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Abstract

Boolean Dynamical Systems(BDS) are networks described by Boolean
variables. A new representations of BDS is presented in this arti-
cle by using modal non-monotonic logic (H). This approach allows
Boolean Networks to be represented by a set of modal formulas
and therefore can be used to describe and learn their properties. The
study of a BDS focuses in particular on the search of stable configura-
tions, limit cycles and unstable cycles, which help to characterize a large
type of Gene Networks. In this article is presented the identification of
stable configurations, limit cycles and unstable cycles by introduction
of a new concept, ghost extensions. Using ghost extensions, it is possi-
ble to translate BDSs in propositional calculus and consequently to use
SAT algorithms. SAT is very important because it is NP-Complete.

Keywords: Genetic Networks, Computational Systems Biology, Boolean
networks, Non-monotonic logic, Modal logic, Hypothesis logic, SAT algorithms
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2 Representation of Gene Regulation Network by Hypothesis Logic

1 Introduction

Biological systems can be represented by a set of interacting elements (genes,
proteins, enzymes, ...), whose states change over time. For genetic networks, the
knowledge is regularly incomplete, uncertain and sometimes contradictory. It
is therefore necessary to represent incomplete and revisable information. This
representation has been studied in Artificial Intelligence since the late 1970s,
especially by using non-monotonic logics and techniques derived from con-
straint programming. Default Logic DL [9, 29] and Answer Set Programming
ASP [23] have been used to study genetic networks [19, 43].

In these approaches, a set of genes is associated to a set of Boolean
functions, updated over discrete time and view as Boolean Dynamical Sys-
tems(BDS). In the case of Genetic Networks Modeling, expression of a gene
modulates other genes by activation/inhibition actions [2]. Gene Models based
BDS had been used to find out feedback circuits theorems [12, 25, 30–35, 44],
development biology [3, 11, 26], and physiology [8, 13, 24, 39].

The first formalism of BDSs as Logic Programs was introduced by Inoue

[18] using monotonic logic, which is a limitation from biological knowledge
representation viewpoint. In this article a formal links between Boolean
Dynamical Systems (BDSs) and a modal non-monotonic logic called hypoth-
esis logic (H) [38, 41] is presented. Using a set of H modal formulas, it
is possible to obtain a new knowledge representation for BDSs(interaction
graphs and asynchronous transition graphs) by a set of Kripke Models. BDS
analysis focuses on recognition of stable configurations (or fixed points)
and stable/unstable cycles/oscillations. An important result presented in
this paper is the proof that stable configurations and stable cycles are
represented by sets of extensions: one stable extension and a set of ghost exten-
sions. They are calculated using very simple and efficient SAT algorithms.
SAT is NP-Complete, therefore solve it instead of any other problem in NP

[28]. These algorithms allow to distinguish among stable/unstable states.

Moreover they can calculate all the states of BDS [18] . In our opinion it is

an important development regarding Boolean Network aspects with possible
applications to Gene Signaling Pathways.

This article is structured as follows: Section 2 reminds basic results about
non-monotonic logic. Section 3 gives the main definitions and notations related
to H. Section 4 gives tracks to use SAT algorithms. Section 5 gives a rep-
resentation of genetic networks into H. Section 6 gives the definitions on
BDS. Section 7 gives general fundamental results and applications in biol-
ogy. Section 8, present a syntax and a semantic representations of BDSs in
H. Section 9, gives the theorems which prove that the asynchronous asymp-
totic behaviors such as stable configurations and stable attractors, as well as
unstable attractors, are properly calculated.
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2 Non-monotonic logics and Default Logic

Protein-protein interactions and genetic interactions are a form of causality

in the sens of Artificial Intelligence [45]. Therefore, the modeling of these
systems could be made by logical inferences. Representing biological systems
using a logical formalism may seem valid. For example the interaction of an
entity i with j suggests a close relation with what is called in logic material
implication, denoted as Ñ. However, such a representation in monotonic logic
is not adapted because it drives often to inconsistencies. Monotonicity is a
property of inference rules that never prunes the set of conclusions with the
increasing of knowledge. Whereas this property is crucial in mathematics,
it is largely questionable regarding reasoning with incomplete or contradic-
tory information. A way to manage this is to deal with a non-monotonic
formalism, including DL or ASP, which is a more tractable restriction of
DL. Default Logic concerns standard formulas of first order logic, to which
contextual inference rules called defaults are added in order to deal with
revisable information. A default is a local inference rule d � A :B

C , whose
application specifically depends on the formulas A, B, C which compound it.
The intuitive meaning is: “If A holds, if B is coherent with what is known,
then C holds”. The fact that a default can be triggered or not depending on
the context further leads to a notion of extensions as max-consistent sets of
formulas with respect to the trigger of the defaults used to get it. The under-
lying reasoning is non-monotonic because adding here new information may
invalidate previously triggered defaults. A first remark is that some default
theories may have no extensions: this expresses a form of deep inconsistency
which renders computation more difficult. This possible lack of extensions
in DL has been fully studied in the context of hypothesis logic. As shown
in [38, 41], DL is a fragment of H. In the latter logic, theories always have
extensions among which some of them, called ghost extensions, have no coun-
terpart in DL. A second remark is that DL only computes stable extensions,
which can be a drawback for Biological Systems Analysis. here, the goal is
to represent the dynamics and in particular the cycles. These cycles may
represent real fundamental phenomena in living organisms such as the cell
cycle [7, 22], circadian cycle [1, 36], or the cardiorespiratory rhythm [14].

3 Hypothesis Logic

Hypothesis logic H is a bimodal logic [6] with two modal operators L and
rHs [38, 41]. If f is a formula, the intuitive meaning of Lf is f is proved/stated.
The dual H of rHs is defined as Hf �  rHs f . The intuitive meaning of
Hf is f is a hypothesis, and hence rHsf means  f is not a hypothesis. For
example, a default A :B

C can be interpreted/translated in H by the modal
formula LA^HB Ñ LC whose intuitive meaning is: If A is stated and B is a
valid hypothesis then C is stated. This modal formula can also give translations
of the Prolog clause and of the ASP rule: C :– A, not(B) .
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The formalism used in this article uses a restricted definition of the lan-
guage of H, sufficient to represent BNs and Boolean genetic networks. This
restriction also allows to translate H into propositional calculus and to use
SAT algorithms.

3.1 Syntax

The language of H, denoted by L pHq, is defined by the following inductive
rules:

1. Any formula of propositional calculus PC is in L pHq.
2. The set of atoms (or propositional variables) of L pHq is finite.
3. Whenever f and g are formulas of PC, Lf , rHsf , Hf ,  Lf ,  rHsf ,  Hf

are in L pHq too1.

