
HAL Id: hal-04022349
https://hal.science/hal-04022349

Submitted on 9 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ontology for Software Patterns: Application
to Blockchain-Based Software Development

Nicolas Six, Camilo Correa, Nicolas Herbaut, Camille Salinesi

To cite this version:
Nicolas Six, Camilo Correa, Nicolas Herbaut, Camille Salinesi. An Ontology for Software Patterns:
Application to Blockchain-Based Software Development. International Conference on Enterprise De-
sign, Operations, and Computing Forum 2022 (EDOC2022), Oct 2022, Bolzano, Italy. pp.284-299,
�10.1007/978-3-031-26886-1_17�. �hal-04022349�

https://hal.science/hal-04022349
https://hal.archives-ouvertes.fr


An ontology for software patterns: application to
blockchain-based software development

Nicolas Six, Camilo Correa-Restrepo, Nicolas Herbaut, and Camille Salinesi

Centre de Recherche en Informatique (CRI)
Université Paris 1 Panthéon-Sorbonne, Paris, France

{first.last}@univ-paris1.fr

Abstract. Ensuring the quality of software design is usually a difficult
task. In the blockchain field, the design of an application is particu-
larly important as flaws can lead to critical vulnerabilities and cost over-
heads. To assist practitioners in this task, software patterns can be used
(solutions to repeatable problems in a given context). Some blockchain
patterns exist but they are scattered, and described in many different
notations and templates. As a result, practitioners can be lost in the se-
lection of adequate blockchain-based patterns. This paper fills the gap by
proposing a blockchain-based software pattern ontology. The ontology is
composed of two distinct subspaces: first, a set of classes and individu-
als related to blockchain-based patterns, based on a previous Systematic
Literature Review (SLR). It notably reuses a taxonomy of blockchain
design patterns, that helps to classify these patterns in relevant cate-
gories. Along that, another subspace has been created to further orga-
nize the knowledge related to software patterns and allow inferences.
A tool is proposed along with the ontology to assist practitioners in
finding blockchain-based patterns that fit their needs. An evaluation is
performed to assess the usability and the relevancy of the ontology.

Keywords: Blockchain · Software design · Knowledge engineering

1 Introduction

A blockchain is a data structure where each block is linked to the previous one
with a cryptographic hash. The addition of new blocks is ruled by a network of
peers that each holds a copy of the blockchain (so-called blockchain network).
Each block stores a list of transactions, that represent interactions between a user
and the blockchain. Following the release of Ethereum in 2015, some blockchain
solutions started to support Turing-complete smart contracts, enabling a new
range of applications. A smart contract is a computer program that executes
predefined actions when certain conditions within the system are met [1]. Hence,
users can interact with smart contracts using transactions.

The inner workings of blockchain differ from traditional database technolo-
gies, granting blockchain many unique qualities. First, blockchain is decentral-
ized: there is no single central actor in charge of the network. The level of de-
centralization varies depending on the blockchain type [23]. Then, blockchain



2 N. Six et al.

guarantees the immutability of data1, as it is impossible to alter blocks after
their addition. Finally, blockchain is transparent: any user that has access to a
node can see past transactions and stored data. Transparency is not absolute: for
instance, some blockchain technologies support private smart contracts, where
data and execution are restricted to a set of authorized parties.

Blockchain directly addresses use cases that are difficult to solve with main-
stream IS (Information System) technologies, such as ERPs. For instance, supply-
chain applications benefit from blockchain immutability for goods traceability
[2]. In this use case, trust is improved between supply-chain participants, as mali-
cious actions to alter traceability data will be seen by everybody on the network.
Blockchain smart contracts might also enable trustable service automation, such
as the ones proposed by DeFi (Decentralized Finance) platforms [13].

Because of the specific properties of blockchain, a growing number of software
architects undertake designing blockchain-based applications (BBA). A BBA can
either be an application using blockchain as an improved platform to serve ex-
isting use cases (e.g., supply-chain traceability), or an application made feasible
only by using blockchain technologies (e.g., on-chain decentralized cryptocur-
rency exchanges). However, they found the creation of BBAs to be a tedious
task in both cases. Indeed, BBAs can suffer from their own qualities in certain
contexts. For instance, transparency and immutability can be a burden when
dealing with personal data, that might be subject to data protection regulations
such as the General Data Protection Regulation (GDPR). Also, blockchain lacks
certain native capabilities due to the way it functions, such as the ability to query
external data or store large amounts of data.

Practitioners often employ well-known reusable recipes in the software de-
sign phase to improve software quality. Such recipes, known as patterns, are a
solution to commonly occurring problems in given contexts. For instance, one
of the best-known blockchain patterns is the Oracle [22]: as a smart contract
cannot query data from outside the blockchain, using this pattern consists of
sending fresh data to a smart contract when needed. Up to now, only a few
patterns have already been proposed, grouped in collections (e.g., [22]) or stan-
dalone (e.g., [18]). Moreover, these patterns are scattered across the literature,
making the task of identifying adequate patterns for a specific design difficult.
Where a previous Systematic Literature Review (SLR) [17] tackled these issues
by gathering these patterns in a collection, more work is needed to structure and
formalize this knowledge, as well as facilitate its reuse.

