
HAL Id: hal-04021906
https://hal.science/hal-04021906

Submitted on 9 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Super-Reparametrizations of Weighted CSPs:
Properties and Optimization Perspective

Tomáš Dlask, Tomáš Werner, Simon De Givry

To cite this version:
Tomáš Dlask, Tomáš Werner, Simon De Givry. Super-Reparametrizations of Weighted CSPs: Prop-
erties and Optimization Perspective. Constraints, an International Journal, In press. �hal-04021906�

https://hal.science/hal-04021906
https://hal.archives-ouvertes.fr

Super-Reparametrizations of Weighted CSPs: Properties and
Optimization Perspective

Tomáš Dlaska,∗, Tomáš Wernera, Simon de Givryb

aDepartment of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,
Karlovo náměst́ı 13, Prague, Czech Republic

bUniversité Fédérale de Toulouse, ANITI, INRAE, UR 875, 31320 Castanet-Tolosan, France

Abstract

The notion of reparametrizations of Weighted CSPs (WCSPs) (also known as equivalence-
preserving transformations of WCSPs) is well-known and finds its use in many algorithms
to approximate or bound the optimal WCSP value. In contrast, the concept of super-
reparametrizations (which are changes of the weights that keep or increase the WCSP
objective for every assignment) was already proposed but never studied in detail. To
fill this gap, we present a number of theoretical properties of super-reparametrizations
and compare them to those of reparametrizations. Furthermore, we propose a frame-
work for computing upper bounds on the optimal value of the (maximization version
of) WCSP using super-reparametrizations. We show that it is in principle possible to
employ arbitrary (under some technical conditions) constraint propagation rules to im-
prove the bound. For arc consistency in particular, the method reduces to the known
Virtual AC (VAC) algorithm. Newly, we implemented the method for singleton arc con-
sistency (SAC) and compared it to other strong local consistencies in WCSPs on a public
benchmark. The results show that the bounds obtained from SAC are superior for many
instance groups.

Keywords: Weighted CSP, Super-Reparametrization, Linear Programming, Constraint
Propagation
2010 MSC: 90C08, 90C27

1. Introduction

In the weighted constraint satisfaction problem (WCSP) we maximize the sum of
(weight) functions over many discrete variables, where each function depends only on a
(usually small) subset of the variables. A popular approach to tackle this NP-hard com-
binatorial optimization problem is via its linear programming (LP) relaxation [1, 2, 3, 4,
5, 6]. The dual of this LP relaxation minimizes an upper bound on the WCSP optimal
value over reparametrizations (also known as equivalence-preserving transformations) of

∗Corresponding author
Email addresses: dlaskto2@fel.cvut.cz (Tomáš Dlask), werner@fel.cvut.cz (Tomáš Werner),

simon.de-givry@inrae.fr (Simon de Givry)

ar
X

iv
:2

20
1.

02
01

8v
1

 [
m

at
h.

O
C

]
 6

 J
an

 2
02

2

the original WCSP instance. For large instances, this is done only approximately, by
methods based on block-coordinate descent [7, 8, 9, 10, 2, 11] or constraint propaga-
tion [12, 13, 2, 14]. Fixed points of these methods are characterized by a local consis-
tency of the CSP formed by the active tuples (to be defined later) of the transformed
WCSP [2, 7, 8, 12, 9].

This approach is limited in that it cannot enforce an arbitrary level of local con-
sistency, unless new weight functions are introduced. Namely, we conjecture that it
can achieve at most pairwise consistency [15, 16], which for binary WCSPs reduces to
arc consistency (reparametrized WCSPs corresponding to global optima of the dual LP
relaxation have been called optimally soft arc consistent in [17, 12]).

In this paper, we study a different LP formulation of the WCSP, which was proposed
in [11] but never pursued later. It differs from the above mentioned basic LP relaxation
and does not belong to the known hierarchy of LP relaxations obtained by introducing
new weight functions of higher arities [18, 15, 14, 6] (which leads to a fine-grained version
of the Sherali-Adams hierarchy [19] for the WCSP). Our LP formulation again minimizes
the upper bound on the WCSP optimal value, but this time over super-reparametrizations
of the initial WCSP instance. Its remarkable feature is that it allows using almost arbi-
trary (up to some technical assumptions) constraint propagation techniques to improve
the bound, without introducing new weight functions. On the other hand, as we are
going to show, it may neither preserve the value of the individual assignments nor the
set of optimal assignments, but it nevertheless provides a valid, and possibly tighter,
bound on the WCSP optimal value.

To the best of our knowledge, super-reparametrizations were not utilized nor analyzed
except for [11] and [20]. In [11], super-reparametrizations were used to obtain tighter
bounds using a specialized cycle-repairing algorithm and were identified in [20] as a
property satisfied by all formulations of the linear programming relaxations based on
reparametrizations. However, [20] focuses almost solely on the relation between different
formulations of reparametrizations, instead of super-reparametrizations. To fill in this
gap, we theoretically analyze the associated optimization problem and also the properties
of super-reparametrizations.

Compared to the previous version of this paper [21], we generalized our method to
WCSPs of any arity, included an elaborated geometric interpretation that simplifies its
understanding, and added more information on implementation details. Newly, we also
analyze the cone of non-negative weighted CSPs and prove that it is dual to the marginal
polytope. Most importantly, we include a study on the theoretical properties of super-
reparametrizations and compare them to those of reparametrizations (§5). Unsurpris-
ingly, we additionally show that some decision problems connected to our approach and
super-reparametrizations are NP-hard (in §6).

Structure. We begin in §2 by formally defining the Weighted CSP, classical (crisp) CSP,
and introducing the notation that will be used throughout the paper. Then, in §3, we for-
mally define the optimization problem of minimizing an upper bound over reparametriza-
tions and/or super-reparametrizations where we also state the sufficient and necessary
optimality conditions. Next, §4 proposes an approach for approximate minimization of
the upper bound over super-reparametrizations using constraint propagation. Additional
properties of the underlying active-tuple CSPs (see definition later) and the sets of op-
timal (or also non-optimal) super-reparametrizations are given in §5. §6 presents the

2

hardness results.

2. Notation

Let V be a finite set of variables and D a finite domain of each variable. An assign-
ment x ∈ DV assigns1 a value xi ∈ D to each variable i ∈ V . Let C ⊆ 2V be a set
of non-empty scopes, i.e., (V,C) can be seen as an undirected hypergraph. The triplet
(D,V,C) defines the structure of a (weighted) CSP and will be fixed throughout the
paper. By

T = { (S, k) | S ∈ C, k ∈ DS } =
⋃
S∈C

TS where TS = { (S, k) | k ∈ DS } (1)

we denote the set of tuples, partitioned into sets TS , S ∈ C. We say that an assignment
x ∈ DV uses a tuple t = (S, k) ∈ T if x[S] = k where x[S] denotes the restriction of x
onto the set S ⊆ V , i.e., for S = {i1, ..., i|S|} we have x[S] = (xi1 , ..., xi|S|) (where the
order of the components is defined by the total order on S inherited from some arbitrary
fixed total order on V). Each assignment x ∈ DV uses exactly one tuple from each TS .

An instance of the constraint satisfaction problem (CSP) is defined by the quadruple
(D,V,C,A) where A ⊆ T is the set of allowed tuples (while the tuples T −A are forbid-
den). As the CSP structure (D,V,C) will be always the same, we will refer to the CSP
instance only as A (in other words, in the sequel we identify CSP instances with subsets
of T). An assignment x ∈ DV is a solution to a CSP A ⊆ T if it uses only allowed tuples,
i.e., (S, x[S]) ∈ A for all S ∈ C. The set of all solutions to the CSP will be denoted by
SOL(A) ⊆ DV . The CSP is satisfiable if SOL(A) 6= ∅, otherwise it is unsatisfiable.

The weighted constraint satisfaction problem (WCSP)2 seeks to find an assignment
x ∈ DV that maximizes3 the function∑

S∈C
fS(x[S]) (2)

where fS : DS → R, S ∈ C, are given weight functions. All the weights (i.e., the
values of the weight functions) together can be seen as a vector f ∈ RT , such that for
t = (S, k) ∈ T we have ft = fS(k). The WCSP instance is defined by the quadruple
(D,V,C, f). However, as the structure (D,V,C) will be always the same, we will refer
to WCSP instances only as f (in other words, we identify WCSP instances with vectors
from RT).

Example 1. For example, if V = {1, 2, 3, 4}, C = {{1}, {2}, {2, 3}, {1, 4}, {2, 3, 4}}, and
D = {a, b, c}, then we want to maximize the expression

f{1}(x1) + f{2}(x2) + f{2,3}(x2, x3) + f{1,4}(x1, x4) + f{2,3,4}(x2, x3, x4)

over x1, x2, x3, x4 ∈ {a, b, c}. We have, e.g.,

T{2,3} = {({2, 3}, (a, a)), ({2, 3}, (a, b)), ({2, 3}, (b, a)), ({2, 3}, (b, b))}.

1As usual, DV denotes the set of all mappings from V to D, so x ∈ DV is the same as x : V → D.
2The WCSP is also known under different names, e.g., as the finite-valued CSP [22, 23], discrete

energy minimization [24], or maximum a posteriori (MAP) inference in graphical models [5]. It is also
the main task in cost function networks [25].

3The results for minimization problems would be analogous.

3

We will use another notation for the WCSP objective, which is common in machine
learning, see, e.g., [3, §3]. We define an indicator map φ : DV → {0, 1}T by

φt(x) = Jx[S] = kK ∀t = (S, k) ∈ T (3)

where J·K denotes the Iverson bracket, which equals 1 if the logical expression in the
bracket is true and 0 if it is false. The WCSP objective (2) can now be written as the
dot product ∑

S∈C
fS(x[S]) =

∑
t∈T

ftφt(x) = 〈f, φ(x)〉. (4)

This makes explicit that the WCSP objective is linear in the weight vector f . The WCSP
optimal value is

max
x∈DV

〈f, φ(x)〉 = max
µ∈M
〈f, µ〉 (5)

where
M = φ(DV) = {φ(x) | x ∈ DV } ⊆ {0, 1}T . (6)

Note that M is defined only by the structure (D,V,C).