And no other formulas are in L pHq than those formed by applying these
two rules. Operator L has the properties of the modal system T [6] and rHs
has those of the modal system K [6]. As a consequence, the inference rules
and axiom schemata of H are:

1. All inference rules and axiom schemata of first-order logic.
2. pNrHsq: $ fñ$ rHsf , the necessitation rule for rHs.
3. pNLq: $ fñ$ Lf , the necessitation rule for L.
4. pKrHsq: $ rHspf Ñ gq Ñ prHsf Ñ rHsgq, the distribution axiom schema for
rHs.

5. pKLq: $ Lpf Ñ gq Ñ pLf Ñ Lgq, the distribution axiom schema for L.
6. pTLq: $ Lf Ñ f , the reflexivity axiom schema for L.

Unlike L, the axiom of reflexivity does not hold for rHs. It is important to
remark that there are so far no connections between L and rHs. We force this
connection by adding the following link axiom schema:

pLIq: $  pLf ^H fq.
This very weak axiom is the basis of H. It means that it is impossible to

prove f and to assume the hypothesis  f at the same time. Note the following
equivalences:  pLf ^ H fq ô Lf Ñ  H f ô H f Ñ  Lf , where the
second formula means that if we prove f , we cannot assume the hypothesis  f
and the third formula means that if we assume the hypothesis  f , we cannot
prove f .

3.2 Semantics

Kripke semantics [21] is defined for normal modal logics (i.e., the logics which
contain at least axiom pKq). We remind here the bases needed for our devel-
opments. A Kripke structure is a digraph K � pW,Rq where the universe W
is a set tw1, . . . , wnu of worlds and the accessibility relation R � W �W is
a binary relation among worlds. When wj Rwk, wk is accessible from wj . A

1The full definition of H further states that any formula of first-order logic is in L pHq, and
that, whenever f and g are in L pHq,  f , pf ^ gq, pf _ gq, pf Ñ gq, are in L pHq too.
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Kripke model is obtained by assigning in every world a truth value to every
atom i. This makes possible to assign a truth value to all the formulas of PC.
A world is then mapped to a logical interpretation. Formulas other than those
of PC are assigned to worlds with the following condition: for all f , Lf is true
in a world wk if and only if f is true in all accessible worlds from wk. The
different axioms that hold in different modal logics depend on the properties
of the accessibility relations R. For the system K, R is any relation, while
reflexivity axiom pTLq holds if and only if R is reflexive.

As shown in [38], H has a Kripke semantics with two accessibility relations,
RrHs for rHs, RL for L. RrHs is the relation of system K and RL is the relation
of system T , hence reflexive. The relationship between the two relations, is
given by the extra constraint RL � RrHs which corresponds to the link axiom.
Proofs of completeness, correctness, and compactness for H are given in [38].

Remark. The axiomatic of H was defined to give an alternative minimum
of axioms. With the full definition of H, by adding axiom (4) $ Lf Ñ LLf .
But, in so LLf � Lf and this addition makes us lose the notion of dynamics
necessary for representing a BDS and thus of its underlying genetic network.
Indeed, to represent the dynamics we consider here that Lf represents an action
(for example the production of a represented by a Krypke world w. All the
accessible worlds from w are the following steps. and thus Lp by pTLq, in all
these accessible worlds, which, by induction would mean that p will be produced
all In a biological framework and for dynamical systems, this We encounter
the same type of problem when adding axiom (5)

3.3 Hypothesis theories and extensions

As defined above,H is a non-monotonic logic. In order to deal with the revisable
character of usual informations, for example of biological nature, a notion of
extension is added just as in DL. However, contrary to the latter, three kinds
of extensions are considered here, namely stable extensions, ghost extensions
and sub-extensions.

Definition 1 Given H:
 A hypothesis theory is a pair T = {HY, F}, where HY is a set of hypotheses and F
is a set of formulas of H.
 An extension E of T is a set E � ThpFYHY1q, such that HY1 is a maximal subset
of HY consistent with F.
 A sub-extension E of T is a set E � ThpFYHY1q, such that HY1 is a non-maximal
subset of HY consistent with F.
 E is a stable extension if it is an extension that satisfies the coherence property :

@Hf,  Hf P E ùñ L f P E.
Thanks to the link axiom schema, we hence get: @f, L f P E ðñ  Hf P E.
 E is a ghost extension if it is an extension that satisfies: DHf,  Hf P E and L f R
E.
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Thus, an extension is obtained by adding any of the largest consistent
sets of hypotheses to F while remaining consistent. Intuitively, E is stable if
whenever it is forbidden to assume the hypothesis f ,  f is proved. It is a ghost
extension otherwise. Stable extensions correspond to the standard extensions
of DL. Ghost extensions do not have any correspondence in DL nor in ASP.
In [38, 41] it is proved that if F is consistent then T � tHY,Fu has at least
one extension, and that a default theory ∆ can be translated into a hypothesis
theory T p∆q such that the set of standard extensions of ∆ is isomorphic to
the set of stable extensions of T p∆q.

The following definitions will help to characterize the stable configurations
and the cycles of BDSs.

Definition 2 Let E be an extension.
 E is complete if, for all i P V , Hi P E or H i P E.
 An i P V is free in E if Li R E and L i R E. It is fixed otherwise.
 The degree of freedom of E, denoted by degreepEq, is the number of free atoms

that compose it.
 If the extension E � ThpFpGq Y tHyku, the mirror of E, denoted by mirpEq,

is the set ThpFpGq Y tH yku).

4 Propositional algorithm

This section gives tracks to translate H into propositional calculus (PC) and
to use SAT algorithms. Modal logics can be translated into first order logic by
Skolemization methods. Then it is possible to use theorem provers based on the
unification algorithm and the resolution principle. For example, it is possible
to translate the modal operator L by a function fL of first order logic. But,
by nesting the modalities, LL...p is translated by fLpfLp...ppqq. The Herbrand
universe (the set of ground formulas) is then infinite and therefore, the use of
SAT algorithms is not appropriate.

On the contrary, with the restricted definition of H used here, there is no
nesting of modalities (no LLf , HLf , ...). So, all modal formulas are of the form
Lf , where f is a PC formula. If the set of propositional variables (atoms) is
finite, we can then consider that the Herbrand universe is finite which opens
the way for using SAT algorithms.

Let us recall some definitions of PC. A literal is an atom a, or the negation
of an atom  a. A disjunctive clause (DC) is a disjunction of literals and, a
conjunctive clause (CC) is a conjunction of literals. A conjunctive normal form
formula (CNF formula) is a conjunction of one or more DCs. A disjunctive
normal form formula (DNF formula) is a disjunction of one or more CCs.
Every PC formula can be converted into an equivalent CNF formula and, also
into an equivalent DNF formula.

