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X-ray Tomography Reconstruction Accelerated on FPGA
through High-Level Synthesis Tools

Daouda Diakite, and Nicolas Gac

Abstract— Model-Based Iterative Reconstruction (MBIR) algo-
rithms iteratively use expensive computational operators of forward and
backward projections. The irregular memory access pattern of these
operators makes them a memory-bound application. Their computa-
tion time must be reduced to meet clinical routine constraints. This
paper proposes a hardware accelerator architecture based on Field
Programmable Gate Arrays (FPGAs) through high-level language, as
an alternative to GPU architecture. This acceleration is based on an
offline memory access analysis to address the main bottleneck of the
algorithm and maximize the data reuse rate. The offline analysis allows
for the tuning of the architecture parameters so that they converge
to an optimal solution. Then, the Berkeley Roofline model guides our
optimization steps by iteratively analyzing the design performance.
Our design flow significantly improved the algorithm’s computational
intensity and overcame the memory bottleneck. Thus, our architecture
takes advantage of the FPGA local memory to achieve significant
memory bandwidth and efficiently harness the pipeline without stalling
the computation. Furthermore, we present the scaling-up strategy from
mid-range FPGA to high-end FPGA and any concerns of portability.
We used two Intel FPGA devices to implement the algorithm, and then
we compared the results with our GPU implementation in terms of
speedup and energy efficiency. Our experimental results show that our
design has achieved better computational throughput than the works
on FPGA architectures reported in the literature.

Index Terms— FPGA, hardware acceleration, high-level synthesis,
memory access analysis, roofline model, x-ray computed tomography.

I. INTRODUCTION

X -RAY Computed Tomography (CT) is an imaging tech-
nique that initially found its application in the medi-

cal field. It has been extended to industrial applications such
as non-invasive human body investigation and non-destructive
testing of industrial materials. Model-Based Iterative Recon-
struction (MBIR) algorithms [1] are proven to produce better
image quality at the cost of expensive computational time.
To reduce the reconstruction time of CT algorithms, hardware
accelerators are required. For the past few years, Graphical
Processing Units (GPUs) have been the preferred architecture
due to their massively parallel computing pattern [2]. However,
Field Programmable Gate Arrays (FPGAs) can be re-considered
thanks to their low latency, power efficiency, and accessibility
through High-Level Synthesis (HLS) tools provided by leading
manufacturers like Intel or Xilinx.

FPGAs based on HLS tools are experiencing great consid-
eration as an acceleration platform for many applications such
as high-performance computing [3]–[5] or deep neural networks
[6], [7]. The maturity of the HLS tools, making them easier to
use, and their many built-in floating-point units (e.g., Digital
Signal Processing (DSP) units) in the latest FPGAs explain this
interest. These floating-point units provide high design flexibility
and are optimized to support high-performance DSP applica-
tions in IEEE 754 compliant floating-point single precision.
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For instance, Intel Stratix 10 [8] and Intel Agilex [9] devices
can achieve up to 9 TFLOPS and 20 TFLOPS respectively.
FPGAs can express spatial and temporal (fine/coarse-grained)
parallelism, making them suitable for algorithms with sequential
patterns and high data dependency. The HLS tools have made
FPGAs flexible for a wider audience of developers by offering a
higher level of abstraction. The HLS compilers such as Xilinx
Vivado HLS [10] and Intel HLS compiler [11] use C++ entry
to provide a Register Transfer Level (RTL) design for FPGAs.
They allow hardware designers to gain development time at a
higher abstraction level while guaranteeing control to tune the
pipeline characteristics, namely the desired operating frequency,
the cycle accuracy, and the Initiation Interval (II)1. These HLS
tools are IP-driven and more suitable for hardware designers.
The FPGA vendors have provided their OpenCL SDK to enable
FPGA utilization for software developers. This makes FPGAs
utilization possible along with other architectures such as CPU
and GPU due to the OpenCL code portability. The OpenCL
compiler also allows adjusting the characteristics of the pipeline.
However, the designers should alleviate excessive routing con-
straints. Intel HLS compiler is addressed to hardware designers,
while OpenCL SDK responds to software designers by enabling
heterogeneous computing. Therefore, the Intel OpenCL SDK is a
higher abstraction level tool compared to the Intel HLS compiler
and Xilinx Vivado HLS. The OpenCL compiler could benefit
from a thorough knowledge of FPGAs architecture and their
programming paradigm to generate an efficient pipeline.

HLS tools can significantly reduce development time by al-
lowing the description of an FPGA design through a high-
level language, which constitutes their main advantage over
Hardware Description Languages (HDL) design. However, using
tools at a higher level of abstraction, such as OpenCL, comes
with some loss of control over the hardware design. This paper
evaluates whether such a tool can guarantee the same level
of performance and efficiency as an HDL design. FPGAs are
reliable architectures for several applications used through HDL
languages to provide high efficiency, and it is essential to preserve
this efficiency using HLS tools.

In the past, the various parallelisms on FPGAs were extracted
for tomography through the HDL languages requiring strong
hardware skills [12]–[15]. This level of abstraction requires a
heavy and time-consuming development, based on the complex-
ity of specific algorithms. Hence, the emergence of tools with
a high level of abstraction allows a broader audience to use
FPGAs through software programming languages like C, C++,
or OpenCL. FPGAs with HLS have recently been subject of
evaluation in CT algorithms such as Maximum Likelihood Ex-
pectation Maximization (MLEM) [16], [17], 3D back-projection
[18], [19] or CT data alignment in memory [20]. These works

1the Initiation Interval represents the number of clock cycles between
the launch of consecutive loop iterations.
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focus on FPGA-specific optimizations for CT in algorithm ar-
chitecture co-design purposes. However, other works have based
their optimization on the algorithm itself for adaptation to the
architecture. The authors of [21] proposed a Ray-driven voxel-
tile parallel approach that maximizes the data reuse rate to
take advantage of FPGA Block RAM (BRAM). In [22], they
also proposed a parallel beam-based reconstruction on FPGA
to exploit on-chip BRAM intensively. Both their works [21],
[22] use Vivado HLS to synthesize the pipeline. The authors
of [23] proposed an FPGA design of iterative reconstruction for
Transmission Electron Tomography (TET) by using data locality
to optimize memory accesses.

Operators used for reconstruction in tomography are qualified
as memory-bound algorithms. Multiple memory models aside
(global, constant, ...), Intel FPGA SDK for OpenCL [24] pro-
poses several Load Store Units (LSU) implementations based
on the memory access pattern in order to optimize the memory
accesses. The compiler implements the LSU that best matches
the kernel memory access pattern. However, the programmer
needs to help the Altera Offline Compiler (AOC) in the code
writing to choose adequate LSU as discussed in [25]. FPGAs
DRAM bandwidths are typically insufficient to meet memory-
bound applications. Nevertheless, on-chip BRAMs are available
and must be as an alternative to achieve maximum throughput.
These BRAMs are, however, very small in size for applications
with huge data such as CT. A data access strategy must be
developed to take advantage of these on-chip blocks without
stalling the pipeline.

In this paper, we propose an OpenCL acceleration of the voxel-
driven 3D back-projection algorithm on Intel FPGA devices.
This design flow is initially based on an offline memory access
analysis and then iteratively on a performance analysis repre-
sented on a Berkeley Roofline [26]. Our implementation is based
on blocks of voxels reconstruction taking into account the date
reuse rate, and exploiting the local memory on FPGA using Intel
FPGA SDK for OpenCL. We compare the results with other
FPGA implementations regarding throughput, execution time,
and design efficiency.

The main contributions of this paper are as follows:
• A voxel-driven back-projector architecture designed on

FPGA through HLS tools. This algorithm is known to have
a high parallelism potential on voxels and a high data reuse
rate among neighboring voxels.

• A customized memory access strategy to reach a full com-
putational throughput. Memory optimization first involves
the design of prefetcher modules to provide the projection
data by reducing global access. The access to the projection
data in BRAM memory by the PEs is then elaborated to
avoid memory stalls and access conflicts.

• A multi-kernel design has been proposed as an alternative to
the single kernel in order to scale the architecture on Stratix
10 and provide a better balance between the compute unit
and the prefetcher.

