

External Dose Rates from Nuclear Medicine Patients to Specific Patient-Caregiver(s) Geometries

A computational Approach

EURADOS

Lara Struelens, Weibo Li, David Broggio, Christelle Huet, Dietmar Nosske, Augusto Guissani, Tomas Vrba, Nicolas Cherbuin, Laurent Desorgher, Marilyn Tremblay, Kevin Capello, Mario Medvedec, Yi-Kang Lee, Kerstin Hürkamp, Maria JR Carapinha

EANM Peter Covens, Lidia Cunha, Glenn Flux

Joint symposium EANM/EURADOS: Hot topics in Radiation Protection Thursday, October 22, 2020

- In recent years, a number of new radiopharmaceuticals have been used routinely in NM departments
- The contribution of radionuclide therapy to patient treatment is widely accepted
- \Rightarrow The amount of activity administered to patients has increased
- \Rightarrow Necessitates investigating the potential radiation hazard to staff/caregivers from these patients
- The extent of radiation protection required by caregivers is still a matter of debate
- Guidelines vary among countries and institutions in the same country

- Guidelines for the release of nuclear medicine patients
 - ICRP, Publ. 103/105/140
 - IAEA SSG-46/SRS-63

Exposed group	Dose constraints
Family members, caregivers (except pregnant women) helping the patient	5mSv per epidose/treatment
Other family members	1mSv per epidose/treatment and 5mSv in 5 years
General public	0,3mSv per epidose/treatment and 5mSv in 5 years

- Assessment of external exposure level
 - Based on dose rate measurements at specified distances (0,1 – 1m)
 - Extrapolation to infinity using the effective / physical half-life
 - Contact time scenario's

Mettler <i>et al.</i> (2012)	Dose rate @ 1m < 25 μSv/h
Lee <i>et al.</i> (2015)	Dose rate @ 1m < 70 μSv/h
Pant <i>et al.</i> (2006)	Dose rate @ 1m < 30 μSv/h
U.S. NRC (1997)	Dose rate @ 1m < 70 μSv/h
National regulations Mexico Dose rate @ 1m < 50 μSv/h	
National regulations Germany	Dose rate @ 2m < 3,5 μSv/h

- Recommendations/restrictions are rarely available
- Diagnostic procedures
 - No special restrictions necessary
 - Mostly verbal instructions in daily routine (young children, pregnant women)
 - No consensus, acceptable?
- Therapeutic procedure
 - Mostly focused on I-131 treatment for hyperthyroidism or thyroid cancer
 - Restrictions related both to external exposure and internal contamination

- Nuclear medicine patient as a radiation source
 - Physically a large source
 - Non-standard biokinetics (diseases, medications, timing, ...) and changes of activity distribution over time
 - At short distances: combination of point measurements and a unique effective half-life can result in large errors for typical 'close-contact' scenario's

10

Aim of the study

- Improve the assessment of external exposure with a computational approach
- Input
 - Anthropomorphic computational models, both for patient and staff/caregiver(s)/family member(s)
 - Time activity curves from each relevant source organ in the patient
- Output
 - Organ absorbed dose rates over time for the target model

Design of the study

- Collaboration between EANM and EURADOS
 - EANM Radiation Protection Committee
 - EURADOS WG6 on 'Computational Dosimetry'
 - EURADOS WG7 on 'Internal Dosimetry'
 - EURADOS WG12 on 'Dosimetry for Medical Imaging'
- Design of the computational framework
 - Benchmarking the different Monte Carlo codes used by the participants
 - Benchmarking the simulation results against experimental data
 - Built it up in a gradual approach in terms of complexity
- Literature review on dose rate measurements at certain distances and time points p.i.

^{99m}Tc-HDP/MDP, ¹⁸FDG, Na¹³¹I

For benchmarking purposes

Literature review on dose rate measurements

- Limited number of studies reported dose rate measurements (mostly cumulated doses)
- Large variation in measurement set-up ⇒ difficult to compare
- Large differences in dose rate values at short distances
- \Rightarrow Extra measurements performed on patients in NM departments
 - ^{99m}Tc-HDP
 - according to harmonized protocol

Dose rate measurements – ^{99m}Tc-HDP

- 6 centers
- 58 patients
- Cross calibration of measurement
 equipment
- Record
 - Injected activity
 - Remaining activity in the syringe
 - Time point p.i. of measurement
 - Patient body mass and height
- Large variation @ first time point

Centre	Normalised dose rate (µSv/h/MBq)	
A	2,44E-02	
В	2,32E-02	
С	1,60E-02	
D	1,22E-02	
E	1,80E-02	
F	2,54E-02	Calibration of measurement equipment

Monte Carlo simulations

 Dose rate in a point, in terms of H*(10) @ 1m distance from patient model (chest level)

