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Abstract. Boolean Dynamical Systems (BDS) are systems of entities
described by Boolean variables providing interaction in discrete time.
They are particularly used in the modeling of gene signaling pathways.
We present new representations of BDSs and of gene regulation networks,
using a modal non-monotonic logic (H) By using these representations
every Boolean network can be represented by a set of modal formulas
of H, and therefore by a set of Kripke models of H. The study of a
BDS focuses in particular on the search of its stable configurations, limit
cycles and unstable cycles. By using our representation, we prove that it
is possible to discriminate between stable configurations, limit cycles and
unstable cycles thanks to the introduction of a new concept, namely the
ghost extensions. In addition the formalism introduced in this article uses
a minimalist definition of the language of H, but sufficient to represent
BNs. This restriction allows us to translate H into propositional calculus,
hence to use SAT algorithms, and therefore to benefit of a simple and
powerful implementation.

Keywords: Gene regulation, Genetic networks, Boolean networks, Non-mono-
tonic logic, Modal logic, Hypothesis logic, Computational Systems Biology, SAT
algorithms.

1 Introduction

This article gives formal links between Boolean Dynamical Systems (BDSs) and
a modal non-monotonic logic called hypothesis logic (H) [33, 36] with an appli-
cation to Boolean gene regulation networks, thanks to the introduction of a new
concept, namely the ghost extensions. We also also show that it is possible to
translate BDSs into propositional calculus and use SAT algorithms This article
provides a theoretical study which paves the way for further developments and
does not give stochastic is not yet at a validation stage on real gene regulation
networks which would require for numerical simulation and benchmarking. Nev-
ertheless links are done with modern SAT solvers which are particularly adopted
tools in this framework

Biological systems, can be represented by a set of interacting elements (genes,
proteins, metabolic enzymes, ...), whose states change over time. For genetic net-
works, the knowledge is regularly incomplete, updated, uncertain and sometimes



2 P. Siegel, A. Doncescu, V. Risch, S. Sené

contradictory. It is therefore necessary to represent incomplete and revisable in-
formation. This representation has been studied in artificial intelligence since the
late 1970s, especially by using non-monotonic logics and techniques derived from
constraint programming. Notably, default logic (DL) [25, 7] as well as answer set
programming (ASP) [20] have been used to study genetic networks.

In the context of biological systems, signaling pathways are specific interde-
pendences between genes/proteins as responses of given cells to chemical signals
or reactions of environment changes. The set of genes involved in these define
gene regulation networks. These networks have been studied since the end of
1960s by using Boolean models derived from Boolean networks (BNs) [16, 38].
This supposes that a set of genes is associated to a set of variables together
with their underlying Boolean functions. The evolution of the updates of these
variables over discrete time constitutes a Boolean dynamical system (BDS). In
this framework, it is considered that the expression of one gene modulates that
of another gene trough an activation or inhibition action. The BDS approach al-
lowed to find out feedback circuits theorems [10, 22, 26–31, 39], but also to model
a wide range of processes of development biology [2, 9, 23], and physiology [6, 11,
21, 34] for instance.

We introduce representations in H for both BDSs interaction graphs and
asynchronous transition graphs which allows us to exhibit new formal results.
By using these representations, every Boolean network can be represented by
a set of modal formulas of H, and therefore by a set of Kripke models of H.
Most of the studies done on BDSs have focused on the analysis of both their
stable configurations (or fixed points) and stable/unstable cycles/oscillations.
This is the role of logic to state representation theorems between a language
and the objects this language concerns. An important result of this paper is
the proof that stable configurations and stable cycles are represented by sets
of extensions: one stable extension for the former and a set of ghost extensions
for the latter. To be practically usable, our formalism must also be able to
compute extensions in an efficient way. The formalism introduced in this article
uses a minimalist definition of the language of H, but sufficient to represent
BNs and their asynchronous dynamics. It is then possible to use very simple and
efficient algorithms (notably stemming from the study of SAT). These algorithms
allow us to distinguish among stable/unstable states. Moreover they can allow
to enumerate all the states. This can be considered an important development
regarding biological aspects.

Since this article deals with three areas, it is necessary to introduce the basics
of these areas. This article is structured as follows: Section 2 reminds basic results
about non-monotonic logic. Section 3 gives the main definitions and notations
related to H. Section 4 gives tracks to use SAT algorithms. Section 5 gives a
representation of genetic networks into H. Section 6 gives the definitions on BDS.
Section 7 gives general fundamental results and applications in biology. Section 8,
present a syntax and a semantic representations of BDSs in H. Section 9, gives
the theorems which prove that the asynchronous asymptotic behaviors such as
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stable configurations and stable attractors, as well as unstable attractors, are
properly captured. Section 10 gives a brief conclusion.

2 Non-monotonic logics and Default Logic

Gene regulation and signaling pathways can be a source of relevant studies re-
garding knowledge representation in artificial intelligence. Interactions in bio-
logical system appears as a form of causality. Therefore, the modeling of these
systems is driven to use the logical inferences. The use of classical logic could
be inadequate in this context because it cannot deal with inconsistencies. In
addition, genetic networks are obtained by the analysis of long and expensive
experiments, and basically, it is observed only a small part of the gene inter-
actions. Finally, biologic knowledge is regularly incomplete, updated, uncertain
and sometimes contradictory.

The representation of incomplete and revisable information has been studied
in AI, especially by using of non-monotonic logics and techniques derived from
constraint programming. Notably, Default Logic(DL) [25, 7] as well as Answer
Set Programming (ASP) [20] have been used to study genetic networks. The
representation of genetic networks with no circuits led to interesting results
using an approach based on default logic [14, 13]. In this article we present a
representation of Boolean genetic regulation networks using the non-monotonic
modal logic called hypothesis logic (H) [33, 36]. It was defined in 1993, after a
first approach proposed by [3]. Some preliminary results on circuits using the
Hypothesis Logic were already presented in [35].

Representing biological systems using a logical formalism may seem valid.
For example the interaction of an entity i with j suggests a close relation with
what is called in logic material implication, denoted as Ñ. However, such a
representation in classical logic is not adapted because it drives often to incon-
sistencies. A way to manage this is to deal with a non-monotonic formalism.
Monotonicity is a property of inference rules that never prunes the set of con-
clusions with the increasing of knowledge. Whereas this property is crucial in
mathematics, it is largely questionable regarding reasoning with incomplete or
contradictory information. This has led to the development of non-monotonic
logics in artificial intelligence, including DL or ASP which is a more tractable
restriction of DL. Default Logic concerns standard formulas of first order logic,
to which contextual inference rules called defaults are added in order to deal
with revisable information. A default is a local inference rule d “ A :B

C , whose
application specifically depends on the formulas A, B, C which compound it.
The intuitive meaning is: “If A holds, if B is coherent with what is known, then C
holds”. The fact that a default can be triggered or not depending on the context
further leads to a notion of extensions as max-consistent sets of formulas with
respect to the trigger of the defaults used to get it. The underlying reasoning is
non-monotonic because adding here new information may invalidate previously
triggered defaults. A first remark is that some default theories may have no ex-
tensions: this expresses a form of deep inconsistency which renders computation
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more difficult. This possible lack of extensions in DL has been fully studied in
the context of hypothesis logic. As shown in [36, 33], DL is a fragment of H.
In the latter logic, theories always have extensions among which some of them,
called ghost extensions, have no counterpart in DL. A second remark is that DL
only computes stable extensions, which can be a drawback regarding expressive
power. Furthermore, such a type of extension cannot handle more than stable
attractors of BDSs but we need to capture also unstable ones as well.

