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A Hyperbolic approach for learning communities on
graphs

Thomas Gerald · Hadi Zaatiti · Hatem
Hajri · Nicolas Baskiotis · Olivier
Schwander

Abstract Detecting communities on graphs has received significant interest 
in recent literature. Current state-of-the-art approaches tackle this problem 
by coupling Euclidean graph embedding with community detection. Consid-
ering the success of hyperbolic representations of graph-structured data in 
the last years, an ongoing challenge is to set up a hyperbolic approach to 
the community detection problem. The present paper meets this challenge 
by introducing a Riemannian geometry based framework for learning commu-
nities on graphs. The proposed methodology combines graph embedding on 
hyperbolic spaces with Riemannian K-means or Riemannian mixture mod-
els to perform community detection. The usefulness of this framework is 
illustrated through several experiments on generated community graphs and 
real-world social networks as well as comparisons with the most powerful base-
lines. The code implementing hyperbolic community embedding is available 
online https://github.com/tgeral68/HyperbolicGraphAndGMM.
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1 Introduction

In recent years, the idea of embedding data in new representation spaces has
proven its effectiveness in many applications. Indeed, several techniques have
become very popular due to their great ability to represent data while reducing
the complexity and dimensionality of the space. For instance, Word2vec [28]5

and Glove [33] are widely used tools in natural language processing, Nod2vec
[20], Graph2vec [3] and DeepWalk [34] are commonly used for community
detection, link prediction and node classification in social networks [17].

The present paper is concerned with learning Graph Structured Data (GSD).
Examples of such data include social networks, hierarchical lexical databases10

such as Wordnet [29] and Lexical entailment datasets such as Hyperlex [43].
GSD are increasing in popularity mainly due to being widely available and
easily obtainable from online resources and social networks. For instance, graphs
can represent links in social networks where nodes are users and edges are
relationships between them. Representing GSD is an important topic related to15

many applications such as community detection, node classification and graph
visualisation.

In the state-of-the-art, one can distinguish two different approaches to
cluster GSD. The first one applies pure clustering techniques on graphs such
as spectral clustering algorithms [39], power iteration clustering [25] and label20

propagation [46]. The second one is in two steps and may be called Euclidean
clustering after (Euclidean) embedding. First it embeds data in Euclidean
spaces using techniques such as Nod2vec, Graph2vec and DeepWalk and then
applies traditional clustering techniques such as K-Means algorithms. This
approach appeared notably in [13,41,44]. More recently the ComE algorithm25

[13] achieved state-of-the-art performances in detecting communities on graphs,
the main idea is to alternate between embedding and learning communities by
means of Gaussian mixture models.

Motivation. Learning GSD has known major achievements in recent years
thanks to the discovery of hyperbolic embeddings. Although it has been specu-30

lated since several years that hyperbolic spaces would better represent GSD
than Euclidean spaces [19,23,10], it is only recently that these speculations
have been proven effective through concrete studies and applications [30,14,
37]. As outlined by [30], Euclidean embeddings require large dimensions to
capture certain complex relations such as the Wordnet noun hierarchy. On the35

other hand, this complexity can be captured by a simple model of hyperbolic
geometry such as the Poincaré disk of two dimensions [37]. Additionally, hy-
perbolic embeddings provide better visualisation of clusters on graphs or trees
than Euclidean embeddings [14,30].

Recently, the ComE and ComE++ [13,12] frameworks oriented the paradigm40

of graph representation towards learning communities of graphs. Despite few
works applying deep learning methods to represent GSD on hyperbolic spaces
such as Hyperbolic Graph Neural Networks [26] or Hyperbolic Convolutionnal
Neural Networks [15] which provided competitive results compared to their
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Euclidean counterparts, the effectiveness of hyperbolic spaces for learning45

communities has not been proven or explored yet.
Given the success of hyperbolic embedding to obtain faithful representations,

it seems relevant to set up an approach that applies pure hyperbolic techniques
in order to learn nodes and more generally community representations on graphs.
This motivation is in line with several recent works that have demonstrated the50

effectiveness of hyperbolic tools for different applications in Brain computer
interfaces [8], Computer vision [35] and Radar processing [4].

Contribution. Motivated by the success of hyperbolic embeddings on the one
hand and hyperbolic learning algorithms on the other hand, we propose in
this paper a new hyperbolic approach to the problem of learning node and55

community representations on graphs. Two different applications are targeted:
Unsupervised learning on GSD.We present a scheme to learn communities
based on Poincaré embeddings [30], the Riemmannian K-Means algorithm and
the recent formalism of Riemannian EM algorithm [36].
Supervised learning on GSD. We propose a supervised framework that60

uses community-aware embeddings of graphs in hyperbolic spaces.
For both the unsupervised and supervised frameworks, our proposed meth-

ods are evaluated on real-data social networks and compared with the ComE
approach [13] and recent geometric methods [16].

This paper is organised as follows. Section 2 reviews the geometry of65

the Poincaré ball and related tools which will be used after: Riemannian
barycentre and Riemannian Gaussian distributions. In Section 3, we review
Poincaré embedding [30] and present our approach to learn GSD. Section 4
provides experiments and comparisons between our approach and state-of-
the-art baselines. Finally Section 5 provides a conclusion of the paper and70

perspectives for the future.

2 The Poincaré Ball model: Geometry and Tools

In this section, we first review the geometry of the Poincaré ball model as
a hyperbolic space, that is a Riemannian manifold with constant negative
sectional curvature. In particular, we recall expressions of the exponential and75

logarithmic maps which will be used in the sequel. Then, we review definitions
and properties related to Riemannian barycentre and Riemannian Gaussian
distributions. Our approach presented in the next section strongly relies on
algorithms K-Means and EM developed from these two concepts.

2.1 Geometry of the Poincaré ball80

The Poincaré ball model of m dimensions (Bm, gBm) is the manifold Bm =
{x ∈ Rm : ||x|| < 1} equipped with the Riemannian metric:
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Fig. 1: Geodesics passing through two points in the Poincaré disk.

gB
m

x =
4

(1− ||x||2)2
gE

where gE is the Euclidean scalar product. The Riemannian distance between
two points x, y ∈ Bm, induced by this metric is given by:

d(x, y) = arcosh
(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)
(1)

Figure 1 shows different geodesics linking two points on B2. Notice that85

geodesics passing through the center are straight lines and as points get closer
to the boundary, geodesics become more and more curved.

Endowed with this metric, Bm becomes a hyperbolic space [21,2]. [18] gave
explicit expressions for the Riemannian exponential and logarithmic maps
associated to this distance as follows. First, define Möbius addition ⊕ for90

x, y ∈ Bm as:

x⊕ y =
(1 + 2〈x, y〉+ ||y||2)x+ (1− ||x||2)y

1 + 2〈x, y〉+ ||x||2||y||2

For x ∈ Bm and y ∈ Rm \ {0}, the exponential map is defined as:

Expx(y) = x⊕
(
tanh

(
||y||

1− ||x||2

)
y

||y||

)
Intuitively, the exponential map is a generalisation to manifolds of the

addition between a point and a vector. The addition of a point x with a vector
y tangent at x, results in a point z belonging to the geodesic initiated from x
and following the tangent vector.95

Expx is a diffeomorphism from Rm to Bm. Its inverse, called the logarithmic
map is defined for all x 6= y ∈ Bm as:
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Tx(M)
x

y

~Logx(y) ~v

Expx(v)

Fig. 2: Representation of the logarithmic and exponential maps on a manifold
M: Given two points x, y ∈ M, Logx(y) is a tangent vector at x pointing
towards y; and given some tangent vector v at x, then Expx(v) is the point on
the geodesic initiated from x that follows v.