3. Bounding the WCSP Optimal Value

We define the function B : RT → R by

B(f) =
∑
S∈C

max
k∈DS

fS(k) =
∑
S∈C

max
t∈TS

ft. (7)

This is a convex piecewise-affine function. For f ∈ RT , we call a tuple t = (S, k) ∈ T
active4 if

ft = max
t′∈TS

ft′ . (8)

The set of all tuples that are active for f is denoted5 by A∗(f) ⊆ T .

Theorem 1 ([2]). For every WCSP f ∈ RT and every assignment x ∈ DV we have:

(a) B(f) ≥ 〈f, φ(x)〉,
(b) B(f) = 〈f, φ(x)〉 if and only if x ∈ SOL(A∗(f)).

Proof. Statement (a) can be checked by comparing expressions (2) and (7) term by term.
Statement (b) says that B(f) = 〈f, φ(x)〉 if and only if (S, x[S]) ∈ A∗(f) for all S ∈ C.

This is again straightforward from (2) and (7).

Theorem 1 says that B(f) is an upper bound on the WCSP optimal value. Moreover, it
shows that B(f) = 〈f, φ(x)〉 implies that x is a maximizer of the WCSP objective (2).

4 Our term ‘active tuple’ comes from the term ‘active inequality’. Indeed, (7) can be calculated as the
minimum of

∑
S∈C zS subject to zS ≥ ft ∀t ∈ TS , where zS ∈ R are auxiliary variables. At optimum,

we have zS = maxt∈TS
ft and an inequality zS ≥ ft is active if and only if tuple t is active.

5The set A∗(f) corresponds to the notion of Bool(f) in [12]. The characteristic vector of the set
A∗(f) was denoted f̄ in [9, 2], dfe in [15], and mi[f] in [5].

4

3 6
-2

1
-4

4 2

1
value a

value b

variable 1 variable 2

(a) WCSP f

2 0
-2

-3
-5

0 3

0
value a

value b

variable 1 variable 2

(b) WCSP d.

Figure 1: Visualisations of two WCSPs f and d with structure as in Example 2. Variables (elements of V)
are depicted as rounded rectangles, tuples (elements of T) as circles and line segments, and weights ft
(and dt) are written next to the circles and line segments. Black circles and full lines indicate active
tuples, whereas white nodes and dashed lines indicate non-active tuples.

Example 2. Let V = {1, 2}, D = {a, b}, and C = {{1}, {2}, {1, 2}}. For this structure,
the set of tuples is

T = {({1}, a), ({1}, b), ({2}, a), ({2}, b),

({1, 2}, (a, a)), ({1, 2}, (a, b)), ({1, 2}, (b, a)), ({1, 2}, (b, b))}.
(9)

For assignment x = (a, b) ∈ DV (i.e., x1 = a, x2 = b), we have φ(x) = (1, 0, 0, 1, 0, 1, 0, 0) ∈
{0, 1}T where the order of the tuples is given by (9).

An example of a WCSP f with this structure is shown in Figure 1a. The weight vector
reads f = (3, 4, 6, 2,−2,−4, 1, 1) ∈ RT (where the ordering is again given by (9)). Thus,
the objective value of WCSP f for x = (a, b) is 〈f, φ(x)〉 = 3 + 2 − 4 = 1. The upper
bound equals B(f) = 4 + 6 + 1 = 11 and is tight because the CSP A∗(f) is satisfiable. In
particular, 〈f, φ(b, a)〉 = 11.

3.1. Minimal Upper Bound over Reparametrizations

We say that a WCSP f ∈ RT is reparametrization of a WCSP g ∈ RT (also known
as an equivalence-preserving transformation of g) [7, 3, 1, 2, 15, 5, 17, 12, 10] if

〈f, φ(x)〉 = 〈g, φ(x)〉 ∀x ∈ DV . (10)

That is, f − g ∈M⊥ where

M⊥ = { d ∈ RT | 〈d, µ〉 = 0 ∀µ ∈M } = { d ∈ RT | 〈d, φ(x)〉 = 0 ∀x ∈ DV } (11)

is the orthogonal space [26, Chapter 1] of the set (6). Here, ‘d’ stands for ‘direction’ but
note that any d ∈M⊥, as a vector from RT , can be also seen as a standalone WCSP. The
set M⊥ is a subspace of RT , consisting of all WCSPs that have zero objective value for
all assignments. Although M⊥ is defined by an exponential number of equalities in (11),
it has a simple, polynomial-sized description (for binary WCSP see [2, §B], for WCSPs
of any arity see [15, §3.2]). An example of WCSP d ∈M⊥ is in Figure 1b. The set of all
reparametrizations of f is the affine subspace6 f+M⊥ = { f+d | d ∈M⊥ }. Clearly, the
binary relation ‘is a reparametrization of’ (on the set of WCSPs with a fixed structure)
is reflexive, transitive and symmetric, hence an equivalence.

6Note, the symbol ‘+’ in the expression f +M⊥ denotes the sum of a vector and a set of vectors.

5

Given a WCSP g ∈ RT , it is a natural idea to minimize the upper bound on its
optimal value by reparametrizations:

min{B(f) | f is a reparametrization of g } = min
f∈g+M⊥

B(f). (12)

By introducing auxiliary variables (as in Footnote 4), this problem can be transformed
to a linear program, which is the dual LP relaxation of the WCSP g [1, 2, 15, 5]. Every
f feasible for (12) satisfies

B(f) ≥ 〈f, φ(x)〉 = 〈g, φ(x)〉 ∀x ∈ DV , (13)

i.e., B(f) is an upper bound on the optimal value maxx〈g, φ(x)〉 of WCSP g. If in-
equality (13) holds with equality for some x, then f is optimal for (12) and the LP
relaxation is tight. Necessary and sufficient conditions for optimality can be obtained
from complementary slackness, see [2, 15, 5].

Problem (12) has been widely studied [1, 2, 17, 12, 4, 5, 6] and many approaches for
its (approximate) large-scale optimization have been proposed, typically based on block-
coordinate descent [8, 9, 10, 2, 7, 11, 20, 18] or constraint propagation [12, 13, 2, 27, 14]. If
f is optimal for (12), then the CSP A∗(f) has a non-empty pairwise-consistency (PWC)
closure (for binary WCSPs, PWC reduces to arc consistency) [15]. We conjecture that
PWC is in general the strongest level of local consistency of A∗(f) that can be achieved
by reparametrizations without enlarging the WCSP structure (i.e., without introducing
new weight functions).

We remark that some approaches [17, 12] achieve only (generalized) arc consistency
rather than PWC because they optimize over a subset of all possible reparametrizations
corresponding to a subspace of M⊥. In this case, WCSPs f optimal for (12) have been
called optimally soft arc consistent (OSAC).

3.2. Minimal Upper Bound over Super-Reparametrizations

We say that a WCSP f ∈ RT is a super-reparametrization7 of a WCSP g ∈ RT if

〈f, φ(x)〉 ≥ 〈g, φ(x)〉 ∀x ∈ DV . (14)

That is, f − g ∈M∗ where

M∗ = { d ∈ RT | 〈d, µ〉 ≥ 0 ∀µ ∈M } = { d ∈ RT | 〈d, φ(x)〉 ≥ 0 ∀x ∈ DV } (15)

is the dual cone [26, Chapter 1] to the set (6). It is a polyhedral convex cone, consisting
of the WCSPs that have nonnegative objective value for all assignments. This cone is not
pointed (i.e., does not contain a line [28, §2.4]) because M⊥ ⊆M∗ and the subspace M⊥

is non-trivial (assuming |V | > 1). The set of all super-reparametrizations of f is the
translated cone f + M∗ = { f + d | d ∈ M∗ }. For a given d ∈ RT , deciding whether
d /∈M∗ is NP-complete, as shown later in Corollary 2.

The binary relation ‘is a super-reparametrization of’ (on the set of WCSPs with a
fixed structure) is reflexive and transitive, hence a preorder. It is not antisymmetric:
f − g ∈ M∗ and g − f ∈ M∗ does not imply f = g but merely f − g ∈ M⊥, i.e., that
f is a reparametrization of g. This is because the cone M∗ is not pointed, see [29, §2]
and [28, §2.4].

7Super-reparametrizations were called virtual potentials in [11] and sup-reparametrizations in [20].

6

Remark 1. The optimal value (5) of a WCSP f can be also written as

max
µ∈M
〈f, µ〉 = max

µ∈convM
〈f, µ〉 (16)

where conv denotes the convex hull operator [28]. The equality in (16) follows from
the well-known fact that a linear function on a polytope attains its minimum in at least
one vertex of the polytope [5, Corollary 3.44]. The set convM ⊆ [0, 1]T is known as
the marginal polytope and has the central role in approaches to WCSP based on linear
programming (see [3, 5] and references therein). It is easy to show that

M∗ = (convM)∗ = (coneM)∗ (17)

where cone denotes the conic hull operator [28] and ∗ the dual cone operator. Thus,
(15) can also be seen as the dual cone to the marginal polytope which, to the best of our
knowledge, has not been mentioned before.

Following [11], we consider the problem

min{B(f) | f is a super-reparametrization of g } = min
f∈g+M∗

B(f). (18)

Again, this can be reformulated as a linear program. Every f feasible for (18) (i.e., every
super-reparametrization of g) satisfies

B(f) ≥ 〈f, φ(x)〉 ≥ 〈g, φ(x)〉 ∀x ∈ DV . (19)

The next theorem characterizes optimal solutions:

Theorem 2. Let f be feasible for (18). The following are equivalent:

(a) f is optimal for (18).
(b) B(f) = max

x∈DV
〈f, φ(x)〉 = max

x∈DV
〈g, φ(x)〉

(c) CSP A∗(f) has a solution x satisfying 〈f, φ(x)〉 = 〈g, φ(x)〉.

Proof. (a)⇔(b): Denote m = maxx〈g, φ(x)〉, which by (19) implies B(f) ≥ m. To see
that this bound is attained, define f by ft = m/|C| for all t ∈ T . It can be checked
from (2) and (7) that B(f) = 〈f, φ(x)〉 = m for all x, so f is feasible and optimal.

