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Abstract 34 

Even prior to producing their first words, infants are developing a sophisticated speech processing system, 35 

with robust word recognition present by 4-6 months of age. These emergent linguistic skills, observed with 36 

behavioural investigations, are likely to rely on increasingly sophisticated neural underpinnings. The infant 37 

brain is known to robustly track the speech envelope, however to date no cortical tracking study could 38 

investigate the emergence of phonetic feature encoding. Here we utilise temporal response functions 39 

computed from electrophysiological responses to nursery rhymes to investigate the cortical encoding of 40 

phonetic features in a longitudinal cohort of infants when aged 4, 7 and 11 months, as well as adults. The 41 

analyses reveal an increasingly detailed and acoustically-invariant phonetic encoding over the first year of 42 

life, providing the first direct evidence that the pre-verbal human cortex learns phonetic categories. By 11 43 

months of age, however, infants still did not exhibit adult-like encoding.   44 

  45 
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The human ability to understand speech relies on a complex neural system, whose foundations develop over 46 

the first few years of life. A wealth of evidence on the developmental progression of speech perception is 47 

available from infant behavioural studies, including with neonates, augmented by studies of speech 48 

production from around the second year of life1,2. Yet our understanding of speech perception in the first 49 

year of life is largely dependent on tasks relying on simple behaviours (e.g., head turn preference procedure). 50 

Direct investigation of the neural encoding of phonetic information in continuous natural speech across the 51 

first year of life has not previously been possible. Experiments using behavioural measures enable the 52 

assessment of valuable factors such as the familiarity of a particular speaker, the phonetic features that can 53 

be discriminated, and sensitivity to native versus non-native speech contrasts, thereby providing a time-line 54 

for the development of speech perception in the first year of life1. However, behavioural methods can only 55 

serve as an indirect index of the emergence of linguistic skills, and cannot reveal when the phonetic encoding 56 

in the human cortex becomes invariant across different instantiations. Previous behavioural studies focused 57 

on sound discrimination due to methodological constraints, and made use of targeted experimental 58 

paradigms involving simple stimuli. Although this behavioural timeline has been complemented by 59 

neurophysiological investigations, these studies have employed similar targeted paradigms, with the most 60 

widely-used neurophysiological measure with infants being the mismatch negativity (MMN, or mismatch 61 

response, MMR). The MMR is a neurophysiological signature of automatic change detection3-5 typically used 62 

to measure the ability to discriminate particular speech contrasts. However, previous studies showed that 63 

such mismatch responses in infants can sometimes be positive6, causing inconsistencies that can complicate 64 

or limit their use in infants. This leaves us with a number of key open questions: 1) How do infants perceive 65 

and encode the phonological units such as syllables and phonemes in continuous natural speech? 2) How 66 

are these speech sounds encoded in the infant brain? And 3) how does that encoding develop across the 67 

first year of life?  68 

This study is the first to address these research questions directly. Non-invasive electroencephalography 69 

signals (EEG) were recorded as infants listened to 18 nursery rhymes (vocals only with no instruments 70 

involved) through video recordings of a native English speaker. EEG recordings were carried out at 4, 7 and 71 
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11 months of age from the first 50 participants in a longitudinal cohort involving 122 infants (the same 72 

subjects were tested in the three subsequent sessions and only participants with all sessions were selected). 73 

Three participants were excluded due to excessive EEG noise (see Methods). We then measured how the 74 

infant brain encodes acoustic and phonetic information by means of the multivariate Temporal Response 75 

Function analysis (TRF), a neurophysiology framework enabling the study of how neural signals encode 76 

continuous sensory stimuli7,8. TRF analyses were also carried out on recordings from adult participants 77 

listening to the same stimuli. We targeted one key aspect for speech perception, the perception of phonetic 78 

features. We do not assume here that encoding phonetic features equates to encoding phonemes, as there 79 

is a large psychoacoustic and developmental literature showing that phonemes are only represented by 80 

literate brains9,10. Our core hypothesis was rather that phonetic feature encoding (invariant to acoustic 81 

changes) would emerge in the neural responses to natural speech during the first year of life.  82 

Speech TRFs reflect the neural tracking of (or neural entrainment to, in the broad sense11) natural speech 83 

features (e.g., acoustic envelope), offering a direct window into human perception during natural listening 84 

without imposing any particular task other than listening. In recent years, neural tracking measures have 85 

played a growing role in the study of speech comprehension and auditory processing in general. Many TRF 86 

studies have assessed the neural tracking of the acoustic envelope12-15, which is an important property of 87 

speech that co-varies with a number of key properties of interest (e.g., syllable stress patterns, syllables, 88 

phonemes). Neural tracking of the speech envelope (or envelope tracking) was shown to reflect both bottom-89 

up and top-down cortical processes in adult listeners, encompassing fundamental functions such as selective 90 

attention15-17, working memory processing load18, and prediction19,20. While robust envelope tracking has also 91 

been demonstrated in infants21-26, envelope measures only reveal some of the cortical mechanisms 92 

underlying speech perception. Recent work with adults and children has demonstrated that TRFs can be 93 

extended to isolate the neural encoding of targeted speech properties of interest, starting from phonetic 94 

features27. Phonetic encoding was measured in multiple studies from different research teams27-31, and the 95 