• A comparative study between GPU and FPGA HDL imple-
mentations has been performed. The results have also been
compared with other FPGA-based HLS works reported in
the literature.

This work is an extension of our previous work in [27]. The
earlier work focused on an offline memory access analysis on
an Intel Arria 10 device. In this work, we deepened this offline
analysis to maximize the data reuse and detailed our custom
pipeline architecture. We also added the scaling-up strategy
to higher-end FPGA devices for higher parallelism. This work

enhanced the performance of our design and performed a 3.5×
speedup compared to [27]. The design started with a general
focus on the architecture to be synthesized onto FPGA by
establishing its main stages. The offline memory access analysis
follows this architectural study to increase the rate of data reuse
by choosing the optimal block size and using the compilation
information provided by the HLS tools to ensure that the design
fits into the target FPGA. Based on this offline analysis, we begin
tuning our architecture and perform the full synthesis to validate
this study.

The remainder of this paper is organized as follows: in Section
II we present the background of MBIR, the acceleration platform,
and the roofline model. We introduce in Section III our BP-
Prefetch pipeline architecture and the memory access strategy.
In Section IV, we describe our offline analysis for data reuse
evaluation and the Computational Intensity (CI) static analysis.
We also evaluate our design on Intel FPGA devices by performing
first-stage compilations. The experimental results are presented
in Section V along with the roofline model of the design. In
Section VI presents the comparison to related work and the
discussion, then Section VII concludes this work.

II. BACKGROUND AND MOTIVATION

A. Model-Based Iterative Reconstruction

3D CT aims to acquire the internal density f of 3D objects
from external measurements g called sinogram or projection
data. The 3D object is placed between an X-ray source and a
detector plane as illustrated in Fig. 1. The direct model of the
problem can be modeled as follows:

g = Hf + ε (1)

where g represents all the projection data, f the volume to be
reconstructed, H the system matrix, and ε the additive noise.
The reconstruction problem consists of determining the object
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Fig. 1. X-RAY CT Projection. Modified from [27]

of interest f given the measured projection data. The 3D image
f is estimated by minimizing a quadratic criterion JMC :

f̂ = arg minJMC = arg min
1
2 ||g −Hf ||

2. (2)

Iterative methods of reconstruction are used to solve this linear
problem by performing several computations of the forward
and backward projection using JMC the quadratic error and
performing a gradient descent:

f (n+1) = f (n) − α.∇JMC(f (n)) (3)

where ∇JMC(f (n)) is the least square term as follows:

∇JMC(f (n)) = −2Ht(g −Hf). (4)
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The solution f is approached using the iterative algorithm
until convergence is reached. Starting from an initial image f (0)

computed from the measured sinogram, a new volume f (n+1)

is calculated from the current estimation f (n), the gradient of
the cost function and the function decreasing step size α. The
large size of the system matrix is too large, and its storage is
impossible. However, the system matrix is required to compute
the forward projection Hf and the backward projection Ht(g−
Hf). Consequently, the coefficients of H and Ht are computed
on the fly by the forward and backward operators. Hence, the
storage of the system matrix and the matrix multiplication are
avoided.

Backward projection is one of the most time-consuming steps
in MBIR CT. The back-projection operator is also used in analyt-
ical reconstruction algorithms such as Filtered Back Projection
(FBP) [28]. The voxel-driven 3D back-projection used in iterative
reconstruction and described in detail in [12] algorithm is given
by:

f(c) =
∫
g(u(ϕ, c), v(ϕ, c), ϕ).w(ϕ, c)2dϕ (5)

where c = (x, y, z) are the voxel coordinates, (u, v) are the cone
beam coordinates, ϕ is the angular trajectory of the detector
and w is the distance weight.

For each voxel (x, y, z), the projection of its contribution is
located at a position (u(x, y, ϕ), v(x, y, z, ϕ)) on the detector:

u(ϕ, c) = x ∗ cos(ϕ) + y ∗ sin(ϕ) (6)

v(ϕ, c) = x ∗ sin(sinϕ)− y ∗ cos(ϕ) + z. (7)

The contribution on the detector is computed by bi-linear
interpolation. In our design, the interpolation is replaced by the
nearest neighbor method to reduce resource consumption and
computation overhead.

The forward projection is also used in the reconstruction
process, but it is not considered in this work.

B. OpenCL HLS

OpenCL is an open-source parallel programming API for het-
erogeneous processing platforms (CPU, GPU, FPGA). Based on
the C99 standard, OpenCL supports both data and task-parallel
programming models: Single Work-Item (SWI) and NDRange
(NDR) kernels [29]. The first one, called SWI kernel, models the
design as a deep pipeline to exploit the parallelism at the finest
granularity. The second one, NDR kernel, exploits data paral-
lelism to achieve good design efficiency. An OpenCL application
is composed of two programs: a host application and the kernel
compiled separately using Just-In-Time (JIT) compilation. The
JIT compilation is not supported due to the long-time place
and route step for bitstream generation on FPGAs. Therefore
the OpenCL kernel is compiled offline using a vendor-specific
compiler followed by the full synthesis flow. The Board Support
Package (BSP) as shown in Fig. 2, and provided by the board
manufacturers, allows programmers to run the kernel executable
on the target FPGA. It packages features such as IP Cores,
DDR controller, PCIe controller, and DMA drivers to establish
communication between the host and the FPGA device. Many
Intel FPGA manufacturers provide FPGA with their BSP to
quickly design and run Intel device applications using Intel
FPGA SDK for OpenCL. OpenCL SDK also provides, besides
OpenCL directives, many FPGA-specific optimizations to fully
harness the device potential.
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Fig. 2. Intel FPGA SDK for OpenCL platform [27]

The HLS compilers implement different optimization based
on their particular Intermediate Representation (IR), such as
pipelining or expressing data-level parallelism. However, they
suffer from a lack of support for many other unexploited FPGA-
specific optimizations for arithmetic operations [30] for instance.
Hence, harnessing FPGAs’ full potential via HLS tools requires
knowledge of their architecture and a significant effort to adapt
the application because OpenCL is not performance-portable
from one platform to another. This leads to the evaluation of
OpenCL optimization techniques on FPGA by various works [3],
[4], [19], [31].

Algorithm 1 Kernel OpenCL for 3D back-projector
1: for all V oxeli do
2: voxelsum ← 0
3: #pragma unroll N
4: for all ϕj do
5: Compute(u, v)
6: voxelsum+ = projection[u, v, ϕj ]
7: end for
8: volume[V oxeli] = voxelsum

9: end for

Algorithm 1 represents the pseudo-code of (5) where V oxeli
corresponds to a voxel with coordinates (x, y, z). The AOC
compiler will generate a pipeline to describe this algorithm at
the hardware level. As mentioned above, the OpenCL framework
is able to express two kinds of parallelism: a single-threaded
kernel and a multi-threaded kernel. The algorithm memory
access pattern and the available bandwidth make the use of NDR
kernel less efficient on FPGAs [18]. Therefore, the algorithm 1 is
a pipelined version and will be investigated in this work.

Load x

Load ϕ

Load y

sin(ϕ)

cos(ϕ)
+

∗

∗

u

Fig. 3. One part of a back-projection pipeline computing u coordinate in (6)
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Fig 3 represents an example of a pipeline architecture that
should be generated by the offline compiler for computation of
the detector coordinate u(ϕ, c) in (6). The temporal registers
inferred after loads of x and y allow the routing of these values
along the pipeline until their utilization. The compiler generates
such a pipeline for all operations in the design resulting in a
deeper pipeline capable of producing a result at each clock cycle.
However, HLS tools such as OpenCL do not provide access to
that kind of low-level architecture details of the design.

C. FPGA local memory management

We will take advantage of BRAM in order to lighten the global
memory bandwidth. FPGA does not support cache hierarchy,
as we can observe on general-purpose processors such as CPU
or GPU. Nevertheless, one can implement dedicated on-chip
memory blocks based on the application memory access pattern.
The accesses to local memory are mapped to a physical port.
Each local memory has only two read/write ports. It is possible
to use double pumping to have twice as many ports. The double
pumping allows the compiler to run the memory clock twice
the maximum frequency of the kernel. Thus, each local memory
object can have at most four ports for simultaneous access. Intel
recommends having four or fewer read/write accesses to local
memory for stall-free access without arbitration [32].