For biological systems, the main problem is to represent the dynamics and in
particular the cycles. These cycles may represent real fundamental phenomena
in living organisms such as the cell cycle [5, 19], circadian cycle [1, 32], or the
cardiorespiratory rhythm [12]. This is the role of logic to state representation
theorems between a language and the objects this language concerns. We show
that H is a good candidate for such a language because it overtakes some of the
limitations of default logic (and hence ASP also).

3 Hypothesis Logic

Hypothesis logic H is a bimodal logic [4] with two modal operators L and rHs [33,
36]. If f is a formula, the intuitive meaning of Lf is f is proved/stated. The dual
H of rHs is defined as Hf “  rHs f . The intuitive meaning of Hf is f is a
hypothesis, and hence rHsf means  f is not a hypothesis. For example, a default
A :B
C can be interpreted/translated in H by the modal formula LA^HB Ñ LC

whose intuitive meaning is: If A is stated and B is a valid hypothesis then C is
stated. This modal formula can also give translations of the Prolog clause and
of the ASP rule: C :– A, not(B) .

The formalism used in this article uses a restricted definition of the language
of H, sufficient to represent BNs and boolean genetic networks. This restriction
also allows to translate H into propositional calculus and to use SAT algorithms.

3.1 Syntax

The language of H, denoted by L pHq, is defined by the following inductive rules:

1. Any formula of propositional calculus (PC) is in L pHq.
2. The set of atoms (or propositional variables) of L pHq is finite.
3. Whenever f and g are formulas of PC, Lf , rHsf , Hf ,  Lf ,  rHsf ,  Hf are

in L pHq too4.

And no other formulas are in L pHq than those formed by applying these
two rules. Operator L has the properties of the modal system T [4] and rHs
has those of the modal system K [4]. As a consequence, the inference rules and
axiom schemata of H are:

4The full definition of H further states that any formula of first-order logic is in
L pHq, and that, whenever f and g are in L pHq,  f , pf ^ gq, pf _ gq, pf Ñ gq, are in
L pHq too.
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1. All inference rules and axiom schemata of first-order logic.
2. pNrHsq: $ fñ$ rHsf , the necessitation rule for rHs.
3. pNLq: $ fñ$ Lf , the necessitation rule for L.
4. pKrHsq: $ rHspf Ñ gq Ñ prHsf Ñ rHsgq, the distribution axiom schema for
rHs.

5. pKLq: $ Lpf Ñ gq Ñ pLf Ñ Lgq, the distribution axiom schema for L.
6. pTLq: $ Lf Ñ f , the reflexivity axiom schema for L.

Unlike L, the axiom of reflexivity does not hold for rHs. It is important to
remark that there are so far no connections between L and rHs. We force this
connection by adding the following link axiom schema:

pLIq: $  pLf ^H fq.
This very weak axiom is the basis of H. It means that it is impossible to

prove f and to assume the hypothesis  f at the same time. Note the following
equivalences:  pLf ^H fq ô Lf Ñ  H f ô H f Ñ  Lf , where the second
formula means that if we prove f , we cannot assume the hypothesis  f and the
third formula means that if we assume the hypothesis  f , we cannot prove f .

3.2 Semantics

Kripke semantics [18] is defined for normal modal logics (i.e., the logics which
contain at least axiom pKq). We remind here the bases needed for our develop-
ments. A Kripke structure is a digraph K “ pW,Rq where the universe W is
a set tw1, . . . , wnu of worlds and the accessibility relation R Ď W ˆW is a bi-
nary relation among worlds. When wj Rwk, wk is accessible from wj . A Kripke
model is obtained by assigning in every world a truth value to every atom i.
This makes possible to assign a truth value to all the formulas of PC. A world
is then mapped to a logical interpretation. Formulas other than those of PC are
assigned to worlds with the following condition: for all f , Lf is true in a world
wk if and only if f is true in all accessible worlds from wk. The different axioms
that hold in different modal logics depend on the properties of the accessibility
relations R. For the system K, R is any relation, while reflexivity axiom pTLq
holds if and only if R is reflexive.

As shown in [33], H has a Kripke semantics with two accessibility relations,
RrHs for rHs, RL for L. RrHs is the relation of system K and RL is the relation
of system T , hence reflexive. The relationship between the two relations, is given
by the extra constraint RL Ď RrHs which corresponds to the link axiom. Proofs
of completeness, correctness, and compactness for H are given in [33].

Note 1. The axiomatics of H was defined to give an alternative to Default Logic,
using the minimum of axioms. With the full definition of H, one could move to
the system S4, by adding axiom (4) $ Lf Ñ LLf . But, in S4 nested modalities of
the same type collapse, so LLf “ Lf and this addition makes us lose the notion
of dynamics necessary for representing a BDS and thus of its underlying genetic
network. Indeed, to represent the dynamics we consider here that Lf represents
an action (for example the production of a protein f), at a time step represented
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by a Krypke world w. All the accessible worlds from w are the following steps.
Using (4), we obtain LLp, and thus Lp by pTLq, in all these accessible worlds,
which, by induction would mean that p will be produced all the time. In a
biological framework and for dynamical systems, this makes little sense. We
encounter the same type of problem when adding axiom (5) $ Mf Ñ LM.

3.3 Hypothesis theories and extensions

As defined above, H is a non-monotonic logic. In order to deal with the revisable
character of usual informations, for example of biological nature, a notion of
extension is added just as in DL. However, contrary to the latter, three kinds of
extensions are considered here, namely stable extensions, ghost extensions and
sub-extensions.

Definition 1. Given H:
‚ A hypothesis theory is a pair T “ tHY,Fu, where HY is a set of hypotheses
and F is a set of formulas of H.
‚ An extension E of T is a set E “ ThpFY HY1q, such that HY1 is a maximal
subset of HY consistent with F.
‚ A sub-extension E of T is a set E “ ThpF Y HY1q, such that HY1 is a non-
maximal subset of HY consistent with F.
‚ E is a stable extension if it is an extension that satisfies the coherence prop-
erty:

@Hf,  Hf P E ùñ L f P E.
Thanks to the link axiom schema, we hence get: @f, L f P E ðñ  Hf P E.
‚ E is a ghost extension if it is an extension that satisfies: DHf,  Hf P

E and L f R E.

Thus, an extension is obtained by adding any of the largest consistent sets of
hypotheses to F while remaining consistent. Intuitively, E is stable if whenever
it is forbidden to assume the hypothesis f ,  f is proved. It is a ghost extension
otherwise. Stable extensions correspond to the standard extensions of DL. Ghost
extensions do not have any correspondence in DL nor in ASP. In [36, 33] it is
proved that if F is consistent then T “ tHY,Fu has at least one extension,
and that a default theory ∆ can be translated into a hypothesis theory T p∆q
such that the set of standard extensions of ∆ is isomorphic to the set of stable
extensions of T p∆q.