Remember that for H, the modal formulas are of the form Lp, Hp, or rHsp,
where p is a PC formula. In the following a modal formula is elementary if p
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is a literal. Let F be a set a formulas of H. We translate F into a set of PC
formulas. This translation is done in the following way:

Translation:
1) Any modal formula Lp of F is translated into Lp1 � Lpc1 ^ ...^ cnq, where
p1 is the CNF of p. All ci are therefore disjunctive clauses.

2) Any modal formula Hq of F is translated into Hq1 � Hpd1_ ..._ dmq where
q1 is the DNF of q. All di are therefore conjunctive clauses.

3) The axiomatics of normal modal logics allows us to prove that:
 Lpp1 ^ ...^ pnq � pLp1 ^ ...^ Lpnq.
 Hpq1 _ ..._ qnq � pHq1 _ ..._Hqnq
We can therefore replace any formula Lpp1^ ...^pnq by a set tLp1, ..., Lpnu

of disjunctive clauses and, any formula Hpp1^ ...^ pnq by a set tHq1, ...,Hqnu
of conjonctive clauses.

5) We can then use a renaming which consists in replacing a PC formula by a
new atom logically equivalent:

Any Lpi (resp. Hqjq, such that pi (resp. qj ) is not a literal, is replaced by
a couple tLx, x � piu (resp. by tHy, y � qju.

So F is replaced by a set of propositional formulas and elementary modal
formulas. Note that it is also possible to translate each of these propositional
formulas in its CNF form. ie a finite set of disjonctive clauses.

6) It remains to translate the set of elementary modal formulas into PC. This
can be done by renaming each of these formulas by a new atom.

This translation is not enough for obtaining a SAT algorithm, because the
axiomatic of H is not given. It remains to translate it into PC:

- The reflexivity axiom of L : Lf Ñ f
- The link axiom:  pLf ^H qf
- The distribution axiom for L: $ Lpf Ñ gq Ñ pLf Ñ Lgq,
- The distribution axiom for rHs : $ rHsf Ñ gq Ñ prHsf Ñ rHsgq.

Since the set of CNF if is finite, each of these axioms can be translated
into a set of modal propositional formulas where f and g take as values all the
formulas of this set. Then we rename all the CNF formulas by new equivalent
propositions. All modal formulas are then elementary, and it is possible to
represent each of them by an atom.

If T � tHY,Fu is an hypothesis theory, the computation of all the exten-
sions of T is done by adding to the translation of F each translated subset
of HY, and keeping only those among them that are the maximals consistent
ones with F. This can be done by using a SAT algorithm. This solution exists,
but it is, of course, not interesting because of the size of the translations.

Another possible solution would be to consider that each modality is a
predicate of first order logic, and that axioms are first order formulas. For
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example the link axiom Lf Ñ  H f is translated by Lpfq Ñ  Hp fq,
L and H being predicates. This translation is possible because there is no
modality nesting ; moreover, the translation does not contain any functions.
These formulas could be considered as global constraints which are used by
the SAT algorithm when needed.

5 Representing genetic networks into H
A genetic network represents interactions among genes or proteins in cell [3,
10, 11, 17, 20, 27]. From now on, let us consider that the entity at stake are
proteins. In a context of modeling, a protein is classically represented by an
integer i P t1, . . . , nu. Its concentration is denoted by xi. In such networks,
given a protein i, a set of interactions (or influences) from a set of proteins
toward i describes in which conditions the concentration of i evolves. In the
most general case, a concentration xi is a real number, difficult to measure.
Here, we study the particular case where the concentrations xi are in t0, 1u,
which is legitimate for genetic networks [19].

Genetic networks can be studied with the formalism of BNs and their
underlying BDSs, defined in the following section. Here, in order to introduce
our representation, it is sufficient to know that, for a BDS, the concentration
xi � 1 (resp. xi � 0) denotes the presence (resp. the absence) of protein i in
the cell. To lighten the notations, we will identify a numbered Boolean variable
xi directly with i.

One of the interests of hypothesis logic is that this bi-modal logic enables us
to use three kinds of information: i, Li and Hi. Hence, by combining modalities
with negations, we can use ti,Hi,H i,Li,L iu. Remark that in H, we have:
Li �  L i,  Li � L i, Hi �  H i and  Hi � H i. This increasing of
expressiveness allows for a more precise representation of biological networks.
Let us consider the genetic network of a cell, and i ones of its protein. We can
then give the meanings of L and H in the context of genetic networks.
 i means that the protein i is present in the cell and  i that it is absent.
 Li means that i is produced by the cell (i is being activated) and  Li

means that i is not produced (i is not being activated).
 L i means that i is destroyed by the cell (i is being inhibited) and  L i

means that i is not destroyed (i is not being inhibited).
 Hi (resp.  Hi) means that the cell gives (resp. does not give) the permis-

sion to attempt to produce i. In other words, the cell has (resp. has not) the
ability to activate i.
 H i (resp.  H i) means that the cell gives (resp. does not give) the

permission to attempt to destroy i. In other words, the cell has (resp. has not)
the ability to inhibit i.

Regarding the use of H in this context, the role of an extension appears to
gather a maximum of consistent permissions. Note that even if Hi stands for
the cell giving permission to attempt the production of i, this production is not
mandatory. It can be carried out or not, according to the context (i.e., the set
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of all interactions in the cell). Similarly H i gives the authorization to destroy
i. It is important to note that Li and L i are actually actions (production
or destruction of a protein). So there is a difference between L i which says
that i is destroyed, and  Li which says that i is not produced, and hence is
weaker. There is a similar distinction between H i and  Hi (and between Li
and  L i; and between Hi and  H i).

Remark. For a cell, the production/destruction occurs practically at time
t. This temporal notion could call for the use of temporal logics [3]. In our
approach, using H, it is not necessary to use a specific modality for representing
time, since it is implicitly included in the axiomatics of H, via the accessibility
relation of Krypke semantics. As such, H is adapted to the representation of
the dynamics of change. In other words, H allows to formalize time, without
having to add an additional level of representation.

The proposition below gives some general properties of H, particularly
adequate for the modeling of the different states of proteins in a cell.

Proposition 1 Given i a protein, the following results hold in H:
(1) Li Ñ i and L i Ñ  i ( i.e., if i is produced (resp. destroyed), then i is present
(resp. absent)).
(2)  pLi^H iq and  pL i^Hiq (It is impossible to produce (resp. destroy) i and
to give the permission to destroy (resp. produce) i it at the same time).
(3)  pLi^ L iq (It is impossible to produce and destroy i at the same time).