In this paper, the following question is investigated: How to formalize existing
knowledge on blockchain-based software patterns to facilitate its reuse by prac-
titioners? To address this research question, this paper proposes a blockchain-
based software pattern ontology, spanning two interrelated subspaces: (1) block-
chain software patterns descriptions and (2) pattern provenance. While the for-
mer focuses on the classification of blockchain patterns established in the afore-
mentioned SLR, the latter gathered knowledge on the original material proposing
the pattern and its relationship with the state of the art, hence distinguishing

1 This assumption is only valid if the network is not compromised



An ontology for software patterns 3

patterns found in the literature from the concept itself. Using an ontology fa-
cilitates the inference between linked patterns, using the knowledge found in
studies. To explore the ontology, we created an open-source tool2 that provides,
from a series of questions, personalized pattern recommendations. Our ontol-
ogy validation methodology is twofold. First, we assess that the ontology fulfills
specified requirements. Then, we evaluate our ontology-based recommendations
over a selection of papers from the literature. The rest of the paper is orga-
nized as the following: Section 2 introduces existing blockchain-based pattern
collections and the blockchain-based software pattern ontology, then Section 3
presents the research method employed to build the ontology as well as its re-
quirements. Section 4 describes the resulting ontology, and Section 5 presents
the validation phase to assess the relevance of the ontology. Finally, threats of
validity are discussed in Section 6, and Section 7 concludes with future works.

2 Related Works

The literature shows that the idea of using ontologies to describe software pat-
terns has already been explored. In [10], Kampffmeyer et al. propose an ontology
derived from GoF (Gang-of-Four) design patterns [5]. Each pattern is linked to a
set of design problems it solves, along with a tool to help practitioners select pat-
terns without having to write semantic queries. However, their ontology does not
bring out any dependency link between the patterns themselves. Our contribu-
tion reuses the concept of problem ontology and extends it, as shown in Section
4. Another ontology for software patterns is proposed in [6], that encompasses
not only design patterns but also architectural patterns and idioms. A pattern
is described using different attributes (such as Problem, Context, Solution, etc.),
and can be linked to other patterns through a pattern system and relations (e.g.,
require, use). A similar metamodel for software patterns is proposed in [9]. Some
differences can be mentioned, such as the possibility to specify that two patterns
conflict with each other, or the seeAlso relationship to indicate other patterns
related to a specific pattern. In addition, [11] proposes a design pattern reposi-
tory taking the form of an ontology. The contribution enlights tedious knowledge
management and sharing with traditional pattern collections and argues for a
structured ontology format. The proposed ontology groups patterns into pat-
tern containers, where one pattern can belong to many containers. Patterns can
also be linked to a set of questions and answers, elicited from expert knowledge,
through an answer relevance attribute. It indicates how relevant a pattern is in
addressing a specific question. This contribution follows a similar path to that
taken by our ontology by structuring a set of blockchain-based patterns.

Some ontologies have been proposed for modeling the blockchain domain
and its components, such as that proposed by De Kruijff and Weigand [4], that
of Ugarte-Rojas and Chullo-Llave [8], and that of Glaser [7]. Another work
by Seebacher and Maleshkova [14] focuses on modeling the characteristics of

2 https://github.com/harmonica-project/blockchain-patterns-ontology

https://github.com/harmonica-project/blockchain-patterns-ontology


4 N. Six et al.

blockchains within corporate networks and their use. However, there is still a
gap in the usage of ontologies to store blockchain-based patterns.

Finally, another decision model for the blockchain-based pattern can be men-
tioned [21]. In this model, a BPNM (Business Process Model and Notation)
guides the process of selecting design patterns during the design phase of the
software. Each activity in this process is further described using a BPMN-like
notation, where the advantages and drawbacks of using a pattern are highlighted
on each arrow leading to a pattern. This approach allows fine-grained guidance
in the selection of blockchain patterns, but requires more work upfront to include
patterns in the model and makes difficult the addition of patterns from outside
the scope defined by the main BPMN.

3 Methodological Approach

The proper design of an ontology relies on the usage of a reliable and proven
method. To build the ontology, the NeOn method [19] has been chosen due to its
inherent flexibility and focus on the reuse of both ontological and non-ontological
resources. However, these resources must be handled differently, as they can take
multiple forms (e.g. whitepaper, publication, etc.). More information on handling
non-ontological resources is given in Subsection 3.2. NeOn does not force rigid
guidelines upon the ontology designer: a set of scenarios is given and the designer
is free to select and adapt any scenario that suits their needs.

In this study, we base our approach on two of the scenarios envisaged within
NeOn. The first scenario mainly concerns ontology construction from the ground
up, to produce a new, standalone, ontology. The principal motivation for this
choice is the absence of literature on existing ontology covering blockchain-based
patterns. There is also the inability of existing software pattern ontologies to
adequately capture the results of the SLR upon which we base our pattern
proposal ontology, hence our need to produce a standalone ontology to cover
our particular domain of interest. The second addresses the specific aspects of
reusing non-ontological resources in the construction of ontologies. This is key
since our ontology will be primarily based on the reuse of previous results. The
NeOn methodology proposes a set of closely related life cycle models linked
to the different scenarios it incorporates. In our case, given our need to reuse
non-ontological resources, the six-phase waterfall life cycle has been chosen.