Logx(y) = (1− ||x||2)tanh−1 (|| − x⊕ y||) −x⊕ y
|| − x⊕ y||

The logarithmic map is generalisation of a subtraction to manifolds. Given,
two points x and y, the result is the tangent vector from x oriented towards
y. Figure 2 is an illustration of the Riemannian logarithmic and exponential100

maps on some manifold.
Another important concept for optimisation on Riemannian manifolds is

parallel transport, that transports a tangent vector from one point to another
alongside a geodesic curve. For the Poincare ball, the parallel transport of a
vector v from point x to y is defined by105

ϕx→y(v) = gyration(y,−x, v)λx
λy

(2)

with the gyration function given in [18,42] (Equation 1.27) and λx =
2

1−||x||2 the conformal factor. The parallel transport is a key ingredient for
optimisation using adaptive methods [9] such as RAdam or RAMSGrad. Figure
3 illustrates the parallel transport of a vector alongside a geodesic on the
Poincaré disk.110

2.2 Riemannian barycentre

As a Riemannian manifold of negative curvature, Bm enjoys the property of
existence and uniqueness of the Riemannian barycentre [1]. More precisely, for
every set of points {xi, 1 ≤ i ≤ n} in Bm, the empirical Riemmanian barycentre

µ̂n = argminµ∈Bm

(
n∑
i=1

d2(µ, xi)

)
exists and is unique. Several stochastic gradient algorithms can be applied to
numerically approximate µ̂n [11,5,7,4,6]. Riemannian barycentre has given
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Fig. 3: Parallel transport of a vector (red) along a geodesic (blue) in the
Poincaré disk; parallel transport preserves the angle between the vector and
the disk as well as the vector direction.

Fig. 4: Visualisation of two Gaussian distributions and their probability density
functions as orange (small variance) and blue (large variance), in the Poincaré
Ball with their Riemannian means (red points). Due to the curvature of the
manifold, the means do not correspond to the centers of each area (orange and
blue).

rise to several developments in particular, K-Means and EM algorithms which
will be used in this paper.115

2.3 Riemannian Gaussian Distributions

Gaussian distributions have been extended to manifolds in various ways [38,32,
36]. In this paper we rely on the recent definition provided in [36] as it comes up
with an efficient learning scheme based on Riemannian mixture models. This
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Fig. 5: Normalisation coefficient σ 7→ ζm(σ) for different values of the dimension
m of the Poincaré ball

distribution was particularly used in [27] to generalise variational-auto-encoders120

to the Poincaré Ball. Moreover [31] proposed an extension of Wasserstein auto-
encoders based on the same definition of Gaussian distributions.

Given two parameters µ ∈ Bm and σ > 0, respectively interpreted as
theoretical mean (or barycentre) and standard deviation, the Riemannian
Gaussian distribution G(µ, σ) on Bm, is given by its density:

f(x|µ, σ) = 1

ζm(µ, σ)
exp

[
−d

2(x, µ)

2σ2

]
with respect to the Riemannian volume dv(x) [36]. Figure 4 illustrates the
density of two Gaussian distributions on B2. A first interesting and practical
property is that ζm(µ, σ) does not depend on µ:125

ζm(µ, σ) = ζm(0, σ) = ζm(σ) =

∫
Bm

exp

[
−d

2(x, 0)

2σ2

]
dv(x)

A more explicit expression of ζm(σ) has been given recently in [27] as
follows:

ζm(σ) =

√
π

2

σ

2m−1

m−1∑
k=0

(−1)kCkm−1e
p2kσ

2

2

(
1 + erf(

pkσ√
2
)

)
with pk = (m − 1) − 2k. Figure 5 displays some plots of the function

σ 7→ ζm(σ).
Recall Maximum Likelihood Estimation (MLE) of the parameters µ and σ,

based on independent samples x1, . . . , xn from G(µ, σ) given as follows:
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– The MLE µ̂n of µ is the Riemannian barycentre of x1, . . . , xn.130

– The MLE σ̂n of σ is

σ̂n = Φ

(
1

n

n∑
i=1

d2(µ̂n, xi)

)

where Φ : R+ −→ R+ is a strictly increasing bijective function given by the
inverse of σ 7→ σ3 × d

dσ log ζm(σ).

3 Learning Hyperbolic Community Embeddings

The goal of embedding GSD is to provide a faithful and exploitable represen-
tation of the graph structure. It is mainly achieved by preserving first-order135

proximity that enforces nodes sharing edges to be close to each other. It can
additionally preserve second-order proximity that enforces two nodes sharing
the same context (i.e., nodes that are neighbours but not necessarily directly
connected) to be close.

Consider a graph G(V,E) where V is the set of nodes and E ⊂ V × V is140

the set of edges.

First-order proximity. It is preserved by optimising a loss function similar to
[30]:

O1 = −
∑

(vi,vj)∈E

log(σ(−d2(φi, φj))) (3)

with σ(x) = 1
1+e−x is the sigmoid function, φi ∈ Bm is the embedding of

the i-th node of V and d is the Riemannian distance.145

Second-order proximity. It is preserved by forcing the representation of a node
to be close to the representations of its context nodes. For this, we adopted
the negative sampling approach [28] and considered the loss:

O2 = −
∑
vi∈V

∑
vj∈Ci

[
log(σ(−d2(φi, φ′j))) +

∑
vk∼Pn

log(σ(d2(φi, φ
′
k)))

]
(4)

with Ci the nodes in the context of the i-th node, φ′j ∈ Bm the embed-
ding of vj ∈ Ci and Pn the negative sampling distribution over V given150

by Pn(v) = deg(v)3/4∑
vi∈V

deg(vi)3/4
. The next paragraph introduces a third objective

function allowing to detect and embed communities rather than individual
nodes.
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3.1 Expectation-Maximisation for Hyperbolic GMM

The Riemannian EM algorithm introduced in [36] has similarities with the usual
EM algorithm on Euclidean spaces. It is employed to approximate distributions
on manifolds by a mixture of standard distributions. We recall the density F
of a GMM on the Poincaré ball

F (x|µ, σ) =
K∑
k=0

πkf(x|µk, σk)

where x ∈ Bm, πk the mixture coefficient, µk, σk the parameters of the k-th155

Riemannian Gaussian distribution. The Riemannian EM algorithm computes
the GMM that best fits a set of given points x1, · · · , xN . This is done by
maximising the log-likelihood of the joint probability of observing each point
under the hypothesis that observations are independent. Given an initialisation
of π, µ and σ, performing EM numerically translates to alternating between160

Expectation and Maximisation steps. Fitting a Gaussian mixture model on
Riemannian manifolds have some similarities with its Euclidean counterpart.
The main complexity is that there are no known closed forms for the log-
likelihood maximisation of the mean and standard deviation. In the next
section, we show how the EM algorithm was used to detect communities on165

graph embeddings.

3.1.1 Expectation

The expectation step estimates the probability of each sample xi to belong
to a particular Gaussian cluster. The estimation is based on the posterior
distribution P(zi = k|xi), i.e. the probability that the sample xi is drawn from170

the k-th Gaussian distribution:

wik := P(zi = k|xi) =
πk × f(xi|µk, σk)
N∑
j=1

πk × f(xj |µk, σk)
(5)

In this expression z1, · · · , zN represent the latent variables associated to
the mixture model.