In order to perform more than four concurrent accesses, the
offline compiler will perform memory banking or replication to
avoid access conflict. Memory replication consists of replicating
the memory object as many as possible to have enough access
ports. Each replicate contains exactly the same data.

Once the local memory is well configured with the right
number of ports with no arbitration, one could create private
copies for this local memory object. The goal of these private
copies is to allow concurrent execution across different iterations
of a given loop. Unlike replication, each memory copy contains
different data for different loop iterations. However, the increase
in the number of copies will consume more BRAM resources.

In this work, several memory accesses per cycle will be per-
formed by our architecture to keep occupying the thousands
of DSPs available on the FPGA card. To that end, memory
replication will be used to avoid access conflict and infer privates
copies for concurrent execution of loop iterations.

D. Roofline model for FPGAs

The roofline model first introduced by [26] is a tool for visually
and quickly observing the possible limitations of an algorithm
relative to theoretical maximum performance on a target archi-
tecture. The model is characterized by two key parameters which
define two roofs: the device’s peak Computational Performance
(CP) and the attainable bandwidth. An algorithm’s attainable
performance is expressed as a function of the CI on the roofline
model. The CI corresponds to the number of floating operations
performed by memory access, i.e., the algorithm complexity.

The attainable performance for an application is expressed as
follows and the model is presented in Fig 4:

Attainable Performance(FLOP/s) = min(CP,CI×BW ). (8)

The CI indicates the algorithm’s complexity and represents
the ratio of the number of operations to the number of memory
accesses.

CI = #Operations
#Memory access

(9)

The algorithm’s offline analysis helped us to obtain the number
of operations and the number of memory transactions. Based
on the CI, an algorithm is considered as a memory-bound or a
compute-bound application.

The work of Williams et al. [26], focused on CPU multicore
architectures, was extended to the FPGA architectures in [33]
through HLS tools and taking into account the resource utiliza-
tion of the device. The model is both architecture-dependent and
application-dependent for FPGAs, thus the authors introduced
the scalability parameter determined by the available resources
on the target FPGA for pipeline replication. The scalability
parameter gives an indication of the replication potential of
the elementary pipeline. Therefore, the computational roof is
influenced by the scalability factor and is given by the available
resources on the target FPGA. The paradigm of the FPGA
roofline is even more complex regarding the bandwidth and the
computational ceiling. The theoretical limits provided by vendors
are far from those obtained after synthesis. We need to use the
profiling tools available to collect data, which allows us to have
more design information such as effective bandwidth, operating
frequency, and runtime.
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Fig. 4. Roofline representation on Intel Arria 10. Two computational roofs,
the higher roof is the theoretical CP and the lower roof is the computational
ceiling for a specific application on FPGA

An example of roofline for a design occupying 65% at 300 MHz
on an Arria 10 is presented in Fig. 4. The higher roof corresponds
to the theoretical computational ceiling when the design uses
the full DSP capability running at the maximum frequency. The
second roof is the computational ceiling of a design with respect
to the actual DSP usage and frequency. This second roof is the
maximum attainable performance for the given pipeline. The
applications will be plotted on that roofline regarding their CI.
Depending on the CI, an application could be bounded by the
memory ceiling or the computational ceiling. The goal is to have
an application in the compute-bound area and get close to the
roof.

III. BP-PREFETCH DESIGN

3D back-projection is one of the most time-consuming steps in
iterative reconstruction. In this section, we explain the memory
access strategy used to avoid the main bottleneck of this algo-
rithm. We then describe our BP-Prefetch architecture on FPGA
along with all the main stages of the pipeline.
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A. Memory access strategy

The detector planes (u, v) are stored in memory following
the projection angles (ϕ). The voxel-driven back-projector ac-
cumulates, for each voxel, the elementary contribution of each
projection pixel in line with the given voxel under consideration
for all angular projections. The reconstruction of a single voxel
thus requires sinogram pixels located in different detector planes
(ϕ = 0, ϕ = 1, ..., ϕ = Nϕ). This projection data also
called a sinogram, is stored in the long latency global memory
of the FPGA board and cannot be fully transferred in FPGA
on-chip memory because of its tremendous size. During each
voxel back-projection, sinogram pixels accessed in memory are
deterministic but discontinuous with high and irregular strides,
as illustrated in Fig. 5. The coordinates of these pixels cannot
be precomputed in practice because of the unsustainable storage
cost it would require. Hence each voxel back-projection implies
on-fly projection coordinate computations with irregular jumps
in memory, making standard cache mechanisms inefficient in
predicting the memory accesses for the next ϕ angles.

u

ϕ

Source

y

u

x
ϕ

2D image

Detector

g(φ, u)

2D data in (ϕ,u) space

1D data in memory

@= u+ ϕ ∗Wu

ACCESS TO PROJECTION DATA g(ϕ, u)

Fig. 5. Memory accesses for the voxel-driven back-projection in the 2D case.
The red and yellow neighboring pixels draw close sinusoids in the 2D sinogram.
This spatial locality is exploited during a voxel block reconstruction. Wu

corresponds to the number of projection pixels

The Intel FPGA automatic on-chip cache implementations are,
above all, efficient for contiguous and repetitive global memory
access. Regarding non-sequential and random accesses, these
automatic caches are inferred by the Intel compiler and are much
less relevant for speeding up the application on FPGAs efficiently.
Their inference is counterproductive and wastes valuable BRAM
resources with a high risk of memory stalling. The acceleration
of CT algorithms suffers from this memory stalling and con-
sumption, which has been pointed out by [18] for the 3D back-
projection algorithm, thus remaining a significant concern. An

efficient prefetching memory strategy must be found facing this
memory wall.

B. Reconstruction by voxel blocks

Performing a reconstruction by voxel blocks, i.e., having an
inner loop on neighbored voxels on algorithm 1, increases the
spatial and temporal locality compared to voxel by voxel recon-
struction. The projection of a block (Bx, By, Bz) corresponds
to a rectangle shape (Tu, Tv) in the detector plane for a given
projection angle ϕi as represented in Fig. 6. Inside this sinogram
tile, a high data re-utilization exists during a voxel block recon-
struction. Indeed, as illustrated in Fig. 5, a single ray may pass
through several neighboring voxels in the 3D volume. Therefore,
the re-utilization of projection data stored in BRAM can be
exploited because all these voxels will read this single projection
during the back-projection. Voxels in the same block will access
the same sinogram tile for each projection angle. The main
concern is to capture the projection data footprint without loss
of information and calculate the coordinates of its boundary. For
each voxel (x, y, z), its reconstruction depends on its Nϕ angular
projections. These projections are spatially distant due to their
storage in the projection data following the order (u, v, ϕ).

Fig. 6. Voxel block (in blue) and its projection (in red)

During a block reconstruction, prefetching in BRAM the
sinogram tile associated with the voxel block allows a high reuse
data rate for moderate costs in local memory for the storage
of the sinogram tile required at the current ϕ iteration and the
voxel block, but also in computation with the simple sinogram
tile shape calculation. In order to identify the projection data
footprint, we perform the following operations. The edge voxel
A in the bloc is projected in the detector plane (see Fig. 6), and
its coordinates (uA, vA) are computed. Then the dimension of
the projection data footprint is determined by the computation
of Tu and Tv depending on block size (Bx, By, Bz): Tu =√
B2

x +B2
y and Tv =

√
2 ∗ Bz . The projection pixels in the

located footprint (red rectangular shape in Fig. 6) are accessed
with a regular memory access pattern. With this strategy, we
gain in the temporal and spatial locality for memory accesses and
consequently make these accesses contiguous for coalescence.

The use of FPGA BRAM provides higher bandwidth than
the global memory bandwidth. Moreover, the access latency
will be considerably reduced with a low stall percentage. This
approach’s advantage remains in reducing the memory access
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to local memory. Because the block size and shape decision is
crucial for the data reuse rate and contributes to the DRAM
transfer reduction, an offline memory access analysis is presented
in Section IV-A.