(b)⇒(c): Since every feasible f satisfies (19), (b) implies B(f) = 〈f, φ(x)〉 = 〈g, φ(x)〉
for some x. By Theorem 1(b), this implies (c).

(c)⇒(b): By Theorem 1(b) together with (19), (c) implies B(f) = 〈f, φ(x)〉 =
〈g, φ(x)〉 for some x. Statement (b) now follows from Theorem 1(a).

Theorem 2 in particular says that the optimal value of (18) is equal to the optimal
value of WCSP g (this has been observed already in [11, Theorem 1]). This is not surpris-
ing because the complexity of the WCSP is hidden in the exponential set of constraints
of (18). Let us remark that for f ∈ g + M∗, deciding whether f is optimal for (18) is
NP-complete, as shown later in Corollary 3.

Theorem 2 has a simple corollary:

Theorem 3. Let g ∈ RT . CSP A∗(g) is satisfiable if and only if B(g) ≤ B(f) for every
f ∈ g +M∗.

Proof. By Theorem 2, A∗(g) is satisfiable if and only if (18) attains its optimum at the
point f = g, i.e., B(g) ≤ B(f) for every f ∈ g +M∗.

7

4. Iterative Method to Improve the Bound by Super-Reparametrizations

In this section we present an iterative method to suboptimally solve (18). Starting
from a feasible solution to (18), every iteration finds a new feasible solution with a lower
objective, which by (19) corresponds to decreasing the upper bound on the optimal value
of the initial WCSP.

4.1. Outline of the Method

Consider a WCSP f feasible for (18), i.e., f ∈ g + M∗. By Theorem 2, a necessary
(but not sufficient) condition for f to be optimal for (18) is that CSP A∗(f) is satisfiable.
By Theorem 3, A∗(f) is satisfiable if and only if B(f) ≤ B(f ′) for all f ′ ∈ f + M∗. In
summary, we have the following implications and equivalences:

f is optimal for (18) =⇒ CSP A∗(f) is satisfiable~w� ~w�
B(f) ≤ B(f ′) ∀f ′ ∈ g +M∗ =⇒ B(f) ≤ B(f ′) ∀f ′ ∈ f +M∗

(20)

The left-hand equivalence is just the definition of the optimum of (18), the right-hand
equivalence is Theorem 3, and the top implication follows from Theorem 2. The bottom
implication independently follows from transitivity of super-reparametrizations, which
says that f ′ ∈ g +M∗ implies f ′ ∈ f +M∗ (assuming f ∈ g +M∗).

Suppose for the moment that we have an oracle that, for a given f ∈ RT , decides
if A∗(f) is satisfiable and if it is not, finds some f ′ ∈ f + M∗ such that B(f ′) < B(f)
(which exists by Theorem 3). By transitivity of super-reparametrizations, such f ′ is
feasible for (18). This suggests an iterative scheme to improve feasible solutions to (18).
We initialize f0 := g and then for k = 0, 1, 2, . . . repeat the following iteration:

If CSP A∗(fk) is satisfiable, stop.
Otherwise, find fk+1 ∈ fk +M∗ such that B(fk+1) < B(fk).

Note that transitivity of super-reparametrizations implies fk ∈ f0 +M∗ for every k, so
every fk is feasible for (18) as expected. An example of a single iteration is shown in
Figure 2a and 2b.

This iterative method belongs to the class of local search methods to solve (18): having
a current feasible estimate fk, we search for the next estimate fk+1 with a strictly better
objective within a neighborhood fk + M∗ of fk. We can define local optima of (18)
with respect to this method to be super-reparametrizations f of g such that A∗(f) is
satisfiable.

4.1.1. Properties of the Method

By transitivity of super-reparametrizations, for every k we have

fk+1 +M∗ ⊆ fk +M∗ (21)

which holds with equality if and only if fk+1 ∈ fk+M⊥ (i.e., fk+1 is a reparametrization
of fk). This shows that the search space of the method may shrink with increasing k,
in other words, a larger and larger part of the feasible set f0 +M∗ of (18) is cut off and

8

2

2

5

5

2

2

3

3

7
7

216

6

55

0
1
1

0

4
1
0

4

(a) WCSP f0, A∗(f0) unsatisfiable.

2

2

5

5

2

2

3

3

7
7

326

6

66

0
0
0

0

4
2
1

4

(b) WCSP f1, B(f1) < B(f0).

0

0

0

0

0

0

0

0

0
0

110

0

11

0
-1
-1

0

0
1
1

0

(c) Certificate d of unsatisfiability
of A∗(f0), f1 = f0 + d.

Figure 2: Example of one iteration on a binary WCSP whose (hyper)graph is a cycle of length 4.

becomes forever inaccessible. If, for some k, all (global) optima of (18) happen to lie
in the cut-off part, the method has lost any chance to find a global optimum. This is
illustrated in Figure 3.

This has the following consequence. Every fk satisfies

B(fk) ≥ min
f∈fk+M∗

B(f) = max
x∈DV

〈fk, φ(x)〉. (22)

In every iteration, the left-hand side of inequality (22) decreases and the right-hand
side increases or stays the same due to (21). If both sides meet for some k, the CSP
A∗(fk) becomes satisfiable by Theorem 1(b) and the method stops. Monotonic increase
of the right-hand side can be seen as ‘greediness’ of the method: if we could choose
fk+1 from the initial feasible set f0 + M∗ rather than from its subset fk + M∗, the
right-hand side could also decrease. Any increase of the right-hand side is undesirable
because the bounds B(fk) in future iterations will never be able to get below it. This
is illustrated in Figures 4 and 5. Unlike in (12), note that not every optimal assignment
for WCSP f (i.e., an assignment x satisfying B(f) = 〈f, φ(x)〉) is optimal for WCSP g
(i.e., B(g) = 〈g, φ(x)〉). We will return to this in §5.

If A∗(fk) is unsatisfiable, there are usually many vectors fk+1 ∈ fk +M∗ satisfying
B(fk+1) < B(fk). We should choose among them the one that does not cause ‘too much’
shrinking of the search space and/or increase of the right-hand side of (22). Inclusion (21)
holds with equality if and only if fk+1 ∈ fk + M⊥, so whenever possible we should
choose fk+1 to be a reparametrization (rather than just a super-reparametrization) of fk.
Unfortunately, we know of no other useful theoretical results to help us choose fk+1, so
we must recourse to heuristics. One natural heuristic is to choose fk+1 such that the
vector fk+1 − fk is sparse and its positive components are small. Unfortunately, this
can sometimes be too restrictive because, e.g., vectors from M⊥ can be dense and their
components have unbounded magnitudes.

4.1.2. Employing Constraint Propagation

So far we have assumed we can always decide if CSP A∗(f) is satisfiable. This is
unrealistic because the CSP is NP-complete. Yet the approach remains applicable even
if we detect unsatisfiability of A∗(f) only sometimes, e.g., using constraint propagation.
Then our iteration changes to:

9

f2

f1

f0 = g

argmin
f∈g+M∗

B(f)

Figure 3: The shrinking of the search space of the iterative method. The figure illustrates the translated
cones f i +M∗ and several contours of the objective B(f). After the second iteration, all global minima
of the original problem (marked in grey) become inaccessible as the right hand side of (22) increases.

B(fk)

min
f∈fk+M∗

B(f) = max
x
〈fk, φ(x)〉

min
f∈g+M∗

B(f) = max
x
〈g, φ(x)〉

B(g)

iteration k

Figure 4: Illustration to the iterative scheme: B(g) and B(fk) are shown by the full lines,
maxx〈g, φ(x)〉 and maxx〈fk, φ(x)〉 are represented by the dashed lines.

10

3 1
4

1
0

1 5

0

(a) WCSP g

3 4
2

3
0

3 5

0

(b) WCSP f

Figure 5: WCSP f is a super-reparametrization of WCSP g and this pair of WCSPs satisfies B(f) =
11 < B(g) = 12 and maxx∈DV 〈f, φ(x)〉 = 11 > maxx∈DV 〈g, φ(x)〉 = 8. Assignment x = (b, b) is not
optimal for g despite that B(f) = 〈f, φ(x)〉. Naming of variables and domain values is the same as in
Figure 1.

Try to prove that CSP A∗(fk) is unsatisfiable.
If we succeed, find fk+1 ∈ fk +M∗ such that B(fk+1) < B(fk).
If we fail, stop.

In this case, stopping points of the method will be even weaker local minima of (18), but
they nevertheless might be still non-trivial and useful.

In the sequel we develop this approach in detail. In particular we show, if A∗(fk)
is unsatisfiable, how to find a vector fk+1 ∈ fk + M∗ satisfying B(fk+1) < B(fk). We
will do it in two steps. First (in §4.2), given the set A∗(fk) we find a direction d ∈ M∗
using constraint propagation. This direction is a certificate of unsatisfiability of the CSP
A∗(fk) and, at the same time, an improving direction for (18). Second (in §4.3), given d
and fk we find a step length α > 0 such that fk+1 = fk + αd. An example of such a
certificate of unsatisfiability is shown in Figure 2c.

4.1.3. Relation to Existing Approaches

The Augmenting DAG algorithm [13, 2] and the VAC algorithm [12] are (up to the
precise way of computing certificates d and steps lengths α) an example of the described
approach, which uses arc consistency to prove unsatisfiability of A∗(fk). In this favorable
case, there exist certificates d ∈ M⊥, so we are, in fact, applying local search to (12)
rather than (18). For stronger local consistencies, such certificates, in general, do not
exist (i.e., inevitably 〈d, φ(x)〉 > 0 for some x).

The algorithm proposed in [11] can be also seen as an example of our approach. It
interleaves iterations using arc consistency (in fact, the Augmenting DAG algorithm)
and iterations using cycle consistency.