3.1.2 Maximisation

The maximisation step estimates the mixture coefficient πk, mean µk and175

standard deviation σk for each Gaussian component of the mixture model.

Mixture coefficient. The mixture coefficients are computed by :

πk =
1

N

N∑
i=1

wik (6)
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Mean. Updating the µ parameter relies on estimating weighted barycentres. It
was therefore required to approximate the weighted barycentre µ̂k of the k-th
cluster:180

µ̂k = argmin
µ

N∑
i=1

wikd
2(µ, xi) (7)

via Riemannian optimisation. We used Algorithm 1 of [4] which has proven
effective for Radar applications. This algorithm returns an estimate of µ̂k.

Algorithm 1 barycentre computation
Require : W = (wik) weight matrix, {x1, · · · , xN} a subset of Bm, ε convergence rate
(small), λ barycentre learning rate
1: Initialisation of µ0k
2: do

3: µt+1
k ← Expµt

k

(
λ 2
N∑
i=1

wik

N∑
i=1

wikLogµt
k

(xi)

)
4: while d(µtk, µ

t+1
k ) > ε . t is the iteration index

return µt+1
k

Standard deviation. Recall the MLE of the standard deviation of the Gaussian
distribution is previously defined in Section 2.3. Thanks to the property of Φ
being strictly increasing and bijective, estimation of σk was given by solving185

the following problem :

σ̂k = argmin
σs

∣∣∣∣∣∣∣∣
 1

N∑
i=1

wik

N∑
i=1

d2(µk, xi)wik

− Φ−1(σs)
∣∣∣∣∣∣∣∣ (8)

We used a grid-search to find an approximation of σk by computing its
values for a finite number of σs. To compute Φ−1(σs) which involves the
term d

dσ logζm(σ) we used automatic differentiation algorithm provided by the
back-end. The procedure for choosing the state space of σs are provided and190

discussed in Section 4.

3.2 Learning with Communities

Since our main objective is to learn embeddings for the purpose of community
detection and classification, we need to ensure that embedded nodes belonging
to the same community are close. Therefore, similarly to the statement made195

in ComE [13] we connect node embedding (first and second-order proximity
via the minimisation of O1 and O2) together with community awareness using
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a third-order loss function O3. The later is named the community loss, which
we write as:

O3 = −
N∑
i=1

K∑
k=0

wiklog

(
1

ζm(σk)
e
− d

2(xi,µk)

2σ2
k

)
(9)

To solve community and graph embedding jointly, we finally minimise:200

L = α.O1 + β.O2 + γ.O3

with α, β, γ the weights of respectively first, second-order and community
losses.

3.3 Optimisation

We now focus on the Riemannian optimisation of the loss functions O1, O2

and O3. Following the idea of [18], we used the Riemannian Gradient Descent205

(RGD) Algorithm, which first computes the gradient on the tangent space and
then projects the new values on the ball

φt+1 = Expφt
(
−η ∂O

∂φ

)
(10)

where O is a function to optimise, φ is a parameter, t ∈ {1, 2, · · · } is the
iteration number and η is a learning rate. Recall from [4] the formula giving
the gradient of dp(φi, φj) where φi, φj ∈ Bm :210

∇φidp(φi, φj) = −p ∗ dp−1(φi, φj) ∗
Logφi(φj)
d(φi, φj)

(11)

Using the chain rule, the gradient of a function h = g ◦ dp (g being a
differentiable function) can be computed as follows:

∇φih = g′(dp(φi, φj))∇φidp(φi, φj)

where the expression of ∇φidp(φi, φj) is given in Equation (11). In the attached
code (detailed in the Appendix), optimisation was performed by redefining the
gradient of the distance and then using usual auto-derivation tools provided215

by PyTorch backend.
To avoid division by d(φi, φj), which becomes computationally difficult

when φi and φj are close, we adopted p = 2 which experimentally revealed to
be numerically more stable. Explicit forms for the gradient of O1, O2 and O3

are as follows:220
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Update of O1. It is based on the computation of the gradient of O1 (given in
(3)) with respect to φi obtained as follows:

∇φiO1 = −2× Logφi(φj)× σ(d
2(φi, φj))

In this last formula, we used the fact that log(σ(−x))′ = −σ(x). By sym-
metry, ∇φjO1 = −2× Logφj (φi)× σ(d

2(φi, φj)).
225

Update of O2. The updates of φi, φ′j and φ′k (the embeddings of vi, vj and vk
where vi is a node, vj belongs to the context Ci of vi and vk a negative sample
of vi) in (4) are given as follows:

– Update of φ′j is done exactly as in O1 since it occurs only in the first term
of the sum.230

– Update of φ′k is based on the gradient computation

∇φ′kO2 = −2× Logφ′k(φi)× σ(−d
2(φi, φ

′
k))

– Update of φi is based on the gradient computation

∇φiO2 =
∑
vj∈Ci

[
− 2× Logφi(φ

′
j)× σ(d2(φi, φ′j))

+

nneg∑
k=1

(
2× Logφi(φ

′
k)× σ(−d2(φi, φ′k))

) ]

where nneg is the number of negative samples.

Update of O3. Recall the expression of O3 from (9). The updates of wik, ζm(σk)
and σk were detailed in Subsection 3.1. The update of φi uses the gradient235

∇φiO3 =
K∑
k=0

wik
2σ2

k

∇φi(d2(φi, µk)) (12)

Optimisation. To update each parameter, we use the RGD algorithm (Equation
10) and its adaptive counterpart RAMSGrad (Algorithm 2) [9]. We observed
better performances with the adaptive method which is relied on in the next
section.
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Algorithm 2 Riemannian RAMSGrad
Require : f function to optimise, η learning rate, β1, β2 tradeoff parameters between the
weight attributed to the gradient history and its current value, mxt , v

x
t , τ

x
t internal variables

from previous update
1: procedure update xt(xt, f, η, β1, β2,mxt , v

x
t , τ

x
t )

2: ∇TxtBxt f(xt)← gradient on the tangent space in xt
3: mxt+1 ← β1τxt + (1− β1)∇TxtBxt f(xt)

4: vxt+1 ← β2vxt + (1− β2)||∇TxtBxt f(xt)||2
5: vxt+1 ← max{vxt+1, v

x
t }

6: xt+1 ← Expxt (−η
mxt+1√
vxt+1

)

7: τt+1 ← ϕxt→xt+1 (mxt+1) . φ being the parallel transport function from Equation 2
8: end procedure

Hyperbolic community learning algorithm. Algorithm 3 presents the high level240

scheme for learning community-aware embeddings of graph data on hyperbolic
spaces. It proposes to learn embeddings based on O1 and O2 first, detect
communities by applying the EM algorithm second, then perform community
embedding by optimising O3. In fact, since initialisation is random, commu-
nities will first need to be formed by optimising O1 and O2. Only then, the245

EM algorithm would be successful in capturing representative communities.
Experimentally, we pre-trained the embeddings by optimising O1 and O2 for
several iterations before using the complete loop. When the EM algorithm
starts capturing communities, the optimisation of O3 with respect to node
embeddings uses the captured communities to embed the nodes by moving250

each node closer to the most likely community, i.e., in the direction maximising
the probability density function of the GMM.