C. BP-Prefetch architecture

The BP-cache design is the baseline version of the 3D back-
projection using burst-coalesced cached LSU (Algorithm 1) pre-
sented in [18]. OpenCL optimizations such as loop pipelining and
unrolling were applied to this version to leverage the FPGA.
The use of Intel automatic cache became a bottleneck when loop
unrolling was applied to Algorithm 1. Loop unrolling consists
of fully or partially replicating the loop body, and consequently
increases the BRAM usage, thus preventing DSPs’ maximum use.
Usually, loop unrolling does not increase BRAM usage. However,
when using Intel’s automatic cache with an irregular access
pattern, the offline compiler will have trouble coalescing memory
accesses. This leads to the generation of a private cache for every
global memory access. The cache is implemented using FPGA
BRAM, hence several private copies may result in a waste of
valuable on-chip memory blocks. In our new BP-Prefetch design,
data locality is manually managed. Therefore, unrolling does not
affect the BRAM usage critically.

Algorithm 2 Kernel OpenCL for BP-prefetch
1: for all Bk do
2: #pragma max concurrency MTile
3: for all ϕj do
4: //Prefetching projection data
5: Compute (uA, vA)
6: for all m ∈ [0, Tv] do
7: #pragma unroll Wprefetch/32
8: for all n ∈ [0, Tu] do
9: projections[n,m] = projectionsglobal[uA, vA]

10: uA ← uA + 1
11: end for
12: vA ← vA + 1
13: end for
14: //Computing back − projection
15: #pragma unroll NPE
16: for all Voxeli ∈ Bk do
17: Compute (u, v)
18: blockBk

[Voxeli]+= projections[u, v]
19: end for
20: end for
21: volume ← blockBk

22: end for

The architecture of the BP-prefetch design (Algorithm 2 writ-
ten in pseudo-code2) is presented in Fig. 7. The main stages
of the architecture are made of a prefetching module and a
compute unit. The compute unit is local-memory related and is
placed after the prefetching module. The compute unit is based
on multiple Processing Element (PE) for parallelism. In the
proposed architecture, the critical path consists of reconstructing
the block of voxels with the innermost loop over the voxels. The
loop body, considered as PE, can be replicated for parallel voxel
intensity computation by loop unrolling with a factor NP E . This
number of PEs depends on the target FPGA available resources.

2The OpenCL kernel source code is fully avail-
able at https://github.com/nicolasgac/tomoGPI/ in file
src/TomoGPI lib/src/OCL/backprojection3D kernel A10.cl

To express fine-grained parallelism, a PE is designed as a pipeline
for good efficiency. Each PE is responsible for the calculation of
u, v, and voxel accumulation. The occupancy rate of the compute
unit depends heavily on the ability of the prefetcher to provide
the data. We inferred multiple copies of the prefetched data
for concurrent computation and therefore increased the pipeline
occupancy.
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Fig. 7. BP-Prefetch pipeline. Modified from [27]

The NP E PEs must have stall-free access to local memory
when reading the projection data. We use memory replication as
explained in Section II-C to ensure stall-free access. The memory
replication amount depends on the number of PEs NP E in the
design. Depending on the resource available, we may also infer
MT ile private copies to lunch multiple iterations of loop ϕ.

The architecture’s input is the projection data in the detector
plane as shown in Fig. 7. For each projection angle ϕi, we
prefetch all projection data required (red rectangle) for the voxels
accumulation in the block. We load more data, from global
memory, than required to ensure correct reconstruction and take
advantage of memory coalescence. After the accumulation over
all projections angles ϕi, the reconstructed block of voxels (blue
cube) is written back to the volume stored in the global memory.

D. Memory prefetcher module

In the proposed design, all PEs are fed efficiently in data
by a prefetcher module. As stated in Section III-B, prefetching
the tiles corresponding to the projection of voxel blocks will
allow high reuse rates of data. Thus this circuit-level design
generated by the compiler from Algorithm 2 (lines 5 to 13) is
loading projection tiles from the external global memory to the
FPGA’s on-chip memory for use by the PEs. The global access
is a long latency operation, so we leverage the global bandwidth
by making accesses in burst mode thanks to the offline memory
analysis. When the kernel and the memory controller run at the
same frequency, FPGAs external memory can perform 512-bit
access per cycle per memory bank to saturate the bandwidth.
With this in mind, the prefetcher module uses memory coales-
cence by performing multiple accesses simultaneously. Indeed,
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the projection pixels to prefetch are located in the same tile,
which allows multiple pixels to be merged into wider access from
global memory. The number of accesses per cycle is chosen with
caution because overusing the bandwidth could lead to worse
fmax for the kernel. In order to preserve the kernel operating
frequency, we perform the memory accesses with respect to the
available bandwidth on the target FPGA device.

The FPGA boards used in this work are equipped with two
DDR memory banks offering a memory bus 1024-bit wide. The
memory access pattern is regular, thanks to our access strategy.
The prefetcher module computes the edge coordinates of the pro-
jection data footprint based on our offline analysis to identify the
data to be fetched, as presented in Section III-B. We use memory
coalescence in order to fill the local memory with the projection
data and maximize the bandwidth. Therefore, the prefetcher
module provides wide access of

Wprefetch
32 bits floating-point

values per clock cycle. Wprefetch corresponds to the bandwidth
allocated to the prefetcher module, which is limited to 512 bits to
let some bandwidth to the additional memory operations, such
as the global volume updates.

The private copies as mentioned above in Section III-C inferred
for concurrent execution helped to hide memory accesses latency
in the pipeline, hence maximizing the design throughput.

E. Pipeline Initiation Interval (II)

A compute-intensive application optimization requires a spe-
cific focus on loops. The FPGAs excel in the loop pipelining for
greater cyclic efficiency, and this is combined with loop unrolling
to maximize throughput. The 3D back-projection algorithm has
four nested loops zn, yn, xn (V oxeli coordinates) and ϕ (see
Algorithm 1). The new method (Algorithm 2) allows us to have
a specific tiling in our design thanks to the reconstruction by
block. The computation of detector coordinates u and v for the
image edge could prevent the compiler from achieving the best II
for the innermost. The compiler assumes false dependency due to
conditional branching scope. We move this computation out of
the branching scope and use a temporal register to avoid this false
dependency to address this problem. Therefore, the compiler can
achieve an II value of one for all the loops in the design. Each
PE has to compute the detector coordinates (u, v) and the voxel
accumulation.

IV. ARCHITECTURE TUNING

This section discusses the design scalability on Intel Arria 10
and Stratix 10 devices. In order to take advantage of our design,
the offline memory access analysis is performed to choose the
block size and shape with optimal data reuse rate. The study of
the CI is also presented for the roofline model.

A. Offline Memory Access Analysis

The prefetched projection data depends on the shape of the
block of voxels as described in Section III-B. The data reuse rate
is computed by the following formula and illustrated in Fig. 8:

Data reuse = Bx ∗By ∗Bz

#Memory access I/O
(10)

where the #Memory access I/O represents the number of actual
projection pixels used and is obtained by a static analysis of the
CPU code.

Memory accesses are no longer irregular thanks to our access
strategy presented in Section III-A. The objective is to further
reduce access to the external memory of the FPGA by exploiting

the data reuse potential. Indeed, a single pixel in projection data
is used by several voxels during the back-projection. The offline
analysis first locates the footprint of the projection data required
for a given voxel block and a given projection angle. Then, the
algorithm is run on the CPU, and a counter is assigned to the
projection data to identify the pixels that are used during the
back-projection of the block for a projection angle. These pixel
numbers are used in the calculation of the data reuse rate. This
allows us to ignore some of the pixels present in the projection
data footprint at the time of the memory accesses, especially
those at the edges of the footprint, so as not to fall back into
memory accesses with irregular strides. In order to evaluate the
data reuse rate, the size of the voxel block and the number of
pixels used in the projection data are required, as presented in
(10).