 \Leftrightarrow Compare against measurements

- 2. Time-dependent absorbed organ dose rates of the target computational model
 - 2 voxel models (straight posture)
 - Changing distances
 - Changing orientation
- 3. Time-dependent absorbed organ dose rates of the target computational model
 - Flexible computational mesh models
 - Representation of close-contact scenario's

Monte Carlo simulations – ^{99m}Tc-HDP Dose rate in a point

- 6 institutes
- 4 codes: MCNP-X, PHITS, TRIPOLI-4, GEANT4
- Source organs
 - According to ICRP-53 biokinetic data
 - Urinary bladder, kidneys, bones, remainder

- Calculation uncertainty (one sigma) < 10%
- Variation of 5-11% between different codes
 - Mainly from small differences between the tallied position

Comparison for each source organ separately:

Monte Carlo simulations – ^{99m}Tc-HDP Dose rate in a point

- 6 institutes
- 4 codes: MCNP-X, PHITS, TRIPOLI-4, GEANT4
- Source organs
 - According to ICRP-53 biokinetic data
 - Urinary bladder, kidneys, bones, remainder

- Calculation uncertainty (one sigma) < 10%
- Variation of 5-11% between different codes
 - Mainly from small differences between the tallied position

Monte Carlo simulations ⇔ measurements

- Large overestimation from simulations
 - ICRP-53 TAC: bladder voiding intervals every 210 min p.i.
 - Estimated mean first bladder voiding time p.i. from measurements: 125 min
 - Adjust model parameters of ICRP-53 for different bladder voiding intervals
 - \Rightarrow Impact on the results?

Monte Carlo simulations ⇔ measurements

- Different voiding times and intervals
 - Voiding interval 3.5h (ICRP-53), 2h, 1h
 - 1st voiding @ 45min/30min/15min, then every 1h

Bladder voiding: 45 min + every 1h

Measured data organized according to estimated 1st bladder voiding time

Monte Carlo simulations – ^{99m}Tc-HDP Effective dose

- 3 institutes
- 3 codes: PHITS, TRIPOLI-4, Geant4
- Models facing each other
 @ 1m distance
- Bladder voiding interval of 120 min selected
- Calculation uncertainty (one sigma) < 2%
- Good agreement (<20%) between different Monte Carlo codes

Exposure to staff/caregivers

- Idea
 - Built a database of effective dose rate over time for specific and relevant exposure geometries
 - Combine with contact time scenario's
- <u>First example</u> with 2 computational models in straight position, for ^{99m}Tc-HDP
 - Orientation: face-to-face, side-by-side, back-to-back
 - Varying distance:
 30 cm 50 cm 100 cm

Exposure to staff/caregivers Possible scenarios

- Family member accompanying patient in hospital before SPECT examination (waiting room, cafeteria, ...)
 - SPECT examination 2.3h after injection
 - Injected activity: 740 MBq
 - Relevant scenarios:
 - face-to-face (50, 100 cm);
 - side-by-side (30, 50 and 100 cm)

 \Rightarrow Effective dose: < 40 µSv

(2,3h contact time) < 17 μSv/h

MAZO World LEADING MEETING

Exposure to staff/caregivers Possible scenarios

- 2. Patient leaves the hospital 4h p.i. and travels home by bus
 - Time of exposure: 240 to 300 min p.i. (duration: 1h)
 - Injected activity: 740 MBq
 - Relevant scenarios:
 - face-to-face (50, 100 cm);
 - side-by-side (50, 100 cm)
 - Back-to-back (50, 100 cm)

\Rightarrow Effective dose < 7 µSv

Exposure to staff/caregivers Possible scenarios

- 3. Patient sleeps with partner @ home
 - Injection at 14h
 - Time of exposure: 22h to 8h
 - 480 to 1080 min p.i.
 - Duration 10h
 - Injected activity: 740 MBq
 - Relevant scenarios:
 - face-to-face (30, 50, 100 cm);
 - side-by-side (30, 50, 100 cm)
 - Back-to-back (30, 50, 100 cm)

 $\Rightarrow Effective \ dose: 1-20 \ \mu Sv$

Conclusions

- Computational approach to determine the external dose rates and subsequent exposure to caregivers/staff from nuclear medicine patient
- Current status:
 - Framework has been benchmarked against different codes and against experimental data for ^{99m}Tc-HDP
 - Very large influence from selected biokinetic data!!
 - \rightarrow Differs also between patients
- Next steps
 - Evaluate/confirm benchmarking for F-18 (FDG) and I-131 treatment
- Future work
 - Move towards high-risk close-contact scenario's
 - E.g. exposure of child from treated mother
 - Focus on radionuclide therapy (higher activities)
 - Needs the implementation of innovative flexible mesh models

Acknowledgement

To all EANM and EURADOS collaborators!

Thank you for your attention