To visualise the effect of community embedding, we trained a GMM with
two components, distant barycentres and different variances. Figure 6 shows
the effect of optimising O3 via Equation (12) for randomly generated points255

at different iterations. Notice how the points settle at the geodesic linking the
two barycentres except for points that were initially close to the boundary of
the disk (considered at infinity). Indeed, the direction towards the geodesic
is the one maximising the probability density function of the GMM. In this
experiment, the posterior probabilities wik are not updated. Consequently260

the points settle at the geodesic without moving further towards one of the
barycentres.
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Algorithm 3 Community learning and detection on graphs using hyperbolic
embeddings
Require : G(V,E) graph data, K number of communities, m dimension of the hyperbolic
space, l random walk length, nw number of walks from some node, nc context size, nneg
number of negative samples, max_iter1,2,3 full loop, community detection, respectively,
community embedding maximum iterations
Ensures : φ node embeddings
1: Initialisation of φ, µ, σ, π randomly from a uniform distribution with fixed bounds
2: for iter<max_iter1 do
3: for (i, j) ∈ E do
4: Update φi, φj via RGD based on α.O1
5: end for
6: for p ∈ P do
7: for i ∈ p do
8: Update φi and all φj in the context of ß via RGD of β.O2

9: . Select context and negatively sampled nodes of size nc and nneg by
generating nw Random walks of length l from each node as in DeepWalk [34]

10: end for
11: end for
12: for iter<max_iter2 do
13: Update µ, σ, π . Community detection by alternating between Exptectation and

Maximisation steps as described in Subsection 3.1
14: end for
15: for iter<max_iter3 do
16: Update φi given the detected communities . Community embedding by applying

the update of Equation 12
17: end for
18: end for
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(a) Initialisation (b) Iteration 3

(c) Iteration 15 (d) Iteration 40

Fig. 6: Visualising the effect of optimising the community embedding loss
function: Initialisation of random points (cyan) on the hyperbolic space and
a Gaussian mixture model (with probability density function illustrated as a
purple to yellow heat map) with two components (red squares representing the
two barycentres)
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3.4 Prediction

The previous paragraphs presented our approach to learn community-aware
embeddings of graph data. In what follows, we propose evaluations protocols265

for algorithms on unsupervised and supervised community problems. This will
allow us in the next section to experimentally evaluate the efficiency of our
approach.

Unsupervised learning.

– Hyperbolic K-Means (H-KM): This algorithm finds K cluster centroids and270

labels points by minimising the intra-cluster variances. Based on the notion
of Riemannian barycentre, Algorithm 4 illustrates Riemannian K-Means.

Algorithm 4 Hyberbolic K-Means
Require : K number of clusters, φ ⊂ Bn×m node embeddings, max_itermaximum iterations
Ensures : I labels of each sample, µ cluster centroids
1: Initialisation of centroids µ ⊂ BK×m randomly from a uniform distribution
2: for t ∈ {1, 2, 3, . . . max_iter} or convergence do
3: for i ∈ {1, 2, . . . , n} do
4: Iti ← argminj d(µj , φi)
5: end for
6: for k ∈ {1, 2, . . . ,K} do
7: Update barycentre µk ← RiemanianBarycentre({φj |Ij = k}
8: end for
9: convergence← True iff ∀i ∈ {1, 2, . . . , n}, It−1

i = Iti
10: end for

– Hyperbolic Expectation-Maximisation (H-EM): We apply several EM itera-
tions to obtain a well converged GMM. Then, the probability for a node
to belong to some community (modelled by one component of the GMM)275

is computed. Each node is then labelled with the community giving it the
highest posterior probability.

Supervised learning. Assuming to know the communities of some nodes, the
objective is to predict the communities of unlabelled nodes while using the
computed community-aware embedding. The nodes are split into a test set and280

a validation set. We will use three different methods to predict the labels of
the validation set:

– Hyperbolic Barycentres (H-B): This method uses a supervised version of
K-Means by computing the Riemannian barycentre of nodes known to
belong to a given community. Each barycentre is considered as a cluster285

centroid representing the community. Then nodes from the validation set
are associated to the communities of the n nearest barycentres (depending
on the considered Precision@n discussed in the next section).
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– Hyperbolic GMM (H-GMM): Given the known labels of the train data, a
GMM is estimated. The parameters of the GMM are obtained by applying
one maximisation step given the train nodes (Section 3.1.2) using the
following estimate:

wik =
yi,k
K∑
k=0

yi,k

with yi,k = 1 if node i belongs to the community k and yi,k = 0 otherwise.
To predict the community k̂ of a given node embedded as xi ∈ Bm, we use
Bayes decision rule:

k̂ = argmaxkP(k|xi) = argmaxkwikf(xi|µ̂k, σ̂k)

with µ̂k, σ̂k the estimated parameters of the k-th Gaussian distribution.
– Hyperbolic Logistic Regression (H-LR): In order to further compare the290

baseline ComE with our proposed method developed in this paper, we
propose similarly to [13] to learn a classifier. For the baseline ComE, we
use the usual Euclidean logistic regression. For its Riemannian version, we
rely on the hyperbolic logistic regression proposed in [18]. From this paper,
recall that for a given hyper-plane Ha,p defined by a point p ∈ Bm and a295

tangent vector a ∈ TpBm, the distance of a given x ∈ Bm to Ha,p is:

d(x,Ha,p) = sinh−1
(

2| < −p⊕ x, ak > |
(1− || − p⊕ x||2)||ak||

)
(13)

Then, the probability of a node x to belong to the community k is modelled
by

P(z = k|x) = σ
(
sign(−p⊕ x)d(x,Ha,p)

)
(14)

with z the community latent variable.

3.5 Complexity and Scalability300

Complexity. With N the number of nodes and |E| the number of edges, the
time complexity of embedding GSD for first and second-order proximity are
respectively in O(|E|) and O(N). Assuming a fixed number of iterations for
all gradient descent computations, performing embedding and Riemannian
barycentre basedK-Means hasO(N.m.K+|E|) complexity thus is inO(N+|E|)305

for large graphs. Similarly, the time complexity of community embedding with
EM loop is in O(N + |E|). Table 1 provides a complexity comparison for
node and community learning algorithms from the literature. The table shows
that our work introduces no further complexity compared with the strongest
state-of-the-art community learning frameworks.310
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Complexity
DeepWalk [34] O(Nlog(N))
Node2vec [20] O(Nlog(N) +N.a2)
LINE [40] O(a|E|)
SDNE [45] O(a.N)
ComE[13] O(N + |E|)

Hyperbolic Community Learning (This work) O(N + |E|)

Table 1: Complexity comparison between hyperbolic community learning (our
work) and other frameworks from the literature (N the number of graph nodes,
|E| the number of edges and a the average graph degree)

Scalability. The GSD embedding update process for O1 and O2 in Bm is a linear
function of m. Therefore, embedding the GSD scales well to large datasets. To
accelerate the updates of O1, O2, O3, we use batch gradient descent algorithm
mainly for large datasets.

Although run-times of Riemannian K-Means and EM are higher than their315

Euclidean versions (mainly due to RGD), scalability is not affected by the
change of the underlying space: each operation has higher run-time but the
total number of operations as function of the dataset size scales similarly to
Euclidean spaces. Notice that the computation of the normalisation factor
ζm(σ) makes fitting hyperbolic GMM computationally challenging, this can be320

visually perceived in Figure 5. Thus, numerically we have to deal with the out
of bound numbers due to the terms e

(m−1)2σ2

2 . To keep the computation time-
bounded, we fixed a finite number of values for σ for which we pre-computed ζm.
To avoid the out of bound issue we restricted our work to 10 dimensions while
increasing the floating-point precision (see Section 4). Similarly, as explained325

in the last paragraph of Section 3.1.2 for computing the variance and its
gradient, we precompute them numerically in static tables instead of on demand
computations. Experimentally, precomputing these parameters helped us reduce
some of the computation burden and increase scalability.