Proof PC and axioms of H are all what is needed.
(1) LiÑ i and L iÑ  i are instances of axiom pTq.
(2)  pLi^H iq and  pL i^Hiq are instances of the linking axiom pLIq.
(3) Li Ñ i and L i Ñ  i are two instances of (1). In PC we have pLi Ñ

iq Ñ p Li _ iq and pL i Ñ  iq Ñ p L i _  iq. Therefore we obtain  Li _ i and
 L i_ i from which we derive, by resolution,  Li_ L iÑ  pLi^ L iq. ■

6 Boolean dynamical systems

A finite BDS describes an evolution of the interactions in a BN of a set V �
t1, ..., nu of n entities numbered from 1 to n, over discrete time. A configuration
x � px1, ..., xnq of the network is an assignment of a truth value xi P t0, 1u
to each element i of V . The set of all configurations (i.e., all interpretations
on the logic side), called the configuration space, is denoted by X � t0, 1un.
A dynamics of such a network is modeled via both a function f , called the
transition function, and an updating mode µ that defines how the elements
of V are updated over time. More formally, f : X Ñ X is such that x �
px1, ..., xnq ÞÑ fpxq � pf1pxq, ..., fnpxqq, where each function fi : X Ñ t0, 1u is
a local transition function that gives the evolution of i over time.
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There is an uncountable number of updating modes2. Among them, the
parallel and the fully asynchronous ones remain the most used [19, 43]. The
parallel updating mode is such that all the entities of the network are updated
at each time step. Conversely, the fully asynchronous updating mode is a non-
deterministic variation in which only one entity is updated at a time. In the
sequel, we restrict our study to fully asynchronous dynamics [30, 33] which we
will abbreviate by asynchronous dynamics for the sake of simplicity.

6.1 Asynchronous transition graphs

Let X � t0, 1un be a configuration space and f : X Ñ X a function that
defines a BN. The asynchronous dynamics of f is given by its asynchronous
transition graph (ATG) G pfq � pX,T pfqq, a digraph whose vertex set is the
configuration space and arc set is the set of effective asynchronous transitions
such that:

T pfq � tpx, yq P X2 | Di P V, x � px1, . . . , xi, . . . , xnq,

y � px1, . . . , xi�1, fipxq, xi�1, . . . , xnq, x � yu.

Therefore, if px, yq P T pfq, x and y differ exactly by one element; the
transition is unitary.

Remark. By definition, we relate a unique ATG G pfq to a given Moreover, by
construction of ATGs, G pfq � G pgq and g are equivalent ( i.e., fpxq � gpxq for
every x), f and g have the same truth tables. A function, its truth tables and
its ATG are therefore distinct the same object, the asynchronous dynamical
system.

An orbit in G pfq is a sequence of configurations px0, x1, x2, . . . q such that
either pxt, xt�1q P T pfq or xt�1 � xt if xt � fpxtq (i.e., xt has no successors).
A cycle of length r is a sequence of configurations px1, . . . , xr, x1q with r ¥ 2
whose configurations x1, . . . , xr are all different. From this, we derive what is
classically called an asynchronous attractor in dynamical systems. An attrac-
tor is terminal strongly connected component (SCC) of G pfq, i.e., a SCC with
no outward transitions. Among attractors, we distinguish stable configurations
from stable cycles. A stable configuration is a trivial attractor, i.e., a config-
uration x such that @i P V, xi � fipxq, which implies that x � fpxq. A stable
cycle is a cyclic attractor such that, in G pfq, @t   r, xt�1 is the unique succes-
sor of xt and x1 is the unique successor of xr. If an attractor is neither trivial
nor cyclic, it is called a stable oscillation. When it is possible to get out from
a non trivial SCC, this SCC is called an unstable cycle or an unstable oscilla-
tion depending on whether it is cyclic or not. An orbit that reaches a stable
configuration stays there endlessly. Similarly, when it reaches a stable cycle

2Uncountable because we can apply the Cantor’s diagonal argument on the set of deterministic
updating modes which are basically defined as infinite sequences of subsets of nodes of the network.
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¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

¬1,¬2,¬3

¬1,¬2, 3

¬1, 2,¬3

¬1, 2, 3

1,¬2,¬3

1,¬2, 3

1, 2,¬3

1, 2, 3

1 2 3 f1 f2 f3 degree

0 0 0 1 1 0 2
0 0 1 1 0 0 2
0 1 0 0 1 0 0
0 1 1 0 0 0 2
1 0 0 1 1 1 2
1 0 1 1 0 1 0
1 1 0 0 1 1 2
1 1 1 0 0 1 2

1 2 3 g1 g2 g3 degree

0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 1 0 1 0 1 3
0 1 1 0 0 1 1
1 0 0 1 1 0 1
1 0 1 0 1 0 3
1 1 0 1 1 1 1
1 1 1 0 1 1 1

Fig. 1 ATGs and truth tables with degree of freedom, of functions (left) f , and
(right) g presented in Example 1.

or a stable oscillation, it adopts endlessly a stable oscillating behavior. Notice
that in the figures of this article, unless otherwise clearly specified recurring
configurations, i.e., configurations belonging to an attractor, are pictured in
gray , and cycles are represented by bold transitions. Moreover, notice that the
main difference between a stable cycle and an unstable one is that the first one
represents a single orbit while the second one represents an infinity of orbits.

Example 1 Boolean positive and negative circuits of size 3:
Consider V � t1, 2, 3u, x P t0, 1u3 and two functions/BNs f and g such

that fpx1, x2, x3q � pf1pxq, pf2qpxq, f3pxqq � p x2, x3, x1q and gpx1, x2, x3q �
pg1pxq, pg2qpxq, g3pxqq � p x3, x1, x2q. From the definitions of f and g, it is possible
to derive their related truth tables and ATGs, G pfq and G pgq, pictured in Figure 1.

For these figures, the 8 rectangles are the vertices of the graph that represent

the 23 possible assignments of V � p1, 2, 3q. A transition between 2 vertices cor-
responds to an arrow in these pictures. As the transition graph is asynchronous
for each transition/arrow px, yq, x differs from y by a single component. Therefore,
there are up to 3 transitions leaving each configuration.

Here, G pfq has two symmetric stable configurations, p 1, 2, 3q and p1, 2, 3q.
These configurations are stable because no arrow comes out. The other six configu-
rations induce a cycle, shown by the bold arrows. This cycle is unstable because it
is possible to leave it, for example at vertex p 1, 2, 3q.

G pgq has a cycle of length 6, shown in bold. This cycle is stable because it does
not have any outward transition.



Springer Nature 2021 LATEX template

12 Representation of Gene Regulation Network by Hypothesis Logic

We will prove in Section 8 that the two stable configurations of G pfq correspond
to two stable extensions of H, and that the stable cycle of G pgq corresponds to a set
of 6 ghost extensions of degree 1.

The functions f and g can also be represented by elementary circuits, pictured
in Figure 5. These ones are special cases of interaction graphs, defined below.