As an alternative to our approach, stronger local consistencies can be achieved by
introducing new weight functions (of possibly higher arity) into the WCSP objective (2)
and minimizing an upper bound by reparametrizations, as in [18, 6, 15, 16, 14]. In our
particular case, after each update fk+1 = fk + αd we could introduce8 a new weight
function with scope

S′ =
⋃
{S | (S, k) ∈ T, dS(k) 6= 0 } (23)

and values
fS′(k) = −

∑
S∈C
S⊆S′

dS(k[S]) (24)

8Notice that such an added weight function would not increase the bound (7) since its weights are
non-positive due to the fact that it needs to decrease the value for some assignments.

11

where k ∈ DS′ . In this view, our approach can be seen as enforcing stronger local
consistencies but omitting these compensatory higher-order weight functions, thus saving
memory.

Finally, the described approach can be seen as an example of the primal-dual ap-
proach [30] to optimize linear programs using constraint propagation. In detail, [30] pro-
posed to construct the complementary slackness system for a given feasible solution and
apply constraint propagation to detect if the system is satisfiable. If it is not satisfiable,
this implies the existence of a certificate of unsatisfiability that can be used to improve
the current solution. In our particular case, if (18) is formulated as a linear program,
then the complementary slackness conditions (expressed in terms of the dual variables)
are equivalent to the optimality conditions stated in Theorem 2 expressed as a set of
linear equalities with an exponential number of non-negative variables. Applying con-
straint propagation on this system is in correspondence with constraint propagation on
a CSP.

4.2. Certificates of Unsatisfiability of CSP

Constraint propagation9 is an iterative algorithm, which in each iteration (executed
by a propagator) infers that some allowed tuples R ⊆ A of a current CSP A ⊆ T can
be forbidden without changing its solution set, i.e., SOL(A) = SOL(A−R), and forbids
these tuples, i.e., sets A := A − R. The algorithm terminates when it is no longer able
to forbid any tuples (in which case the propagator returns R = ∅) or when it becomes
explicit that the current CSP is unsatisfiable. The former usually happens when the
CSP achieves some local consistency level Φ. The latter happens if A ∩ TS = ∅ for some
S ∈ C, which implies unsatisfiability of A because10 every assignment has to use one
tuple from each TS .

In this section, we show how to augment constraint propagation so that if it proves
a CSP unsatisfiable, it also provides its certificate of unsatisfiability d ∈ M∗. This cer-
tificate is needed as an improving direction for (18), as was mentioned in §4.1.2. First,
in §4.2.1, we introduce a more general concept, deactivating directions. One iteration
of constraint propagation constructs an R-deactivating direction for the current CSP A,
which certifies that SOL(A) = SOL(A−R). Then, in §4.2.2, we show how to compose the
deactivating directions obtained from individual iterations of constraint propagation to
a single deactivating direction for the initial CSP. If the initial CSP has been proved un-
satisfiable by the propagation, this composed deactivating direction is then its certificate
of unsatisfiability.

4.2.1. Deactivating Directions

Definition 1. Let A ⊆ T and R ⊆ A. An R-deactivating direction for CSP A is a
vector d ∈M∗ satisfying

(a) dt < 0 for all t ∈ R,

9We speak only about constraint propagation but the approach outlined in this section is applicable
to any method that proves unsatisfiability of a CSP by iteratively forbidding subsets of tuples. In theory,
as a stronger alternative one could also use any CSP solver that is augmented to provide a certificate of
unsatisfiability (which is always possible, as we will discuss later in this section).

10If |S| = 1, this event is often called a ‘domain wipe-out’.

12

(b) dt = 0 for all t ∈ A−R.

For fixed A and R, all R-deactivating directions for A form a convex cone. Here is
one way how to construct a deactivating direction:

Theorem 4. Let R ⊆ A ⊆ T be such that SOL(A) = SOL(A−R). Denote 11

δ = |{S ∈ C | TS ∩R 6= ∅ }|. (25)

Then vector d ∈ RT with components

dt =

−1 if t ∈ R
δ if t ∈ T −A
0 otherwise (i.e., t ∈ A−R)

(26)

is an R-deactivating direction for A.

Proof. Conditions (a) and (b) of Definition 1 are clearly satisfied, so it only remains to
show that d ∈M∗. We have

〈d, φ(x)〉 =
∑
t∈T

dtφt(x) =
∑
t∈R
−φt(x) +

∑
t∈T−A

δφt(x) = −n1(x) + δn2(x) (27)

where n1(x) = |{S ∈ C | (S, x[S]) ∈ R }| and n2(x) = |{S ∈ C | (S, x[S]) ∈ T −A }|.
For contradiction, let x ∈ DV satisfy 〈d, φ(x)〉 < 0. This implies n1(x) > 0 and

n2(x) = 0, where the latter is because n1(x) ≤ δ by the definition of δ. That is, we have
(S∗, x[S∗]) ∈ R for some S∗ ∈ C and (S, x[S]) ∈ A for all S ∈ C. But the latter means
x ∈ SOL(A) and the former implies x /∈ SOL(A−R), a contradiction.

Theorem 5. Let A ⊆ T and R ⊆ A. If there exists an R-deactivating direction for A,
then SOL(A) = SOL(A−R).

Proof. The statement is trivially true for R = ∅, so we assume R 6= ∅. Observe that
SOL(A) = SOL(A − R) is equivalent to SOL(A) ⊆ SOL(A − R) because forbidding
tuples may only remove solutions, i.e., SOL is an isotone map (see §5.1).

Let d be an R-deactivating direction for A and let x ∈ SOL(A) − SOL(A − R), so
(S, x[S]) ∈ R for some S ∈ C. By (4), we have 〈d, φ(x)〉 < 0 because dS(x[S]) = 0 for all
(S, x[S]) ∈ A−R by condition (b) in Definition 1 and dS(x[S]) < 0 for all (S, x[S]) ∈ R
by condition (a). This contradicts d ∈M∗.

Combining Theorems 4 and 5 yields that an R-deactivating direction for A exists
if and only if SOL(A) = SOL(A − R). Thus, any R-deactivating direction for A is a
certificate of the fact that SOL(A) = SOL(A−R).

11The quantity δ is the number of scopes S such that TS contains at least one tuple from R. In other
words, for every assignment x ∈ DV , (S, x[S]) ∈ R holds for at most δ scopes. We remark that the
value of δ could be in some cases decreased, thus decreasing also the values 〈d, φ(x)〉. However, deciding
whether (26) is not an R-deactivating vector for A for a given value δ and A is an NP-complete problem,
see Theorem 16.

13

Unfortunately, vectors d calculated naively by (26) can have many non-zero compo-
nents, which is undesirable as explained in §4.1.1. However, it is clear from Definition 1
that if A ⊆ A′ ⊆ T and d is an R-deactivating direction for A′, then d is an R-deactivating
direction also for A. Moreover, (26) shows that larger sets A give rise to sparser vectors d.
This offers us a possibility to obtain a sparser R-deactivating direction for A if we can
provide a superset A′ ⊇ A of the allowed tuples satisfying SOL(A′) = SOL(A′ −R).

Given A ⊆ T and R ⊆ A, finding a maximal (w.r.t. the partial ordering by inclusion)
superset A′ ⊇ A such that SOL(A′) = SOL(A′−R) is closely related to finding a minimal
unsatisfiable core12 of an unsatisfiable CSP. While finding a maximal such subset is very
likely intractable13, for obtaining a ‘sparse enough’ vector d it suffices to find a ‘large
enough’ such superset A′. Such a superset is often cheaply available as a side result of
executing the propagator. Namely, we take A′ = T − P where P is the set of forbidden
tuples that were visited during the run of the propagator. Clearly, tuples not visited by
the propagator could not be needed to infer SOL(A) = SOL(A− R). Note that P need
not be the same for each CSP instance, even for a fixed level of local consistency: for
example, if the arc consistency closure of A is empty, then A is unsatisfiable but a domain
wipe-out may occur sooner or later depending on A, which affects which tuples needed
to be visited.

Let us emphasize that an R-deactivating direction for A need not be always obtained
using formula (26), any other method can be used as long as d satisfies Definition 1.
We will now give examples of deactivating directions corresponding to some popular
constraint propagation rules. In these examples, we assume that our CSP contains all
unary constraints (i.e., {i} ∈ C for each i ∈ V), so that rather than deleting domain
values we can forbid tuples of the unary constraints.

Example 3. Let us consider (generalized) arc consistency (AC). A CSP A is (G)AC if
for all S ∈ C, i ∈ S and k ∈ D we have the equivalence 14

({i}, k) ∈ A ⇐⇒ (∃l ∈ DS : (S, l) ∈ A, li = k). (28)

If, for some S ∈ C, i ∈ S and k ∈ D, the left-hand statement in (28) is true and the
right-hand statement is false, the AC propagator infers SOL(A) = SOL(A−R) where R =
{({i}, k)}. To infer this, it suffices to know that the tuples P = { (S, l) | l ∈ DS , li = k }
are all forbidden. An R-deactivating direction d for A can be chosen as in (26) where
δ = |{S′ ∈ C | TS′ ∩ R 6= ∅ }| = 1 and A is replaced by T − P . Note that then we have
d ∈M⊥.

If the left-hand statement in (28) is false and the right-hand statement is true, the AC
propagator infers SOL(A) = SOL(A − R) where R = { (S, l) | l ∈ DS , li = k } ∩ A. To

12Given an unsatisfiable CSP A ⊆ T , finding a maximal set A′ ⊇ A such that A′ is still unsatisfiable
is a finer-grained (tuple-based rather than variable-based) version of finding a minimal unsatisfiable core
of a CSP as described in [31]. Note that we are looking here for a maximal superset A′ in contrast to
a minimal unsatisfiable core because we define CSP instances by allowed tuples while cores are CSP
instances defined by forbidden tuples.

13The problem of finding a minimal unsatisfiable core has been designated in [31] to be ‘highly in-
tractable’ based on results from [32].

14Note, for convenience we use a slightly unusual definition of arc consistency, allowing to restrict not
only domains but also constraint relations. This definition was also considered in [5, §6] or [15].

14

infer this, it suffices to know that the tuple P = {({i}, k)} is forbidden. In this particular
case, rather than using (26) (with A replaced by T − P), it is better to choose d as

dt =

−1 if t ∈ { (S, l) | l ∈ DS , li = k }
1 if t ∈ P
0 otherwise

. (29)

Vector (29) satisfies d ∈ M⊥, in contrast to vector (26) which satisfies only d ∈ M∗.
Thus, the update fk+1 = fk + αd is a mere reparametrization15, which is desirable as
explained in §4.1.1.