4 Experiments330

In this section, we compare our approach with recent works from the literature
based on several experiments1.

Datasets. As a first step to validate the framework, we present experiments on
generated synthetic community graphs. The Lancichinetti–Fortunato–Radicchi
benchmark (LFR) is a graph generation framework [24] that relies on the335

construction of community graphs. The LFR benchmark provides solutions to
many problems that previous community graph generation methods encoun-
tered such as: nodes of generated networks having same degrees, communities

1 https://github.com/tgeral68/HyperbolicGraphAndGMM

https://github.com/tgeral68/HyperbolicGraphAndGMM
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being of the same size and the generated networks being generally small. To
tackle these issues, the authors of [24] generate the degree for each node (N340

nodes) according to a power law distribution. The support of this distribution
is chosen according to kmin and kmax, the minimal, respectively, the maximal
degree (or kmean). Similarly, the size of each community is modelled by another
power law distribution. The number of communities is also chosen from a sup-
port smin > kmin and respectively smax > kmax (or smean). Each node shares345

edges with its community at a probability of Λ and with other communities at
1− Λ.

Secondly, we present experiments on DBLP2 a graph of scientific papers,
Wikipedia3 a graph built on Wikipedia dump, BlogCatalog4 a blog social network
graph and Flickr5 a graph based on Flickr users. We also experiment on several350

low scale datasets and provide visualisations of the learned embeddings when
the dataset allows it. Figure 7 depicts the community distribution for the DBLP,
Wikipedia and BlogCatalog graphs, it shows the number of nodes (Y-axis)
belonging to each community identified by an ID number (X-axis). For all
the experiments presented below, we used 2080 TI RTX GPU during training355

to accelerate processing time. Table 2 shows the characteristics of the used
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(c) BlogCatalog

Fig. 7: The ground-truth community distributions for DBLP, Wikipedia and
BlogCatalog datasets. X-axis is identification number of some community and
Y-axis the number of nodes belonging to the community.

datasets.

Hyper-parameters selection. Some parameters involved in the learning process
are difficult to know a priori. Therefore, we performed several grid-search to
save the hyper-parameters with the best cross-validation performances in terms360

of conductance, defined below, when running our algorithm and the baseline
ComE. In particular, the parameter λ, the learning rate, c, the size of the
context window and t, the number of negative sampling nodes appeared to

2 https://aminer.org/billboard/aminernetwork
3 http://snap.stanford.edu/node2vec/POS.mat
4 http://socialcomputing.asu.edu/datasets/BlogCatalog3
5 http://socialcomputing.asu.edu/datasets/Flickr
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Table 2: Characteristics of the datasets used during experiments. N is the
number of nodes, |E| is the number of edges, K is the number of communities
and ML is whether or not the dataset is multi-label (whether or not a node
can belong to several communities).

Corpus N |E| K Multi-Label
Karate 34 77 2 no
Polblogs 1224 16781 2 no
Books 105 441 3 no
Football 115 613 12 no
LFR 800 - 13 no
DBLP 13,184 48,018 5 no
Wikipedia 4,777 184,812 40 yes
BlogCatalog 10,312 333,983 39 yes
Flickr 80,513 5,899,882 195 yes

be the most influencing on the results. For our algorithm 6, the parameters
c and t were selected from the set {5, 10}, β and α ∈ {0.1, 1}, γ ∈ {0.01, 0.1}365

and λ from [1e− 2, 1e− 4]. For all experiments, we generated, for each node,
10 random walks, each of length 80. For the first 10 epochs, embeddings are
trained using only O1 and O2 and then using the complete loop as described
in Section 3.2.

As for running ComE, the tested parameters are λ ∈ {0.1, 0.01}, β ∈370

{1, 0.1} and γ ∈ {0.1, 0.01}, then the experiments giving the best performances
(according to conductance) are relaunched 5 times to obtain variances and
means. All others parameters are the default ones7.

Variance search space procedure. Choosing the search space for the values of σ
follows a method based on experimental results. We pre-compute Φ−1 for a375

range of σ values. The main objective is to cover, at best, a wide range of values
of σ. We proceed as follows: For each Gaussian component, for σ ∈ R+ we
select a range of values A ∈ {σ1, σ2, . . . , σk} with σi = a+bi with a = 5e−3 and
b = 1e− 3, and k = 2000, the values of a and b have been empirically chosen
and tuned according to the communities. Additionally, we noted that the value380

of σ required for achieving high performances in representing communities
never exceeded the value 2, a value that models largely scattered data. As for
the computation time, since ζm is only computed once at the first step of the
Expectation-Maximisation algorithm, the computation time is not affected (we
could also store the value instead of computing it at run time). Retrieving the385

correct Φ−1 for each θ is computationally cheap and costs only a search in a
sorted table which has a negligible complexity of O(log(k)).

6 For Flickr dataset we only run one experiment for each parameter, moreover, the number
of parameters tested is lower than those tested for others datasets

7 ComE code repository is available at https://github.com/vwz/ComE
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Evaluation metrics. We used the following metrics to assess the relevance of
the proposed hyperbolic approach for learning communities on graphs.
• Conductance: measures the number of edges shared between separate390

clusters. The lower the conductance is, the less edges are shared between
clusters. Let Ci be the set of nodes for the cluster i, A the adjacency matrix of
the GSD, the mean conductance MC over clusters is given by:

MC =
1

K

K∑
i=1

∑
j∈Ci,k/∈Ci

Ajk

min

( ∑
j∈Ci,k∈V

Ajk,
∑

j /∈Ci,k∈V
Ajk

) (15)

• Normalised Mutual Information (NMI): Let Gij be the number of common
nodes belonging to both the predicted cluster i and the real cluster j, N being395

the number of nodes, Gpi the number of elements in the i-th predicted cluster
and Gti the number of elements in the i-th real community. The NMI is given
by:

NMI =
−2

K∑
i=0

K∑
j=0

Gij log
(
GijN
GpiG

t
j

)
K∑
i=0

Gpi log
(
Gpi
N

)
+

K∑
j=0

Gtj log
(
Gtj
N

) (16)

• Precision@1 : Since the real labels of communities are known, we propose
a supervised measure derived from the precision metric that uses the true400

community labels.
A problem we encountered is that the association between predicted labels

and true ones is unknown. For a small number of communities, all possible
combinations are computed and the best performance is reported. This solution
is not tractable when the number of communities grows. A greedy approach is405

then used: the predicted labels of the largest cluster is first associated to the
known true labels of the dominant class. Similarly the second largest cluster is
associated with the second dominant class with known labels and so on. The
process is repeated until all clusters are treated. Finally, for mono-label datasets,
the Precision@1 corresponds to the mean percentage of the correctly guessed410

labels. For multi-label datasets, an element is considered correctly labelled if
the inferred community corresponds to one of its true known communities.

