave as it is the maximum of a set of
concave functions.

5 LEARNING THE OPTIMAL POLICY
In a realistic setting, transition probabilities (1) and (2) may not be
available. Furthermore, rewards (4) depend on the model used for
the data-batch computation and also on data properties which may
be only learned at runtime. A new model-free algorithm, namely
Ordered Q-learning (OQL) is introduced next. It is a version of Q-
learning (QL) [28] adapted for MDPs with monotone value functions
under a given partial order imposed on state space. As showed in
Section 7, OQL outperforms other reinforcement learning algorithms
such as policy gradient methods and yet retains the convergence
guarantees of QL. Two variants of OQL based on the structure of
the optimal policy are introduced next; they leverage two different
partial orders on the states to find the optimal policy.

5.1 Ordered Q-learning
In the Ordered Q-learning the vector of the estimates of the Q-
function are forced to comply to the monotonicity properties of the
optimal Q-function. The update rule (12) for each state-action pair
(s,a) ∈ S ×A hence writes

Qt+1(s,a) = (1 − αt )Qt (s,a) + αt
(
rt+1(s,a) + γ max

b
Qt (s

′,b)
)

Qt+1(s
′,a) = Πs

(
Qt+1(s

′,a)
)

∀s ′ ∈ S (12)

where projection Πs (·) at state s is a projection adapted to specific
partial order imposed on the state space. Let f : S → R: if s ′ > s,
then Πs (f (s

′)) = max{ f (s ′), f (s)} and if s ′ ≤ s, then Πs (f (s
′)) =

min{ f (s ′), f (s)}.
Thus, the basic Q-learning iteration is followed by a state-dependent

projection on the set of allowed estimates. Alg. 1 reports on the com-
plete algorithm for the version of the algorithm with a constant
stepsize αt = α . The convergence of the Ordered Q-Learning (OQL)
can be ensured under the assumption that αt = αt (s,a) appearing
in (12) is a standard stepsize i.e.,

∑+∞
t=1 αt (s,a) = +∞ w.p.1. and∑+∞

t=1 αt (s,a)
2 < +∞ w.p.1.; it holds the following result

THEOREM 2. Consider the Ordered Q-learning algorithm de-
scribed by the update rule in (12). Let γ < 1. Let q∗ be mono-
tone, i.e., if s1 ≤ s2 according to some order on the states, then
q∗(s1,a) ≤ q∗(s2,a). Then q∗,t (s,a) converges to q∗(s,a) with proba-
bility 1 for every state s ∈ S and for every action a ∈ A(s).

Algorithm 1 Ordered Q-learning

Require: step size α ∈ (0, 1], discount factor γ ∈ [0, 1)
1: Q(s,a) ∈ R,∀s ∈ S
2: Q(s ′,a) ← 0 for s ′ terminal state
3: for each episode
4: initialize s ∈ S
5: for each step of the episode
6: choose a ∈ A(s) given by Q (e.g., ϵ-greedy)
7: take action a and observe reward R and s ′

8: Q(s,a)←(1 − α)Q(s,a) + α [R + γ maxa Q(s ′,a)]
9: Q(s̃,a)←Πs (Q(s̃,a)), ∀s̃ ∈ S

10: s ← s ′

11: end for
12: end for

PROOF. A sketch of the proof of Theorem 2 is based on the
Policy Improvement theorem’s [29]. Let consider a generic step of
the Ordered Q-Learning algorithm. Let π be the current policy and
π ′ be the policy obtained at the iteration of Ordered Q-learning. Let
assume that π ′ improves the current policy, i.e., qπ (s, π ′(s)) ≥ vπ (s)
for all s ∈ S. As showed in [29], this implies that v ′π (s) ≥ vπ (s) for
all s ∈ S.