The block size and shape decision depends on the BRAM con-
sumption, the #Memory access I/O, and the data reuse rate.
A larger block may require a larger sinogram tile during back-
projection. This large-size sinogram tile may consume several
BRAM resources. Therefore, a trade-off between the data reuse
rate and resource consumption must be done in order to avoid
synthesis failure.
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Fig. 8. Data reuse rate with 3 different shapes with Bz variation. Modified
from [27]

The data reuse rate regarding different block shapes is illus-
trated in Fig. 8. The size of the BRAM needed to store the
prefetched projection data is mentioned in order to choose to best
(Bx, By, Bz) configuration. For a fixed number of voxels recon-
structed, the requested memory size varies greatly: a (32,32,8)
block requires twice as much as BRAM than a (64,64,2) block to
store their projection data. This offline memory access analysis
helps to manage the memory resource which is critical for this
design. Indeed, with the replication and private copies overhead
allowing concurrent execution, the BRAM sizes indicated in Fig.
8 have to be multiplied by the replication factor and the number
of private copies. Assuming that we have three read ports per
replicated memory and MT ile private copies for concurrent exe-
cution, the required memory size will be multiplied by NP E

3 (the
replication factor) and MT ile (number of copies). For instance
for a NP E

3 ∗MT ile ∗4 MB available on BRAM, this offline study
points that the highest data reuse rate is obtained for (256,256,2)
blocks.

B. Offline Computational Intensity analysis

We use the roofline model to iteratively analyze our algorithm
and guide the optimizations. Each algorithm results in a specific
roofline for FPGAs. The performance roof is determined by
the number of resources consumed and the effective operating
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frequency. The dynamic profiler gives the effective (measured)
DRAM bandwidth achieved. Table I lists the number of oper-
ations Giga Bytes Operations Per Second (GBOPS) and the
number of global memory accesses of the 3D back-projection in
GB. We determine the CI for different versions of the algorithm.
The BP-Cache design is memory-bound with low CI (see Table.
I) due to the lack of spatial and temporal data locality in the
projection data. The CI of this version is very low, elaborating
another strategy to access off-chip memory might substantially
increase the CI and allow the use of more DSP slices to improve
the performance.

TABLE I
STATIC ANALYSIS OF CI FOR DIFFERENT BLOCKS

Design Block #Operations #Memory CIsize (GBOPS) accesses (GB)
BP-cache N/A 236 17.2 13.7

BP-prefetch

64 × 64 × 1 253 1.1 236
32 × 32 × 16 253 0.67 377
64 × 64 × 8 253 0.6 419

128 × 128 × 4 253 0.57 443
256 × 256 × 2 253 0.55 456

We can see that CI increases as long as the block size grows
until it reaches the maximum data reuse rate, and at the same
time, the DRAM transactions are decreased. This variation
is because of the data reuse potential of our memory access
strategy. The total number of operations remains the same. In
contrast, global memory invocations are considerably reduced.
Therefore we perform the same number of computations for fewer
access to the global memory. The CI of our design is improved
by the new strategy and it is no longer in the memory-bound
area on the roofline.

The memory operations presented in Table I take into ac-
count memory coalescence allowed by loop unrolling. The bytes
operations in Table I include arithmetic operations (multiply-
accumulate, divide...), and logic comparison performed in our
design. Some computations are floating-point related, and other
operations involve integer operations.

C. Design on Arria 10

The possible number of PEs on Arria 10 device is NP E = 64
PEs in our architecture without exceeding available resources.
Each PE must have free access to local memory, which requires
a physical port for each memory read. In the case of insuf-
ficient ports, the memory requests are made with arbitration
which causes a severe performance problem for the pipeline
by increasing the II [32]. We perform memory replication for
multiple accesses in order to avoid arbitration. Our architecture
requires NP E read-ports (32 bits wide) for all the PEs to read
projection data in local memory. Thanks to the memory access
strategy, global memory accesses are contiguous and coalesced
when loading projection data. Hence, only one write-port is
needed to write the projection data from global into BRAM
memory. The total number of memory replications will depend
on the number NP E of PEs in the architecture. Each replicate
has four ports due to double pumping (three reads and one
write) and contains the same projection data for the block
reconstruction. In this configuration, the total replication will
be at least bNP E

3 c = 22
In addition, we place MT ile = 8 private copies of the local

memory for concurrent execution of loop iterations (ϕ loop in

algorithm 2). This reduces the overall latency and increases the
pipeline efficiency at the cost of additional BRAM consumption.

D. Replication potential on Stratix 10

We also use the Intel Stratix 10 device for our design in order
to express more parallelism. The Stratix 10 is a high-end FPGA
with thousands of DPS slices and more BRAM resources than
the Arria 10 device. Consequently, our pipeline could benefit
from more PEs and achieves better throughput. The replication
factor NP E of our architecture is fixed to 256 for the Stratix
10 devices. We have two ways of synthesizing this design: as a
single kernel pipeline with all the PEs or multikernel model with
several compute units running in parallel.

The single kernel represents the architecture presented in Fig.
7 with NP E = 256 PEs. The throughput of this version will
depend heavily on the ability of the prefetcher module to provide
the data to the PEs. By having 256 PEs running in parallel,
the number of physical read ports must increase, which leads to
local memory replication overhead. In this scenario, all the PEs
compute voxels in the same block at a time. The challenge to
best leverage the pipeline is to feed it with data and maximize
the throughput. The issue is that all 256 PEs are fed with
data from the same prefetcher module. The higher number of
PEs in the design makes the compute unit more efficient than
the prefetcher module. This imbalance between the compute
unit and the prefetcher module will result in degrading the
pipeline efficiency. In order to balance between the compute
unit and the prefetcher module, a multikernel approach has
been proposed. We split the 256 PEs into several kernels, where
each kernel has its own prefetcher module for more balance.
The prefetcher module designed in Section III-D is able to keep
64 PEs sufficiently occupied to ensure high efficiency. However,
increasing the number of PEs requires an increase in the capacity
of the prefetcher module. Although, as explained in Section III-
D, increasing the prefetcher module capacity strongly affects the
kernel’s operating frequency. We can have multiple prefetcher
modules in the design without sacrificing the kernel frequency.
Indeed, several prefetcher modules do not affect the kernel
frequency because the compiler considers them separately and
schedules their use of the memory bus in various clock cycles
during the pipeline execution.

We replicate our SWI kernel four times to have multiple kernels
in concurrent execution in order to further improve the design
efficiency as illustrated in Fig. 9. Therefore we have the same
pipeline architecture with four instances, and each kernel has 64
PEs. The kernel replication is quite identical to compute unit
replication available in the NDR kernel. However, replicating
the kernel consumes additional hardware resources because the
whole kernel object is replicated. On Stratix 10, the multikernel
model is not recommended as optimization, especially if there
is a data exchange between the kernels. Nevertheless, if there
are no dependencies between the kernels, the only concern is
the resource consumption overhead. The available resources on
the Stratix 10 device are enough to support this replication
overhead. This is good for our design because the four kernels
run concurrently on different portions of the 3D volume without
any communication.

V. RESULTS

We evaluated in this section the performance of our design on
Intel FPGA devices guided by the roofline analysis. The perfor-
mance metrics such as the execution time, the pipeline stall, and
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Fig. 9. BP-prefetch multikernel architecture

the occupancy are discussed. We also described the dataset used
in this work and the software and hardware platforms. For the
sake of reproducibility, the source code of this project is publicly
available at https://github.com/nicolasgac/tomoGPI.

A. Experiment setup

1) Dataset: We used in this experiment the 3D Shepp-Logan
phantom in a cone-beam X-ray CT system with 256×256 detec-
tor cells. The detector pixel size is 14.2 mm in each dimension,
and the acquisition produced 256 projections distributed between
0 and 2π. The size of the considered volume is a 2563 voxels, and
the voxel size is (x = 6.05 mm, y = 6.05 mm, z = 5.86 mm).
The Focus-Object Distance (FOD) is 98 mm, and the Focus-
Detector Distance (FDD) is 230 mm.

2) Software: The Arria 10 device was part of the FLIK plat-
form, which is a compact, all-in-one, and portable accelerator
platform for laptops. The OpenCL release was the Intel FPGA
SDK for OpenCL version 18.1.2.227 and the BSP 18.1 was used.