4.1 Unsupervised Clustering and Community Detection

In this section, we present experiments to validate the relevance of the hy-
perbolic community-aware embeddings based on the H-K-Means and H-EM415

frameworks for the task of unsupervised community detection.
First, we performed several experiments on the synthetic graph generated

from LFR. Figure 8a and 8b depicts respectively the NMI and conductance
for the generated graphs. The performances are reported for several values of
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the community density parameter Λ while the rest of the parameters are fixed.420

One should note that the hyperbolic framework reaches better performances
when considering hugely connected communities (i.e., small values of 1− Λ).
Figure 9 shows the embedding resulting from the proposed learning framework.
Figure 9a is coloured according to the real communities while Figure 9b is
coloured according to the unsupervised H-EM algorithm.425

(a) NMI (higher is better) (b) Conductance (lower is better)

Fig. 8: A performance comparison of the unsupervised approach H-EM with
the baseline ComE as function of 1− Λ (higher Λ means more edges a node
shares with its true community) applied to embeddings of the synthetic LFR
graph in two dimensional space.

Second, for each real world dataset, we performed 5 experiments. The
average mean of the performance metrics are shown in Table 3.

4.2 Supervised Classification

In this section, we present experiments to assess the effectiveness of hyperbolic
community learning in the supervised context. The evaluation relies on three430

different ways to predict labels described previously in Section 3.4: H-B, a
supervised version of K-Means based on the Riemannian barycentre, H-GMM,
hyperbolic Gaussian mixture models, or H-LR, hyperbolic Logistic Regression
based on geodesics. For all experiments, we applied a 5-cross-validation process
with 20% of the dataset used for validation. The Precision@1 is reported435

for mono-label datasets (i.e., each element belongs to a unique community),
additionally Precision@3 and 5 are reported for multi-label datasets (i.e., each
element can belong to several communities). Table 4 reports the mean and
standard deviation of the Precision over 5 runs.

Hyperbolic SVM Comparison. To support the relevance of the proposed classi-440

fication approaches, we compare in Table 5 our results with Hyperbolic SVM
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(a) Ground Truth: Each point represents a
graph node, each color is a true known com-
munity

(b) Prediction model via Hyperbolic
Expectation-Maximisation: each color is the
predicted community of some node

Fig. 9: Visualisation of unsupervised approach applied on LFR with parameter
µ = 0.9.

(a) DBLP (H-GMM) (b) Wikipedia (H-GMM) (c) BlogCatalog (H-GMM)

(d) DBLP (ComE) (e) Wikipedia (ComE) (f) BlogCatalog (ComE)

Fig. 10: Example of predicted community distributions considering 10 dimen-
sional embeddings for hyperbolic GMM and ComE

[16]. The performances are reported for embeddings of small datasets in two
dimensions, using 5 folds cross-validation. The context size was set to 3 for
Football and 2 for the other datasets. The reported results are directly taken
from the H-SVM paper (where 5 folds cross-validation are used as well).445
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Table 3: Unsupervised community detection performances for Hyperbolic K-
Means (H-KM) and Expectation-Maximisation (H-EM) in comparison with
state-of-the-art method ComE.

Precision@1
Dataset m H-KM H-EM ComE

DBLP
2 78.5±1.8 78.6±4.8 60.4±5.5
5 79.6±2.4 81.2±2.1 78.0±4.7
10 71.4±13.1 81.5±0.1 78.2±1.2

Wikipedia
2 8.6±0.8 16.1±4.0 8.8±0.2
5 9.7±0.4 10.1±0.7 10.1±0.2
10 9.3±0.3 11.9±1.1 12.1±0.7

BlogCatalog
2 8.1±0.2 9.8±0.3 7.0±0.1
5 13.4±0.3 12.6±0.7 12.3±0.3
10 18.9±0.6 16.5±0.8 15.9±0.5

Flickr 2 8.0±0.2 12.9±0.8 6.2±0.
5 13.0±0.1 13.4±0.1 10.2±0.2
10 13.8±0.1 14.0±0.2 13.2±0.

Conductance
Dataset m H-KM H-EM ComE

DBLP
2 6.8±4.2 6.7±4.4 14.1±15.8
5 4.6±3.4 4.8±3.8 7.4±4.3
10 6.0±4.6 5.2±4.0 6.5±4.2

Wikipedia
2 96.6±3.0 96.6±5.1 94.9±3.2
5 93.7±3.4 93.8±4.4 92.9±3.7
10 91±4.1 90.5±4.7 91.4±4.3

BlogCatalog
2 92.5±6.0 93.1±8.1 93.4±4.3
5 88.4±6.6 87.8±7.5 87.9±8.8
10 85.9±7.5 84.7±7.8 87.4±8.6

Flickr 2 93.5±10.0 94.4±13.0 96.4±2.9
5 89.7±12.8 89.7±13.9 91.2±10.6
10 89.5±12.1 88.2±14.5 88.8±11.8

NMI
Dataset m H-KM H-EM ComE

DBLP
2 66.1±3.4 66.2±5.8 50.5±2.1
5 71.3±2.4 69.7±2.1 63.6±4.4
10 65.4±8.9 69.3±0.6 62.5±0.8

Wikipedia
2 6.9±0.8 5.5±2.1 6.5±0.
5 8.8±0.3 8.6±0.3 10.1±0.5
10 8.6±0.0 8.6±0.1 9.3±0.2

BlogCatalog
2 4.4±0.0 4.1±0.0 3.3±0.
5 10.4±0.5 10.1±0.5 10.5±0.3
10 14.6±0.2 14.0±0.3 13.7±0.1

Flickr 2 24.8±0.6 24.7±0.5 21.7±0.
5 31.8±0.1 31.8±0.1 29.6±0.2
10 32.7±0.1 32.7±0.1 33.0±0.

4.3 Results discussion

Unsupervised community detection results. Table 3 reports the results related
to the unsupervised community detection experiments. For the three corpora
DBLP, BlogCatalog and Flickr we obtained better results with Hyperbolic
clustering methods with only few exceptions. Although hyperbolic embedding450
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Table 4: Results for the different supervised classification methods, with : H-B
the supervised hyperbolic K-Means based on hyperbolic barycentre; H-GMM
the supervised hyperbolic Gaussian mixture model; H-LR the logistic regression
in hyperbolic space; ComE [13].

Dataset Dim H-B H-GMM H-LR ComE

DBLP

2 86.6±1.6 88.7±1.1 82.9±8.0 67.1±1.3
5 90.0±0.5 90.9±0.5 91.2±0.6 89.5±0.5
10 90.2±0.5 90.7±0.4 91.6±0.5 90.9±0.3
128 - - - 92.0

Wikipedia

2 4.9/1.6/1.0 45.1/28.2/21.5 47.2/28.7/21.3 46.9/28.4/21.0
5 5.1/1.7/1.1 45.1/28.6/21.3 47.4/29.1/21.5 48.3/29.7/22.0
10 8.3/2.8/1.7 44.6/29.1/21.4 47.5/29.6/21.9 50.0/30.8/22.5
128 - - - 48.9/30.1/22.1

BlogCatalog

2 3.8/2.8/4.0 17.5/12.6/10.8 16.8/12.6/10.7 16.2/12.4/10.7
5 13.3/5.9/5.5 25.1/15.8/12.6 24.8/16.0/12.6 26.1/16.3/12.7
10 23.0/9.2/7.2 33.1/19.3/14.4 35.5/20.2/15.0 34.0/19.7/14.6
128 - - - 42.6/22.3/16.1

Flickr 2 5.9/2.5/1.7 23.3/14.3/10.8 18.7/11.2/8.4 20.3/12.1/9.2
5 12.8/4.8/3.1 26.8/16.5/12.6 28.3/16.4/12.2 26.4/15.6/11.8
10 14.8/5.4/3.5 26.3/16.3/12.7 31.4/18.3/13.6 31.0/17.8/13.1

Table 5: Performances obtained by our method compared to Hyperbolic-
SVM[16] (H-SVM) for small scale datasets for 2-dimensional embedding. Results
are the means for 5-folds cross-validation for 5 experiments

Dataset H-SVM H-B H-GMM H-LR
Karate 86±3 92±11. 91±11. 87±15.
Polblogs 93±1 95±0.9 95±0.9 96±1.2
Books 73±4 83±8.3 83±7.5 82±7.4
Football 24±3 80±7.8 79±8.0 39±11.

seems to perform better than Euclidean embedding, it remains inconclusive
which of H-EM or H-KM is better suitable: for DBLP, Wikipedia and Flickr
the H-EM approach showed better results, however for BlogCatalog K-Means
algorithm performed better.