Now let consider any state s+ ⪰ s. After applying the projection,
it holds qπ (s+, π ′(s)) ≥ qπ (s, π

′(s)). Finally, since both π ′(s) and
π ′(s+) ∈ A(s+), it is possible to write

vπ ′(s
+) = qπ ′(s

+, π ′(s+)) = max{qπ ′(s+, π ′(s)),qπ ′(s+, π (s+))}

≥ qπ ′(s
+, π ′(s)) ≥ qπ ′(s, π

′(s)) = vπ ′(s)

which concludes the proof. □

The above proof sketch is based on the simplifying assumption
that the true values of the Q-function are available at each iteration;
this assumption permits to use dynamic programming arguments.
The complete proof of Theorem 2 is rooted in the original argument
of convergence for Q-learning, developed by Tsitsiklis in [30], which
is based on stochastic approximations. It is presented in the extended
version of this paper [24]. For Ordered Q-learning, the technical
difficulty is to account for the use of state-dependent projection Πs .

It is further possible to define the n-step version of OQL, where
the first equation in (12) is replaced by the one of n-step QL [29].

5.2 Stairway Q-Learning
Stairway Q-learning (SQL) is defined imposing on the state space
the natural partial order considered in Cor. 1 so that the assumptions
of Thm. 2 automatically hold for the system at hand. For every pair
of states s1 = (x1, e1, z) and s2 = (x2, e2, z) and for every vector
v ∈ R |S | , the explicit form of the projection operator on the set of
vectors that suit the partial order considered is

Πs1 (v(s2)) =



max (v(s1),v(s2))
if x1 < x2 and e1 ≥ e2 or
x1 ≤ x2 and e1 > e2

v(s1) if x1 = x2 and e1 = e2

min (v(s1),v(s2))
if x1 > x2 and e1 ≤ e2 or
x1 ≥ x2 and e1 < e2

v(s2) otherwise
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In Section 7 it will be showed that the performance of SQL improves
significantly compared to the standard QL, both in the 1-step version
here introduced and in the n-step version.

5.3 Threshold Q-learning
Threshold Q-learning (TQL) considers a simplified partial order of
the type (x, e, z) ⪰ (x + 1, e, z′) for x = 1, . . . ,M − 1: it imposes the
partial order only w.r.t. energy. The monotonicity condition writes

q∗ ((x, e, z),a) ≤ q∗ (([x + 1]M , e, z),a) ∀x, e, z,a (13)

The convergence follows from Theorem 2. The projection function
with regard to a certain state s, Πs : R→ R, can be written as

Πs1 (v(s2)) =


max (v(s1),v(s2)) if x1 < x2
v(s1) if x1 = x2
min (v(s1),v(s2)) if x1 > x2
v(s2) otherwise

(14)

for every pair of states s1 = (x1, e, z) and s2 = (x2, e, z). Note that
in this case only states with same energy and server availability
are compared: this significantly reduces the number of projection
operations compared to SQL, especially when B is large. Despite its
reduced complexity, in many cases this algorithm has showed similar
convergence speed as SQL. Note how for both SQL and TQL it is
not possible to guarantee the corresponding policy, e.g., an ϵ-greedy
policy, to have the threshold structure at each timesteps. However,
the numerical results show that policy displays a threshold structure
after a rather small number of iterations.

5.4 Reinforce
One of the baselines algorithms used for comparison is Reinforce
(RF) [31]. RF performs a basic policy-gradient iteration in the form

θt+1 = θt + αtGt
∇θπ (at |st , θt)

π (at |st , θt)
(15)

where 0 < αt < 1 is a stepsize andGt is the policy reward estimation.
The gradient is operated on the following policy parametrization
based on the threshold structure of the optimal policy

π (x, e, z) =


0 x < ⌊θe ⌋

1
1+exp{k(θe−x−0.5)} x = ⌊θe ⌋

1 x > ⌈θe ⌉

(16)

where k is a suitable hyperparameter.

6 MULTI-DEVICE MODEL
The model is now extended to the case of N devices connected to the
edge server. Each device k ∈ {1, . . . ,N } follows the device-server
model described in Section 3. At each timeslot the server polls de-
vice k with probability pZ ,k , where pZ ∈ PZ = {pZ ∈ [0, 1]N :∑N
k=0 pZ ,k = 1} and k = 0 denotes the null device, i.e., no polling.