The following definitions will help to characterize the stable configurations
and the cycles of BDSs.

Definition 2. Let E be an extension.
‚ E is complete if, for all i P V , Hi P E or H i P E.
‚ An i P V is free in E if Li R E and L i R E. It is fixed otherwise.
‚ The degree of freedom of E, denoted by degreepEq, is the number of free

atoms that compose it.
‚ If the extension E “ ThpFpGqYtHyku, the mirror of E, denoted by mirpEq,

is the set ThpFpGq Y tH yku).
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4 Propositional algorithm

This section gives tracks to translate H into propositional calculus (PC) and
to use SAT algorithms. Modal logics can be translated into first order logic by
Skolemization methods. Then it is possible to use theorem provers based on the
unification algorithm and the resolution principle. For example, it is possible
to translate the modal operator L by a function fL of first order logic. But,
by nesting the modalities, LL...p is translated by fLpfLp...ppqq. The Herbrand
universe (the set of ground formulas) is then infinite and therefore, the use of
SAT algorithms is not appropriate.

On the contrary, with the restricted definition of H used here, there is no
nesting of modalities (no LLf , HLf , ...). So, all modal formulas are of the form
Lf , where f is a PC formula. If the set of propositional variables (atoms) is
finite, we can then consider that the Herbrand universe is finite which opens the
way for using SAT algorithms.

Let us recall some definitions of PC. A literal is an atom a, or the negation
of an atom  a. A disjunctive clause (DC) is a disjunction of literals and, a
conjunctive clause (CC) is a conjunction of literals. A conjunctive normal form
formula (CNF formula) is a conjunction of one or more DCs. A disjunctive
normal form formula (DNF formula) is a disjunction of one or more CCs.
Every PC formula can be converted into an equivalent CNF formula and, also
into an equivalent DNF formula.

Remember that for H, the modal formulas are of the form Lp, Hp, or rHsp,
where p is a PC formula. In the following a modal formula is elementary if p is a
literal. Let F be a set a formulas of H. We translate F into a set of PC formulas.
This translation is done in the following way:

Translation:
1) Any modal formula Lp of F is translated into Lp1 “ Lpc1 ^ ...^ cnq, where p1

is the CNF of p. All ci are therefore disjunctive clauses.

2) Any modal formula Hq of F is translated into Hq1 “ Hpd1 _ ... _ dmq where
q1 is the DNF of q. All di are therefore conjunctive clauses.

3) The axiomatics of normal modal logics allows us to prove that:
‚ Lpp1 ^ ...^ pnq ” pLp1 ^ ...^ Lpnq.
‚ Hpq1 _ ..._ qnq ” pHq1 _ ..._Hqnq
We can therefore replace any formula Lpp1 ^ ...^ pnq by a set tLp1, ..., Lpnu

of disjunctive clauses and, any formula Hpp1 ^ ... ^ pnq by a set tHq1, ...,Hqnu
of conjonctive clauses.

5) We can then use a renaming which consists in replacing a PC formula by a
new atom logically equivalent:

Any Lpi (resp. Hqjq, such that pi (resp. qj ) is not a literal, is replaced by a
couple tLx, x ” piu (resp. by tHy, y ” qju.

So F is replaced by a set of propositional formulas and elementary modal
formulas. Note that it is also possible to translate each of these propositional
formulas in its CNF form. ie a finite set of disjonctive clauses.
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6) It remains to translate the set of elementary modal formulas into PC. This
can be done by renaming each of these formulas by a new atom.

This translation is not enough for obtaining a SAT algorithm, because the
axiomatic of H is not given. It remains to translate it into PC:

- The reflexivity axiom of L : Lf Ñ f
- The link axiom:  pLf ^H qf
- The distribution axiom for L: $ Lpf Ñ gq Ñ pLf Ñ Lgq,
- The distribution axiom for rHs : $ rHsf Ñ gq Ñ prHsf Ñ rHsgq.

Since the set of CNF if is finite, each of these axioms can be translated into a
set of modal propositional formulas where f and g take as values all the formulas
of this set. Then we rename all the CNF formulas by new equivalent propositions.
All modal formulas are then elementary, and it is possible to represent each of
them by an atom.

If T “ tHY,Fu is an hypothesis theory, the computation of all the extensions
of T is done by adding to the translation of F each translated subset of HY, and
keeping only those among them that are the maximals consistent ones with F.
This can be done by using a SAT algorithm. This solution exists, but it is, of
course, not interesting because of the size of the translations.

Another possible solution would be to consider that each modality is a pred-
icate of first order logic, and that axioms are first order formulas. For example
the link axiom Lf Ñ  H f is translated by Lpfq Ñ  Hp fq, L and H being
predicates. This translation is possible because there is no modality nesting ;
moreover, the translation does not contain any functions. These formulas could
be considered as global constraints which are used by the SAT algorithm when
needed.

5 Representing genetic networks into H

A genetic network represents interactions among genes or proteins in cell [2, 8,
9, 15, 17, 24]. From now on, let us consider that the entity at stake are proteins.
In a context of modeling, a protein is classically represented by an integer i P
t1, . . . , nu. Its concentration in a cell is denoted by xi. In such networks, given
a protein i, a set of interactions (or influences) from a set of proteins toward i
describes in which conditions the concentration of i evolves. In the most general
case, a concentration xi is a real number. Here, we study the particular case
where the concentrations xi are in t0, 1u, which is legitimate when the focus is
a qualitative modeling.

Genetic networks can be studied with the formalism of BNs and their un-
derlying BDSs, defined in the following section. Here, in order to introduce our
representation, it is sufficient to know that, for a BDS, the concentration xi “ 1
(resp. xi “ 0) denotes the presence (resp. the absence) of protein i in the cell. To
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lighten the notations, we will identify a numbered Boolean variable xi directly
with i.

One of the interests of hypothesis logic is that this bi-modal logic enables us
to use three kinds of information: i, Li and Hi. Hence, by combining modalities
with negations, we can use ti,Hi,H i,Li,L iu. Remark that in H, we have:
Li ‰  L i,  Li ‰ L i, Hi ‰  H i and  Hi ‰ H i. This increasing of
expressiveness allows for a more precise representation of biological networks.
Let us consider the genetic network of a cell, and i ones of its protein. We can
then give the meanings of L and H in the context of genetic networks.
‚ i means that the protein i is present in the cell and  i that it is absent.
‚ Li means that i is produced by the cell (i is being activated) and  Li means

that i is not produced (i is not being activated).
‚ L i means that i is destroyed by the cell (i is being inhibited) and  L i

means that i is not destroyed (i is not being inhibited).
‚ Hi (resp.  Hi) means that the cell gives (resp. does not give) the permission

to attempt to produce i. In other words, the cell has (resp. has not) the ability
to activate i.
‚ H i (resp.  H i) means that the cell gives (resp. does not give) the per-

mission to attempt to destroy i. In other words, the cell has (resp. has not) the
ability to inhibit i.