In addition, Figure 10 shows the predicted distributions for ComE and455

H-GMM. When visually comparing these two figures with the real distribution
of communities (Figure 7), we state that the obtained H-GMM distributions
look closer to the real ones for DBLP and BlogCatalog than ComE. However,
our framework struggles with the Wikipedia dataset where the true community
distribution shows many small communities; this matter is further investigated460

in the next subsections. We recall that for all datasets except for DBLP each
node can belong to many different communities; in the previous figure only the
most likely community labels the node.

Supervised community classification results. Table 4 shows that the proposed
embedding method often obtains better or similar performances for the different465

datasets especially in low dimensions. H-GMM is particularly advantageous
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(a) Polblogs (b) Books

(c) Football

Fig. 11: Visualization of Polblogs, Books and Football embeddings with their
associated GMM, node colors represent the true known community labels

for DBLP and Flickr with superior performances when using two dimensional
embedding. Using Riemannian logistic regression outperforms the baseline
for Flickr, DBLP in 5 dimensions and reaches similar performances for the
remaining datasets, demonstrating the effectiveness of our method to learn470

community representations. Notice that for DBLP, results of ComE in 128
( 92%) dimensions are comparable to our results in only 10 dimensions. However,
for Wikipedia and BlogCatalog, ComE remains better in 128 dimensions
reaching respectively 49% and 43% of Precision@1.

For the small datasets in Table 5, H-B and H-GMM outperform H-SVM475

and H-LR especially when the number of communities is large (e.g., the football
dataset). We empirically show that geodesics separators are not always suited
for classification problems; this matter is further investigated in Section 4.4.
Differences in results between H-SVM and H-LR are mainly due to the quality
of the learned embeddings. Indeed, [16] uses embeddings preserving first and480

second-order proximity only without taking into account community awareness.
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Figure 11 displays the learned embeddings with the known true labels
of nodes (in colors), barycentres of each community (red squares) and the
associated GMM components.

Convergence and sensibility to initialisation. Convergence for node embedding485

is reached when the value of the loss function becomes quasi-constant. The
community detection algorithm is sensitive with respect to the initial parameters
used for embedding and initial values of the EM algorithm as well. Relying on
previous works, we considered the initialisation suggested by [30]. For the EM
algorithm, we perform a K-Means initialisation to deduce initial means while490

variances are random.

4.4 Suitability of Classification Algorithms to Particular Datasets

In this section, we discuss and give insights regarding the reasons for which
a classification algorithm could be suitable or not for a particular dataset.
Additional experiments and comparisons are provided to explain why some495

datasets obtained poor performances regardless of the used classification algo-
rithm. We propose therefore to compare our method with the baseline Most
Common Community (MCC, described next). This comparison will illustrate
difficulties for classification algorithms to deal with GSD exhibiting imbalanced
community distributions when embedded in low dimensions. In particular, this500

is the case for Wikipedia and Blogcatalog datasets where some communities are
reduced to a single node. Finally, relying on the visualisation of the predictions
of the different supervised algorithms, we justify the relevance of using Gaussian
distributions in some situations for classification rather than classifiers based
on geodesics such as the Logistic Regression.505

4.4.1 Comparison with Most Common Community (MCC)

In this section, we comment the results and discuss the reasons for which
classification algorithms obtained low performances for two-dimensional repre-
sentations when applied to some datasets. While both the unsupervised and
supervised settings are concerned, we note better scores in the supervised510

case. The main intuition to explain the performance gap is the tendency of
supervised classification methods to annotate all nodes with the most common
community in the dataset (i.e., the community that labels the highest number
of nodes). To better illustrate this claim, we propose to visualise in Table 6
the Most Common Community baseline (MCC). MCC associates each node515

with the community withdrawn from the probability distribution of the known
true labels and can be seen as a naive classification method. Formally, the
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probability vector of the known label ŷ is written :

ŷ =

N∑
i=1

yi

N∑
i=0

K∑
k=0

yik

(17)

where yik = 1 if the true label of node vi is k and 0 if not, and yi the
labelling vector of node vi (i.e., the k-th component of yi is 1 if vi belongs to520

community k).

Table 6: Precisions at 1, 3, 5 for H-LR (Hyperbolic Logistic Regression) for 2
and 10 dimensional embeddings, MCC-CV (mean of most common community
using 5-cross validation sets) and MCC-A (most common community for the
entire dataset)

Dataset H-LR (2D) H-LR (10D) MCC-CV MCC-A
Karate 87 - 53.3 50.0
PolBlogs 96 - 52.0 51.9
Books 82 - 46.6 46.6
Football 39 - 2.6 11.3
DBLP 79 92 38.1 38.0
Wikipedia 47/29/21 47/30/22 47/28/20 47/28/20
BlogCatalog 17/13/11 35/20/15 16/12/10 16/12/10
Flickr 19/11/8 31/18/14 17/10/7 17/10/7

Table 6 empirically shows that in 2 dimensions the H-LR method is unable
to efficiently capture the community structures of Wikipedia and BlogCatalog
since it achieves equal performances as MCC. Moreover, for Wikipedia the
most common community labels nearly half of the graph nodes as shown525

in Figure 7. Taking a closer look at the same Figure, we notice how the
community distributions are largely unbalanced for Wikipedia and BlogCatalog.
Furthermore, for Wikipedia, some communities are represented by a single
node (see Figure 10e), making this dataset particularly difficult to capture the
least represented communities by classifiers. On the contrary, the fact that530

communities of DBLP are more uniformly distributed contributes in achieving
better performances with H-LR in only two dimensions.

4.4.2 Visualisation

In this part, we provide visualisations of the learned embeddings for different
classification algorithms and discuss advantages and disadvantages of each535

classifier.
Figure 12 shows the learned community-aware embeddings for the graph

datasets Karate, PolBlogs, Books, Football and DBLP in the two-dimensional
hyperbolic space. Each embedded node is represented as a point within the disk.
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The colour of each node corresponds to its real community. We can visually540

see how well the embedding was able to accurately separate the communities
by perceiving whether or not colours have been mixed up within a group of
clustered points. For instance, the embedding of Polblogs (2 communities)
shows two clusters each with clear distinct colours while having only a few
points not coloured as the rest of the cluster. Therefore, a clustering algorithm545

applied to this embedding should be able to easily retrieve the communities
and should achieve good performances in correctly labelling the nodes.