All the devices are assumed to be independent of each other: by
doing so, the optimal policy of each device is not influenced by the
state of the other devices at a given timestep; the interesting case of
correlated harvesting or data samples is left as part of future works.
Moreover, the polling decision of the server feedforward, i.e., the
state of a device is only known once the device is polled, so that the
polling action is independent of the state of devices.

Algorithm 2 Pseudocode of APPI

Require: ϵ > 0
1: initial polling distribution pZ ,new

2: while
��pZ ,old − pZ ,new

�� > ϵ
3: pZ ,old ← pZ ,new

4: Optimal policy learning: find optimal policy π∗k (pZ ,old) for ∀k
5: Polling optimization: find pZ ,new ≥ 0 such that{

pZ ,new = argmaxpZ
∑
k Rγk ,π ∗k (pZ ,k ,old)(pZ )∑

k pZ ,new = 1

6: end while
7: return pZ ,new

The server seeks the optimal random polling distribution pZ ,k that
maximizes the sum of the rewards of the devices, i.e., R(pZ ) :=∑N
k=1 Rγk (pZ ,k ), where Rγk (pZ ,k ) obeys to (11), subject to the

polling capacity constraint, i.e.,

maximize: R(pZ ) =
N∑
k=1

Rγk (pZ ,k ) (MD)

subj. to:
N∑
k=0

pZ ,k = 1 (17)

pZ ,k ≥ 0 k = 0, . . . ,N

In order to solve problem (MD), since the discounted reward
(11) cannot be computed (unless all the transition probabilities are
known), stochastic approximation might be used to find a solution.
Furthermore, as already observed in Section 4.2, Rγ (·) cannot be
assumed differentiable or concave, ruling out stochastic approxima-
tion methods requiring differentiable objective functions, such as
SPSA [32]. Other direct methods with less strict requirements, such
as Enhanced Localized Random Search do exist [33].
The proposed algorithm, namely the Alternating Polling and Policy
Improvement (APPI) algorithm, is summarized in Alg. 2. It alter-
nates two steps: 1) a policy learning step (line 4) for a given polling
vector pZ , and 2) a polling optimization step (line 5) optimizing
pZ for a given policy using stochastic approximation methods. For
the policy optimization step it is sufficient to use one of the learn-
ing methods proposed in Sec. 5, e.g., Stairway Q-learning for the
efficiency’s sake. Conversely, as observed before, if the policy for
each device is fixed, the objective function is

∑
k Rγk ,πk (pZ ,k ) with

πk = π∗k (pZ ,k ,old ), i.e., the optimal policy according to the pre-
vious value of the polling vector. As showed in Section 7.3, this
algorithm is both faster and more accurate than general methods for
the problem studied.

In order to discuss the polling optimization step, recall that the
objective function is concave in pZ (and so a.e. continuously differ-
entiable) suggesting the use of stochastic gradient ascent methods
of the Kiefer-Wolfowitz family [34]. In particular, the iterates of the
algorithm write

pn+1Z = ΠΘ
(
pnZ − αnд̂n

)
(18)

where pnZ is the nth iterate of the parameter, д̂n represents an esti-
mate of the gradient of the objective function, {αn }n is a sequence
converging to 0 and ΠΘ is a projection on the N + 1-dimensional
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simplex Θ = {pZ ≥ 0|
∑
pZ ,k = 1}, i.e., the space of possible

polling vectors, including the null action when polling is not active.
The projection activates when pZ ± cn∆n lies outside the constraint
set and reverts to the nearest point in Θ.

The specific technique to determine д̂n in (18) is based on simul-
taneous random increments (SPSA) [32]. This technique estimates
two increments, one in the positive and one in the negative direction.
Due to the independence between different devices, each component
of the gradient depends only on the parameter pZ ,k of the device
considered. Let R̂γk ,πk denote the approximated reward for device
k. The corresponding component of the gradient estimate writes

(д̂n )k =
R̂γk ,πk

(
pZ ,k + cn (∆n )k

)
− R̂γk ,πk

(
pZ ,k − cn (∆n )k

)
2cn (∆n )k

(19)
where {cn } is a sequence converging to 0 and {∆n } is an i.i.d. vector
sequence of perturbations of i.i.d. components {(∆n )i , i = 1, . . . ,N }
with zero mean and where E

[
|(∆n )

−2
i |

]
is uniformly bounded.