3.1 Ontology Requirements Specification

One important step in the construction of a sound ontology is the specifica-
tion of requirements through an Ontology Requirement Specification Document
(ORSD) [19] that serves as an agreement on which requirements the ontology
should cover, its scope, implementation language, intended uses and end users.
The ORSD facilitates the reuse of existing knowledge-aware resources in the
creation of new ontologies [19]. Competency questions (CQs) are a way to intro-
duce the functional requirements (FRs) of an ontology; their coverage, ideally



An ontology for software patterns 5

Table 1: Ontology competency questions.

CQ1
What are the classes of patterns in the blockchain area and how can they be
differentiated and characterized?

CQ2
What are the different propositions of patterns in the academic literature and
how can their acceptance by others be quantified?

CQ3
How can we differentiate the concept of pattern from their possible descriptions
in different sources?

CQ4 What are the types of relations that can connect two patterns together?

CQ5
What are the different problems bound to the design and implementation of
blockchain applications?

in a generalizable manner, allows one to consider the ontology functionally com-
plete. The CQs are not formulated as FRs, but rather as questions that can be
translated to requirements afterward (e.g. for CQ4, the ontology shall allow the
user to retrieve the possible relations between two patterns). For the sake of
brevity, only the CQs are detailed in this paper, listed in Table 1. Nevertheless,
the full ORSD is available on GitHub (aforementioned in Section 1).

These competency questions define the two main purposes of the ontology.
The first purpose is the definition of a sound structure to store software patterns,
especially patterns proposed in the academic literature (CQ3). As these patterns
might not have been applied enough in real use cases, one objective is to quantify
the acceptance by others (CQ2) of a proposed pattern in a study. One possible
solution to this problem is the usage of paper citations, described in Section 4.1.
The relations between these patterns are also an important topic, as patterns are
often used together to address larger-scale problems (CQ4). The second purpose
is the storage of blockchain-based software patterns, taking their specificities into
account. It notably includes their classification into comprehensive categories
(CQ1) to guide the reader in the space of blockchain-based software patterns,
as well as the problems they address (CQ5). The process outlined in [19] was
followed to validate our requirements specification, within the larger framework
of the NeOn methodology. Since the ontology was to be built with extensibil-
ity in mind, should new requirements arise, the queries that correspond to the
competency questions to act as a test suite that ensures the ontology remains
conformant as it evolves.

3.2 Reuse of non-ontological resources

As the purpose of constructing the blockchain-based software pattern ontology is
to formalize the knowledge of a previous SLR, the ontology incorporates knowl-
edge from two different non-ontological resources that can both be found on
GitHub3. The first is a collection of 160 patterns that were identified during
the SLR within 20 different papers; out of which 114 unique patterns have been

3 https://github.com/harmonica-project/blockchain-patterns-collection

https://github.com/harmonica-project/blockchain-patterns-collection


6 N. Six et al.

derived. Each of the collected patterns is described by a set of attributes, e.g.,
a Name, a Context and Problem, and a Solution. The citations count for each
paper that proposes one or more patterns have also been collected. Thus, the
reliability of a pattern can be assessed more easily: a pattern proposed in a paper
cited multiple times can be considered, to some extent, to be more trustable than
a pattern from a non-cited study. More rationale on the usage of these citations
to assess pattern reliability is given in Subsection 4.2. The domain, program-
ming language, implementation examples, and blockchain technology associated
with the pattern are also collected if available. Indeed, some patterns may be
proposed by paper for a specific programming language (e.g. Solidity), or in the
context of a specific domain (e.g., decentralized identity). Also, different types
of relations between patterns were identified: Created from, Variant of, Requires,
Benefits from, and Related to. As the application of a specific pattern might
require considering other patterns, its relations to others must be made explicit.
Further details about these relations are given in Subsection 4.1. Patterns are
classified into one of three categories depending on their general purpose: Ar-
chitectural patterns that regroup patterns impacting the general structure of the
application (elements, connections); Design patterns that are a way to organize
modules, classes, or components to solve a problem; and Idioms, solutions to a
programming language-related problems. The second non-ontological resource is
used to extend this classification: design patterns are classified in subcategories
derived from a taxonomy, that emerges from the categorization of the results
in the SLR, and is comprised of 4 main categories and 14 subcategories. More
details are given about the taxonomy in Section 4.

4 Results

4.1 Blockchain-based software pattern ontology

The primary outcome is the creation of the blockchain-based software pattern
ontology, depicted in the conceptual model4 Figure 1. This ontology has been
written in Turtle, using the OWL language profile. As the figure shows, the
driving idea of the ontology is: (a) the explicit distinctions between patterns,
variants, and pattern proposals, (b) proposals and their relations with others,
and (c) design problems outside the scope of patterns. Using ontologies as a
support to store gathered knowledge about patterns also enables the usage of
inference engines to find new relations between entities. Also, using an ontology
also allows connecting it with other ontologies. Although it is beyond the scope
of this study, it is possible to connect patterns with blockchain technologies
expressed in other blockchain ontologies.