¬1,¬2

¬1, 2

1,¬2

1, 2

¬1,¬2

¬1, 2

1,¬2

1, 2

1 2 h1 h2 degree

0 0 1 0 1
0 1 1 1 1
1 0 0 1 2
1 1 1 1 0

1 2 k1 k2 degree

0 0 0 0 0
0 1 1 0 2
1 0 0 0 1
1 1 1 0 1

Fig. 2 ATG and truth table with degree of freedom of functions (left) h and (right)
k presented in Example 2 and 3.

Remark. In order to draw the ATG of function f , the easiest way is to

use its truth table. For a line l � px1, ..xn, f1pxq, ...fnpxqq of the table,
px1, .., xnq is a vertex of the ATG and pf1pxq, ...fnpxqq will allow to draw the
arcs starting from this vertex: for any xi of l such that xi � fipxq then the
picture contains an arc that goes from the node px1, . . . , xi�1, xi, xi�1, . . . , xnq
to the node px1, . . . , xi�1, fipxq, xi�1, . . . , xnq.

Example 2 Consider the function hpx1, x2q � p x1_x2, x1_x2q pictured in Figure 2.
This ATG has a stable state p1, 2q and an unstable cycle tp 1, 2q, p 1, 2qu. There
is an infinity of possible orbits because one can follow the unstable cycle indefinitely,
before attending randomly p1, 2q and stabilizing in p1, 2q.

Example 3 Consider the function kpx1, x2q � px2, x1 ^  x1 ^ x2q, pictured in
Figure 2. This ATG has a stable state t 1, 2u and no cycles.

Example 4 (Boolean positive circuit of size 4) Consider the BDS of function
f2px1, x2, x3, x4q � p x4, x1, x2, x3q, pictured in Figure. 3. This BDS admits two
stable configurations p1, 2 3, 4q and p 1, 2, 3, 4q pictured in gray, and an unstable
oscillation, whose arcs are pictured in bold gray.
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Example 5 (Boolean negative circuit of size 4) Consider the BDS of function
g2px1, x2, x3, x4q � p x4, x1, x2, x3q, pictured in Figure 4. This BDS admits one sta-
ble cycle of length 8, whose arcs are pictured in bold and one unstable cycle of length
8, whose arcs are pictured in bold gray.

 1, 2, 3, 4

 1, 2, 3,4

 1, 2,3, 4

 1, 2,3,4

 1,2, 3, 4

 1,2, 3,4

 1,2,3, 4

 1,2,3,4

1, 2, 3, 4

1, 2, 3,4

1, 2,3, 4

1, 2,3,4

1,2, 3, 4

1,2, 3,4

1,2,3, 4

1,2,3,4

Fig. 3 ATG of the Boolean positive circuit of size 4 presented in Example 4.

 1, 2, 3, 4

 1, 2, 3,4

 1, 2,3, 4

 1, 2,3,4

 1,2, 3, 4

 1,2, 3,4

 1,2,3, 4

 1,2,3,4

1, 2, 3, 4

1, 2, 3,4

1, 2,3, 4

1, 2,3,4

1,2, 3, 4

1,2, 3,4

1,2,3,4

1,2,3,4

Fig. 4 ATG of the Boolean negative circuit of size 4 presented in Example 5.

6.2 Interaction graphs and circuits

An ATG is a very precise tool for studying the behavior of a function, but its
size is exponential depending on the number of entities. Regarding practical
applications, the information is often represented by more compact and more
readable graphs of a different type, namely interaction graphs (IGs). This may
be particularly the case for some biological data, which come from experiments
that generally simply yield correlations among gene expressions.
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1

2

3

`

´

´

1

2

3`

`

´

Fig. 5 (left) The IG (a positive circuit) associated with ATG G pfq and (right) the IG (a
negative circuit) associated with ATG G pgq, introduced in Example 1.

An IG is a signed digraph G � pV, Iq, where V � t1, . . . , nu is the vertex
set corresponding to the so called entities, and I � V �S�V , with S � t�,�u
is the arc set corresponding to the so called interactions. An arc pi,�, jq (resp.
pi,�, jq) is said to be positive (resp. negative). From a dynamical point of view,
the presence of an arc pi, s, jq in an IG means that the value of i affects the
value of j, positively or negatively according to s: we say that i regulates j.

A circuit C � tpi1, sp1,2q, i2q, . . . , pik, spk,1q, i1qu of size k is elementary if
all the is that compose it are distinct. A circuit is positive (resp. negative) if
it contains an even (resp. an odd) number of negative arcs.

Consider the toy example where j has only one incoming arc from i. In
this case, the effect of the regulation is obvious: if the arc is positive (resp.
negative), j will take the value (resp. the opposite value) of i after one update.
Remark that elementary circuits are regulated this way.

More generally, consider an IG that contains an arc pi, s, iq, i.e., a loop on
i. If s � � (resp. s � �), this arc makes i tend to maintain (resp. negate) its
state. It depends of course on whether i admits other in-neighbors than itself
or not, and on the positive or negative influence of these eventual neighbors.
In the case that i admits no other in-neighbors, it is trivial that i endlessly
maintains its state if s � �, and negate it if s � �.

As mentioned above, an IG G � pV, Iq represents the existence of the
interactions involved between the entities of V . Specifying the nature of these
interactions, and the conditions under which they occur effectively, leads to
relate G to a function f which define a BN. Then, G is the IG of f and is
then denoted by Gpfq � pV, Ipfqq. This is done by assigning a local tran-
sition function fi to every i P V so that @j P V, Dx P t0, 1un, fipxq �
fipx

jq ðñ pj, s P t�,�u, iq P Ipfq, where given x � px1, . . . , xnq,
x j � px1, . . . , xj�1, xj , xj�1, . . . , xnq. More precisely, by denoting the set
of the variables of two configurations x and y having a different value by
∆px, yq � ti P V | xi � yiu, Gpfq � pV, Ipfqq is such that:

� pi,�, jq P If if and only if there exist x, y P t0, 1un with ∆px, yq � tiu and
xi � 0 such that fjpxq � 0 and fjpyq � 1;
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� pi,�, jq P If if and only if there exist x, y P t0, 1un with ∆px, yq � tiu and
xi � 0 such that fjpxq � 1 and fjpyq � 0.

This specification induces the minimality of Gpfq because each arc
represents an effective interaction.

Example 6 Figure 5 pictures the IGs associated with the ATGs of the BDSs defined
from f and g in Example 1. For these case of elementary circuits, a positive arc
ti,�, ju says that j takes the value of i and a negative arc ti,�, ju says that j takes
the value of  i. Consider the positive circuit associated with f by following the
directions of its arcs:

� Starting from x1 � 1 , we get the infinite sequence: p1, 3, 2, 1, 3, 2, . . . q.
� Starting from x1 � 0, we get the infinite sequence: p 1, 3, 2, 1, 3, 2, . . . q.