Before proving the convergence of the APPI algorithm, let show
that fixed the policies of each device, the SPSA iteration converges
to a global maximum of the corresponding total discounted reward.
Actually, the convergence of depends on some condition on the ob-
jective function, on the step-size sequence {αn } and on the gradient
estimates д̂n . The following holds:

PROPOSITION 1. Let {αn } and {cn } be such that
∑
n αn = ∞,∑

n

(
αn
cn

)2
< ∞. Moreover, assume that E

[
|(∆n )i |

−2] is uniformly
bounded on PZ and that Rγk ,πk (pZ ,k ) is concave. Then the iteration
(18) converges to the optimal parameter pZ ,new w.p.1.

PROOF. The desired result is obtained by verifying the assump-
tions of Proposition 1 in [35], whose proof is a consequence of
Theorem 5.3.1 in [34].
i. the objective function is differentiable and either concave or uni-
modal: differentiability has been described in Remark ??.
ii. bn = E [д̂n |pZ , sn ] − ∇J (pZ ) → 0 w.p.1: holds from Lemma 2 in
[32] and condition i.;
iii.

∑∞
n=1 α

2
n ·E

[
e2n

]
< ∞w.p.1, where en := д̂n−E [д̂n | θn, sn ]; this

condition holds by Lemma 2 in [32] and by the fact that R((pZ )n,ω),
representing the reward of sample path ω has second moment uni-
formly bounded in pZ : we can notice that it is independent on the
parameter. Indeed, given a path, since x ≤ M and pZ ∈ [0, 1], the
reward is upper bounded by a constant, therefore its second moment
is uniformly bounded, which concludes the proof. □

Hence, fixed the policy for each device, the optimal polling vector
is attained. Thanks to the convergence properties of the learning
methods (see Section 5) for a fixed vector pZ , and since the number
of policies is finite, this proves that APPI converges w.p.1.

Unfortunately, this does not imply the convergence to the globally
optimal polling vector, as the function to optimize is not concave, but
rather just the pointwise maximum of a set of concave functions. Due
to its particular structure, only convergence to the local optimum of
the objective function can be ensured.

7 NUMERICAL RESULTS
The numerical experiments are divided into 3 parts. The first one
describes the performance of the device-server system tested on a

Parameter Subsec. 7.1 Subsec. 7.2 and 7.3
M 15 {10, . . . , 25}
B 15 {10, . . . , 25}
γ 0.95 {0.9, . . . , 0.99}
pZ 0.05 {0.01, . . . , 0.1}
δ 1 1
Reward r (x ) = M − x r (x ) = M − x
Discharge Penalty d(e) = e4 · 1{e ≥ 0} d (e) = 1e<0(−e)k ,

with k ∈ {1, 2, 3, 4}
Harvesting Poisson (λ = 1) Poisson (λ = 1)
Processing Cost uniform, binary and

symmetric for µ ∈

{1, 4, 8.5}

symmetric with
µ ∈ {1, . . . , B/2}
σ ∈ {1, 2, 3, 4}

Table 2: The system parameters used in the numerical experiments.

range of system parameters. The second one compares the Ordered
Q-learning methods introduced in Sec. 5 with baseline RL algo-
rithms. Finally, the performance of the APPI algorithm introduced
in Sec. 6 is assessed against alternative general methods. The de-
vices and server parameters, namely M,B,γ ,pZ , r (·),d(·),pH and
pC , constitute the environment. For the data processing cost C three
possible probability distributions will be considered: the uniform one
in {1, . . . ,B+1}, the binary one where pC (1) = pC (B+1) = 1/2 and
finally symmetric one obtained as pC (c) = A · exp{− 1

2 ((c − µ)/σ )
2}

for c ∈ {1, . . . ,B + 1}: µ and σ shape the distribution, whereas A is
an appropriate normalization constant. In Table 2 the first column
represents the environment used in Subsec. 7.1. The second column
reports the sets from which the system parameters are drawn uni-
formly at random in the experiments of Subsec. 7.2 and Subsec. 7.3.