The central element of this model is the Proposal class, that is a pattern
introduced within a particular academic paper. In the current form of the pattern
proposal ontology, all sources of patterns are academic papers, thus this class is
not implemented yet. Nonetheless, a class named Source will merge other types of

4 For the sake of clarity, some subclasses of the ontology are hidden.



An ontology for software patterns 7

sources such as technical documentation or code repositories in the future. This
improves the extensibility of the model, as patterns might be found in many
different sources. Each paper is linked to a Identifier, which can take the form of
a DOI (Digital Object Identifier) or an ArXiv ID. For each paper present in the
ontology, its citations have been included as identifiers individuals and linked
to the paper using a references object relation. This system allows inferring the
citations of a specific paper, then making enhanced pattern recommendations
by computing a ”citation score” for each pattern proposal. More rationale on
pattern recommendation is given in Subsection 4.2.

In this model, a proposal is linked to a variant. A variant inherits from a
specific Pattern and represents one of its possible forms. Indeed, variants are
used to express the variability of a pattern: two variants of a pattern might be
close enough to address the same problem and solution, but may vary in some
aspects (e.g., implementation). As an example, the Oracle pattern proposed by
Xu et al. [22] is an individual of Proposal as it is proposed in the Xu et al.
[22] paper, and attached to the Oracle variant, an individual of the Variant and
Oracle class. The distinction between the proposals and the resulting pattern
is important as in some cases multiple papers proposed the same pattern using
different words, templates, and for different domains or blockchains. As such, a
Proposal inherits from a specific blockchain, domain, or language5

5 For the sake of clarity, subclasses of blockchain system, domains, and language are
hidden (e.g., resp. Ethereum, IoT, or Solidity) in the provided conceptual model.

Proposal

Paper

<Blockchain>

<Language>

<Domain>

Variant

<Pattern
category>

<Design
problem>

1

1 1

1..*

1..*

1

[...]

<class>

Taxonomy subclasses folded
for clarity

Regroups a hierarchy of
subclasses

Identifier

Ownership

Design patternsDesign pattern
application

[...]

Contract
access-control

patterns

Ownership
pattern

Enable smart
contract access

control

[...]

Pattern Proposal subspace Blockchain Pattern

subspace - an example

1 1
linkedTo

Blockchain-based Software Patterns Ontology

Fig. 1: Blockchain-based software pattern ontology with an exemplified section.



8 N. Six et al.

In this conceptual model, a Proposal is described by a Context and Problem,
that gives a rationale for the purpose of the pattern and addressed problems,
and a Solution field to introduces the elements composing the pattern solution.
This structure for pattern description is derived from the two main pattern for-
mats (GoF and Alexandrian pattern formats [20]), usually employed to express
software patterns. Because of the lack of standardization across the literature on
the description of patterns, only the context, problem, and solution have been
kept to describe a pattern in this ontology. Yet, as the ontology references each
proposal paper, the reader can refer to the paper of a specific proposal to learn
more about it. Proposals can also be linked together, using 5 different relation
types that were identified from the SLR:

– Created from - when a pattern directly takes its sources in another.

– Variant of - when a pattern is a variant of another.

– Requires - when a pattern requires another to be applied.

– Benefits from - when a pattern might benefit from another when applied.

– Related to - to identify weak relations between patterns (e.g., “see also”).

By using inference, it is possible to translate these relations from proposals
to variants, creating new knowledge about possible relations between patterns.
SWRL rules have been written for the inference engine to generate such relations.
As an example, the following rule translate a benefitsFrom object relation from
two proposals to their corresponding variant (Equation 1).

∀ (p1, p2) ∈ P and (v1, v2) ∈ V,

p1 benefitsFrom p2 · p1 hasV ariant v1 · p2 hasV ariant v2

=⇒ v1 benefitsFrom v2

(1)

The subclasses of the Pattern class emanate from the reused taxonomy for
blockchain-based patterns, built in its related SLR. For instance, the Oracle vari-
ant from [22] is linked to the Oracle pattern class, that inherits from the Data
exchange pattern, then On-chain pattern, Design pattern, and finally Pattern.
Although this hierarchy exists in the blockchain-based software pattern ontol-
ogy, it is not shown in Figure 1 for clarity. To further refine this part of the
ontology, each Pattern addresses a specific Design problem. By extension, each
subclass of Pattern addresses a design Design problem subclass. Each problem
has been assigned an associated literal question, notably used for recommenda-
tions. These questions have been designed along the construction of the design
problem taxonomy to give a literal sentence of the problem. The question is
presented as an affirmation (here, a user story sentence), that can be answered
by yes or no. For instance, the question associated with the Smart contract us-
age design problem, solved by the Smart contract patterns is “I want to execute
part of my application on-chain”. Such an affirmation can be thus presented as
a question to the user to guide pattern recommendations.