The first (resp. second) dynamical behavior highlights the stable configurations
1, 2, 3 (resp.  1, 2, 3) of f .

Consider the negative circuit associated with g:

� Starting from x1 � 1 we get the infinite sequence
p 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . q.

� Starting from x1 � 0, we get the infinite sequence
p1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . q.

In both cases, the observed dynamical behavior highlights the stable cycle of g.

1 2

34

`

´

`

´

1 2

34

`

`

`

´

Fig. 6 (left) IG of f2 (Example 4) ; (right) IG of g2 (Example 5).
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 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1 2 3 l11 l12 l13 ext. deg

0 0 0 1 0 1 E1 2

0 0 1 1 0 1 E2 1

0 1 0 0 0 1 E3 2

0 1 1 1 0 1 E4 2

1 0 0 1 1 0 E5 1

1 0 1 1 1 0 E6 2

1 1 0 0 1 0 E7 1

1 1 1 1 1 0 E8 1

1 2 3 l21 l22 l23 ext. deg

0 0 0 0 0 1 E1 1

0 0 1 1 0 1 E2 1

0 1 0 0 0 1 E3 2

0 1 1 0 0 1 E4 1

1 0 0 0 1 0 E5 2

1 0 1 1 1 0 E6 2

1 1 0 0 1 0 E7 1

1 1 1 0 1 0 E8 2

Fig. 7 (left) ATG and truth tables of function l1, and (right) of function l2, presented in
Example 10 and Example 11. The gray rectangles are representing extensions of degree 1
(left) and stable configurations (right).

7 General fundamental results and applications
in biology

By considering that BNs and their associated BDSs are good candidates
for qualitatively modeling genetic networks (since established by the seminal
papers [19, 43]), the presence of several attractors in their dynamical behaviors
allows to model the cellular specialization. Indeed, if a genetic network con-
trols a phenomenon of specialization, the cell will specialize (i.e., will acquire
a particular phenotype or a specific physiological function) according to the
attractor toward which its underlying BDS evolves. A classical example of
direct biological applications is the immunity control in bacteriophage λ, for
which both lytic and lysogenic cycles of λ have been modeled in [42]. Another
more tricky applications of BDSs in molecular systems biology concerns the
floral morphogenesis of the plant Arabidopsis thaliana [26, 27]. Its dynami-
cal behavior admits notably four stable configurations that correspond to the
genetic expression patterns of the floral tissues, sepals, petal, stamens and
carpels.

This model has also allowed to formally explain the role of the hormone
gibberellin on the floral development [11]. These works and the numerous other
ones using BDSs or more general discrete dynamical systems (DDSs) empha-
sized the essential role of studies aiming at understanding the formal relations
between interaction graphs and transition graphs and their respective prop-
erties. They also clearly underlined the essential role of circuits, nowadays
known as the behavioral complexity engines in dynamical systems. This comes
in particular from Robert who established that, if the IG Gpfq of a DDS f is
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acyclic, then f converges towards a unique stable configuration [34, 35]. More-
over, in [44], basing himself on asynchronous DDS, Thomas conjectured that
Gpfq of an asynchronous DDS f must contain a positive (resp. negative) cir-
cuit, for the latter to admit several stable configurations (resp. a non-trivial
attractor such as a stable cycle or a stable oscillation). These two conjectures
were proved to be true [30–33].

Furthermore, in [30], the authors showed that an asynchronous positive
(resp. negative) circuit of size n admits two attractors (resp. one attractor),
namely two stable configurations x and its dual x (resp. a stable cycle of length
2n). Generalizations of this work to more complete combinations of circuits
have been formally addressed in [25]. In [40], we obtained these results via the
translation of BDSs into H.

8 Representing BDS into H
In [40], we studied the translation of positive and negative circuits into H.
This first step plays en essential role in cell regulation. But that approach
left formulas of the type pHi ^ Hjq Ñ Lk out of reach. Such formulas are
essential to represent the binding of the regulatory region of a gene. In the
sequel, the presented translation could be extended to any asynchronous BDS.
This translation does not use nesting of modalities and therefore the SAT
algorithms can be used.

8.1 Syntax representation of BDS

Let’s recall that an asynchronous BDS is characterized by a function/ATG
f : X Ñ X such that x � px1, . . . , xnq ÞÑ fpxq � pf1pxq, . . . , fnpxqq, where
each function fi : X Ñ t0, 1u is a local transition function. Also, remember
that we consider that each xi is an atom i, that the assignment xi is a Boolean
value i or  i, and therefore that each fi is a Boolean formula.

Definition 3
 The translation of a local transition function fi into H is given by a set TRpfiq

containing two formulas: TRpfiq � tHfipxq Ñ Li, Hfip xq Ñ L iu.
 The translation of f : X Ñ X of a BDS in H is the union of translations TRpfiq

for all i P t1, ..., nu such that TRpfq =
�n

i�1 TRpfipxqq.

From the correspondence given before (6.1), this translation is equivalently
the translation obtained for G pfq and the truth tables of f .

Example 7 Consider V � t1, 2, 3u, X � t0, 1u3 and the function f of Example 1,
defined as x � px1, x2, x3q and fpxq � pf1pxq, f2pxq, f3pxqq � p x2, x3, x1q whose
ATG of is pictured in Figure 1. The functions f1, f2 and f3 are translated into H by;
TRpf1q=tH2 Ñ L 1,H 2 Ñ L1u, TRpf2q=tH3 Ñ L 2,H 3 Ñ L2u, TRpf3q=
tH1Ñ L3,H 1 L3u.
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Therefore we obtain the following global translation:
TRpfq � tH2 Ñ L 1,H 2 Ñ L1,H3 Ñ L 2,H 3 Ñ L2,H1 Ñ L3,H 1 Ñ  L3u
that admits two stable extensions E1 � ThpTRpfq Y tH1,H 2,H3quq and E2 �
ThpTRpfqYtH 1,H2,H 3quq. This is shown by attempting to add to FpGpfqq each
subset of HYpGpfqq and keeping only those among them that are the maximals ones
consistent with FpGpfqq. This can be done using a SAT solver.

When developing these extensions, we see that they are equivalent to their
simplified forms:

 E1 � tH 1,H2,H 3,L1,L 2,L3, H1, H 2,  H3, L 1, L2, L 3u
 E2 � tH1,H 2,H3,L 1,L2,L 3, H 1, H2,  H 3, L1, L 2, L3u.
In order to ease the reading and abusing notations, from now on in the text and

in the figures, the extensions will contain only the Li and L i that are true. So, here,
E1 � tL1,L 2,L3u and E2 � tL 1,L2,L 3u. We can check that E1 and E2 are
stable extensions (because for all i,  Hi P E1 (resp. E2) ùñ L i P E1 (resp. E2),
and that E2 is the mirror of E1. These stables extensions correspond to the two
fixed points of f .