7.1 Device-server performance evaluation
Fig. 3a describes the impact of the server availability pZ onto the
average (peak) AoI. Excluding the case µ = 1, i.e., for lower values
of the average batch processing cost, the average AoI is maximal for
pZ = 0 and attains its minimum close to pZ = 1 (the optimal pZ is
highlighted with dots in Fig. 3a). In fact, for higher processing cost, a
larger server polling rate permits to select action a = 1 more often, as
the possible battery discharge due to data processing is compensated
by frequent task offloading events. For lower cost figures, instead, it
is the roundtrip delay δ that renders the offloading less convenient:
when δ = 0, actually, the corresponding curve (not reported for the
space’s sake) becomes strictly decreasing.

Fig. 3b plots the value of the optimal polling rate pZ for increasing
values of δ . The minima are obtained by means of an appropriate sto-
chastic optimization. The results show, as expected, that the optimal
value of pZ decreases as δ increases irrespective of the distribution
of the processing cost. From Fig. 3b offloading is detrimental for
larger values of δ . This is more apparent for lower batch processing
costs (µ = 1 and µ = 3). In those cases, there exists a threshold value
of δ above which offloading is detrimental, i.e., pZ = 0. In fact, for
low processing costs, the risk of emptying the battery is sufficiently
low to encourage to perform action a = 1 very frequently. In turn,
the presence of the server, and the additional delay required by task
offloading, becomes a penalty.
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a) b) c)

Figure 3: a) Average peak AoI for increasing polling probability pZ ; b) optimal pZ for increasing round-trip delay δ ; c) Average peak AoI for
increasing average harvesting rate λ.

Finally, Fig. 3c depicts the average AoI for increasing average
harvesting rates, i.e., for increasing values of λ (note that here λ = 0
indicates the deterministic caseH = 1). Irrespective of the processing
cost distribution pC , the average Peak AoI is monotone decreasing,
as expected. Interestingly, the AoI values appear rather insensitive
to the cost distribution.

7.2 Learning the optimal policy
The RL algorithms introduced in Section 5 are compared with two
baselines, namely QL and RF. Each test is repeated over 50 different
environments where the system’s parameters are drawn uniformly
at random as reported in Table 2. Each experiment consists in a se-
quence of 1000 episodes. At the end of each episode, the discounted
reward is calculated using a policy evaluation step. The evaluation
is truncated when the weight discount falls below 0.001. The esti-
mation of the optimal reward (10) is collected starting from a state
s0 = (1, e, z), with e and z drawn uniformly at random. In order to
compare results of different runs, the rewards have been normalized
agains the baseline stationary policy which chooses action a = 1 if
and only the state is such that either z = 1 or s = (M,B, 0).

Finally, for each tested algorithm several sets of hyperparame-
ters are probed to determine the configuration ensuring the high-
est discounted reward; in fact, such parameters are observed to
influence heavily the performance of the different algorithms. For
the Q-learning type of algorithms (QL, TQL and SQL), the hy-
perparameters consist of n, determining the adopted n-steps vari-
ant, and ϕ and β , which determine the learning rate αt (st ) = ϕ ·

(#visits in state st )−β . For Reinforce the hyperparameter are k, ap-
pearing in (16), as well as n andm defining stepsize αt = n/(t +1)m .

The results of the experiments are summarized in Table 3. In
particular, RF appears to converge quickly, but to a suboptimal
policy. In order to avoid this, in policy gradient RL it is possible
to introduce multiple simultaneous state-action perturbations, e.g.,
trust-region techniques [36], at the price of increased complexity.
On the other hand, SQL outperforms all other methods, attaining a
gain of 10% on the average discounted reward.