An ontology for software patterns 9

ProblemPattern

addresses

"I want to use commonly used
design constructs and features

in my application"

"I want to enable communication
between my application and a

blockchain"

"I want to push up-to-date data
on-chain or pull data and events
from on-chain smart-contracts"

Questions

"Yes"

"Yes"

"Yes"

Design patterns Design pattern
application 1

On/off-chain
interaction patterns

Interacting with
blockchain 1

Data exchange
pattern

On and off-chain
data exchange 0

Oracle

pattern
0.66

Fig. 2: Pattern scoring based on patterns/problem categories.

4.2 Ontology Querying Tool

In parallel with the ontology, a tool was designed to leverage it without having
to use ontology-specific tools (e.g. Protégé). Using this tool eases the access to
ontology content for non-experts, but the ontology can also be queried when
served using a SPARQL server such as Apache Jena Fuseki6. This tool has two
main features: the explorer and the recommender. The explorer allows one to
dive into the knowledge of the ontology through the presentation of all available
patterns in a grid. This section’s purpose is to link the solution domain (the
list of patterns) to the problem domain (user requirements). Indeed, any user
reading available pattern descriptions might find some that suit their goals. The
application shows each pattern’s name but also the number of linked proposals
and variants. By clicking on the pattern card, the user can consult the context,
problem, and solution for each pattern variant and proposal. She also has access
to a list of linked patterns following the same notation as defined in the pattern
proposal ontology. The tool allows filtering patterns out, using the proposal’s
respective domains, blockchains, and languages. For instance, a user can select
Ethereum as the desired blockchain and filter out every non-corresponding pat-
tern. The second part of the tool is the recommender feature. Contrary to the
explorer, any user can leverage the recommender to navigate from the problem
domain (a set of questions asked by the user) to the solution domain (a set
of patterns matching given answers). To personalize pattern recommendations,
the user answers a set of questions linked to design problems, as presented in
Subsection 4.1. An illustrative scheme of this process is shown in Figure 2.

Questions are organized in a tree structure, traversed by a conditional depth-
first algorithm. The questionnaire starts with a high-level question (e.g., “I want
to use design patterns in my application”) Depending on the user’s answers, each
node of the tree is assigned a score: 1 for “Yes”, -1 for “No” and 0 for “‘I don’t

6 https://jena.apache.org/documentation/fuseki2/

https://jena.apache.org/documentation/fuseki2/


10 N. Six et al.

know”, children of nodes with a negative score being skipped. The tool generates
the recommendation once the questionnaire is filled up. Patterns constitute the
leaf node of the tree. To compute the score Sq for each pattern, the tool sums
the score of every parent node and then normalizes the score using the length of
the branch, accounting for branch length differences.

Next, we use three different algorithms to compute pattern rankings
based on the scores Sq: NoCitationsAndQS, WeightedCitationAndQS and
UnWeightedCitationAndQS. NoCitationsAndQS simply orders the patterns
based on their score, while the other two also take into account an inferred
number of citations. For each pattern, this number of citations is computed
by summing the number of citations of all papers that proposes the pattern.
As an example, if a pattern is proposed by two papers that respectively have
50 and 150 citations, the pattern is given a number of citations of 200. In
UnWeightedCitationAndQS, we offset the rank, by multiplying Sq by the ra-
tio of the number of citations of a pattern and the number of citations of the
most-cited pattern. For WeightedCitationAndQS, instead of using the number
of citations directly, we use its logarithm. The rationale for this is the extreme
ranking skewness in favor of highly cited patterns in UnWeightedCitationAndQS.
Note that both UnWeightedCitationAndQS and WeightedCitationAndQS might
discriminate newly proposed patterns that do not have many citations yet.

The user can select one of the three algorithms. When NoCitationsAndQS

outputs a ranking only impacted by the answers, WeightedCitationAndQS

and UnWeightedCitationAndQS also take into account citations, which
serves as an indicator of the pattern adoption in the literature. Also,
UnWeightedCitationAndQS tends to recommend highly cited patterns, consid-
ered more reliable, whereas NoCitationsAndQS provides a ranking closer to the
questionnaire’s answers, to the risk of having newly proposed patterns that lack
prior reuse. WeightedCitationAndQS is compromising between the two others,
as it reduces the impact of citations without discarding them. In conclusion, the
decision of using one algorithm instead of another is up to the user, depending
on its goals: either using recognized patterns or newly proposed patterns that
don’t have this recognition yet. Nonetheless, the ranking differences between all
of those algorithms are evaluated in Section 5.