Regarding the use of H in this context, the role of an extension appears to
gather a maximum of consistent permissions. Note that even if Hi stands for
the cell giving permission to attempt the production of i, this production is not
mandatory. It can be carried out or not, according to the context (i.e., the set
of all interactions in the cell). Similarly H i gives the authorization to destroy
i. It is important to note that Li and L i are actually actions (production or
destruction of a protein). So there is a difference between L i which says that
i is destroyed, and  Li which says that i is not produced, and hence is weaker.
There is a similar distinction between H i and  Hi (and between Li and  L i;
and between Hi and  H i).

Note 2. For a cell, the production/destruction occurs practically at time t. This
temporal notion could call for the use of temporal logics [3]. In our approach,
using H, it is not necessary to use a specific modality for representing time, since
it is implicitly included in the axiomatics of H, via the accessibility relation of
Krypke semantics. As such, H is adapted to the representation of the dynamics
of change. In other words, H allows to formalize time, without having to add an
additional level of representation.

The proposition below gives some general properties of H, particularly ade-
quate for the modeling of the different states of proteins in a cell.

Proposition 1. Given i a protein, the following results hold in H:
(1) Li Ñ i and L i Ñ  i ( i.e., if i is produced (resp. destroyed), then i is
present (resp. absent)).
(2)  pLi^H iq and  pL i^Hiq (It is impossible to produce (resp. destroy) i
and to give the permission to destroy (resp. produce) i it at the same time).
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(3)  pLi^ L iq (It is impossible to produce and destroy i at the same time).

Proof. PC and axioms of H are all what is needed.
(1) LiÑ i and L iÑ  i are instances of axiom pTq.
(2)  pLi^H iq and  pL i^Hiq are instances of the linking axiom pLIq.
(3) Li Ñ i and L i Ñ  i are two instances of (1). In PC we have pLi Ñ

iq Ñ p Li_iq and pL iÑ  iq Ñ p L i_ iq. Therefore we obtain  Li_i and
 L i_ i from which we derive, by resolution,  Li_L iÑ  pLi^L iq. [\

6 Boolean dynamical systems

A finite BDS describes an evolution of the interactions in a BN of a set V “

t1, ..., nu of n entities numbered from 1 to n, over discrete time. A configuration
x “ px1, ..., xnq of the network is an assignment of a truth value xi P t0, 1u
to each element i of V . The set of all configurations (i.e., all interpretations
on the logic side), called the configuration space, is denoted by X “ t0, 1un.
A dynamics of such a network is modeled via both a function f , called the
transition function, and an updating mode µ that defines how the elements of V
are updated over time. More formally, f : X Ñ X is such that x “ px1, ..., xnq ÞÑ
fpxq “ pf1pxq, ..., fnpxqq, where each function fi : X Ñ t0, 1u is a local transition
function that gives the evolution of i over time.

There is an uncountable number of updating modes5. Among them, the par-
allel and the fully asynchronous ones remain the most used [16, 38]. The par-
allel updating mode is such that all the entities of the network are updated
at each time step. Conversely, the fully asynchronous updating mode is a non-
deterministic variation in which only one entity is updated at a time. In the
sequel, we restrict our study to fully asynchronous dynamics [26, 29] which we
will abbreviate by asynchronous dynamics for the sake of simplicity.

6.1 Asynchronous transition graphs

Let X “ t0, 1un be a configuration space and f : X Ñ X a function that defines
a BN. The asynchronous dynamics of f is given by its asynchronous transition
graph (ATG) G pfq “ pX,T pfqq, a digraph whose vertex set is the configuration
space and arc set is the set of effective asynchronous transitions such that:

T pfq “ tpx, yq P X2 | Di P V, x “ px1, . . . , xi, . . . , xnq,

y “ px1, . . . , xi´1, fipxq, xi`1, . . . , xnq, x ‰ yu.

Therefore, if px, yq P T pfq, x and y differ exactly by one element; the transi-
tion is unitary.

5Uncountable because we can apply the Cantor’s diagonal argument on the set
of deterministic updating modes which are basically defined as infinite sequences of
subsets of nodes of the network.
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Note 3. By definition, we relate a unique ATG G pfq to a given function f . More-
over, by construction of ATGs, G pfq “ G pgq whenever f and g are equivalent
(i.e., fpxq ” gpxq for every x), or again f and g have the same truth tables. A
function, its truth tables and its ATG are therefore distinct representations of
the same object, the asynchronous dynamical system.

An orbit in G pfq is a sequence of configurations px0, x1, x2, . . . q such that
either pxt, xt`1q P T pfq or xt`1 “ xt if xt “ fpxtq (i.e., xt has no successors).
A cycle of length r is a sequence of configurations px1, . . . , xr, x1q with r ě 2
whose configurations x1, . . . , xr are all different. From this, we derive what is
classically called an asynchronous attractor in dynamical systems. An attractor
is terminal strongly connected component (SCC) of G pfq, i.e., a SCC with no
outward transitions. Among attractors, we distinguish stable configurations from
stable cycles. A stable configuration is a trivial attractor, i.e., a configuration x
such that @i P V, xi “ fipxq, which implies that x “ fpxq. A stable cycle is a
cyclic attractor such that, in G pfq, @t ă r, xt`1 is the unique successor of xt

and x1 is the unique successor of xr. If an attractor is neither trivial nor cyclic,
it is called a stable oscillation. When it is possible to get out from a non trivial
SCC, this SCC is called an unstable cycle or an unstable oscillation depending on
whether it is cyclic or not. An orbit that reaches a stable configuration stays there
endlessly. Similarly, when it reaches a stable cycle or a stable oscillation, it adopts
endlessly a stable oscillating behavior. Notice that in the figures of this article,
unless otherwise clearly specified recurring configurations, i.e., configurations
belonging to an attractor, are pictured in gray , and cycles are represented by
bold transitions. Moreover, notice that the main difference between a stable cycle
and an unstable one is that the first one represents a single orbit while the second
one represents an infinity of orbits.

Example 1. Boolean positive and negative circuits of size 3:

Consider V “ t1, 2, 3u, x P t0, 1u3 and two functions/BNs f and g such
that fpx1, x2, x3q “ pf1pxq, pf2qpxq, f3pxqq “ p x2, x3, x1q and gpx1, x2, x3q “
pg1pxq, pg2qpxq, g3pxqq “ p x3, x1, x2q. From the definitions of f and g, it is
possible to derive their related truth tables and ATGs, G pfq and G pgq, pictured
in Figure 1.

For these figures, the 8 rectangles are the vertices of the graph that represent
the 23 possible assignments of V “ p1, 2, 3q. A transition between 2 vertices cor-
responds to an arrow in these pictures. As the transition graph is asynchronous
for each transition/arrow px, yq, x differs from y by a single component. There-
fore, there are up to 3 transitions leaving each configuration.

Here, G pfq has two symmetric stable configurations, p 1, 2, 3q and p1, 2, 3q.
These configurations are stable because no arrow comes out. The other six con-
figurations induce a cycle, shown by the bold arrows. This cycle is unstable
because it is possible to leave it, for example at vertex p 1, 2, 3q.