250 episodes 1000 episodes 3000 episodes
QL 0.723 ± 0.254 0.796 ± 0.220 0.810 ± 0.208

TQL 0.752 ± 0.255 0.857 ± 0.181 0.880 ± 0.117
SQL 0.850 ± 0.209 0.943 ± 0.051 0.964 ± 0.060

Reinforce 0.893 ± 0.225 0.893 ± 0.227 0.893 ± 0.224
Table 3: RL tests: discounted reward for increasing number of
episodes; best performance results are marked bold.

7.3 Multi-device system
The two last experiments evaluate the performance of the APPI
learning procedure introduced in Sec. 6. To this aim, three alternative
algorithms to be compared to APPI have been implemented. They
replace the polling improvement step with Naive Random Search
(NRS), Enhanced Random Search (ENRS) and SPSA, respectively.
Details on those procedures are found in [33].

The first test covers a scenario with N = 3 devices. For each run
of the experiment, a set of parameters is generated at random for
each device (i.e., M , B, γ , pZ , r (·),d(·),pC and pH ) and an initial
polling distribution is imposed on the edge server. The device pa-
rameters are drawn uniformly at random from the sets described in
Table 2, second column. For each algorithm it is recorded 1) the
total discounted reward and 2) number of policy learning iterations
performed. The results are averaged over over 50 runs, by consid-
ering each time different initial polling distributions and different
environments. Also, all the reward values are normalized to fall into
an interval [Rmin,Rmax]. Rmax is the reward obtained by an ideal
APPI implementation which finds the optimal policy using value
iteration, while Rmin is the reward obtained averaging 10 runs under
a random polling distribution and the corresponding device’s opti-
mal policies. The numerical results are collected in Table 4: APPI
consistently outperforms the other algorithms by attaining higher
discounted reward and requiring much fewer policy improvement
steps as well. The last experiment tests the scalability of APPI by
increasing the number of devices N . The outcomes are reported in
Table 5. Those are the average of 50 simulations per value of N .
As before, in each simulation the environment is drawn at random
using the distributions indicated in Table 2. The normalized reward
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Algorithm Discounted reward Policy learning steps
NRS 0.423 ± 0.237 4.98 ± 1.378

ENRS 0.678 ± 0.184 10.06 ± 3.331
SPSA 0.449 ± 0.276 5.54 ± 1.846
APPI 0.747 ± 0.143 2.98 ± 1.086

Table 4: Comparison of different polling improvement algorithms for
N = 3.

N Discounted reward Policy learning steps
1 0.794 ± 0.222 2.18 ± 0.77
3 0.747 ± 0.143 2.98 ± 1.086
5 0.699 ± 0.192 3.78 ± 1.221
7 0.724 ± 0.222 4.08 ± 1.074
10 0.714 ± 0.237 5.06 ± 1.302

Table 5: Performance of APPI for increasing number of devices con-
nected to the edge server.

attained by APPI appears marginally affected by the number of de-
vices, whereas the number of required policy improvement steps is
in the order of a few units and increases linearly.

8 CONCLUSIONS
Based on the peak AoI this work has provided a theoretical frame-
work to model edge devices running AI applications whose energy
footprint depends on the data being processed. It factors in energy
harvesting and edge-server task offloading to determine the optimal
processing policy on edge devices. The solution approach builds on
the properties of the Markovian model to derive the key structural
features of optimal policies. This is the basis for a model-based, spe-
cialized reinforcement learning method, namely Ordered Q-learning
which is extended to the multidevice setting. There, the server’s
offloading rate vector is optimized by alternating stochastic gradient
ascent and optimal policy learning steps. Numerical tests performed
against the ground-truth, i.e., the actual optimal policy, show that
existing baselines are systematically outperformed both in accuracy
and convergence speed. This confirms that by rooting reinforcement
learning techniques into the structural properties of the optimal solu-
tion, important performance margins against generic RL solutions
are attained. Several extension of the proposed models are indeed
possible in the multi-device setting. In particular, it is possible to
include capacity constraints in the Markovian model, e.g., to model
non-ideal communication channels. This in turn requires to study
and learn optimal randomized stationary policies in the context of
constrained MDPs. Also, in order to improve the polling learning
procedure at the edge-server, one could use the history on the device
state which can be retrieved at polling instants.
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