5 Evaluation

To evaluate whether the ontology addresses the initial requirements and if the
implemented tool is capable of leveraging the ontology, we conducted a threefold
validation. Our first method of validation draws from both the ORSD mentioned
above and the more general ontology evaluation methods outlined in the work of
Raad and Cruz [12]. In particular, we follow their task-based approach, linking
the evaluation of the ontology and the tool itself. We demonstrate the ability
of the ontology to cover its requirements by, on the one hand, using SPARQL
queries in isolation to answer the CQs, and, on the other, by showing its abil-
ity to be used as the central knowledge representation mechanism of our tool,



An ontology for software patterns 11

through the validation methods to be covered below. We briefly touch on some
of the main evaluation criteria mentioned by Raad and Cruz (cf. [12] for the def-
inition of each concept): accuracy, completeness, clarity, and conciseness,
though difficult to demonstrate in an absolute sense, are nevertheless covered
by the fact that the ontology has been constructed on the basis of an extensive
SLR of the field, where care has been taken to isolate only the most relevant
aspects; adaptability is a consequence of the use of the NeOn methodology
and the use of SHACL shapes for automated verification of the ontology and the
inferences made thereof, rendering the addition of new patterns to the ontology
straightforward; computational efficiency is ensured by the compactness of
the ontology and the avoidance of recomputing rule-based inferences for every
query through pre-compilation of the inferred ontology triples; and, finally, con-
sistency is ensured through the use of the aforementioned SHACL shapes for
every main class in the knowledge base. As such, SHACL shapes ensure that the
current knowledge in the ontology complies with conceptualized rules and that
the addition of new knowledge and subsequent OWL reasoning also does.

For the second dimension of our validation scheme, we demonstrate the rel-
evancy of the ontology by addressing the following hypotheses:

– H1: A practitioner can leverage the tool to navigate from the solution space
(blockchain-based patterns) to the problem space (requirements).

– H2: A practitioner can leverage the tool to navigate from the problem space
(requirements) to the solution space (relevant blockchain-based patterns).

Each of these hypotheses will be treated using a specific protocol, both de-
scribed in the following subsection. For H1, a survey has been conducted with
experts to assess the capability of using the explorer to understand the pattern
proposals, and by extension to assess the relevancy of knowledge within our on-
tology. For H2, a protocol has been designed to evaluate the recommendations
produced by the recommender. Indeed, if the recommendation system is able to
suggest adequate patterns, it illustrates the capability of using the ontology to
find adequate patterns for specific requirements.

5.1 Protocol

H1 - To answer this hypothesis, we surveyed a panel of 7 experts from different
backgrounds and positions as shown in Table 2.

Table 2: Panel Description7.
ID E1 E2 E3 E4 E5 E6 E7

Role * § † ‡ § † §
Blockchain Experience (y) 4 4 4 4 2 1 2

Software Design Experience (y) 5+ 1 5 5 2 2 5+

7 §PhD student, *Lead Tech, † Software Engineer, ‡Blockchain Engineer



12 N. Six et al.

A custom case study has been designed on a blockchain use case. This case
study was short enough to ensure participants had the time to assimilate it
within the allocated 30” survey timeframe. Organizers proposed 5 patterns P j

H1

(0 < j < 5) for each expert n, and the objective was to assess if the expert
was able to find and understand the patterns well enough to decide if they were
applicable to the case study. This applicability j was rated by each participant n
from 0 (non applicable) to 4 (must-have) Rn(P

j
H1

). Then, the survey organizers
performed the same exercise. As they worked on the pattern knowledge base and
the ontology, they know in detail the patterns presented in the tool and their
related papers R̃(P j

H1
). Participants’ answers were compared to the organizers’

own responses and a normalized score for each participant was calculated SH1
n ,

the average absolute difference between his score and the organizer’s score.

H2 - In the second validation step, we aim at evaluating the performance of
the various recommender engines, especially those including citation metrics in
the ontology. The initial idea was to evaluate the precision and recall of the
recommender engine using a set of papers that present blockchain applications.
For each paper, the goal was to identify the most suitable patterns Îp for the
introduced application, then execute the recommendation engine based on the
application requirements to retrieve a set of recommended patterns Ip. Using
these sets, it is possible to compute the precision and the recall of the recom-
mender system as we respectively assess the proportion of most suitable patterns
found in the recommended patterns Îp ∈ Ip over the total amount of most suit-

able patterns Îp and the total number of recommended patterns Ip. However, this
approach is very limited for recommender systems: as the set of recommended
patterns is very large, the precision will be artificially high. Nevertheless, an-
other approach exists to evaluate the precision and the recall with regards to
the ranking, that is precision/recall at cutoff k [3]. Instead of calculating the
precision and the recall for all of the recommended patterns, these metrics are
computed several times for the kth first patterns, k varying between 1 and the
total number of recommended patterns. As a result, it is possible to draw a curve
that shows the varying precision and recall depending on k.

To compute these values, the following protocol was undertaken:

– Select a paper p from the literature (n=13), that propose a blockchain-based
application, extract the requirements Rp and identify possible patterns Îp,
which represents the golden standard of patterns for p.

– Answer recommender’s questions using only the requirements Rp, and re-
trieve a set of Ip recommended patterns, and their position/score Sp,i, i ∈ Ip.

– Compute the precision and the recall at cutoff k, resp.
Îp∈Ip

k and
Îp∈Ip

Îp
.