neural tracking was shown to correlate with phonemic awareness skills in school-aged children between 6 96 

and 12 years of age32 and with second language proficiency in adults33.  97 
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Here, we employed TRFs to test the hypothesis that the neural encoding of phonetic features during natural 98 

speech listening is already developing during the first-year of life. Current behavioural data indicate that 99 

infant perception becomes more selective towards native than non-native speech contrasts around 9-12 100 

months of age34 (see footnotei), with perceptual “magnet” effects helping to isolate native from non-native 101 

phonetic contrasts already by 6 months35. We hypothesised that these phenomena may be underpinned by 102 

a progressively more precise and acoustically-invariant neural encoding of phonetic features across the first 103 

year of life. This encoding would be expected to emerge as a neural response to speech that reflects a growing 104 

invariance towards phonetic categories, where the limit case would be to have neural responses to phonetic 105 

categories that are fully invariant to acoustic changes. This longitudinal investigation offers the first view into 106 

phonetic feature encoding in the first year of life, while accounting for the full complexity of speech in 107 

naturalistic listening environments. In the discussion, we connect our encoding analyses with previous work 108 

on phonetic discrimination and consider the key role of perceptual invariance. Our results provide a 109 

promising new avenue for developmental research with both infants and children. Precise measures of how 110 

and when phonetic feature encoding evolves could serve as a complementary set of risk factors for 111 

developmental language disorders, as well as illuminating the phonological trajectories experienced by both 112 

typically- and atypically-developing children. 113 

 114 

Results 115 

Robust neural tracking of acoustic and phonetic features in infants 116 

A multivariate TRF analysis was carried out to assess the low-frequency (1-15 Hz) neural encoding of speech 117 

across the first year of life. Acoustic and phonetic features were extracted from the stimulus. Acoustic 118 

features consisted of the 8-band acoustic spectrogram of speech (S) sound and the half-way rectified 119 

 
i This should not be intended as a hard boundary, as this is likely a gradual phenomenon that changes over large time 

windows, with differences between easy and more difficult speech contrasts 
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envelope derivative (D). Fourteen phonetic features were included to mark the categorical occurrence of 120 

speech sounds, according to articulatory features describing voicing as well as manner and place of 121 

articulation. To account for possible differences in the encoding of stressed and unstressed sounds, each 122 

phonetic feature produced to two distinct vectors, leading to a 28-dimensional phonetic features matrix (F; 123 

see Methods). A nuisance regressor was also included to capture EEG variance related to visual motion (V). 124 

Single-subject TRFs were derived for each experimental session to assess the cortical encoding of acoustic 125 

and phonetic features by fitting a multivariate lagged regression model with all such features simultaneously 126 

(Figure 1A). 127 

EEG prediction correlations, calculated with leave-one-out cross-validation and averaged across all EEG 128 

channels, were greater than zero for all age groups (one-sample Wilcoxon rank sum test, FDR-corrected for 129 

multiple comparisons; 4mo: p=9.5*10-6; 7mo: p=9.5*10-6; 11mo: p=9.5*10-6; adults: p=2.2*10-4; Figure 1B). 130 

Consistent with previous work, this analysis was carried out by considering speech-EEG lags from 0 to 400ms, 131 

which were shown to largely capture the cortical acoustic-phonetic response in adults. The TRF analysis was 132 

also repeated when considering a 100-500ms lag window, aiming to control for possible responses with 133 

longer latencies in infants, while keeping the same model complexity (i.e., same window size). This analysis 134 

also led to significant EEG predictions (one-sample Wilcoxon rank sum test, FDR-corrected; 4mo: p=3.6*10-6; 135 

7mo: p=3.6*10-6; 11mo: p=1.7*10-6; adults: p=0.001; Figure 1B), indicating a consistent speech-EEG 136 

relationship involving acoustic and phonetic features in both time windows.  137 

Topographic differences were expected both across participants and by age group due to major anatomical 138 

changes during infancy36. Larger EEG prediction correlations were measured in centro-frontal electrodes for 139 

all age groups (Figure 1C), with topographies becoming progressively more similar to those for adults with 140 

age in both the 0-400ms lag window (bootstrap with group size = 17 and 1000 iterations; average correlation 141 

with adults: r = 0.43, 0.51, 0.54 for 4mo, 7mo, and 11mo respectively; repeated measures ANOVA on infant 142 

data with age as the repeated factor: F(2,1998) = 172.8, p = 6.1*10-70) and 100-500ms window (bootstrap; 143 

average correlation with adults: r = 0.32, 0.55, 0.52 for 4mo, 7mo, and 11mo respectively; repeated measures 144 
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ANOVA: F(2,1998) = 900.6, p = 1.5*10-279). TRF models corresponding to spectrogram features are reported 145 

in Figure 1D, where weights were averaged across fourteen centro-frontal electrodes (25% of all channels) 146 

and all participants (see Methods). 147 

 148 

Figure 1: EEG tracking of acoustic and phonetic features in infants and adults. (A) Schematic diagram of the 149 

analysis paradigm. Multivariate Temporal Response Function (TRF) models were fit to describe the forward 150 

relationship between speech features and the EEG signal recorded from adults and infants (4, 7, and 11mo). 151 