Example 8 Consider function gpx1, x2, x3q � p x3, x1, x2q of Example 1. The trans-
lation in H leads to the following set of formulas: FpGpgqq � tH1 Ñ L2,H2 Ñ
L3,H3Ñ L 1,H 1Ñ L 2,H 2Ñ L 3,H 3Ñ L1u.

We obtain the following 6 equivalent ghost extensions: E1 � tL2,L3u, E2 �
tL 1,L3u, E3 � tL 1,L 2u, E4 � tL 2,L 3u, E5 � tL1,L 3u, E6 � tL1,L2u.

 E1, ..., E6 are extensions because they are consistent and it is impossible to
add a hypothesis while remaining consistent. They are ghost extensions because in
each of them there is a  Hi (resp.  H iq without L i (resp. Li).

 These extensions are of degree 1.
 In [40], we proved that there exists a permutation on the is that allows us to

pass from E1 to E2, ..., E6 to E1. This permutation of 6 ghost extensions represents
the stable cycle of g.

Moreover, there are also two sub-extensions, E7 � t1, 2, 3u and E8 �
t 1, 2, 3u that contain neither Li nor L i. Hence all the is are free and their degree
is 3. These extensions correspond to the configuration of g, of indegree 0 of the
underlying BDS. They represent the Garden of Eden of g.

Example 9 Consider function k, such that kpx1, x2q � px2, x1 ^  x1 ^ x2q, whose
ATG is pictured in Figure 2 right. Function k1 is translated into H by the couple
TRpk1q � tH2 Ñ L 1,H 2 Ñ L1u and function k2 is translated by TRpk2q �
tHp1^ 1^ 2q Ñ L2q,H p1^ 1^ 2q Ñ L 2u. Since  p1^ 1^ 2q �  1_ 1_ 2,
we finally obtain the following global translation into H for k: TRpkq � tH2 Ñ
L 1,H 2Ñ L1,Hp1^ 1^ 2q Ñ L2q,Hp 1_ 1_ 2q Ñ L 2qu, which admits thee
extensions:

 A stable extension E1 � ThpTRpkq Y tH 1,H 2uq � tL 1,L 2u;
 Two ghost extensions of degree 1: E2 � ThpTRpkqYtH1,H 1uq � tL 2u, and

E3 � ThpTRpkq Y tH2uq � tL1u.
3

3Function k may appear naive, because x1 ^  x1 ^ x2 � K (J is the logic formula True
and K is False), which gives an equivalent translation TRphq � tH2 Ñ L 1,H 2 Ñ L1,HK Ñ
L2,HJ Ñ L 2u. However, one of the aims of this study is also to show that we can deal with
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The following examples are interesting because they get out of simple
cycles.

Example 10 Consider function l1px1, x2, x3q � p x2 _ x3, x1, x1q whose ATG is
represented by the Figure 7 (left) and IG by Figure 8 (left). The translation of l2 is
TRpf1q �

tHp 2_ 3q Ñ L1,Hp2^ 3q Ñ L 1,
H1Ñ L2,H 1Ñ L 2,
H1Ñ L 3u,H 1Ñ L3u.

We obtain 4 ghost extensions of degree 1:
E1 � tL 2,L3u, E2 � tL1,L 3u, E4 � tL2,L 3u, E7 � tL1,L2u.

and 4 sub-extensions of degree 2:
E3 � tL 2u, E4 � tL 1u, E5 � tL3u, E8 � tL1u
In Figure 7 (left), the extensions of degree 1, correspond to the gray configura-

tions. We notice that there is no stable cycle.

Example 11 Consider function l2px1, x2, x3q � px2 ^ x3, x1, x1q. Its ATG is rep-
resented by the Figure 7 (right) and its IG by Figure 8 (right). The translation of l2
is TRpf1q �

tHp2^ 3q Ñ L1,Hp p2_ 3qq Ñ L 1,
H1Ñ L2,H 1Ñ L 2,
H1Ñ L 3,H 1Ñ L3u.

We obtain 2 stable extensions :
E2 � tL 1,L 2,L3u, E7 � tL1,L2,L 3u

From these results, we retrieve the theorems about negative and positive
double-cycles presented in [25] which gives a promising strong correspondence
between H and BDS. This correspondence will be formally studied in the rest
of this article.

1 23

`

´

´

`

1 23

`

`

´

´

Fig. 8 (left) IG of l1, Example 10 and (right) IG of l2, Example 11

8.2 Semantic representation of ATGs into H
This section gives a morphism between ATGs and Kripke models for the modal
system T , which allows us to exhibit a morphism from hypothesis theories

functions of any kind, without the need of a pre-processing. The formalism of H implicitly make
the expected simplifications.
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to ATGs. It uses Kripke semantics [21] presented in Section 3.2. In order to
obtain these morphisms, we give an increased version of ATGs.

Definition 4 Let V � t1, . . . , nu be a set of entities, X � t0, 1un be a configura-
tion space, f : X Ñ X be a function with its associated ATG G pfq � pX,T pfqq.
Remember that T pfq is a set of edges corresponding to transitions. We now look
at an increased version of G pfq, namely G �pfq � pX,TY ýq where ý denotes the
reflexivity such that px, xq is a transition of G �pfq for all x P t0, 1un.

We can consider that G �pfq is a Kripke structure whose universe is X
and whose accessibility relation is R � T pfqY ý. If we consider that any
configuration x P X is a world, we get a Kripke model with R as its accessibility
relation. As R is reflexive, it has the properties of system T . Therefore, we get
an isomorphism between reflexive Kripke models and increased ATGs, from
which it is trivial to obtain the related ATGs.

As the ATG G pfq is asynchronous, the accessibility relation R is such that,
if wj � wk, then wj Rwk if and only if, wk is reachable from wj and differs
from wj by one and only one proposition. Under these conditions, the ATG
of any BDS is a canonical Kripke structure. Given such a framework, for any
world wk and any entity x, Lx � J if and only if x � J for every wk reachable
from wj .

In order to obtain a morphism between hypothesis theories and ATGs, we
define the concept of a projection of an extension or of a sub-extension.

Definition 5 Consider a sub-extension, or an extension, E of H. The projection of
E on the system T is the set of formulas of E which does not contain the operator H.

Now, if T � tHY,Fu is an hypothesis theory, and P is the set of the pro-
jections of the extensions or of the sub-extensions of T , we obtain a morphism
from T to P , and therefore a morphism from hypothesis theories to Kripke
models. Note that one does not get an isomorphism. Indeed the projections
of two different extensions can be equal, and therefore be related to the same
Kripke model.