5.2 Results

H1 - Figure 3 shows the descriptive statistics for the score for each panel par-
ticipant. The mean values for all the questions range from 2.75 to 3.75 with an



An ontology for software patterns 13

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

E1 E2 E3 E4 E5 E6 E7 ALL

s
c
o
re

Pattern Exploitation Score

Fig. 3: Panel Usecase Score SHi
n

average of 3.25/4, which indicates that the participants have successfully nav-
igated the solution space and provided adequate options on the relevance of
the proposed pattern. It must also be noted that the most junior profiles hav-
ing a score of 3, have used the tool effectively despite their lack of proficiency
in blockchain application design. The expert panel results show positive mean
scores for all metrics, our hypothesis can be considered valid w.r.t. our protocol,
despite having room for improvements, essentially in its perceived added value.
The small sample size, should also prompt further large-scale surveys, including
a pre-flight questionnaire to better quantify prior blockchain background for the
respondents, and question its impact on the tool’s usability.

H2 - Figure 4 and 5 respectively show the precision and the recall at cutoff k for
the three recommender systems considered. To interpret the results, it is required
to select an adequate k w.r.t. the usage of the recommendation system. As the
web platform displays the first 18 patterns on the first page when executing the
recommendation system, a value of k = 18 has been chosen. Nonetheless, the
selection of a suitable k is a difficult issue, discussed in Section 6. Regarding the
precision, the three algorithms are producing similar results except for a cutoff
of k < 20, where the inclusion of citations increases the precision. For a cutoff
of k = 18, the precision is 0.2, meaning that on average 20% of the first 18
recommended are relevant for the considered paper. Regarding the recall, the
curves are similar for the three different algorithms, with a small advantage to
the NoCitationsAndQS algorithm. For a cutoff of k = 18, on average 57% of the
identified relevant patterns in the papers Îp are recommended. This number goes
up to 80% for a cutoff of k = 40. By extension, it indicates that the majority of
the most suitable patterns are ranked at the top by the recommender system.

6 Threats to Validity

Internal threat to validity : some aspects of the method used to validate H2 can
be mentioned. Indeed, the selection of adequate patterns for a given paper has
been carried out by two researchers in 13 papers. Although these researchers are
experts in blockchain technologies and decentralized applications, it still leaves
some space for subjectivity. Several measures have been taken to limit the im-
pact on the results: restricting the selection to the most important patterns, and



14 N. Six et al.

Fig. 4: Average precision at cutoff-k. Fig. 5: Average recall at cutoff-k.

comparing the results between the researchers to evaluate possible discrepan-
cies. The method used to build the ontology can also be a threat to validity.
Ontologies, by their very nature, have a degree of subjectivity; nevertheless, by
using a structured and proven methodology (NeOn), and building upon a SLR,
this risk is mitigated, in conjunction with the formal specification of the ORSD
and with the evaluation methodology outlined above. Finally, the selection and
retrieval of pattern proposals from the literature, that constitutes the core of the
ontology, is also subject to be a threat to validity. However, it is mitigated by
the strict method followed to perform the literature review (SLR). More details
about possible threats and mitigations are given in another study [17].

External threat to validity : the main threat is the generalizability of the on-
tology. Even if the main purpose of the ontology was its reusability in a tool,
careful attention has been made to maximize the ontology reusability. Part of
the ontology is inspired by the Design Pattern Intent ontology [10], to bind de-
sign patterns (by extension, software patterns) with blockchain design problems.
Patterns are also expressed using a shortened pattern format, similar to the GoF
pattern format or the Alexandrian form [20]. Future works will refine those pat-
terns to fully comply with one of those two formats. Finally, the ontology has
been designed with extensibility in mind. For example, the blockchain class can
easily be a connection point between this ontology and other blockchain-related
ontologies, such as [4], a blockchain domain ontology.

Conclusion threats to validity : we can mention the difficulty to conclude on
the recommendation engine relevancy w.r.t. adequate cutoffs k, as its selection
mainly depends on the user behavior. Indeed, some users might only read the
first 5 patterns, whereas others might fetch all of the recommendations. In our
web platform, the first page of the recommender results displays 18 patterns; thus
this number might be a good candidate for k. Nonetheless, this number might
change depending on the usage of the recommendation engine in the future.



An ontology for software patterns 15

7 Conclusion and Future Work

This paper proposes a blockchain-based software pattern ontology to store, clas-
sify, and reason about blockchain-based patterns. The ontology has been built
over previous results obtained by performing a systematic literature review
(SLR) of the state-of-the-art of blockchain-based patterns. It is composed of
proposals that are patterns formalized in the context of an academic paper. 160
proposals have been stored in the ontology, resulting in 114 different software
patterns identified. Also, those patterns have been classified using a taxonomy
reused from the SLR mentioned above. To best make use of both the categoriza-
tion and the ontology, a tool has been built. Using it, practitioners can explore
the ontology and its collection of patterns, but also use a recommender to get
adequate patterns fulfilling their needs. This tool is also meant to be extendable
following ontology evolution and support future works. The ontology can also
be leveraged as standalone, using SPARQL queries.