Speech features included the 8-band acoustic spectrogram (S), half-way rectified envelope derivative (D), 152 

visual motion (V), and phonetic features (F). (B) EEG prediction correlations of the multivariate TRF model 153 

were significant within each group for both the time-lag windows 0-400ms and 100-500ms. (C) Topographical 154 

patterns of the EEG prediction correlations in infants (shown for the TRF window 0-400ms) became 155 

progressively more similar to adults responses with age. (D) TRF weights corresponding to the S features 156 

averaged across centro-frontal electrodes. 157 

 158 

Emergence of phonetic feature encoding in the first year of life 159 

The analyses that follow aim to determine if and when cortical signals encode acoustically-invariant phonetic 160 

features during the first year of life. In line with previous behavioural work35,37-41 and current developmental 161 

theories1,34, we expected categorical phonetic feature encoding to emerge from 6 months on (i.e., from the 162 

7mo recording session, in the present study), with progressively stronger encoding across the first year of life 163 
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visible by 11 months of age. To test this hypothesis (see Hp2 in Figure 2A), phonetic feature encoding was 164 

assessed based on the multivariate TRF models described in the previous section. Neural activity linearly 165 

reflecting phonetic feature categories but not sound acoustics was accounted by subtracting EEG prediction 166 

correlations corresponding to acoustic-only TRFs (which did not include phonetic features; see Methods) 167 

from those corresponding to acoustic-phonetic TRFsii. For consistency with previous work27,29,32,33,42-44, this 168 

metric is referred to as FS-S (F: phonetic features; S: spectrogram and envelope derivative). As expected (Hp1-169 

3), FS-S values were progressively larger with age (average across all EEG channels; Figure 2B), with values 170 

greater than zero emerging from 11 months of age for the time-latency window 0-400ms (one-sample 171 

Wilcoxon rank sum test, FDR-corrected; 4mo: p=0.237; 7mo: p=0.237;  11mo: p=0.037;  adults: p=0.037; 172 

black bars indicate p<0.05), and from 7 months of age for the time-latency window 100-500ms (one-sample 173 

Wilcoxon rank sum test, FDR-corrected; 4mo: p=0.167;  7mo: p=0.044;  11mo: p=0.023;  adults: p=0.044). 174 

This latter finding is consistent with hypothesis 2 (Hp2), as depicted in Figure 2A. Furthermore, the 4mo group 175 

did not show significant FS-S values for subsequent latency windows (200-600ms and 300-700ms). 176 

While the previous analysis identified significant phonetic encoding within individual age groups, the analysis 177 

that follows explicitly assessed if phonetic encoding increased across the first year of life. TRF models and the 178 

corresponding EEG prediction correlations showed large between-subject variability, which was expected 179 

due to the noisy single-subject data. Under the assumption that participants in the same age group present 180 

EEG responses to nursery rhymes with similar temporal patterns, a Multiway Canonical Correlation Analysis 181 

(MCCA)45 was carried out to isolate EEG components that are consistent within each group, substantially 182 

improving the signal-to-noise ratio of the single-subject EEG. A repeated measures ANOVA test was then 183 

carried out to determine if FS-S increased with age by considering the first MCCA component only (MCC1) 184 

i.e., the EEG component with highest temporal correlation across subjects within a given age group. A 185 

significant increasing trend emerged for the 100-500ms window (F(2,138)=3.19, p=0.044) but not for the 0-186 

 
ii Please note that results did not change when acoustic-only TRFs consisted of acoustic vectors concatenated with 

shuffled phonetic information. 
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400ms latency window (F(2,138)=1.37, p=0.257; see coloured panel Figure 2B). The test was also run when 187 

considering an increasing number of MCCs, showing significant results when considering up to five 188 

components for the 100-500ms latency window. The EEG encoding of phonetic features was also studied at 189 

individual electrodes, revealing robust encoding of phonetic features on large clusters of EEG channels in 190 

adults as well as infants from 7 months of age, both when considering 0-400ms and 100-500ms windows 191 

(Figure 2C; FDR-corrected one-sample Wilcoxon rank sum tests were run on each EEG channel; colours 192 

indicate significant results with p<0.05). 193 

Further analyses were carried out to assess the phonetic feature encoding at a fine-grained level, by studying 194 

the TRF weights of the acoustic-phonetic TRF (weights are shown in Figure 2D). Phonetic distance maps33 195 

were calculated by using a multidimensional scaling analysis (MDS; see Methods) on the TRF weights 196 

corresponding to phonetic features. This approach allows to quantify and visualise the level of similarity or 197 

distance between datapoints by accounting simultaneously for multiple EEG channels and peri-stimulus time 198 

latencies. By selecting the two most relevant MDS dimensions, the infant-adult Euclidean distance was 199 

calculated for each age group (Figure 3A; bars indicate mean and SE calculated across 27 adult phonemes 200 

computed as a linear combination of the corresponding phonetic features), showing that the infant-adult 201 

distance decreases with infant age in the first year of life (repeated measures ANOVA, F(2,52) = 18.2, p = 202 

5.0*10-7). F-score measures were derived quantifying the discriminability of specific phonetic feature groups 203 

in the individual-subject TRFs using a k-means analysis (mean and SE were calculated on the F-scores resulting 204 

from the 100 repetitions of k-means). The phonetic feature groupings considered for this analysis were place 205 

of articulation, voicing, and manner of articulation (Figure 3B,C). As a validation step, the stability of the 206 

resulting F-scores for the infants in the three longitudinal sessions was assessed over 100 repetitions of the 207 

k-means procedure (repeated measures ANOVA, voicing: F(2,198) = 155.8, p < 10-12; place of articulation: 208 