G pgq has a cycle of length 6, shown in bold. This cycle is stable because it
does not have any outward transition.
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We will prove in Section 8 that the two stable configurations of G pfq corre-
spond to two stable extensions of H, and that the stable cycle of G pgq corresponds
to a set of 6 ghost extensions of degree 1.

The functions f and g can also be represented by elementary circuits, pictured
in Figure 5. These ones are special cases of interaction graphs, defined below.

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1 2 3 f1 f2 f3 degree

0 0 0 1 1 0 2

0 0 1 1 0 0 2

0 1 0 0 1 0 0

0 1 1 0 0 0 2

1 0 0 1 1 1 2

1 0 1 1 0 1 0

1 1 0 0 1 1 2

1 1 1 0 0 1 2

1 2 3 g1 g2 g3 degree

0 0 0 1 0 0 1

0 0 1 0 0 0 1

0 1 0 1 0 1 3

0 1 1 0 0 1 1

1 0 0 1 1 0 1

1 0 1 0 1 0 3

1 1 0 1 1 1 1

1 1 1 0 1 1 1

Fig. 1. ATGs and truth tables with degree of freedom, of functions (left) f , and (right)
g presented in Example 1.

Note 4. In order to draw the ATG of a function f , the easiest way is to use
its truth table. For a line l “ px1, ..xn, f1pxq, ...fnpxqq of the table, px1, .., xnq
is a vertex of the ATG and pf1pxq, ...fnpxqq will allow to draw the arcs starting
from this vertex: for any xi of l such that xi ‰ fipxq then the picture con-
tains an arc that goes from the node px1, . . . , xi´1, xi, xi`1, . . . , xnq to the node
px1, . . . , xi´1, fipxq, xi`1, . . . , xnq.

Example 2. Consider function/BN hpx1, x2q “ p x1 _ x2, x1 _ x2q pictured in
Figure 2. This ATG has a stable state p1, 2q and an unstable cycle tp 1, 2q, p 1, 2qu.
There is an infinity of possible orbits because one can follow the unstable cycle
indefinitely, before attending p1, 2q and stabilizing in p1, 2q.

Example 3. Consider function/BN kpx1, x2q “ px2, x1 ^  x1 ^ x2q, pictured in
Figure 2. This ATG has a stable state t 1, 2u and no cycles.
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 1, 2

 1, 2

1, 2

1, 2

 1, 2

 1, 2

1, 2

1, 2

1 2 h1 h2 degree

0 0 1 0 1

0 1 1 1 1

1 0 0 1 2

1 1 1 1 0

1 2 k1 k2 degree

0 0 0 0 0

0 1 1 0 2

1 0 0 0 1

1 1 1 0 1

Fig. 2. ATG and truth table with degree of freedom of functions (left) h and (right) k
presented in Example 2 and 3.

Example 4 (Boolean positive circuit of size 4). Consider the BDS of function
f2px1, x2, x3, x4q “ p x4, x1, x2, x3q, pictured in Figure 3. This BDS admits
two stable configurations p1, 2 3, 4q and p 1, 2, 3, 4q pictured in gray, and an
unstable oscillation, whose arcs are pictured in bold gray.

Example 5 (Boolean negative circuit of size 4). Consider the BDS of function
g2px1, x2, x3, x4q “ p x4, x1, x2, x3q, pictured in Figure 4. This BDS admits one
stable cycle of length 8, whose arcs are pictured in bold and one unstable cycle
of length 8, whose arcs are pictured in bold gray.

 1, 2, 3, 4

 1, 2, 3,4

 1, 2,3, 4

 1, 2,3,4

 1,2, 3, 4

 1,2, 3,4

 1,2,3, 4

 1,2,3,4

1, 2, 3, 4

1, 2, 3,4

1, 2,3, 4

1, 2,3,4

1,2, 3, 4

1,2, 3,4

1,2,3, 4

1,2,3,4

Fig. 3. ATG of the Boolean positive circuit of size 4 presented in Example 4.
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 1, 2, 3, 4

 1, 2, 3,4

 1, 2,3, 4

 1, 2,3,4

 1,2, 3, 4

 1,2, 3,4

 1,2,3, 4

 1,2,3,4

1, 2, 3, 4

1, 2, 3,4

1, 2,3, 4

1, 2,3,4

1,2, 3, 4

1,2, 3,4

1,2,3,4

1,2,3,4

Fig. 4. ATG of the Boolean negative circuit of size 4 presented in Example 5.

6.2 Interaction graphs and circuits

An ATG is a very precise tool for studying the behavior of a function, but its
size is exponential depending on the number of entities. Regarding practical
applications, the information is often represented by more compact and more
readable graphs of a different type, namely interaction graphs (IGs). This may
be particularly the case for some biological data, which come from experiments
that generally simply yield correlations among gene expressions.

An IG is a signed digraph G “ pV, Iq, where V “ t1, . . . , nu is the vertex set
corresponding to the so called entities, and I Ď V ˆ S ˆ V , with S “ t´,`u
is the arc set corresponding to the so called interactions. An arc pi,`, jq (resp.
pi,´, jq) is said to be positive (resp. negative). From a dynamical point of view,
the presence of an arc pi, s, jq in an IG means that the value of i affects the value
of j, positively or negatively according to s: we say that i regulates j.

A circuit C “ tpi1, sp1,2q, i2q, . . . , pik, spk,1q, i1qu of size k is elementary if all
the is that compose it are distinct. A circuit is positive (resp. negative) if it
contains an even (resp. an odd) number of negative arcs.

Note 5. Consider the toy example where j has only one incoming arc from i.
In this case, the effect of the regulation is obvious: if the arc is positive (resp.
negative), j will take the value (resp. the opposite value) of i after one update.
Remark that elementary circuits are regulated this way.

More generally, consider an IG that contains an arc pi, s, iq, i.e., a loop on
i. If s “ ` (resp. s “ ´), this arc makes i tend to maintain (resp. negate) its
state. It depends of course on whether i admits other in-neighbors than itself or
not, and on the positive or negative influence of these eventual neighbors. In the
case that i admits no other in-neighbors, it is trivial that i endlessly maintains
its state if s “ `, and negate it if s “ ´.

As mentioned above, an IG G “ pV, Iq represents the existence of the inter-
actions involved between the entities of V . Specifying the nature of these inter-
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actions, and the conditions under which they occur effectively, leads to relate G
to a function f which define a BN. Then, G is the IG of f and is then denoted by
Gpfq “ pV, Ipfqq. This is done by assigning a local transition function fi to every
i P V so that @j P V, Dx P t0, 1un, fipxq ‰ fipx

jq ðñ pj, s P t`,´u, iq P Ipfq,
where given x “ px1, . . . , xnq, x

j “ px1, . . . , xj´1, xj , xj`1, . . . , xnq. More pre-
cisely, by denoting the set of the variables of two configurations x and y having
a different value by ∆px, yq “ ti P V | xi ‰ yiu, Gpfq “ pV, Ipfqq is such that:

– pi,`, jq P If if and only if there exist x, y P t0, 1un with ∆px, yq “ tiu and
xi “ 0 such that fjpxq “ 0 and fjpyq “ 1;

– pi,´, jq P If if and only if there exist x, y P t0, 1un with ∆px, yq “ tiu and
xi “ 0 such that fjpxq “ 1 and fjpyq “ 0.