Example 12 Figure 9 depicts the projection of function f given in Example 1, and
its associated Krypke model Kpfq.We remark that in order to get Kpfq from f ,
it is enough to inject the modality L at the right places into the cube, according
to the corresponding Kripke frame. The eight nodes of Kpfq are the worlds, and
the arcs express the accessibility relation. The two nodes in gray tL1,L 2,L3u and
tL 1,L2,L 3u represent the two stable extensions from the translation of f . Their
degree of freedom is 0. The other six nodes are sub-extensions since they are non-
maximal. Their degree is 2. These six nodes form the unstable cycle of f , represented
by bold transitions.
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 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1,L 2,L 3

L 1, L 2, 3

L 1,L2,L 3

L 1, 2,L3

L1, 2,L 3

L1,L 2,L3

L1,L2, 3

1,L2,L3

Fig. 9 (left) ATG of function f given in Example 1, and (right) its associated Kripke model.

Example 13 Figure 10 depicts the ATG of function g from Example 1 and the asso-
ciated Kripke model. The six nodes in gray represent the ghost extensions of the
translation of g. Their degree of freedom is 1 and correspond to the six configu-
rations of the stable cycle of function g, represented by bold arcs. The other two
nodes t1, 2, 3u and t 1, 2, 3u are sub-extensions because they are non-maximal;
their degree of freedom is 3.

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1,L 2,L 3

L 1, L 2, 3

 1, 2, 3

L 1, 2,L3

L1, 2,L 3

1, 2, 3

L1,L2, 3

1,L2,L3

Fig. 10 (left) ATG model of function g given in Example 1 and (right) its associated
Kripke model.

Example 14 Figure 11 depicts both the Kripke model and the ATG of function h
given in Example 2.

Three nodes represent the three extensions of the translation of k: node
tL 1,L 2u represents the stable one, t1,L 2u and tL1, 2u the two ghost ones of
degree 1. There is also one sub-extension of degree 2, t1, 2u.

These examples suggest the following results.

9 Results

The existence of a morphism from hypothesis theories to ATGs, allows to
prove the following theoretical results. Therefore, there is a strong link between
configurations of a BDS and extension sets of theH representation of this BDS.
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 1, 2

 1, 2

1, 2

1, 2

 1,L 2

 1,L2

1, 2

L1,L2

Fig. 11 (left) The ATG of h, (rigth) the corresponding Kripke model.

 1, 2

 1, 2

1, 2

1, 2

L 1, L 2

 1, 2

1, L 2

L1, 2

Fig. 12 (left) The ATG of k, (rigth) the corresponding Kripke model.

The generalization of the notion of degree of freedom of extensions allows
us to configure ATGs. The degree of a configuration x, is the number of arcs
coming out of x. By previous construction of the Kripke models associated
with ATGs, it is obvious that, if w is the world associated with x, then x and
w have the same degree.

Proposition 2 Let T be an hypothesis theory, E be an extension or a sub-extension
of T , w be its projection and k be the degree of freedom of E. In the Kripke model
associated to T , there are exactly k distinct worlds, different from w, reachable from
w.

Proof Since the degree of E is k, there are ti1, .., iku atoms free in E. For every
i P ti1, . . . , iku, we have both  Li P E and  L i P E. Two cases are possible, either
i P E or  i P E. If i P E, since  Li P E, there exists a world w1 accessible from w,
and distinct from w, that contains  i. Regarding the second case, if  i P E, since
 L i P E, there exists a world w2 accessible from w, and distinct from w, that
contains i. Therefore, for each i P ti1, . . . , iku, there is a world accessible from w,
and distinct from w, that contains the opposite of i. Because w is related to an ATG
all these accessible worlds are distinct. Hence there are k distinct worlds reachable
from w. ■

Theorem 3 Let G pfq be an ATG of function f , and TRpfq be its associated
hypothesis theory. The following holds:

[1.] If x � tx1, . . . , xnu is a stable configuration of G pfq, then there exists an
extension E of degree 0, issued from TRpfq, that contains tLx1, . . . ,Lxnu.
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[2.] Let E be an extension of degree 0, issued from TRpfq, and w the projection
of E. If x is the configuration related to w, then x is stable.

Proof Each statement is proved separately:
[1.] If x is a stable configuration of G pfq, no edges can leave from x. By construc-

tion of the Kripke model, the same holds for the Kripke world w related to x. Hence
the only word accessible from w is w, that is, for any i P w (resp.  i P w), Li P w
(resp. L i P w). Therefore, every i is fixed and the degree of the extension E, issued
from TRpfq, is 0.

[2.] Let the projection of E be represented by the world w. Since E is of degree
0, from Proposition 2, the only reachable world from w is w. By construction of the
Kripke model, the same holds for x. Therefore x is a stable configuration of G pfq. ■

Theorem 4 Let G pfq be the ATG of function f and TRpfq be its associated hypoth-
esis theory. Every stable cycle C of G pfq corresponds to a cycle of extensions of
degree 1 in TRpfq.

Proof The proof is similar to that of Theorem 3. Let C � tx1, . . . , xku be a stable
cycle of G pfq, and W � tw1, . . . , wℓu the set of extensions associated with C. By
construction of the Kripke model, W is also a cycle of same length as C. Since C
is stable, each of its configurations xi admits only one outward arc. And the same
property holds for for wi, i.e., the degree of wi is 1. Therefore, all extensions of W
are of degree 1. ■

Analog theorems were proved in the context of interaction graphs [40]. They
correspond to the results given in [30]. With the same arguments as those used
for the proofs of the previous theorems, we can show that if a BDS contains an
unstable cycle C, it is represented by a set of extensions such that at least one
of those is of degree greater than 1. Indeed, if the cycle is unstable, it contains
a configuration x of degree greater than 1 and, by construction, the Kripke
model associated with the BDS contains the extension E corresponding to x.

10 Conclusion

From Bioinformatics view point, this conversion of BDSs in Hypothesis Logic
solves the problem of preference or priority in Biological Knowledge Represen-
tation. In [40], we studied in detail a translation of both positive and negative
asynchronous circuits into (H). In this paper, we extend this translation to
any asynchronous BDS, by showing that hypothesis logic captures some of
their essential behavioral capacities, such as stable configurations and stable
cycles that are specific attractors and unstable cycles. Of course, these results
pave the way to further studies about how hypothesis logic could be used
to represent all the dynamical richness of BDSs, by taking for instance into
account their stable and unstable oscillations and other known properties
related to the orbits.
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Our study is only a first step toward a complete logical study of BDSs
that, in the end, should allows us to clear both semantical and computational
interesting properties of BDSs.
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