F(2,198) = 377.2, p < 10-12; manner of articulation: F(2,198) = 29.4, p = 6.84*10-12; Figure 3B). Next, statistical 209 

analyses were carried out to determine the significance of the result across participants. As expected (due to 210 

factors such as low-SNR, limited data, and inter-subject variability), single-subject phonetic feature maps did 211 

not lead to significant results, even though results for place of articulation were trending towards significance 212 
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(repeated measures ANOVA, voicing: F(2,92) = 0.6, p = 0.54; place of articulation: F(2,92) = 2.6, p = 0.08; 213 

manner of articulation: F(2,92) = 0.5, p = 0.61). To compensate for the limited single-subject data, we ran a 214 

bootstrap analysis with 100 repetitions, each derived by averaging 17 subjects i.e., the same number of 215 

participants in the adult group. This analysis revealed that phonetic feature encoding increased with age for 216 

place of articulation and voicing, but not manner of articulation (repeated measures ANOVA, voicing: 217 

F(2,198) = 21.3, p = 4.2*10-9; place of articulation: F(2,198) = 17.6, p = 9.0*10-8; manner of articulation: 218 

F(2,198) = 1.5, p = 0.22). 219 

 220 

Figure 2: Cortical encoding of phonetic features in the first year of life. (A) Hypotheses: The cortical encoding 221 

of phonetic feature categories was expected to emerge and progressively increase across the first year of life. 222 

Hypothesis 0 (Hp0): No phonetic encoding in the first year of life; Hp1-3: phonetic encoding from 11, 7, and 4 223 

months of age respectively. (B) Phonetic feature encoding measured as the EEG prediction correlation gain 224 

when including phonetic features in the TRF (mean and SE across participants, for the 0-400ms and 100-225 

500ms lag windows). Black bars indicate significance (p<0.05 after FDR-correction). The right panel indicates 226 

the F-statistics (repeated measures ANOVA) when using MCCA denoising (retaining 1, 2, 3, 4, 5, and 10 227 

components) and without MCCA denoising (‘all’). A main effect of age emerged for the 100-500ms TRF when 228 

retaining up to 5 components (filled dots indicate significance; p<0.05). (C) Phonetic feature encoding (EEG 229 
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prediction correlation gain) across all electrodes. Coloured areas indicate significance (p<0.05, t-test with FDR 230 

correction). (D) TRF weights corresponding to phonetic features for the 100-500ms TRF.  231 

 232 

 233 

 234 

 235 

Figure 2: Sensitivity to phonetic feature groups in the first year of life. (A) Distance between infant and adult 236 

TRF weights (mean and SE). (B,C) Multidimensional scaling maps (MDS) were calculated on the phonetic 237 

features TRFs as a function of peri-stimulus time lag and electrode. By carrying out 100 repeated k-means 238 

classification, F-score measures were derived representing the discriminability of specific phonetic feature 239 

groups in the TRFs (mean and SE across repetitions) i.e., place of articulation, voicing, and manner of 240 

articulation (B). Individual MDS maps are shown in (C), where dots correspond to adult phonemes. 241 

 242 

Discussion 243 

The present investigation offers the first direct evidence that the human cortex encodes phonetic categories 244 

during the first year of life, demonstrating significant phonetic encoding from 7 months of age and 245 

progressively stronger encoding thereafter. A fine-grained and longitudinal understanding of the 246 

development of phonetic feature encoding by the same infants listening to continuous speech was previously 247 

absent from the literature. The behavioural and MMR infant speech processing literature has used targeted 248 

experimental contrasts, focused largely on the perception of syllable stress and speech rhythm and on 249 

phonetic category formation. As rhythm and stress patterns aid in identifying word boundaries, and phonetic 250 
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categories aid in comprehension (e.g., distinguishing ‘doggy’ from ‘daddy’), this prior work has been 251 

important, showing that infants are sensitive to differences in speech rhythm from birth46,47, and are sensitive 252 

to some phonetic information as neonates48. Nevertheless, no prior study has used continuous speech as a 253 

basis for studying phonetic encoding. Consequently, our findings have several implications for understanding 254 

of the development of speech processing.  255 

Currently, it remains unclear how and at what stage of development phonetic category encoding is learnt. 256 

This question remains open largely because of methodological constraints. The present study offers, for the 257 

first time, direct evidence on the ‘when’ of phonetic category learning. There is a consensus in the literature 258 

that discriminating phonetic categories is a key processing step regarding speech comprehension by adults49, 259 

although see Feldman et al., 202150 for recent caveats regarding infants. While adult studies used direct 260 

invasive recordings to measure the cortical encoding of phonetic categories51, recent methodological 261 

developments (i.e., the TRF framework7,8) allowed us to circumvent some of the major challenges 262 

encountered by previous infant studies, thereby providing more precise developmental information.  263 