This specification induces the minimality of Gpfq because each arc represents
an effective interaction.

Example 6. Figure 5 pictures the IGs associated with the ATGs of the BDSs
defined from f and g in Example 1. For these case of elementary circuits, a
positive arc ti,`, ju says that j takes the value of i and a negative arc ti,´, ju
says that j takes the value of  i. Consider the positive circuit associated with
f by following the directions of its arcs:

– Starting from x1 “ 1 , we get the infinite sequence: p1, 3, 2, 1, 3, 2, . . . q.
– Starting from x1 “ 0, we get the infinite sequence: p 1, 3, 2, 1, 3, 2, . . . q.

The first (resp. second) dynamical behavior highlights the stable configura-
tions 1, 2, 3 (resp.  1, 2, 3) of f .

Consider the negative circuit associated with g:

– Starting from x1 “ 1 we get the infinite sequence
p 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . q.

– Starting from x1 “ 0, we get the infinite sequence
p1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, . . . q.

In both cases, the observed dynamical behavior highlights the stable cycle of g.

Figure 6 pictures the IGs of size 4, associated with functions presented in
examples 4 and 5.

7 General fundamental results and applications in biology

By considering that BNs and their associated BDSs are good candidates for qual-
itatively modeling genetic networks (since established by the seminal papers [16,
38]), the presence of several attractors in their dynamical behaviors allows to
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1

2

3

`

´

´

1

2

3`

`

´

Fig. 5. (left) The IG (a positive circuit) associated with ATG G pfq and (right) the IG
(a negative circuit) associated with ATG G pgq, introduced in Example 1.

1 2

34

`

´

`

´

1 2

34

`

`

`

´

Fig. 6. (left) IG of f2 (Example 4) ; (right) IG of g2 (Example 5).

model the cellular specialization. Indeed, if a genetic network controls a phe-
nomenon of specialization, the cell will specialize (i.e., will acquire a particular
phenotype or a specific physiological function) according to the attractor toward
which its underlying BDS evolves. A classical example of direct biological ap-
plications is the immunity control in bacteriophage λ, for which both lytic and
lysogenic cycles of λ have been modeled in [37]. Another more tricky applications
of BDSs in molecular systems biology concerns the floral morphogenesis of the
plant Arabidopsis thaliana [23, 24]. Its dynamical behavior admits notably four
stable configurations that correspond to the genetic expression patterns of the
floral tissues, sepals, petal, stamens and carpels.

This model has also allowed to formally explain the role of the hormone gib-
berellin on the floral development [9]. These works and the numerous other ones
using BDSs or more general discrete dynamical systems (DDSs) emphasized the
essential role of studies aiming at understanding the formal relations between in-
teraction graphs and transition graphs and their respective properties. They also
clearly underlined the essential role of circuits, nowadays known as the behavioral
complexity engines in dynamical systems. This comes in particular from Robert
who established that, if the IG Gpfq of a DDS f is acyclic, then f converges
towards a unique stable configuration [30, 31]. Moreover, in [39], basing himself
on asynchronous DDS, Thomas conjectured that Gpfq of an asynchronous DDS
f must contain a positive (resp. negative) circuit, for the latter to admit several
stable configurations (resp. a non-trivial attractor such as a stable cycle or a
stable oscillation). These two conjectures were proved to be true [26–29].

Furthermore, in [26], the authors showed that an asynchronous positive (resp.
negative) circuit of size n admits two attractors (resp. one attractor), namely
two stable configurations x and its dual x (resp. a stable cycle of length 2n).
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Generalizations of this work to more complete combinations of circuits have been
formally addressed in [22]. In [35], we obtained these results via the translation
of BDSs into H.

8 Representing BDS into H

In [35], we studied in detail a translation of both positive and negative circuits
into H, which seemed to be a first step to us because of their essential role
in the regulation of the cell. But this previous approach left formulas of the
type pHi^Hjq Ñ Lk out of reach. Such formulas are essential, for example, for
representing the notion of binding in genetic networks. In the sequel, we extend
our translation to any asynchronous BDS. This translation does not use nesting
of modalities and SAT algorithms can be used.

8.1 Syntax representation of BDS

Let’s recall that an asynchronous BDS is characterized by a function/ATG f :
X Ñ X such that x “ px1, . . . , xnq ÞÑ fpxq “ pf1pxq, . . . , fnpxqq, where each
function fi : X Ñ t0, 1u is a local transition function. Also, remember that we
consider that each xi is an atom i, that the assignment xi is a Boolean value i
or  i, and therefore that each fi is a Boolean formula.

Definition 3.
‚ The translation of a local transition function fi into H is given by a set

TRpfiq containing two formulas: TRpfiq “ tHfipxq Ñ Li, Hfip xq Ñ L iu.
‚ The translation of f : X Ñ X of a BDS in H is the union of translations

TRpfiq for all i P t1, ..., nu such that TRpfq =
Ťn

i“1 TRpfipxqq.

From the correspondence given in Note 3, this translation is equivalently the
translation obtained for G pfq and the truth tables of f .

Example 7. Consider V “ t1, 2, 3u, X “ t0, 1u3 and the function f of Example 1,
defined as x “ px1, x2, x3q and fpxq “ pf1pxq, f2pxq, f3pxqq “ p x2, x3, x1q
whose ATG of is pictured in Figure 1. The functions f1, f2 and f3 are translated
into H by;
TRpf1q=tH2 Ñ L 1,H 2 Ñ L1u, TRpf2q=tH3 Ñ L 2,H 3 Ñ L2u, TRpf3q=
tH1 Ñ L3,H 1 L3u.

Therefore we obtain the following global translation:
TRpfq “ tH2 Ñ L 1,H 2 Ñ L1,H3 Ñ L 2,H 3 Ñ L2,H1 Ñ L3,H 1 Ñ
 L3u that admits two stable extensions E1 “ ThpTRpfq Y tH1,H 2,H3quq
and E2 “ ThpTRpfq Y tH 1,H2,H 3quq. This is shown by attempting to add
to FpGpfqq each subset of HYpGpfqq and keeping only those among them that
are the maximals ones consistent with FpGpfqq. This can be done using a SAT
solver.

When developing these extensions, we see that they are equivalent to their
simplified forms:
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‚ E1 “ tH 1,H2,H 3,L1,L 2,L3, H1, H 2,  H3, L 1, L2, L 3u
‚ E2 “ tH1,H 2,H3,L 1,L2,L 3, H 1, H2,  H 3, L1, L 2, L3u.
In order to ease the reading and abusing notations, from now on in the text

and in the figures, the extensions will contain only the Li and L i that are true.
So, here, E1 “ tL1,L 2,L3u and E2 “ tL 1,L2,L 3u. We can check that
E1 and E2 are stable extensions (because for all i,  Hi P E1 (resp. E2) ùñ

L i P E1 (resp. E2), and that E2 is the mirror of E1. These stables extensions
correspond to the two fixed points of f .