The OpenCL release of the Stratix 10 device was the Intel
FPGA SDK for OpenCL version 19.1.0.240 with the BSP 19.1.
For both devices, their host machine was based on Linux OS.

Each kernel execution is monitored through the Intel FPGA
dynamic Profiler for OpenCL. For each kernel, this tool provides,
amongst other things, the operating frequency, the execution
time, the logic utilization, and the latency, bandwidth, and stall
of most memory access.

TABLE II
PLATFORMS USED IN THE EXPERIMENT

Board Compute Freq External TFLOPSresources (MHz) Memory
CPU i7-3820 - 3600 DDR3 -

GPU Jetson TX2 256 Cuda cores 1465 DDR4 0.75
GPU A100 6912 Cuda cores 1410 HBM2 19.5

FLIK Arria 10 1518 DSPs 480 DDR4 1.45
DE10-Pro Stratix 10 5760 DSPs 800 DDR4 9.2

3) Hardware devices: We used the FLIK and the DE10-Pro
boards for this experiment as shown in Table II. The FLIK
Arria 10 GX FPGA (10AX115N2F45E1SG), with 1150K logic
elements, comes with 8 GB of DDR4-2133 memory, with a
maximum frequency of 480 MHz. The FPGA is connected in
a PCIe connection (via Thunderbolt 3) to the host system. The
FPGA was connected to the host via thunderbolt 3 because the
FLIK card is a compact, all-in-one, and portable accelerator
platform for laptops. The DE10-Pro board is based on Intel
Stratix 10 GX (1SG280HU2F50E2VG) with 32GB arranged in
2 banks of DDR memory. The Stratix 10 device is a high-end
FPGA with 5760 DSP slices.

In this experiment we do not consider the data transfer be-
tween the host and the device; therefore the considered runtimes
do not include memory transfer. However, to speed up the
memory transfer, the allocated data must be aligned at least
64 bytes to allow for Direct Memory Access (DMA) transfer. To
allocate an aligned memory, the POSIX function posix memalign
can be used by the host. In our experience, the aligned memory
achieves a better transfer rate than the non-aligned memory in all
cases. The AOC compiler allows designers to specify a seed value
to relax the routing constraints or solve the timing violations
due to the design complexity. After validating the architecture
on Stratix 10, we perform a seed sweep to choose the best design
configuration that reaches the maximum frequency. The seed
sweep permits determining an optimal seed value for a design
without any change in the initial pipeline characteristic.

B. Arria 10 results and roofline

Table III shows the results of our implementation using the
Arria 10 device. The performance metrics such as operating
frequency, execution time, stall percentage, and occupancy are
presented in this table. The stall percentage represents the
amount of time memory access causes pipeline stalls. In contrast,
occupancy represents the percentage of time when a work item
(thread) performs a valid memory instruction. The more the
occupancy is, the more the compute units are active during the
execution. The BP-cache version suffers from a high pipeline
stall percentage because of the memory access pattern, making
the global bandwidth the main bottleneck. The execution time
of this version is not acceptable for CT reconstruction routine.
The DSP usage was very low because of high BRAM usage to
implement the cache. Therefore, extra compute unit replication
was impossible, and the BP-cache design could not achieve higher
throughput.

The BP-Prefetch design (Algorithm 2) achieved better per-
formance compared to the BP-Cache version. It overcomes the
abovementioned issue by providing a good design with an accept-
able memory access pattern. The results show the effect of block
shape and size variation. We saw in Fig. 8 that the reuse rate
varies with the number of voxels in the block, i.e., high block size
results in a high reuse rate. However, the BRAM resource con-
sumption should be considered concerning the available resources
on the target FPGA. A block size that consumes at most 4 MB
has been used to store the projection data for our architecture
configuration, and the data reuse rate is high enough for this
amount of memory. The results of our architecture on Arria 10
are presented in Table III for different block sizes and shapes.
The stall percentage is very low for all the chosen blocks, and
the occupancy is high to ensure good execution time. The change
in the data reuse rate is noticed in the increase in the occupancy
of the architecture.
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TABLE III
BLOCK SIZE VARIATION EFFECT ON THE DESIGN PERFORMANCE ON

ARRIA 10

Design BRAM DSP Stall Occ Freq Time
(%) % (%) (%) (Mhz) (s)

BP-Cache 72 27 71.27 24.6 150 3.65

BP-Prefetch

322 × 16 73 58 0.2 74.7 179.2 0.502
642 × 8 72 63 0.06 84.1 189 0.425
1282 × 4 68 63 0.56 90.2 176 0.423
2562 × 2 73 62 0.06 94 180 0.396

All loops are successfully pipelined with an II value of 1 in the
BP-Prefetch design. There is no memory access conflict, and the
data dependencies are handled in one clock cycle. We tune the
block sizes and shapes to have the best performance possible for
our architecture. We have obtained a better execution time with
the 256×256×2 block, corroborating the static study performed
on the data reuse. Compared to the previous BP-cache design,
we achieved a speedup of 9.2× at 180 MHz.
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Fig. 10. Roofline of BP-Prefetch with different blocks on Arria 10

The roofline plots are presented in Fig. 10 for four different
blocks using the Arria 10 device. The chosen blocks are the ones
that provided a high reuse rate, therefore the shapes and sizes
are different. These high reuse rates will result in high CI moving
the algorithm out of the memory-bound area. Since the algorithm
is no longer in the memory-bound zone, the challenge is to get
as close as possible to peak performance, i.e., the computational
ceiling. This can be problematic because even if the application is
not limited by memory on the roofline, it can be prevented from
having the maximum performance because of the impact of the
memory access latency. Unfortunately, the effect of these memory
latencies is not directly visible on the roofline. For these different
optimization techniques are used such as the access latencies
hiding or the maximization of concurrent executions to occupy
the compute units. As shown in the roofline, by increasing the
size of our blocks, the CI also increases, allowing us to have a
better occupancy rate and get close to the computational ceiling.
The computational ceiling of our architecture is not affected by
the algorithm’s CI because our block size does not affect our
design’s compute configurations. The BRAM usage is concerned
by the block size variation while the DSP consumption is slightly
impacted. A 100% occupancy rate would be on the horizontal line
of our computational ceiling. However, our best design on Arria
10 has an occupancy of 94% which is close to the computational
ceiling.

C. Scalability to Stratix 10

Our design is then implemented and evaluated on Intel Stratix
10 device as a single kernel and multikernel. In the multikernel
version, we replicated this design with the same block size on
our Stratix 10. Therefore we have four compute units working on
four blocks of voxels concurrently. The BSP ensures the OpenCL
device bandwidth. In practice, the effective design bandwidth is
low compared to the BSP’s maximum capability. The bandwidth
follow-up is primordial for an acceleration equivalent to the
parallelism factor (the ideal speedup). We use the bandwidth
to its full capacity without sacrificing operating frequency.

TABLE IV
SINGLE KERNEL VERSUS MULTIKERNEL ON STRATIX 10

Design Block BRAM DSP Stall Occ Freq Time
(%) (%) (%) (%) (MHz) (s)

642 × 8 50 49 8.28 61.5 127 0.32
Single kernel 1282 × 4 31 50 4.01 60 87 0.47

2562 × 2 40 57 3.89 60.2 117.2 0.24
642 × 8 33 57 13.91 82.3 172.5 0.12

Multikernel 1282 × 4 36 57 1.45 83.1 133 0.84
2562 × 2 40 57 2.28 85.1 127 0.51

The single pipeline version contains 256 PEs working on the
same block of voxels at the time. Despite the concurrent execu-
tion of the loops, the pipeline occupancy rate was not optimal.
The prefetcher module could not efficiently feed the pipeline
for better throughput. Furthermore, the operating frequency of
this version was slightly low, as shown in Table IV due to the
complexity of the single compute unit. Compared to the Arria
10 implementation, the Stratix 10 results were not as good as
expected, even though the design used a high number of PEs for
a single kernel. However, the block 256 × 256 × 2 provided the
best execution time with a 1.6× speedup using 4× as much PEs
as the Arria 10 design.