The assessment of phonetic encoding as operationalised here fulfils three main elements of novelty that go 264 

beyond any previous investigation. First, we studied the cortical encoding of phonetic categories in infants 265 

with direct neural measurements based on EEG and as part of an unprecedented targeted longitudinal 266 

investigation. Second,  the use of the forward TRF framework allowed us to assess phonetic category 267 

encoding, rather than relying on the typical sound discrimination metrics used in prior behavioural35,37-41 and 268 

neurophysiology studies (e.g., MMR)4,52-56. Third, the TRF framework allowed us to study the perception of 269 

natural speech in infants, instead of focusing on selected phonetic or word contrasts, as in the past literature. 270 

This is a crucial step forward, as the discriminatory skills that infants exhibit in simplified laboratory settings 271 

(e.g., isolated syllable discrimination measured via a head-turn or looking procedure or with MMRs) may not 272 

be sufficient for detecting phonetic categories in naturalistic settings. 273 

The present study indicates that phonetic category encoding during natural speech listening emerges 274 

between 5 and 7 months of age. This provides the literature with new and fundamental insights into the 275 
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development of speech processing in neurotypical infants. Further, the TRF approach yields novel 276 

information on which specific phonetic contrasts evolve with age, demonstrating a natural progression 277 

toward adult phonetic encoding.  This insight is further reinforced by the observation that acoustic encoding 278 

did not increase with age. Consequently, the enhanced phonetic encoding with age observed here could not 279 

simply be due to stronger acoustic encoding, as acoustic encoding showed the opposite pattern (a non-280 

significant decreasing trend with age). Interestingly, our results suggest that 4mo pre-babbling infants, 281 

despite being equipped with the fundamental combinatorial code for speech analysis57, do not yet exhibit 282 

categorical phonetic encoding. Based on these results, we can speculate that prior demonstrations of infant 283 

behavioural and MMR discrimination between syllables like "pa" and "ba" probably have an acoustic basis 284 

but do not reflect categorical phonetic encoding. In other words, the ability to distinguish two sounds does 285 

not necessarily mean that those sounds are encoded as separate categories. Our study is instead probing 286 

that categorical encoding directly. 287 

One challenge with longitudinal neurophysiology studies in infants is the substantial anatomical change that 288 

occurs with age, meaning that while macroscopic patterns are likely to remain consistent (e.g., temporal vs. 289 

occipital), there cannot be a channel-by-channel correspondence between age groups, even when 290 

considering the same participants. For this reason, the majority of this investigation focused on measures 291 

combining multiple EEG channels simultaneously (e.g., Figure 1D was an average of 14 centro-frontal 292 

channels). These considerations make the topographical distribution of phonetic encoding strength shown 293 

in Figure 2C even more remarkable, as a centro-frontal cluster of EEG channels was shown to reflect phonetic 294 

encoding across all age groups with the exception of 4 months, where phonetic encoding as assessed by the 295 

TRF was not significant. 296 

Our phonetic encoding results showed topographical patterns and TRF weights for adults that differ from the 297 

prior adult EEG literature on natural speech listening TRFs27,29. While part of the discrepancy may be due to 298 

the use of a different EEG acquisition device and to the use of audio-visual stimuli, the primary explanation 299 

is likely to be the choice of stimuli. This is the first TRF investigation of phonetic processing with adults 300 
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involving a nursery rhyme listening task. Nursery rhymes are indeed a form of natural speech which is more 301 

suited to infants. The rhythmic cues and exaggerated stress patterns characterising nursery rhymes have 302 

been demonstrated to be important elements supporting speech perception and language learning58,59, 303 

accordingly they were ideal stimuli for the Cambridge UK BabyRhythm study. In prior TRF work, we have 304 

demonstrated similar envelope entrainment to these nursery rhymes by adults and infants26. Nevertheless, 305 

it is important to note that the regular rhythms and melodic properties of nursery rhymes makes the different 306 

from the typical speech TRF stimuli used with adults, such as audio-books and podcasts. As such, the TRF 307 

results were expected to show different spatio-temporal patterns for adult listeners compared to previous 308 

TRF work.  309 

The results of this study add to the growing literature on cortical speech tracking21,27,31,33,44,60-62. While the 310 

literature typically focuses on the cortical tracking of the speech envelope16,24,63-66 (including previous 311 

analyses of this dataset21,26), the present investigation enriches our understanding of phonetic feature TRFs. 312 

Prior TRF studies of phonetic encoding in adults and children have revealed that phonetic processing is 313 

affected by speech clarity43, selective attention29, and proficiency in a second language33, and shows 314 

correlations with psychometric measures of phonemic awareness32. The present study demonstrates that 315 

emergent phonetic TRFs can also be measured in pre-verbal infants, providing a novel window into infant 316 

perception and cognition. Whilst recent developments have started to use neural tracking to predict 317 

language development in infants67, further research will also determine whether a robust relationship exists 318 

between speech TRFs and other related aspects of cognition (e.g., selective attention, prediction) in infants, 319 

and when such related aspects come on-line. Further research with infants at family risk for disorders of 320 

language learning may also reveal when and how developmental trajectories are impacted by developmental 321 

disorders that are carried genetically, such as developmental dyslexia and developmental language disorder. 322 