Example 4. We now consider cycle consistency as defined in [11].16 As this local
consistency was defined only for binary CSPs, we assume that |S| ≤ 2 for each S ∈ C
and denote E = {S ∈ C | |S| = 2 }, so that (V,E) is an undirected graph. Let L be a
(polynomially sized) set of cycles in the graph (V,E). A CSP A is cycle consistent if for
each tuple ({i}, k) ∈ A (where i ∈ V and k ∈ D) and each cycle L ∈ L that passes through
node i ∈ V , there exists an assignment x with xi = k that uses only allowed tuples in
cycle L. It can be shown that the cycle repair procedure in [11] constructs a deactivating
direction whenever an inconsistent cycle is found. Moreover, the constructed direction
in this case coincides with (26) where A is replaced by T − P for a suitable set P that
contains a subset of the forbidden tuples within the cycle.

Example 5. Recall that a CSP A is singleton arc consistent (SAC) if for every tuple
t = ({i}, k) ∈ A (where i ∈ V and k ∈ D), the CSP17 A|xi=k = A − (T{i} − {({i}, k)})
has a non-empty arc-consistency closure. Good (i.e., sparse) deactivating directions for
SAC can be obtained as follows. For some ({i}, k) ∈ A, we enforce arc consistency of
CSP A|xi=k, during which we store the causes for forbidding each tuple. If A|xi=k is
found to have empty AC closure, we backtrack and identify only those tuples which were
necessary to prove the empty AC closure. These tuples form the set P . The deactivating
direction is then constructed as in (26) where R = {({i}, k)} and A is replaced by T −P .
Note that SAC does not have bounded support as many other local consistencies [34] do,
so the size of P can be significantly different for different CSP instances.

4.2.2. Composing Deactivating Directions

Consider now a propagator which, for a current CSP A ⊆ T , returns a set R ⊆ A such
that SOL(A) = SOL(A − R) and an R-deactivating direction for A. This propagator
is applied iteratively, each time forbidding a different set of tuples, until the current
CSP achieves the desired local consistency level Φ or it becomes explicit that the CSP
is unsatisfiable. This is outlined in Algorithm 1, which stores the generated sets Ri of
tuples being forbidden and the corresponding Ri-deactivating directions di. By line 5
of the algorithm, we have Ai = A −

⋃i−1
j=0Rj for every i = 0, . . . , n + 1. Therefore, by

Theorem 5, we have SOL(A) = SOL(A1) = SOL(A2) = · · · = SOL(An+1), which implies
that if An+1 is unsatisfiable then so is A.

15Such reparametrizations correspond to soft arc consistency operations extend and project in [12].
16This is different from cyclic consistency as defined in [27]. E.g., reparametrizations are sufficient to

enforce cyclic consistency, whereas super-reparametrizations are needed for cycle consistency.
17This can be also stated as A|xi=k = A − { ({i}, k′) | k′ ∈ D − {k} }. In other words, the solutions

of the CSP A|xi=k are the solutions x to CSP A satisfying xi = k. This notation is used, e.g., in [33].

15

1 procedure (S, (Ri)
n
i=0, (d

i)ni=0) = propagate(A)
2 Initialize n := 0, A0 := A.
3 while An is not Φ-consistent do
4 Find a set Rn ⊆ An and an Rn-deactivating direction dn for An.
5 An+1 := An −Rn
6 if ∃S ∈ C : An+1 ∩ TS = ∅ then
7 return (S, (Ri)

n
i=0, (di)ni=0)

8 n := n+ 1

9 return (∅, (Ri)n−1
i=0 , (di)n−1

i=0))

Algorithm 1: The procedure propagate applies constraint propagation to CSP
A ⊆ T and returns the sequence (Ri)

n
i=0 of tuple sets that were forbidden and the

corresponding deactivating directions (di)ni=0. If all tuples in some scope S ∈ C
become forbidden during propagation, propagate returns also S, otherwise it
returns S = ∅.

In this section, we show how to compose the generated sequence of Ri-deactivating
directions di for Ai into a single

(⋃n
i=0Ri

)
-deactivating direction for A. This can be

done using the following composition rule:

Theorem 6. Let A ⊆ T and R,R′ ⊆ A where R ∩ R′ = ∅. Let d be an R-deactivating
direction for A. Let d′ be an R′-deactivating direction for A−R. Let

δ =

{
0 if d′t ≤ −1 for all t ∈ R,
max{ (−1− d′t)/dt | t ∈ R, d′t > −1 } otherwise.

(30)

Then d′′ = d′ + δd is an (R ∪R′)-deactivating direction for A.

Proof. First, if d′t ≤ −1 for all t ∈ R, then d′′ = d′ satisfies the required condition
immediately. Otherwise, δ > 0 since dt < 0 for all t ∈ R by definition and −1 − d′t < 0
due to d′t > −1 in the definition of δ. We will show that d′′ satisfies the conditions in
Definition 1.

For t ∈ R with d′t ≤ −1, d′′t = d′t + δdt < d′t ≤ −1 because δdt < 0. If t ∈ R and
d′t > −1, then δ ≥ (−1 − d′t)/dt, so d′′t = d′t + δdt ≤ −1. Summarizing, we have d′′t < 0
for all t ∈ R.

For t ∈ R′, d′t < 0 and dt = 0 holds by definition due to R′ ⊆ A − R, thus d′′t =
d′t + δdt = d′t < 0 which together with the previous paragraph yields condition (a).

Due to A−R ⊇ (A−R)−R′ = A− (R∪R′), for any t ∈ A− (R∪R′) we have dt = 0
and d′t = 0, which implies d′′t = d′ + δd = 0, thus verifying condition (b).

Finally, we have d′′ ∈M∗ because d, d′ ∈M∗ and δ ≥ 0.

Theorem 6 allows us to combine Ri-deactivating direction di for Ai = Ai−1 − Ri−1

with Ri−1-deactivating direction di−1 for Ai−1 into a single (Ri−1 ∪ Ri)-deactivating
direction for Ai−1. Iteratively, we can thus gradually build a

(⋃n
i=0Ri

)
-deactivating

direction for A, which certifies unsatisfiability of A whenever Algorithm 1 detects on
line 6 that An+1 (and thus also A) is unsatisfiable.

16

1 procedure (R∗, d∗) = compose((Ri)
n
i=0, (d

i)ni=0, I)
2 Initialize i := max I, d∗ := di, R∗ := Ri.
3 while i > 0 do
4 i := i− 1
5 if i ∈ I or ∃t ∈ Ri : d∗t 6= 0 then
6 d∗ := d∗ + δdi (where δ is given by (30) where d,R are replaced by di, Ri)
7 R∗ := R∗ ∪Ri

8 return (R∗, d∗)

Algorithm 2: The procedure compose takes the sequences (Ri)
n
i=0 and (di)ni=0

(generated by the procedure propagate) and an index set I ⊆ {0, . . . , n} and
composes them to an R∗-deactivating direction d∗ for A.

However, it is not always necessary to construct a full
(⋃n

i=0Ri
)
-deactivating direction

because not every iteration of constraint propagation may have been necessary to prove
unsatisfiability of A. Instead, we can use the scope S ∈ C satisfying An+1 ∩ TS = ∅
(where An+1 = A −

⋃n
i=0Ri, as mentioned above) returned by Algorithm 1 on line 7

and construct an R∗-deactivating direction for a (usually smaller) set R∗ ⊆
⋃n
i=0Ri such

that (A−R∗) ∩ TS = ∅. Such direction d∗ still certifies unsatisfiability of A and can be
sparser and/or may have lower values 〈d∗, φ(x)〉 than a

(⋃n
i=0Ri

)
-deactivating direction,

which is desirable as explained in §4.1.1.
This is outlined in Algorithm 2, which composes only a subsequence of directions di

based on a given set of indices I ⊆ {0, . . . , n} and constructs an R∗-deactivating direction
with R∗ ⊇

⋃
i∈I Ri. Although Algorithm 2 is applicable for any set I, in our case I is

obtained by taking a scope S ∈ C such that An+1 ∩ TS = ∅ and then setting

I = { i ∈ {0, . . . , n} | Ri ∩ TS 6= ∅ } (31)

so that (A−R∗) ∩ TS = ∅ due to the following fact:

Proposition 1. Let S ∈ C be such that (A−
⋃n
i=0Ri)∩TS = ∅. Let I be given by (31).

Then (A−
⋃
i∈I Ri) ∩ TS = ∅.

Proof. For any sets A,R, T ′ ⊆ T we have (A − R) ∩ T ′ = (T ′ − R) ∩ A. In particular,
(A−

⋃n
i=0Ri)∩TS = (TS −

⋃n
i=0Ri)∩A. But TS −

⋃n
i=0Ri = TS −

⋃
i∈I Ri because for

each i /∈ I we have Ri ∩ TS = ∅ which is equivalent to TS −Ri = TS .

Correctness of Algorithm 2 is given by the following theorem:

Proposition 2. Algorithm 2 returns an R∗-deactivating direction d∗ for A where
⋃
i∈I Ri ⊆

R∗ ⊆
⋃n
i=0Ri.

Proof. The fact that R∗ ⊇
⋃
i∈I Ri is obvious due to Rmax I ⊆ R∗ by initialization on

line 2 and Ri ⊆ R∗ for any i ∈ I such that i < max I because in such case the update on
line 7 is performed. Similarly, R∗ ⊆

⋃n
i=0Ri holds by initialization of R∗ on line 1 and

updates on line 7.
It remains to show that d∗ is R∗-deactivating, which we will do by induction. We claim

that vector d∗ is always R∗-deactivating direction for Ai on line 3 and R∗-deactivating
direction for Ai+1 on line 5.