The multikernel configuration allows the design to achieve
a better operating frequency. This improved frequency enables
further saturation of the global memory bandwidth and the
occupancy rate of each kernel. The routing constraints are
relaxed with this strategy of splitting the compute unit. Another
main difference between the two designs is that the multikernel
version runs on four blocks in parallel. The volume was divided
into four subvolumes reconstructed by the four compute units.
The reconstruction is performed block by block within each
subvolume. Therefore the multikernel version is preferred over
the single kernel, which achieves the best operating frequency
and the optimal design occupancy. Despite the high occupancy
for blocks 256×256×2 and 128×128×4, their execution times are
worse than the single kernel version. This is due to a prediction
mechanism implemented by the AOC compiler on FPGAs. The
computations of the projection data coordinates are performed
on the fly, and the hardware tries to predict these computations
to optimize the design. By analyzing the dynamic profiler, we
notice that the percentage of prediction hit was very low for these
two blocks, which means most of the computations performed
were invalid. The success of the prediction rate was given by
activity metric in the dynamic profiler. The best execution time
was obtained for the block 64×64×8 with high occupancy and a
good prediction rate. It should be noted that the prediction failed
when the number of PEs is lower than the number of voxels per
line in the block. This is the reason we do not have the failed
prediction for a single kernel because the number of PEs (256)
is equal to or greater than the voxels per line of the block (64,
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Fig. 11. Shepp-Logan and XCAT phantoms reconstructed image slice 128. The Shepp-Logan images are presented at the top and the XCAT images are at
the bottom. Fig. 11a-11b and 11e-11f: The reconstructed image using single back-projection. Fig. 11c-11d and 11g-11h: The reconstructed image after the full
MBIR algorithm. Fig. 11a, 11c, 11e, and 11g: Reconstructed by GPU. Fig. 11b, 11d, 11f, and 11h: Reconstructed by FPGA.

128, or 256). For multikernel we had 64 PEs, and for blocks with
more than 64 voxels per line, the predictions failed several times.
Therefore, a good consistency is required between the chosen
block and the number of PEs.

Thus, the multikernel has achieved an execution time of 0.12
s at 172.5 MHz and preserved the pipeline occupancy for each
compute unit with a block size of 64× 64× 8. However, the stall
percentage of the multikernel version is slightly high because we
have multiple kernels with multiple prefetcher modules soliciting
the global bandwidth. Nevertheless, this increase in memory stall
does not impact the overall performance that much, and yet the
design achieved significant throughput.

D. Image Accuracy

TABLE V
IMAGE QUALITY EVALUATION BETWEEN GPU AND FPGA

RECONSTRUCTED IMAGES ON DIFFERENT DATASETS

Dataset Algorithm UQI CC NRMSE SNR
Shepp- Back-projection 0.999 0.999 0.0162 37.5
Logan MBIR (100 iterations) 0.996 0.996 0.099 25.9

XCAT Back-projection 0.999 0.999 0.0659 35.4
MBIR (100 iterations) 0.999 0.999 0.0457 37.9

We use Shepp-Logan phantom and XCAT phantom [34] test
cases to evaluate our design. Slices of the 2563 volume of
Shepp-Logan phantom and 10242 × 256 on XCAT phantom
are illustrated in Fig. 11, reconstructed by GPU and FPGA
using single-precision floating-point representation. We used the
nearest neighbor method for interpolation on FPGA, while the
GPU version used the bi-linear interpolation method. Table V
shows the evaluation of the FPGA reconstructed images with
respect to GPU ones. The Universal Quality Index (UQI) [35],
the Correlation Coefficient (CC), the Normalized Root Mean
Squared Error (NRMSE), and the Signal to Noise Ratio (SNR)

metrics have been used in order to evaluate our design accuracy
compared to the GPU reconstructed image. The FPGA recon-
structed image has NRMSE = 0.099, SNR = 25.9, CC = 0.996,
and UQI = 0.996 after the full IR algorithm on the Shepp-Logan
phantom. We obtained for XCAT phantom NRMSE = 0.045,
SNR = 37.9, CC = 0.999, and UQI = 0.999, which are accurate
enough for CT application.

VI. COMPARISON AND DISCUSSION

We compare the results of our design with the state-of-the-
art tomography implementations on GPU and FPGA. In this
comparison, the overall throughput, design efficiency, power
consumption, and resource consumption are assessed.

A. Performance comparison

To fairly compare different implementations with different
problem sizes, we use the Giga Updates Per Second (GUPS)
indicator, which is unaffected by the size of the problem, using
the formula given in [36]:

GUPS = GU

Timekernel
with GU =

Nvoxel ∗Nacc/voxel

10243
(11)

with Nvoxel the size of volume and Nacc/voxel the number of
accumulations per voxel. The GUPS in [36] uses 10243 instead of
10003, so we use calculate all GUPS according to this formula.

Several works on CT algorithm acceleration on hardware archi-
tectures have been reported. These different works use different
approaches such as ray-driven, voxel-driven, or separable foot-
print. Choi et al. [21] has proposed a ray-driven voxel-tile parallel
approach to accelerate the EM algorithm on FPGA. They exploit
the data reuse to leverage the BRAM memory by minimizing
global memory access and expressing high parallelism. Gac et al.
[12] has proposed a pipelined architecture exploiting the spatial
and temporal locality of the back-projection algorithm. Their
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TABLE VI
PERFORMANCE COMPARISON OF OUR WORK AND OTHER WORKS.

Update Cycle
Ref. Back-projectora Arch. Platform Time GUPS /cycle PE /update

(geometry, volume) (Year, Freq., Process size) (s) /opb /PE

This work

FPGA Arria 10 (2014, 189 Mhz, 20 nm) 0.396 10.1 0.030 64 1.12
Stratix 10 (2016, 172 Mhz, 14 nm) 0.12 33.3 0.032 256 1.23

VD-float with 256 updates/voxel

GPU

C2050 (2011, 1.15 Ghz, 40 nm) 0.129 31.1 0.032 448 15.4
(CT circular, 2563) P100 (2016, 1.46 Ghz, 16 nm) 0.017 237 0.027 3584 18.7

V100 (2017, 1.38 Ghz, 12 nm) 0.011 364 0.028 5120 18.1
A100 (2020, 1.41 Ghz, 7 nm) 0.009 424 0.023 6912 21.4
TX2 (2016, 1.46 Ghz, 16 nm) 0.25 16.0 0.023 256 21.8

Chou [36] VD-float with 360 updates/voxel GPU C1060 (2008, 1.30 Ghz, 55 nm) 2.47 18.2 0.031 240 15.9
(CT circular, 5123)

Gac [12] VD-fix with 480 updates/voxel

FPGA

Virtex-4 (2004, 200 Mhz, 90 nm) 0.526 0.88 0.025 8 1.70
(PET, 1282×63)

Choi [21] RD-fix with 831 updates/voxel Virtex-6 (2009, 100 Mhz, 40 nm) 14.8 5.1 0.052 64 1.17
(CT helical, 5122×372)

Wen [20] RD-fix with 502 updates/voxel ZCU102 (2018, 300 Mhz, 16 nm) 2.10 29.9 0.024 - -
(CT helical, 10242×128)

a The back-projector studied in our work is Voxel-Driven with floating-point computation (VD-float). Back-projectors studied by Choi [21] and Wen
[20] are Ray-Driven with fixed-point computation (RD-fix).
b op. : hardware operators (adders and multipliers). GPU cores have two FP32 (Floating-point on 32 bits) op. with one multiplier accumulator; DSP
Intel FPGA has two FP32 op. with one multiplier accumulator; DSP Xilinx has three fixed-point op. with a pre-adder and a multiplier accumulator.

method overcomes the memory bottleneck by loop reordering to
take advantage of cache memory using HDL language. FPGA
designs with HDL, as in [12], are known to provide efficient
pipeline architecture, and this same efficiency can also be seen
when using HLS tools. An asynchronous beam-based parallelism
to accelerate the Mumford-Shah (MS) algorithm with a high data
reuse rate and low external memory transactions has been pro-
posed by Zhang et al. [22]. Their approach reduces the computa-
tional cost of the backward projection to a lightweight operation.
Wen et al. [20] has proposed a data management strategy to
achieve a best reuse rate and exploit the FPGA on-chip memory
to accelerate the forward and backward projections. A forward
projection parallel architecture on FPGA has been proposed by
Kim et al. [15]. Their projector architecture was fully pipelined
and exploited loop-level parallelism for high performance. In [36],
the authors proposed a GPU-based reconstruction algorithm to
accelerate the forward and backward projections. Their approach
takes advantage of the GPU architectures to perform multiple
rays computation with multiple threads while avoiding thread
divergence.