Such work could be very valuable regarding early detection and improved mechanistic understanding of 323 

these disorders. 324 
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In summary, this study demonstrated the emergence of phonetic encoding from 7 months of age using direct 325 

neural measurements during natural speech listening. The data provide clear-cut evidence of the emergence 326 

of phonetic categories that contributes to the current debate regarding their role in the development of  327 

speech processing.  Our demonstration that phonetic encoding can be assessed with nursery rhyme stimuli 328 

in ecologically-valid conditions opens the door to cross-language work using TRFs that investigates the 329 

interaction between characteristics of natural language such as phonological complexity and the 330 

development of phonetic encoding. It also provides opportunities for novel mechanistic investigations of the 331 

development of bi-lingual and multi-lingual lexicons during language acquisition.  332 

 333 

  334 
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Online Methods 335 

Subjects and experimental procedure 336 

The present study carried out a re-analysis of an EEG dataset involving a speech listening task in a longitudinal 337 

cohort of fifty infants (first part of a larger cohort of 122 subjects21). Participants were infants born full term 338 

(37-42 gestational weeks) and had no diagnosed developmental disorder, recruited from a medium sized city 339 

in the United Kingdom and surrounding areas via multiple means (e.g., flyers in hospitals, schools, and 340 

antenatal classes, research presentations at maternity classes, online advertising). The study was approved 341 

by the Psychology Research Ethics Committee of the University of Cambridge. Parents gave written informed 342 

consent after a detailed explanation of the study and families were repeatedly reminded that they could 343 

withdraw from the study at any point during the repeated appointment.  The experiment involved three EEG 344 

recording sessions when the infants (24 male and 26 female) were 4 months old (4mo; 115.6 ± 5.3 days), 7 345 

months old (7mo; 212.5 ± 7.2 days) and 11 months old (11mo; 333.0 ± 5.5 days) [mean ± standard deviation 346 

(SD)]. A bilingualism questionnaire (collected from 45 out of the 50 infants) ascertained that 38 of the infants 347 

were exposed to a monolingual environment and 12 were exposed multilingual environment, of these 93.5% 348 

(43 infants) reported English as the primary language exposed to the infant. Note that this was a longitudinal 349 

investigation, meaning that the same 50 infants were tested at 4, 7, and 11 months of age. In addition to the 350 

150 EEG sessions from the infant dataset, this study also analysed EEG data from twenty-two monolingual, 351 

English-speaking adult participants performing the same listening task (11 male, aged 18-30, mean age: 21). 352 

Data from four adult participant was excluded due to inconsistencies with the synchronisation triggers, 353 

leaving seventeen participants data for the analysis. 354 

Infant participants were seated in a highchair (one metre in front of their primary caregiver) in a sound-proof 355 

acoustic chamber, while adult participants were seated in a normal chair. All participants were seated 650mm 356 

away from the presentation screen. EEG data were recorded at a sampling rate of 1 kHz using a GES 300 357 

amplifier using a Geodesic Sensor Net (Electrical Geodesics Inc., Eugene, OR, United States). 64 and 128 358 

channels were used for infants and adults respectively. Sounds were presented at 60 dB from speakers placed 359 

either side of the screen (Q acoustics 2020i driven by a Cambridge Audio Topaz AM5 Stereo amplifier). 360 

Participants were presented with eighteen nursery rhyme videos played sequentially, each repeated 3 times 361 

(54 videos with a presentation time of 20’ 33’’ in total). Adult participants were asked to attend to the audio-362 

visual stimulus while minimising their motor movements. All adult participants completed the full 363 

experiment. Infants listened to at least two repetitions of each nursery rhyme (minimum of 36 nursery 364 

rhymes lasting 13’ 42’’). The experiment included other elements that were not relevant to the present study 365 

(e.g., resting state EEG; please refer to the previous papers on this dataset for further information21,26). 366 

 367 

Stimuli 368 

A selection of eighteen typical English language nursery rhymes was chosen as the stimuli. Audio-visual 369 

stimuli of a singing person (upper-body only) were recorded using a Canon XA20 video camera at 1080p, 370 

50fps and with audio at 4800 Hz. A native female speaker of British English used infant-directed speech to 371 

melodically sing (for example “Mary Quite Contrary”) or rhythmically chant (for nursery rhymes like “There 372 

was an old woman who lived in a shoe”) the nursery rhymes whilst listening to a 120 bpm metronome 373 
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through an intra-auricular headphone (e.g., allowing for 1Hz and 2Hz beat rates; see Figs. S2 and S4 from 374 

Attaheri et al.21). The metronome’s beat was not present on the stimulus audios and videos, but it ensured 375 

that a consistent rhythmic production was maintained throughout the 18 nursery rhymes. To ensure natural 376 

vocalisations, the nursery rhyme videos were recorded sung, or rhythmically chanted, live to an alert infant. 377 

 378 

Data preprocessing 379 

Analyses were conducted with MATLAB 2021a by using custom scripts developed starting from publicly 380 

available scripts shared by the CNSP initiative (Cognition and Natural Sensory Processing; 381 

https://cnspworkshop.net; see section Data and Code Availability for further details). 382 

In order to carry out the same preprocessing and analysis pipeline on infants and adult EEG data, the adult 383 

128-channel EEG data was transformed into a 64-channel dataset via spline interpolation, with the relative 384 

channel locations corresponding to those of the infant participants. All subsequent analyses on infants and 385 

adult were identical. 386 

The four facial electrodes (channels 61-64) were excluded from all analyses, as they are not part of the 387 

specific infant-sized EGI Geodesic sensor net. The EEG data from the remaining 60 channels was band-pass 388 

filtered between 1 and 15 Hz by means of zero-phase shift Butterworth filters with order 2 (by using the 389 

filtering functions in the CNSP resources). EEG signals were downsampled to 50 Hz. Next, Artifact Subspace 390 