17

Initially, we have d∗ = di, so d∗ is Ri-deactivating (i.e., R∗-deactivating since R∗ =
Ri before the loop is entered) for Ai. Also, when vector d∗ is first queried on line 5,
i decreased by 1 due to the update on line 4, so d∗ is R∗-deactivating for Ai+1. The
required property thus holds when the condition on line 5 is first queried with i =
max I − 1.

We proceed with the inductive step. If the condition on line 5 is not satisfied, then
necessarily d∗t = 0 for all t ∈ Ri. So, if d∗ is R∗-deactivating for Ai+1, then it is also
R∗-deactivating for Ai = Ai+1 ∪Ri, as seen from Definition 1.

If the condition on line 5 is satisfied, d∗ is R∗-deactivating for Ai+1 before the update
on lines 6-7. Since Ai+1 = Ai − Ri and di is Ri-deactivating for Ai, Theorem 6 can
be applied to di and d∗ to obtain an (R∗ ∪ Ri)-deactivating direction for Ai. After
updating R∗ on line 7, it becomes R∗-deactivating for Ai.

When eventually i = 0, d∗ is R∗-deactivating for A0 = A by line 2 in Algorithm 1.

Remark 2. This is similar to what the VAC [12] or Augmenting DAG algorithm [13,
2] do for arc consistency. To attempt to disprove satisfiability of CSP A∗(f), these
algorithms enforce AC of A∗(f), during which the causes for forbidding tuples are stored.
If the empty AC closure of A∗(f) is detected (which corresponds to TS ∩ As+1 = ∅ for
some S ∈ C), these algorithms do not iterate through all previously forbidden tuples but
only trace back the causes for forbidding the elements of the wiped-out domain (here, the
elements of TS).

4.3. Line Search

In §4.2 we showed how to construct an R-deactivating direction d for a CSP A, which
certifies unsatisfiability of A whenever (A−R)∩TS = ∅ for some S ∈ C. Given a WCSP
f ∈ RT , to obtain f ′ ∈ f + M∗ with B(f ′) < B(f) (as in Theorem 3), we need to find
a step length α > 0 so that f ′ = f + αd, as discussed in §4.1.2. That means, we need to
find α > 0 such that B(f + αd) < B(f). This task is known in numerical optimization
as line search.

Finding the best step size (i.e., exact line search) would require finding a global
minimum of the univariate convex piecewise-affine function α 7→ B(f + αd). As this
would be too expensive for large WCSP instances, we find only a sub-optimal step size
(approximate line search) in the following theorem.18

Theorem 7. Let f ∈ RT . Let d be an R-deactivating direction for A∗(f). Denote 19

β = min

{
maxt∈TS′ ft − ft′

dt′

∣∣∣∣ S′ ∈ C, t′ ∈ TS′ , dt′ > 0

}
,

γ = min

{
ft − ft′
dt′ − dt

∣∣∣∣ S ∈ C, (A∗(f)−R) ∩ TS = ∅, t ∈ TS ∩R, t′ ∈ TS −R, dt′ > dt

}
.

Then β, γ > 0 and for every S ∈ C and α ∈ R, WCSP f ′ = f + αd satisfies:

18In detail, the step size γ computed in Theorem 7 corresponds to the first break (i.e., non-
differentiable) point of the univariate function with a lower objective. This step size is decreased to β
if γ > β so that no maximum increases. This is analogous to the first-hit strategy in [35, §3.1.4].

19β is always defined: by Definition 1 we have 〈d, φ(x)〉 ≥ 0 for all x, hence ∃t : dt < 0⇒ ∃t′ : dt′ > 0.
γ is defined and needed only in (b), where we assume that (A∗(f)−R) ∩ TS = ∅ for some S ∈ C.

18

(a) If (A∗(f)−R) ∩ TS 6= ∅ and 0 ≤ α ≤ β, then maxt∈TS
f ′t = maxt∈TS

ft.

(b) If (A∗(f)−R) ∩ TS 6= ∅ and 0 < α < β, then A∗(f ′) ∩ TS = (A∗(f)−R) ∩ TS.

(c) If (A∗(f)−R) ∩ TS = ∅ and 0 < α ≤ min{β, γ}, then maxt∈TS
f ′t < maxt∈TS

ft.

Proof. We have β > 0 because dt′ > 0 implies t′ is an inactive tuple, so maxt∈TS
ft > ft′ .

We have γ > 0 because in ft−ft′ tuple t is always active and t′ is inactive, hence ft > ft′ .
To prove (a), let t∗ ∈ (A∗(f) − R) ∩ TS . Hence, by Definition 1, dt∗ = 0 and the

value maxt∈TS
f ′t does not decrease for any α since f ′t∗ = ft∗ + αdt∗ = ft∗ . To show the

maximum does not increase, consider a tuple t′ ∈ TS such that dt′ > 0 (due to α ≥ 0,

tuples with dt′ ≤ 0 cannot increase the maximum). It follows that α ≤ β ≤ maxt∈TS
ft−ft′

dt′
,

so f ′t′ = ft′ + dt′α ≤ maxt∈TS
ft.

To prove (b), let (A∗(f)−R)∩ TS 6= ∅. As in (a), we have maxt∈TS
ft = maxt∈TS

f ′t .
If t ∈ (A∗(f) − R) ∩ TS , then dt = 0 and such tuples remain active by f ′t = ft. Tuples
t ∈ R∩ TS become inactive since f ′t = ft + dtα < ft = maxt′∈TS

ft′ by dt < 0 and α > 0.
Tuples t /∈ A∗(f) either satisfy dt ≤ 0 and cannot become active or satisfy dt > 0 and by

α < β ≤ maxt′∈TS
ft′−ft

dt
, f ′t = ft + dtα < maxt′∈TS

ft′ , so t /∈ A∗(f ′).
To prove (c), let (A∗(f)−R)∩TS = ∅. For all t ∈ TS ∩R, we have f ′t = ft+αdt < ft

by dt < 0 and α > 0, i.e., maxt∈TS∩R f
′
t < maxt∈TS∩R ft. We proceed to show that

f ′t ≤ maxt′∈TS∩R f
′
t′ for every t′ ∈ TS − R. Let t∗ ∈ TS ∩ R satisfy f ′t∗ = maxt∈TS∩R f

′
t .

If dt′ > dt∗ , α ≤ γ ≤ ft∗−ft′
dt′−dt∗

implies f ′t∗ = ft∗ +αdt∗ ≥ ft′ +αdt′ = f ′t′ . If dt′ ≤ dt∗ , then

also αdt′ ≤ αdt∗ and f ′t′ = ft′+αdt′ ≤ ft∗+αdt∗ = f ′t∗ holds for any α ≥ 0 since ft′ < ft∗ .
As a result, maxt′∈TS−R f

′
t′ ≤ maxt∈TS∩R f

′
t < maxt∈TS∩R ft = maxt∈TS

ft.

If d is an R-deactivating direction for CSP A∗(f) and for all S ∈ C we have (A∗(f)−
R) ∩ TS 6= ∅ then, by Theorem 7(a,b), there is α > 0 such that f ′ = f + αd satisfies
B(f ′) = B(f) and A∗(f ′) = A∗(f) − R. This justifies why such direction d is called
R-deactivating: a suitable update of f along this direction makes tuples R inactive for f .

Remark 3. This might suggest that to improve the current bound B(f), we need not
use Algorithm 2 to construct an R∗-deactivating direction d∗ with (A∗(f) − R∗) ∩ TS =
∅ for some S ∈ C, but instead, perform steps using the intermediate Ri-deactivating
directions di to create a sequence f i+1 = f i + αid

i satisfying B(f0) = B(f1) = · · · =
B(fn) > B(fn+1). Unfortunately, it is hard to make this work reliably as there are many
choices for the intermediate step sizes 0 < αi < βi. We empirically found Algorithm 3
to be preferable.

If d is an R-deactivating direction for A∗(f) and for some S ∈ C we have (A∗(f) −
R) ∩ TS = ∅, then, by Theorem 7(a,c), there is α > 0 such that f ′ = f + αd satisfies
B(f ′) < B(f). The following corollary of Theorem 7 finally justifies why the certificate d
of unsatisfiability of CSP A∗(f) is an improving direction for (18):

Corollary 1. CSP A ⊆ T is unsatisfiable if and only if there is d ∈ M∗ such that for
every f ∈ RT with A = A∗(f) there exists α > 0 such that B(f + αd) < B(f)

Proof. First, if for some S ∈ C we have that A∩TS = ∅, A is unsatisfiable and no f ∈ RT
satisfies A = A∗(f), so the second condition is trivially satisfied by choosing any d ∈M∗.

Otherwise, let d be any A-deactivating direction (which exists by Theorem 4). It
follows from Theorem 7 that for any f ∈ RT with A∗(f) = A, we can compute a

19

input: WCSP g ∈ RT
1 Initialize f := g.
2 repeat
3 (S, (Ri)

n
i=0, (d

i)ni=0) := propagate(A∗(f))
4 if S 6= ∅ then
5 Set I as in (31).
6 (R∗, d∗) := compose(I, (Ri)

n
i=0, (d

i)ni=0)
7 Update f := f + min{β, γ}d∗ following Theorem 7.

8 until S = ∅;
9 return B(f)

Algorithm 3: The final algorithm to iteratively improve feasible solutions to (18).

suitable step size α > 0 such that B(f + αd) < B(f). The remaining part follows from
Theorem 3.

4.4. Final Algorithm

Having certificates of unsatisfiability from §4.2 and step lengths from §4.3, we can
now formulate in detail the iterative method outlined in §4.1.2, see Algorithm 3. First,
constraint propagation is applied to CSP A∗(f) by Algorithm 1 until either A∗(f) is
proved unsatisfiable or no more propagation is possible. In the latter case, the algorithm
halts and returns B(f) as the best achieved upper bound on the optimal value of WCSP g.
Otherwise, if A∗(f) is proved unsatisfiable due to An+1∩TS = ∅ for some S ∈ C, define I
as in (31) so that (A∗(f)−

⋃
i∈I Ri)∩TS = ∅, and compute an R∗-deactivating direction d∗

where R∗ ⊇
⋃
i∈I Ri using Theorem 2. Since (A∗(f) − R∗) ∩ TS = ∅, we can update

WCSP f using Theorem 7. Consequently, the bound B(f) strictly improves after each
update on line 7.