This paper paves the way for future works in assisting practitioners in the
design of a blockchain application. The different artifacts will be integrated into
the Harmonica project8, a semi-automated framework for the design and im-
plementation of blockchain applications [15]. The integration will notably be
done between the tool presented in this paper and BLADE (BLockchain Auto-
mated Decision Engine), a decision-making tool for the selection of a blockchain
technology [16]. The combination will allow users to select a blockchain, then
adequate patterns that are applicable to the chosen technology. Some extensions
of this work could also be envisioned in the software pattern domain. Although
the pattern proposal ontology is introduced within the scope of blockchain pat-
terns, it could be generalized to all software patterns, such as Internet-of-Things
(IoT) or microservices. Finally, existing software patterns in the ontology might
be extended to include a formal description using existing pattern formats.

References

1. Belotti, M., Božić, N., Pujolle, G., Secci, S.: A vademecum on blockchain technolo-
gies: When, which, and how. IEEE Communications Surveys & Tutorials 21(4),
3796–3838 (2019)

2. Casado-Vara, R., Prieto, J., De la Prieta, F., Corchado, J.M.: How blockchain
improves the supply chain: Case study alimentary supply chain. Procedia computer
science 134, 393–398 (2018)

3. Croft, W.B., Metzler, D., Strohman, T.: Search engines: Information retrieval in
practice, vol. 520. Addison-Wesley Reading (2010)

4. De Kruijff, J., Weigand, H.: Understanding the blockchain using enterprise ontol-
ogy. In: International Conference on Advanced Information Systems Engineering.
pp. 29–43. Springer (2017)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Patterns, D.: Elements of reusable
object-oriented software, vol. 99. Addison-Wesley Reading, Massachusetts (1995)

8 https://github.com/harmonica-project

https://github.com/harmonica-project


16 N. Six et al.

6. Girardi, R., Lindoso, A.N.: An ontology-based knowledge base for the representa-
tion and reuse of software patterns. ACM SIGSOFT Software Engineering Notes
31(1), 1–6 (2006)

7. Glaser, F.: Pervasive decentralisation of digital infrastructures: a framework for
blockchain enabled system and use case analysis (2017)

8. Hector, U.R., Boris, C.L.: Blondie: Blockchain ontology with dynamic extensibility.
arXiv preprint arXiv:2008.09518 (2020)

9. Henninger, S., Ashokkumar, P.: An ontology-based metamodel for software pat-
terns. CSE Technical reports p. 55 (2006)

10. Kampffmeyer, H., Zschaler, S.: Finding the pattern you need: The design pattern
intent ontology. In: International Conference on Model Driven Engineering Lan-
guages and Systems. pp. 211–225. Springer (2007)

11. Pavlic, L., Hericko, M., Podgorelec, V.: Improving design pattern adoption with
ontology-based design pattern repository. In: ITI 2008-30th International Confer-
ence on Information Technology Interfaces. pp. 649–654. IEEE (2008)

12. Raad, J., Cruz, C.: A survey on ontology evaluation methods. In: Proceedings of the
International Conference on Knowledge Engineering and Ontology Development,
part of the 7th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management (2015)

13. Schär, F.: Decentralized finance: On blockchain-and smart contract-based financial
markets. FRB of St. Louis Review (2021)

14. Seebacher, S., Maleshkova, M.: A model-driven approach for the description of
blockchain business networks. In: Proceedings of the 51st Hawaii International
Conference on System Sciences (2018)

15. Six, N.: Decision process for blockchain architectures based on requirements.
CAiSE (Doctoral Consortium) pp. 53–61 (2021)

16. Six, N., Herbaut, N., Salinesi, C.: Blade: Un outil d’aide à la décision automatique
pour guider le choix de technologie blockchain. Revue ouverte d’ingénierie des
systèmes d’information 2(1) (2021)

17. Six, N., Herbaut, N., Salinesi, C.: Blockchain software patterns for the design of
decentralized applications: A systematic literature review. Blockchain: Research
and Applications p. 100061 (2022)

18. Six, N., Ribalta, C.N., Herbaut, N., Salinesi, C.: A blockchain-based pattern for
confidential and pseudo-anonymous contract enforcement. In: 2020 IEEE 19th In-
ternational Conference on Trust, Security and Privacy in Computing and Commu-
nications (TrustCom). pp. 1965–1970. IEEE (2020)

19. Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The neon method-
ology for ontology engineering. In: Ontology engineering in a networked world, pp.
9–34. Springer (2012)

20. Tešanovic, A.: What is a pattern. Dr. ing. course DT8100 (prev.
78901/45942/DIF8901) Object-oriented Systems (2005)

21. Xu, X., Bandara, H.D., Lu, Q., Weber, I., Bass, L., Zhu, L.: A decision model for
choosing patterns in blockchain-based applications. In: 2021 IEEE 18th Interna-
tional Conference on Software Architecture (ICSA). pp. 47–57. IEEE (2021)

22. Xu, X., Pautasso, C., Zhu, L., Lu, Q., Weber, I.: A pattern collection for blockchain-
based applications. In: Proceedings of the 23rd European Conference on Pattern
Languages of Programs. pp. 1–20 (2018)

23. Xu, X., Weber, I., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., Rimba, P.:
A taxonomy of blockchain-based systems for architecture design. In: 2017 IEEE in-
ternational conference on software architecture (ICSA). pp. 243–252. IEEE (2017)


	An ontology for software patterns: application to blockchain-based software development