Reconstruction (ASR; clean_asr function from EEGLAB68) was used to clean noise artifacts from the EEG 391 

signals. Channels with excessive noise (which could not be corrected with ASR) were identified via probability 392 

and kurtosis and were interpolated via spherical interpolation, if they were three standard deviations away 393 

from the mean. EEG signals were then re-referenced to the average of the two mastoid channels, which were 394 

then removed from the data, producing a preprocessed EEG dataset with 58 channels. Data from repeated 395 

trials was then averaged. Three infant subjects were removed because of excessive noise in at least one of 396 

their three recording sessions. 397 

 398 

Sung speech representations 399 

The present study involved the measurement of the coupling between EEG data and various properties of 400 

the sung speech stimuli. These properties were extracted from the stimulus data based on methodologies 401 

developed in previous research. First, we defined a set of descriptors summarising low-level acoustic 402 

properties of the speech stimuli. Acoustic features consisted of an 8-band acoustic spectrogram (S) and a 403 

half-way rectified broadband envelope derivative (D)33,60. S was obtained by filtering the sound waveform 404 

into eight frequency bands between 250 and 8 kHz that were logarithmically spaced according to the 405 

Greenwood equation69. The broadband envelope was calculated as the sum across the eight frequency bands 406 

of S. The D signal was then derived by calculating the derivative of the broadband envelope, and by half-way 407 

rectifying the resulting signal. Second, fourteen phonetic features were then selected to mark the categorical 408 

occurrence of speech sounds, according to articulatory features describing voicing, manner, and place of 409 

articulation70,71: voiced consonant, unvoiced consonant, plosive, fricative, nasal, strident, labial, coronal, 410 

dorsal, anterior, front, back, high, low. To account for possible differences in the encoding of stressed and 411 

unstressed sounds, each phonetic feature was assigned to two distinct vectors, leading to a 28-dimensional 412 

phonetic features matrix (F). The precise timing of the phonetic units was identified in three steps. First, 413 
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syllable and phoneme sequences were obtained from the transcripts of the nursery rhymes. Second, an initial 414 

alignment was derived by identifying the syllabic rate and syllable onsets for each piece, and then assigning 415 

the phonemes in a syllable starting from the corresponding onset time. This automatic alignment was stored 416 

according to the TextGrid format72. Third, the phoneme alignments were manually adjusted using Praat 417 

software72. Phonetic feature vectors were produced in MATLAB software to categorically mark the 418 

occurrence of phonetic units from start to finish with unit rectangular pulses27. Finally, a nuisance regressor 419 

was also included to capture EEG variance related with visual motion (V), which was derived as the frame-to-420 

frame luminance change, averaged across all pixels. 421 

 422 

Multivariate Temporal Response Function (mTRF) 423 

A single input event at time t0 affects the neural signals for a certain time window [t1, t1+twin], with t1 ≥ 0 and 424 

twin > 0. Temporal response functions (TRFs) describe this relationship at the level of individual subject and 425 

EEG channel. In this study, TRFs were estimated by means of a multivariate lagged regression, which 426 

determines the optimal linear transformation from stimulus features to EEG (forward model)13,73. A 427 

multivariate TRF model (mTRF) was fit for each subject by considering all features simultaneously (S, D, F, 428 

and V; Figure 1A) with the mTRF-Toolbox7,8. While a time-lag window of 0-400 ms was considered sufficient 429 

to largely capture the acoustic-phonetic/EEG relationship with a single-speaker listening task in adults, based 430 

on previous studies (e.g., Di Liberto et al.27), the relevant latencies in infants were unknown. To account for 431 

possible slower or delayed response in infants, a time-latency window of 100-500 ms (i.e., same duration but 432 

with longer latency) was also included in the analysis for all groups.  The reliability of the TRF models was 433 

assessed using a leave-one-out cross-validation procedure (across trials i.e., nursery rhymes), which 434 

quantified the EEG prediction correlation (Pearson's r) on unseen data while controlling for overfitting. The 435 

TRF model calculation included a Tikhonov regularization, which involves the tuning of a regularization 436 

parameter (λ) that was conducted by means of an exhaustive search of a logarithmic parameter space from 437 

0.01 to 106 on the training fold of each cross-validation iteration7,8. Note that the correlation values were 438 

calculated with the noisy EEG signal; therefore, the r-scores could be highly significant even though they have 439 

low absolute values (r ~ 0.1 for sensor-space low-frequency EEG27,30,60). 440 

 441 

Phonetic distance maps 442 

We sought to study the effect of development on phonetic perception by projecting the TRF weights 443 

corresponding with the phonetic features onto a space in which distance represents the perceptual 444 

separation between phonological units. The TRF weights for the phonetic features, which were represented 445 

in a 28-dimensional space, were projected to the phoneme space. To do so, the TRF for a given phoneme 446 

was calculated as the sum of the TRF weights of the corresponding features. This produced a 54-dimensional 447 

matrix: 27 stressed and 27 unstressed phonemes. The weights corresponding to the two versions of a 448 

phoneme (stressed and unstressed) were then combined when projecting to the phonetic feature map, 449 

obtaining a 27-dimensional space. Specifically, a classical multidimensional scaling (MDS) was used to project 450 

the phoneme TRF weights (phonemes were considered as objects and time latencies were considered as 451 

dimensions) onto a multidimensional space for each age group, in which distances represented the 452 

discriminability of particular phonetic contrasts in the EEG signal. The result for each infant group was then 453 

mapped to the average adult MDS space by means of a Procrustes analysis (MATLAB function procrustes). 454 