In Algorithm 3 we additionally used a heuristic analogous to capacity scaling in
network flow algorithms [36, §7.3]. We replace the active tuples A∗(f) with ‘almost’
active tuples

A∗θ(f) =
{
t = (S, k) ∈ T

∣∣∣ ft ≥ max
t′∈TS

ft′ − θ
}

(32)

for some threshold θ > 0.20 This forces the algorithm to disprove satisfiability using
tuples that are far from being active, thus hopefully leading to larger step sizes and
faster decrease of the bound. Initially, θ is set to a high value and whenever we are
unable to disprove satisfiability of A∗θ(f), the current θ is decreased as θ := θ/10. The
process continues until θ becomes very small.

Although our theoretical results are more general, our implementation is limited only
to binary WCSPs, i.e., instances where the maximum arity of the weighted constraints is
at most 2. We implemented two versions of Algorithm 3 (including capacity scaling21),
differing in the local consistency used to attempt to disprove satisfiability of CSP A∗(f):

20This is similar to the notion of Boolθ(f) in [12, §11.1], tolerance δ in [30, §4.2], and miε[f] in [5,
§6.2.4].

21In detail, we initialized θ = maxki,kj g{i,j}(ki, kj)−minki,kj g{i,j}(ki, kj)+maxk gi′ (k)−mink gi′ (k)

where {i, j} ∈ C and i′ ∈ V is the edge and variable with the lowest index (based on indexing in the

20

• Virtual singleton arc consistency via super-reparametrizations (VSAC-SR) uses sin-
gleton arc consistency. Precisely, we alternate between AC and SAC propagators:
whenever a single tuple (i, k) ∈ V ×D is removed by SAC, we step back to enforcing
AC until no more AC propagations are possible, and repeat.

• Virtual cycle consistency via super-reparametrizations (VCC-SR) is the same as
VSAC-SR except that SAC is replaced by CC. Though our implementation is dif-
ferent than [11] (we compose deactivating directions rather than alternate between
the cycle-repair procedure and the Augmenting DAG algorithm), it has the same
fixed points.

The procedures for generating deactivating directions for AC, SAC and CC were imple-
mented as described in Examples 3, 5, and 4. In SAC and CC it is useful to step back to
AC whenever possible because deactivating directions of AC correspond to reparametriza-
tions rather than super-reparametrizations, which is desirable as explained in §4.1.1.

Remark 4. In analogy to [12, 14], let us call a WCSP instance f virtual Φ-consistent
(e.g., virtual AC or virtual RPC) if A∗(f) has a non-empty Φ-consistency closure. Then,
a virtual Φ-consistency algorithm naturally refers to an algorithm to transform a given
WCSP instance to a virtual Φ-consistent WCSP instance. In the VAC algorithm, this
transformation is equivalence-preserving, i.e., a reparametrization. But in our case, it is
a super-reparametrization, which is why we call our algorithms VSAC-SR and VCC-SR.

Since we restricted ourselves to binary WCSPs, let E = {S ∈ C | |S| = 2 } so
that (V,E) is an undirected graph. The cycles in VCC-SR were chosen as follows: if
2|E|/|V | ≤ 5 (i.e., the average degree of the nodes in (V,E) is at most 5), then all
cycles of length 3 and 4 present in the graph (V,E) are used. If 2|E|/|V | ≤ 10, then all
cycles of length 3 present in the graph are used. If 2|E|/|V | > 10 or the above method
did not result in any cycles, we use all fundamental cycles w.r.t. a spanning tree of the
graph (V,E). No additional edges are added to the graph. Note, [11] experimented with
grid graphs (where 4-cycles and 6-cycles of the grid were used) and complete graphs
(where 3-cycles were used).

Since both VSAC-SR and VCC-SR start by enforcing VAC (i.e., making A∗(f) arc
consistent by reparametrizations), before running these methods we used toulbar2 to
reparametrize the input WCSP instance to a VAC state (because a specialized algorithm
is faster than the more general Algorithm 3). We employed specialized data structures
for storing the sequences (Ri)

n
i=0 and (di)ni=0 from Algorithm 1, which utilize the prop-

erty that the sets (Ri)
n
i=0 are disjoint and make easier sequential querying of (sparse)

vectors (di)ni=0 in Algorithm 2. Note that the sequence (Ai)
n+1
i=0 need not be stored and

is only needed for theoretical analysis. Moreover, sparse representations were used when
composing deactivating directions in Algorithm 2. To avoid working with ‘structured’
tuples (1), we employed a bijection between T and {1, . . . , |T |} to work with numerical
indices instead.

Besides the above improvements, we did not fine-tune our implementation for effi-
ciency. Thus, the set A∗(f) was always calculated by iterating through all tuples (which

input instance). The terminating condition was θ ≤ 10−6. In order to improve the efficiency of our
method, we also decreased θ whenever the bound did not improve by more than 10−15 in 20 consecutive
iterations.

21

could be made faster if sparsity of the improving direction was taken into account).
The hyper-parameters of our algorithm (e.g., the decrease schedule of θ or constants
mentioned in Footnote 21) were not learned nor systematically optimized. SAC was
checked on all active tuples without warm-starting or using any faster SAC algorithm
than SAC1 [33, 37]. Perhaps most importantly, we did not implement inter-iteration
warm-starting as in [38, 35], i.e., after updating the weights on line 6 of Algorithm 3,
some deactivating directions in the sequence that were not used to compose the im-
proving direction may be preserved for the next iteration instead of being computed
from scratch. Except for computing deactivating vectors, the code was the same for
VSAC-SR and VCC-SR. We implemented everything in Java.

4.5. Experiments

We compared the bounds calculated by VSAC-SR and VCC-SR with the bounds
provided by EDAC [39], VAC [12], pseudo-triangles (option -t=8000 in toulbar2, adds
up to 8 GB of ternary weight functions), PIC, EDPIC, maxRPC, and EDmaxRPC [14],
which are implemented in toulbar2 [40].

We did the comparison on the Cost Function Library benchmark [41]. Due to limited
computation resources, we used only the smallest 16500 instances (out of 18132). Of
these, we omitted instances containing weight functions of arity 3 or higher. Moreover,
to avoid easy instances, we omitted instances that were solved by VAC without search
(i.e., toulbar2 with options -A -bt=0 found an optimal solution). We also omitted the
validation instances that are used for testing and debugging. Overall, 5371 instances
were left for our comparison.

For each instance and each method, we only calculated the upper bound and did
not do any search. For each instance and method, we computed the normalized bound
Bw−Bm

Bw−Bb
where Bm is the bound computed by the method for the instance and Bw resp.

Bb is the worst resp. best bound for the instance among all the methods. Thus, the best
bound22 transforms to 1 and the worst bound to 0, i.e., greater is better.

For 26 instances, at least one method was not able to finish in the prespecified 1-hour
CPU-time limit. These timed-out methods were omitted from the calculation of the
normalized bounds for these instances. From the point of view of the method, the
instance was not incorporated into the average of the normalized bounds of this particular
method. We note that implementations of VSAC-SR and VCC-SR provide a bound when
terminated at any time, whereas the implementations of the other methods provide a
bound only when they are left to finish. Time-out happened 5, 2, 3, 6, and 24 times for
pseudo-triangles, PIC, EDPIC, maxRPC, and EDmaxRPC, respectively. This did not
affect the results much as there were 5731 instances in total.

The results in Table 1 show that no method is best for all instance groups, instead,
each method is suitable for a different group. However, VSAC-SR performed best for
most groups and otherwise was often competitive to the other strong consistency meth-
ods. VSAC-SR seems particularly good at spinglass maxcut [42], planning [43] and
qplib [44] instances. Taking the overall unweighted average of group averages (giving
the same importance to each group), VSAC-SR achieved the greatest average value.

22To avoid numerical precision issues, bounds Bm within Bb±10−4Bb or Bb±0.01 are also normalized
to 1. If Bw = Bb, then the normalized bounds for all methods are equal to 1 on this instance.

22

Table 1: Results on instances from Cost Function Library: Average normalized bounds.

Instance Group Instances EDAC VAC VSAC-SR VCC-SR Pseudo-tr. PIC EDPIC maxRPC EDmaxRPC
/biqmaclib/ 157 0.02 0.11 0.90 0.22 0.92 0.83 0.81 0.79 0.81
/crafted/academics/ 8 0.88 0.88 0.97 0.95 0.88 0.88 0.88 0.88 1.00
/crafted/auction/paths/ 420 0.00 0.09 0.91 0.35 0.99 0.45 0.68 0.64 0.57
/crafted/auction/regions/ 411 0.00 0.05 0.99 0.10 0.98 0.08 0.18 0.23 0.13
/crafted/auction/scheduling/ 419 0.00 0.02 1.00 0.09 0.80 0.41 0.38 0.41 0.24
/crafted/coloring/ 33 0.94 0.94 0.99 0.97 0.98 1.00 1.00 1.00 0.99
/crafted/feedback/ 6 0.00 0.00 0.54 0.58 0.71 0.49 0.53 0.51 0.72
/crafted/kbtree/ 1800 0.25 0.29 0.60 0.67 0.80 0.73 0.81 0.76 0.89
/crafted/maxclique/dimacs maxclique/ 49 0.06 0.24 0.98 0.39 0.87 0.39 0.50 0.51 0.55
/crafted/maxcut/spinglass maxcut/unweighted/ 5 0.00 0.00 1.00 0.42 0.15 0.15 0.15 0.15 0.15
/crafted/maxcut/spinglass maxcut/weighted/ 5 0.00 0.00 1.00 0.38 0.17 0.17 0.17 0.17 0.17
/crafted/modularity/ 6 0.17 0.19 0.38 0.25 0.99 0.96 0.94 0.96 0.97
/crafted/planning/ 65 0.00 0.54 0.94 0.72 0.32 0.07 0.09 0.07 0.17
/crafted/sumcoloring/ 43 0.04 0.15 0.47 0.50 0.81 0.53 0.63 0.64 0.61
/crafted/warehouses/ 49 0.35 0.99 1.00 0.99 0.35 0.42 0.42 0.42 0.42
/qaplib/ 5 0.40 0.40 0.40 0.41 0.99 0.97 0.97 0.98 0.97
/qplib/ 23 0.00 0.10 0.96 0.38 0.27 0.25 0.25 0.24 0.25
/random/maxcsp/completeloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/completetight/ 50 0.00 0.12 0.57 0.72 0.88 0.94 0.99 0.69 0.76
/random/maxcsp/denseloose/ 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
/random/maxcsp/densetight/ 50 0.02 0.14 0.52 1.00 0.68 0.48 0.49 0.52 0.60
/random/maxcsp/sparseloose/ 90 0.96 0.96 1.00 0.96 0.96 0.96 0.96 0.96 0.96
/random/maxcsp/sparsetight/ 50 0.01 0.12 0.54 1.00 0.64 0.40 0.40 0.43 0.51
/random/maxcut/random maxcut/ 400 0.00 0.00 0.77 0.13 0.95 0.98 0.98 0.97 0.99
/random/mincut/ 500 0.09 1.00 1.00 1.00 0.10 0.10 0.10 0.10 0.10
/random/randomksat/ 493 0.01 0.02 0.75 0.22 0.95 0.91 0.89 0.86 0.87
/random/wqueens/ 6 0.00 0.52 0.96 0.94 0.48 0.12 0.29 0.13 0.72
/real/celar/ 23 0.00 0.05 0.08 0.16 0.97 0.66 0.66 0.78 0.95
/real/maxclique/protein maxclique/ 1 0.00 0.00 1.00 0.03 0.93 0.04 0.04 0.08 0.04
/real/spot5/ 1 0.00 0.08 1.00 0.49 1.00 0.74 0.66 0.41 0.74
/real/tagsnp/tagsnp r0.5/ 23 0.04 0.86 0.95 0.86 0.31 0.31 0.33 0.29 0.46
/real/tagsnp/tagsnp r0.8/ 80 0.13 0.66 0.91 0.68 0.29 0.39 0.38 0.33 0.47