Figures 13 and 14 show the exact same embeddings for each dataset as
Figure 12, but colours now represent labels obtained from respectively H-LR
and H-GMM. Notice how H-LR struggled to find geodesics separating accurately550

communities of Football. Indeed, the learned two-dimensional embeddings were
non-separable using geodesics for Football. This difficulty was however better
handled by H-GMM. Moreover, H-LR performances on Football achieved ≈ 39%
while reaching ≈ 80% with H-GMM, thus supporting the benefit of making
use of classification with Gaussian distributions.555
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(a) Karate (b) PolBlogs

(c) Books (d) Football

(e) DBLP

Fig. 12: Embedding visualisations on the Poincaré disk, each point is a graph
node, colours represent ground truth communities
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(a) Karate (b) PolBlogs

(c) Books (d) Football

(e) DBLP

Fig. 13: Prediction obtained using H-LR classification (best view in colour),
colours represent community prediction
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(a) Karate (b) PolBlogs

(c) Books (d) Football

(e) DBLP

Fig. 14: Prediction obtained using GMM classification method (best view in
colour), colours represent community prediction.
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5 Conclusion

In this paper, we presented a methodology that combines graph embeddings
together with clustering techniques on hyperbolic spaces to learn communities.
To this end, we designed a framework to learn community-aware embeddings on
the Poincaré Ball. To assess the relevance of the proposed hyperbolic approach,560

we experimented with both supervised and unsupervised applications. We used
adaptations to the Riemannian setting of K-Means, Expectation-Maximisation
clustering algorithms for unsupervised learning and Riemannian barycentre,
Gaussian mixture models and Logistic Regression for the supervised one.

Our proposed framework was compared with the-state-of-art ComE method565

and with a recent hyperbolic SVM approach. Several metrics were reported
and revealed similar or better results for our approach when using the same
dimensions as Euclidean spaces except for the Wikipedia dataset.

In upcoming work, we plan to adapt the presented approach to larger
dimensional hyperbolic spaces, held back today by the difficulty to efficiently570

approximate the normalisation factor of the Riemannian Gaussian distribu-
tions. We also plan to adapt Bayesian inference criteria to hyperbolic spaces
and experiment with estimating the number of communities. Moreover, since
Gaussian mixture models used in the ComE approach have the advantage of
using full-covariance matrices, we believe that extending hyperbolic GMM to575

handle full covariance matrices would help improve performances by offering a
more expressive mean to capture communities.

By empirically demonstrating the effectiveness of hyperbolic spaces in
learning communities on large graphs, we hope to encourage their use in more
applications.580
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A Implementation

The package available at https://github.com/tgeral68/HyperbolicGraphAndGMM (soon
to be released to the public) provides python code for performing graph embedding in
the Poincaré Ball Bm for all dimensions m ≤ 10 and to apply Riemannian versions of710

Expectation-Maximisation (EM) and K-Means algorithm as detailed in the paper. The
Readme details the required dependencies to operate the code, how to reproduce the results
of the paper as well as effective ways to run experiments (produce a grid search, evaluate
performances and so on). The code uses PyTorch backend with 64-bits floating-point precision
(set by default) to learn embeddings. In this section, further details of the procedures are715

presented in addition to those given in the paper and the Readme.

A.1 Centroids initialisation

To initialise both the centroids of the K-Means and the means of the Gaussian mixture
models, one can use smart initialisations or random ones. A common way to initialise means
or centroids is the K-Means++ algorithm using a smart initialisation instead of a purely720

random one. The main principle relies on selecting centroids that are far away from each
other, consequently improving the initialisation. To this end, before running K-Means or
Expectation-Maximisation algorithms, the means or centroids are selected as follow:

1. For the first iteration, choose the first centroid c1 randomly from the embedded points
according to a uniform distribution.725

2. For a future iteration t, sample a new centroid ct according to p(x|c1, c2, ..., ct−1), that
associates a low probability for choosing x if it is associated to one of the existing
centroids ({c1, ..., ct−1}. Technically, the distribution is implemented by finding for each
point the closest centroid in {c1, c2, . . . , ct} such that f(x) = min

{c1,c2,...,ct}
dh(x, ci) then

computing for each point p(x|c1, c2, ..., ct−1) =
dh(x,f(x))

2∑
z∈D

dh(z,f(z))
2730

3. Repeat until K centroids have been chosen

The K-Means++ is implemented in the framework as a hyper-parameter of K-Means.

A.2 EM Algorithm

– Weighted Barycentre: We set for variable λ (learning rate) and ε (convergence rate)
in Algorithm 1 of the paper the values λ = 5e− 2 and ε = 1e− 4.735

– Normalisation coefficient : We compute the normalisation factor of the Gaussian
distribution for σ in the interval [1e-3,2] with step size of 1e-3. This parameter is a
quite important since if the minimum value of sigma is too high then unsupervised
precision is better on datasets for which it is difficult to separate clusters in small
dimensions (Wikipedia, BlogCatalog mainly) as discussed in the previous MCC subsection740

(In Subsection 4.4.1, the most common community labelled ≈ 47% of the nodes for
Wikipedia and ≈ 17% for BlogCatalog).

– EM convergence : In the provided implementation, the EM is considered to have
converged when the values of wik change less than 1e-4 w.r.t the previous iteration, more
formally when:

1

N

N∑
i=0

1

K

K∑
k=0

(|wtik − w
t+1
ik |) < 1e− 4

For instance, using Flickr the first update of GMM distribution converged in approxi-
mately 50 to 100 iterations.
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Fig. 15: Normalisation coefficient (y-axis) σ 7→ ζm(σ) of Gaussian distributions
on Hyperbolic space for different values of the dimension m (x-axis) and of the
variance σ.

A.3 Learning embeddings745

– Optimisation : In some cases, due to the Poincaré ball distance formula, the updates of
the form Expu(η∇uf(d(u, v)) can reach a norm of 1 (because of floating point precision).
In this special case we do not take into account the current gradient update. If it occurs
too frequently, we recommend to lower the learning rate.

– Moving context size : Similarly to ComE, we use a moving size window on the context750

instead of a fixed one; thus we uniformly sample the size of the window between the max
size given as input argument and 1.

A.4 Limitations for going in high dimensions

Numerical instabilities when computing the normalisation coefficient ζm(σ) in
Hyperbolic space. Recall that in Euclidean space, the normalisation coefficient of the
multivariate isotropic Gaussian distribution is a linear function of the dimensionm: (2πσ)m/2.
As for the Poincaré space used in the paper, the expression of the normalisation factor is:

ζm(σ) =

√
π

2

σ

2m−1

m−1∑
k=0

(−1)kCkm−1e
p2kσ

2

2

(
1 + erf(

pkσ√
2

)

)

Referring to Figure 15, we can observe that ζm(σ) increases exponentially as a function
of m. Therefore, when increasing the dimension from 1 to 128 the computed probabilities
f(x|µ, σ) where

f(x|µ, σ) =
1

ζm(µ, σ)
exp

[
−
d2(x, µ)

2σ2

]
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become the result of a division with an ever-increasing number causing out-of-bound issues755

and numerical instabilities. This problem seems to be equally faced by the authors of [27], who
adapted variational auto-encoders to the Poincaré space. Their experiments are performed
using 20 dimensions at most.

The ComE approach is however capable of reaching high dimensions without dealing
with numerical instability issues.760

A possible solution to this problem could be to reconsider the mathematical model at
higher dimensions, and provide computationally efficient formulas that deals with floating
representations. The very recent paper [22] seems to have found new asymptotic formulas of
the normalising factor on typical manifolds when the dimension grows and is definitively
worth investigating to overcome the current difficulty.765
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