This analysis allowed us to project the infant phonetic feature maps for different proficiency levels to a 455 
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common multidimensional space where they could be compared quantitatively; we call these maps phonetic 456 

feature distance maps. Note that while this transformation does not assume nor imply categorical phonemic 457 

encoding, it indeed allows to quantify and visualise the encoding of phonetic features across age, by using 458 

familiar phonemic units. 459 

While Figure 3A shows the infant-adult distances in the MDS space, the effect of age on phonetic feature 460 

encoding was also quantified with a clustering analysis. Specifically, the randomised clustering algorithm k-461 

means was run on the MDS maps for each group to determine whether the phonetic feature groups could 462 

be deduced from the data without supervision. We performed 100 repetitions of k-means and a classification 463 

F-Score (or F1-Score) was calculated on each of them, obtained as the harmonic mean of precision and recall. 464 

We performed this procedure for the three feature sets of interest: a) the three-class feature-set with 465 

‘vowels’, ‘voiced consonants’, and ‘unvoiced consonants’; b) the three-class feature-set describing the place 466 

of articulation, with features ‘labial’, ‘coronal’, and ‘dorsal’; and c) the three-class feature-set describing the 467 

manner of articulation, with features ‘fricative’, ‘stop’, and ‘nasal’. Since all feature-sets were three-468 

dimensional, k had always value three. Note that k-means is an unsupervised clustering algorithm, meaning 469 

that there was no direct correspondence between the clusters and the classes of interest. As such, F-scores 470 

were selected for the best matching assignment of classes on each execution of k-means. A large F-score 471 

corresponded to a strong encoding of the feature-set of interest in the EEG data. 472 

 473 

Multiway Canonical Correlation Analysis (MCCA) 474 

EEG data is notorious for its low signal-to-noise ratio (SNR), which represent one of the core challenges when 475 

analysing this kind of data. One approach to improve the SNR is multiway canonical correlation analysis 476 

(MCCA), a tool that identifies EEG components that are most correlated across subjects. Under the 477 

assumption that a stimulus would produce consistent cortical responses across subjects in the same age-478 

group, MCCA identifies such consistent responses accepting that they may originate from distinct sources 479 

(i.e., distinct topographical patterns) for different subjects. MCCA is an extension of canonical correlation 480 

analysis74 to the case of multiple (> 2) subjects. Given N multichannel datasets Yi with size T x Ji, 1 ≤ i ≤ N (time 481 

x channels), MCCA finds a linear transform Wi (sizes Ji x J0, where J0 < min(Ji)1≤i≤N), which, when applied to the 482 

corresponding data matrices, aligns them to common coordinates and reveals shared patterns45. These 483 

patterns can be derived by summing the transformed data matrices as follows: ∑ 𝑌𝑖𝑊𝑖
𝑁
𝑖=1 . The columns of 484 

the matrix Y, which are mutually orthogonal, are referred to as summary components (SC). The first 485 

components are signals that most strongly reflect the shared information across the several input datasets, 486 

thus minimising subject-specific and channel-specific noise. Here, MCCA was run within each age group (4mo, 487 

7mo, 11mo, and adults). After fitting the MCCA mapping and projecting the data to the SC space, a given 488 

number of component was retained (e.g., only the first component) before performing the inverse mapping 489 

and obtain a denoised version of the EEG signal for each subject. This denoising procedure was repeated by 490 

retaining a progressive number of components (Figure 2B). 491 

 492 

Statistical analysis 493 

All statistical analyses directly comparing the groups were performed using a repeated measures ANOVA. 494 

One-sample Wilcoxon signed-rank tests were used for post hoc tests. Correction for multiple comparisons 495 

was applied where necessary via the false discovery rate (FDR) approach. In that case, the FDR adjusted p-496 
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value was reported. Descriptive statistics for the neurophysiology results are reported as a combination of 497 

mean and standard error (SE). 498 

 499 

Data and code availability 500 

Analyses were conducted by using custom MATLAB scripts developed starting from publicly available scripts 501 

shared by the CNSP initiative (Cognition and Natural Sensory Processing; https://cnspworkshop.net). Such 502 

analysis scripts avail of external publicly available libraries: the mTRF-Toolbox 503 

(https://github.com/mickcrosse/mTRF-Toolbox)8, EEGLAB68; and the NoiseTools library 504 

(http://audition.ens.fr/adc/NoiseTools)45. Data was converted to the CND data structure (Continuous-event 505 

Neural Data - https://cnspworkshop.net), allowing to carry out the analyses with the CNSP analysis scripts, 506 

which provided a platform for bringing together all the necessary libraries. We commit to publicly share the 507 

EEG data in the first half of 2023. Study data were collected and managed using REDCap (Research Electronic 508 

Data Capture) electronic data capture tools hosted at Cambridge university75,76. 509 
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