Example 8. Consider function gpx1, x2, x3q “ p x3, x1, x2q of Example 1. The
translation in H leads to the following set of formulas: FpGpgqq “ tH1 Ñ

L2,H2 Ñ L3,H3 Ñ L 1,H 1 Ñ L 2,H 2 Ñ L 3,H 3 Ñ L1u.
We obtain the following 6 equivalent ghost extensions: E1 “ tL2,L3u, E2 “

tL 1,L3u, E3 “ tL 1,L 2u, E4 “ tL 2,L 3u, E5 “ tL1,L 3u, E6 “

tL1,L2u.
‚ E1, ..., E6 are extensions because they are consistent and it is impossible to

add a hypothesis while remaining consistent. They are ghost extensions because
in each of them there is a  Hi (resp.  H iq without L i (resp. Li).
‚ These extensions are of degree 1.
‚ In [35], we proved that there exists a permutation on the is that allows

us to pass from E1 to E2, ..., E6 to E1. This permutation of 6 ghost extensions
represents the stable cycle of g.

Moreover, there are also two sub-extensions, E7 “ t1, 2, 3u and E8 “

t 1, 2, 3u that contain neither Li nor L i. Hence all the is are free and their
degree is 3. These extensions correspond to the configuration of g, of indegree 0
of the underlying BDS. They represent the Garden of Eden of g.

Example 9. Consider function k, such that kpx1, x2q “ px2, x1 ^  x1 ^ x2q,
whose ATG is pictured in Figure 2 right. Function k1 is translated into H by
the couple TRpk1q “ tH2 Ñ L 1,H 2 Ñ L1u and function k2 is translated by
TRpk2q “ tHp1^ 1^2q Ñ L2q,H p1^ 1^2q Ñ L 2u. Since  p1^ 1^2q “
 1 _ 1 _  2, we finally obtain the following global translation into H for k:
TRpkq “ tH2 Ñ L 1,H 2 Ñ L1,Hp1^ 1^2q Ñ L2q,Hp 1_1_ 2q Ñ L 2qu,
which admits thee extensions:
‚ A stable extension E1 “ ThpTRpkq Y tH 1,H 2uq “ tL 1,L 2u;
‚ Two ghost extensions of degree 1: E2 “ ThpTRpkqYtH1,H 1uq “ tL 2u,

and E3 “ ThpTRpkq Y tH2uq “ tL1u.

Note 6. Function k may appear naive, because x1^ x1^x2 “ K (J is the logic
formula True and K is False), which gives an equivalent translation TRphq “
tH2 Ñ L 1,H 2 Ñ L1,HK Ñ L2,HJ Ñ L 2u. However, one of the aims of
this study is also to show that we can deal with functions of any kind, without
the need of a pre-processing. The formalism of H implicitly make the expected
simplifications.

The following examples are interesting because they get out of simple cycles.
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Example 10. Consider function l1px1, x2, x3q “ p x2 _ x3, x1, x1q whose ATG
is represented by the Figure 7 (left) and IG by Figure 8 (left). The translation
of l2 is TRpf1q “
tHp 2_ 3q Ñ L1,Hp2^ 3q Ñ L 1,
H1 Ñ L2,H 1 Ñ L 2,
H1 Ñ L 3u,H 1 Ñ L3u.

We obtain 4 ghost extensions of degree 1:
E1 “ tL 2,L3u, E2 “ tL1,L 3u, E4 “ tL2,L 3u, E7 “ tL1,L2u.

and 4 sub-extensions of degree 2:
E3 “ tL 2u, E4 “ tL 1u, E5 “ tL3u, E8 “ tL1u
In Figure 7 (left), the extensions of degree 1, correspond to the gray config-

urations. We notice that there is no stable cycle.

Example 11. Consider function l2px1, x2, x3q “ px2 ^ x3, x1, x1q. Its ATG is
represented by the Figure 7 (right) and its IG by Figure 8 (right). The translation
of l2 is TRpf1q “
tHp2^ 3q Ñ L1,Hp p2_ 3qq Ñ L 1,
H1 Ñ L2,H 1 Ñ L 2,
H1 Ñ L 3,H 1 Ñ L3u.

We obtain 2 stable extensions :
E2 “ tL 1,L 2,L3u, E7 “ tL1,L2,L 3u

From these results, we retrieve the theorems about negative and positive
double-cycles presented in [22] which gives a promising strong correspondence
between H and BDS. This correspondance will be formally studied in the rest
of this article.

8.2 Semantic representation of ATGs into H

This section gives a morphism between ATGs and Kripke models for the modal
system T , which allows us to exhibit a morphism from hypothesis theories to
ATGs. It uses Kripke semantics [18] presented in Section 3.2. In order to obtain
these morphisms, we give an increased version of ATGs.

Definition 4. Let V “ t1, . . . , nu be a set of entities, X “ t0, 1un be a configura-
tion space, f : X Ñ X be a function with its associated ATG G pfq “ pX,T pfqq.
Remember that T pfq is a set of edges corresponding to transitions. We now look
at an increased version of G pfq, namely G ‹pfq “ pX,TY ýq where ý denotes
the reflexivity such that px, xq is a transition of G ‹pfq for all x P t0, 1un.

We can consider that G ‹pfq is a Kripke structure whose universe is X and
whose accessibility relation is R “ T pfqY ý. If we consider that any configura-
tion x P X is a world, we get a Kripke model with R as its accessibility relation.
As R is reflexive, it has the properties of system T . Therefore, we get an iso-
morphism between reflexive Kripke models and increased ATGs, from which it
is trivial to obtain the related ATGs.
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 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1 2 3 l11 l12 l13 ext. deg

0 0 0 1 0 1 E1 2

0 0 1 1 0 1 E2 1

0 1 0 0 0 1 E3 2

0 1 1 1 0 1 E4 2

1 0 0 1 1 0 E5 1

1 0 1 1 1 0 E6 2

1 1 0 0 1 0 E7 1

1 1 1 1 1 0 E8 1

1 2 3 l21 l22 l23 ext. deg

0 0 0 0 0 1 E1 1

0 0 1 0 0 1 E2 0

0 1 0 1 0 1 E3 3

0 1 1 0 0 1 E4 1

1 0 0 0 1 0 E5 2

1 0 1 0 1 0 E6 3

1 1 0 1 1 0 E7 0

1 1 1 0 1 0 E8 2

Fig. 7. (left) ATG and truth tables of function l1, and (right) of function l2, presented
in Example 10 and Example 11. The gray rectangles are representing extensions of
degree 1 (left) and stable configurations (right).

1 23

`

´

´

`

1 23

`

`

´

´

Fig. 8. (left) IG of l1, Example 10 and (right) IG of l2, Example 11

As the ATG G pfq is asynchronous, the accessibility relation R is such that, if
wj ‰ wk, then wj Rwk if and only if, wk is reachable from wj and differs from
wj by one and only one proposition. Under these conditions, the ATG of any
BDS is a canonical Kripke structure. Given such a framework, for any world wk

and any entity x, Lx “ J if and only if x “ J for every wk reachable from wj .
In order to obtain a morphism between hypothesis theories and ATGs, we

define the concept of a projection of an extension or of a sub-extension.