Table VI shows that our embedded GPU implementation
based on [12] achieved slightly better performance than the Arria
10 design in terms of GUPS. Vivado HLS is commonly used as
HLS tool for FPGA accelerations as in [20], [21], although we
use Intel FPGA SDK for OpenCL in this work. OpenCL SDK
is at a somewhat higher level of abstraction than Vivado HLS,
giving the designer more control over the pipeline by using HLS
compilers such as Vivado HLS or Intel HLS compiler. Choi et al.
[21] used the Convey HC-1ex platform based on helical geometry.
This platform runs at 100 Mhz of operating frequency with four
FPGAs, and the authors’ design consumes 1408 DSP slices. Wen
et al. [20] targeted the Xilinx ZCU102 platform based on an
UltraScale FPGA and with an overall DSP utilization of 1476
at 299.97 Mhz.

Our Stratix 10 design with four compute units and a total of
256 PEs achieved an overall throughput of 33.3 GUPS at 172.5
Mhz. We compared the results to our GPU implementation using
an embedded GPU and a powerful desktop GPU. The Stratix

10 design outperforms our embedded GPU implementation on
the same dataset. However, the GPU A100 was the most ef-
ficient platform regarding throughput. The DSP usage of the
four kernels is 3282 slices. The results show better performance
compared to all the implementations in Table VI. Our design
achieves a 6.5× speedup of throughput in terms of GUPS
compared to the back-projector of Choi et al.. The Convey HC-
1ex platform of Choi et al. [21] contains four FPGAs. However,
The results reported here are for one FPGA in order to make a
fair comparison since we use a single FPGA platform. However,
their back-projector is a ray-driven approach, and their PE is
responsible for ray tracing. Our PE performs a voxel update since
the back-projector used in this work is a voxel-driven approach.
Moreover, each ray traverses an average of 168 voxels in our
dataset, while it traverses 1004 voxels in their dataset. They
have a higher potential for data re-utilization in their dataset
than ours. Nevertheless, our design exploits more parallelism and
concurrent computations to achieve high throughput.

We then evaluated the design efficiency of all the FPGA
implementations by comparing the number of updates performed
per cycle by each hardware operator (adder and multiplier
). Our OpenCL implementation on Arria 10 and Stratix has
approximately the same design efficiency as the HLS ones (Table
VI). It should be noted that the work on FPGA related in
the literature used fixed-point representation to perform the
reconstruction while we use floating-point single-precision for
our design. Potentially, performances could be improved by a
factor of two if Intel DSP is used as two fixed-point Multiplier
ACcumulator (MAC) instead of one floating-point MAC.

Finally, we have evaluated the pipeline efficiency of each PE.
Our FPGA architectures on Arria 10 and Stratix 10, Gac et al.
[12] HDL design and Choi et al. [21] have an efficiency close to the
optimal of one cycle per update per PE. Conversely, GPU cores
have an efficiency of around 20 cycles per update. It highlights
the strength of FPGA technology which allows the design of
customized architectures with a high computation efficiency even
if its lower frequency clock and hardware resources density make
it, at the end, slower than GPU.
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B. Resource consumption

Table VII shows the resource usage of the 64 × 64 × 8 block
version. As mentioned above, our design on Arria 10 contains 64
PEs on Arria 10 device and 256 PEs on Stratix 10. The BRAM
usage also includes the memory replication overhead in order
to support concurrent access within the pipeline. The resources
that are consumed by the design on Stratix 10 are shown in Table
VII for our four compute units. The table reveals that the extra
logic consumption is due to the kernel replication overhead in
terms of LUT and DSP. It should be noted that the LUTs are
larger in Xilinx devices (6-Input) than in Intel devices (4-Input).
Therefore it is the percentage of usage that matters.

TABLE VII
FPGA RESOURCES CONSUMPTION

Reference FF LUT BRAM DSP
Ours 407183 184616 1967 949

Arria 10 (25%) (23%) (73%) (63%)
Ours 1338708 604963 3898 3282

Stratix 10 (36%) (32%) (33%) (57%)

Choi et al. [21] 1263716 1142380 3680 1408
(33%) (60%) (64%) (40%)

Wen et al. [20] 200062 235928 1352 1476
(36%) (86%) (74%) (58%)

Our design consumed more DSP slices than other FPGA
designs due to the high level of parallelism exploited by our
method. The complexity of our pipeline is not identical to the
ray-tracing PE for other works because our approach is based on
voxel-driven. Moreover, this work uses single-precision floating-
point numbers for the volume image and the projection data,
while other works [20], [21] use fixed-point values. Floating-point
computations are more expensive than fixed-points regarding
latency and hardware resources.

C. Power consumption

Table VIII shows the power consumption of our design on
different architectures. Intel Arria 10 and Stratix 10 boards
contain a power sensor that reads the actual power consumed by
the board using a software API provided by the vendor. We used
the Intel power monitor to read the sensor and measure the power
consumption of the FLIK Arria 10 board. The fpgainfo tool from
the Open Programmable Acceleration Engine (OPAE) C toolkit
was used to measure the power sensor on Intel Stratix 10 board.
Therefore, The power values reported in Table VIII are the actual
power consumption of the FPGA board. The reported values
correspond to the maximum Thermal Design Power (TDP) of
250W for the GPU boards.

TABLE VIII
DESIGN ENERGY EFFICIENCY

Device Process (nm) Power(W) Time (s) GUPS/Watt
GPU P100 16 250 0.017 0.95
GPU V100 12 250 0.011 1.45
GPU A100 7 250 0.009 1.70
Jetson TX2 16 12.9 0.25 1.22

Arria 10 20 14.9 0.396 0.68
Stratix 10 14 23.5 0.12 1.42

The embedded Jetson is more energy-efficient than our archi-
tecture on Arria 10 FPGA, which was designed using OpenCL

for the back-projection algorithm. Conversely, the Stratix device
is more efficient than Arria 10 and the embedded GPU. We
can say that the Stratix 10 is as energy-efficient as the GPUs
except for the A100 device. However, the difference in the process
size between Stratix 10 and A100 devices (14 nm versus 7 nm)
is quite significant. The FPGA can potentially become more
advantageous than GPUs because there is still room to reduce
the process size. By exploiting this technological gap, FPGAs
can benefit from more computing resources and be more energy
efficient.

VII. CONCLUSION

This paper presents a hardware acceleration of the back-
projection algorithm for CT reconstruction using FPGA local
memory efficiently. A fully OpenCL-based custom pipeline archi-
tecture using memory prefetching to reduce global memory trans-
actions is designed to accelerate the algorithm. The prefetching
of the projection data into the FPGA local memory, allowed
by the offline memory access analysis, permits us to leverage
the global memory bandwidth. Our architecture performs better
throughput based on an efficient pipeline with no stall on Intel
FPGA devices for the back-projection algorithm. Furthermore,
we present a multikernel approach to maximize the Stratix 10
design throughput and operating frequency. We have ensured the
bandwidth follow-up by the prefetcher module to keep occupying
the compute units as much as possible. The systematic use of the
Berkeley roofline model highlighted the optimization steps in our
development. We achieved 0.6× and 2.1× throughput against
our embedded GPU implementation on Arria 10 and Stratix 10,
respectively. FPGAs could be more competitive against GPUs
by reducing the process size and gaining computational power
and energy efficiency. Indeed, experimental results show that the
FPGA-based OpenCL design is as efficient as the HDL design
using the same algorithm with reduced development time. Our
design with OpenCL outperforms the related CT reconstructions
using Vivado HLS on FPGA. The proposed method can be ap-
plied to the ray-driven projector for a full iterative reconstruction
routine. We can exploit the data reuse potential between multiple
rays computation, which is part of our future work.
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