Definition 5. Consider a sub-extension, or an extension, E of H. The projec-
tion of E on the system T is the set of formulas of E which does not contain the
operator H.

Now, if T “ tHY,Fu is an hypothesis theory, and P is the set of the pro-
jections of the extensions or of the sub-extensions of T , we obtain a morphism
from T to P , and therefore a morphism from hypothesis theories to Kripke mod-
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els. Note that one does not get an isomorphism. Indeed the projections of two
different extensions can be equal, and therefore be related to the same Kripke
model.

Example 12. Figure 9 depicts the projection of function f given in Example 1,
and its associated Krypke model Kpfq.We remark that in order to get Kpfq
from f , it is enough to inject the modality L at the right places into the cube,
according to the corresponding Kripke frame. The eight nodes of Kpfq are the
worlds, and the arcs express the accessibility relation. The two nodes in gray
tL1,L 2,L3u and tL 1,L2,L 3u represent the two stable extensions from the
translation of f . Their degree of freedom is 0. The other six nodes are sub-
extensions since they are non-maximal. Their degree is 2. These six nodes form
the unstable cycle of f , represented by bold transitions.

 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1,L 2,L 3

L 1, L 2, 3

L 1,L2,L 3

L 1, 2,L3

L1, 2,L 3

L1,L 2,L3

L1,L2, 3

1,L2,L3

Fig. 9. (left) ATG of function f given in Example 1, and (right) its associated Kripke
model.

Example 13. Figure 10 depicts the ATG of function g given in Example 1 and it’s
associated Kripke model. The six nodes in gray represent the ghost extensions
of the translation of g. Their degree of freedom is 1 and correspond to the six
configurations of the stable cycle of function g, represented by bod transitions.
The other two nodes t1, 2, 3u and t 1, 2, 3u are sub-extensions because they
are non-maximal; their degree of freedom is 3. They represent the Garden of
Eden of g.

Example 14. Figure 11 depicts both the Kripke model and the ATG of function
h given in Example 2.

Three nodes represent the three extensions of the translation of k: node
tL 1,L 2u represents the stable one, t1,L 2u and tL1, 2u the two ghost ones
of degree 1. There is also one sub-extension of degree 2, t1, 2u.
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 1, 2, 3

 1, 2, 3

 1, 2, 3

 1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

1, 2, 3

 1,L 2,L 3

L 1, L 2, 3

 1, 2, 3

L 1, 2,L3

L1, 2,L 3

1, 2, 3

L1,L2, 3

1,L2,L3

Fig. 10. (left) ATG model of function g given in Example 1 and (right) its associated
Kripke model.

 1, 2

 1, 2

1, 2

1, 2

 1,L 2

 1,L2

1, 2

L1,L2

Fig. 11. (left) The ATG of h, (rigth) the corresponding Kripke model.

9 Results

The existence of a morphism from hypothesis theories to ATGs, allows to prove
the following theoretical results. Therefore, there is a strong link between con-
figurations of a BDS and extension sets of the H representation of this BDS.

The generalization of the notion of degree of freedom of extensions allows
us to configure ATGs. The degree of a configuration x, is the number of arcs
coming out of x. By previous construction of the Kripke models associated with
ATGs, it is obvious that, if w is the world associated with x, then x and w have
the same degree.

Proposition 2. Let T be an hypothesis theory, E be an extension or a sub-
extension of T , w be its projection and k be the degree of freedom of E. In the
Kripke model associated to T , there are exactly k distinct worlds, different from
w, reachable from w.

Proof. Since the degree of E is k, there are ti1, .., iku atoms free in E. For every
i P ti1, . . . , iku, we have both  Li P E and  L i P E. Two cases are possible,
either i P E or  i P E. If i P E, since  Li P E, there exists a world w1 accessible
from w, and distinct from w, that contains  i. Regarding the second case, if
 i P E, since  L i P E, there exists a world w2 accessible from w, and distinct
from w, that contains i. Therefore, for each i P ti1, . . . , iku, there is a world
accessible from w, and distinct from w, that contains the opposite of i. Because
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 1, 2

 1, 2

1, 2

1, 2

L 1, L 2

 1, 2

1, L 2

L1, 2

Fig. 12. (left) The ATG of k, (rigth) the corresponding Kripke model.

w is related to an ATG all these accessible worlds are distinct. Hence there are
k distinct worlds reachable from w. [\

Theorem 1. Let G pfq be an ATG of function f , and TRpfq be its associated
hypothesis theory. The following holds:

[1.] If x “ tx1, . . . , xnu is a stable configuration of G pfq, then there exists an
extension E of degree 0, issued from TRpfq, that contains tLx1, . . . ,Lxnu.

[2.] Let E be an extension of degree 0, issued from TRpfq, and w the projec-
tion of E. If x is the configuration related to w, then x is stable.

Proof. Each statement is proved separately:
[1.] If x is a stable configuration of G pfq, no edges can leave from x. By

construction of the Kripke model, the same holds for the Kripke world w related
to x. Hence the only word accessible from w is w, that is, for any i P w (resp.
 i P w), Li P w (resp. L i P w). Therefore, every i is fixed and the degree of
the extension E, issued from TRpfq, is 0.

[2.] Let the projection of E be represented by the world w. Since E is of degree
0, from Proposition 2, the only reachable world from w is w. By construction of
the Kripke model, the same holds for x. Therefore x is a stable configuration of
G pfq. [\

Theorem 2. Let G pfq be the ATG of function f and TRpfq be its associated
hypothesis theory. Every stable cycle C of G pfq corresponds to a cycle of exten-
sions of degree 1 in TRpfq.

Proof. The proof is similar to that of Theorem 1. Let C “ tx1, . . . , xku be a
stable cycle of G pfq, and W “ tw1, . . . , w`u the set of extensions associated with
C. By construction of the Kripke model, W is also a cycle of same length as
C. Since C is stable, each of its configurations xi admits only one outward arc.
And the same property holds for for wi, i.e., the degree of wi is 1. Therefore, all
extensions of W are of degree 1. [\

Analog theorems were proved in the context of interaction graphs [35]. They
correspond to the results given in [26]. With the same arguments as those used
for the proofs of the previous theorems, we can show that if a BDS contains an
unstable cycle C, it is represented by a set of extensions such that at least one
of those is of degree greater than 1. Indeed, if the cycle is unstable, it contains a
configuration x of degree greater than 1 and, by construction, the Kripke model
associated with the BDS contains the extension E corresponding to x.
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10 Conclusion

In [35], we studied in detail a translation of both positive and negative asyn-
chronous circuits into (H). In this paper, we extend this translation to any
asynchronous BDS, by showing that hypothesis logic captures some of their es-
sential behavioral capacities, such as stable configurations and stable cycles that
are specific attractors and unstable cycles. Of course, these results pave the way
to further studies about how hypothesis logic could be used to represent all the
dynamical richness of BDSs, by taking for instance into account their stable and
unstable oscillations and other known properties related to the orbits.

Our study is only a first step toward a complete logical study of BDSs that, in
the end, should allows us to clear both semantical and computational interesting
properties of BDSs.
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