Average over all groups 5371 0.20 0.36 0.82 0.58 0.72 0.56 0.58 0.56 0.62
Average over groups with ≥ 5 instances 5369 0.21 0.38 0.80 0.60 0.71 0.57 0.59 0.58 0.63

23

Table 2: Results on instances from Cost Function Library: Average CPU time in seconds.

Instance Group Instances EDAC VAC VSAC-SR VCC-SR Pseudo-tr. PIC EDPIC maxRPC EDmaxRPC
/biqmaclib/ 157 0.11 0.12 180.07 34.60 83.25 1240.00 1241.29 1242.16 1271.86
/crafted/academics/ 8 0.11 0.11 28.61 1.04 29.08 121.44 120.86 108.08 104.47
/crafted/auction/paths/ 420 0.04 0.04 1.96 0.83 1.92 0.19 0.23 0.48 0.64
/crafted/auction/regions/ 411 0.20 0.32 32.14 9.45 673.42 49.85 51.37 102.61 110.48
/crafted/auction/scheduling/ 419 0.10 0.12 16.22 2.03 49.85 26.90 26.89 32.06 32.30
/crafted/coloring/ 33 0.09 0.10 4.99 1.40 0.20 545.50 545.50 545.51 545.50
/crafted/feedback/ 6 0.70 0.70 3588.39 3600.11 11.64 1860.89 1874.08 1875.93 1873.07
/crafted/kbtree/ 1800 0.02 0.02 3.13 11.25 0.10 0.04 0.05 0.06 0.07
/crafted/maxclique/dimacs maxclique/ 49 0.71 1.32 279.08 126.90 955.60 1345.67 1342.14 1429.73 1428.12
/crafted/maxcut/spinglass maxcut/unweighted/ 5 0.02 0.02 0.82 0.44 0.02 0.01 0.01 0.01 0.01
/crafted/maxcut/spinglass maxcut/weighted/ 5 0.02 0.02 1.09 0.53 0.02 0.01 0.01 0.01 0.01
/crafted/modularity/ 6 0.19 0.29 1023.48 127.39 66.25 706.30 783.02 741.91 1442.57
/crafted/planning/ 65 0.16 0.29 638.85 60.62 7.41 0.93 0.96 2.33 4.73
/crafted/sumcoloring/ 43 1.29 1.94 727.49 963.61 255.72 1508.37 1508.36 1509.34 1512.68
/crafted/warehouses/ 49 4.10 9.48 735.80 735.83 4.09 29.48 29.54 28.80 29.82
/qaplib/ 5 0.08 0.09 119.05 278.53 7.38 1448.63 1444.95 1450.09 1449.22
/qplib/ 23 0.13 0.14 255.85 43.11 195.32 626.25 626.24 626.27 626.36
/random/maxcsp/completeloose/ 50 0.06 0.06 1.31 0.16 0.48 0.09 0.10 0.19 0.18
/random/maxcsp/completetight/ 50 0.02 0.03 6.35 12.68 0.47 0.21 0.25 0.31 0.33
/random/maxcsp/denseloose/ 50 0.02 0.02 166.78 0.06 0.11 0.03 0.03 0.03 0.03
/random/maxcsp/densetight/ 50 0.02 0.02 4.20 17.38 0.10 0.06 0.07 0.07 0.08
/random/maxcsp/sparseloose/ 90 0.03 0.03 611.38 0.05 0.06 0.04 0.04 0.04 0.04
/random/maxcsp/sparsetight/ 50 0.02 0.02 11.00 9.74 0.06 0.04 0.05 0.05 0.05
/random/maxcut/random maxcut/ 400 0.01 0.01 0.73 0.15 0.04 0.03 0.03 0.05 0.07
/random/mincut/ 500 1.09 2.43 14.40 86.22 1.12 0.88 0.87 0.87 0.87
/random/randomksat/ 493 0.02 0.02 3.42 0.17 0.13 0.07 0.10 0.16 0.31
/random/wqueens/ 6 1.33 1.49 992.85 502.42 644.87 1800.15 1800.20 1800.18 1800.60
/real/celar/ 23 0.27 0.28 1798.51 2972.69 66.56 300.76 219.91 495.26 1066.87
/real/maxclique/protein maxclique/ 1 0.26 0.44 25.24 6.77 1196.62 114.62 114.99 215.30 220.81
/real/spot5/ 1 0.01 0.01 0.62 0.08 0.11 0.03 0.03 0.04 0.04
/real/tagsnp/tagsnp r0.5/ 23 4.83 378.77 3338.53 2897.83 239.38 3155.96 3148.66 3172.58 3295.19
/real/tagsnp/tagsnp r0.8/ 80 1.52 22.82 1239.73 858.83 90.05 195.12 206.76 359.55 409.88

Average over all groups 5371 0.55 13.17 495.38 417.59 143.17 471.21 471.49 491.88 538.35
Average over groups with ≥ 5 instances 5369 0.58 14.04 527.54 445.20 112.82 498.80 499.08 517.49 566.88

24

We also evaluated the ratio to worst bound, Bm/Bw, for instances with Bw 6= 0; the
results were qualitatively the same: VSAC-SR again achieved the best overall average
of 3.93 (or 4.15 if only groups with ≥ 5 instances are considered) compared to second-best
pseudo-triangles with 2.71 (or 2.84).

The runtimes (on a laptop with i7-4710MQ processor at 2.5 GHz and 16GB RAM) are
reported in Table 2. Again, the results are group-dependent and one can observe that the
methods explore different trade-offs between bound quality and runtime. However, the
strong consistencies are comparable in terms of runtime on average, except for pseudo-
triangles, which are faster but need significantly more memory.

The code that was used to obtain these results is available at https://cmp.felk.

cvut.cz/~dlaskto2/code/VSAC-SR.zip.

5. Additional Properties of Super-Reparametrizations

In this section, we present a more detailed study of properties of WCSPs that are
preserved by (possibly optimal) super-reparametrizations. To that end, we first revisit
in §5.1 the notion of a minimal CSP for a set of assignments. The key result of §5 is
presented in §5.2, where we study the relation of the set of optimal assignments of some
WCSP to the set of optimal assignments of its super-reparametrization optimal for (18),
showing that they need not coincide in general. In §5.3, we give some properties of
general (i.e., not necessarily optimal for (18)) super-reparametrizations.

5.1. Minimal CSP

Let us ask when for a given set X ⊆ DV of assignments (i.e., a |V |-ary relation
over D) does there exist A ⊆ T such that X = SOL(A), i.e., when is X representable as
the solution set of a CSP with a given structure (D,V,C). For that, denote

Amin(X) =
⋂
A↑(X) where A↑(X) = {A ⊆ T | X ⊆ SOL(A) }. (33)

Thus, A↑(X) is the set of all CSPs whose solution set includes X and Amin(X) is the
intersection of these CSPs. We call Amin(X) the minimal CSP for X. For CSPs with
only binary relations, this concept was studied in [45] and [46, §2.3.2].

Proposition 3. The map SOL preserves intersections 23, i.e., for any A1, A2 ⊆ T we
have SOL(A1 ∩A2) = SOL(A1) ∩ SOL(A2).

Proof. For any x ∈ DV we have

x ∈ SOL(A1) ∩ SOL(A2) ⇐⇒ x ∈ SOL(A1), x ∈ SOL(A2)

⇐⇒ ∀S ∈ C : (S, x[S]) ∈ A1, (S, x[S]) ∈ A2

⇐⇒ ∀S ∈ C : (S, x[S]) ∈ A1 ∩A2

⇐⇒ x ∈ SOL(A1 ∩A2).

23This implies that the map SOL is isotone, i.e., A1 ⊆ A2 ⊆ T implies SOL(A1) ⊆ SOL(A2). Although
isotony is obvious (clearly, enlarging the set of allowed tuples of a CSP preserves or enlarges its solution
set), note that isotony does not imply preserved intersections. A weaker result than our Proposition 3 is
[45, Theorem 3.2]: in our notation, it says that SOL(A1) = SOL(A2) implies SOL(A1∩A2) = SOL(A1).

25

https://cmp.felk.cvut.cz/~dlaskto2/code/VSAC-SR.zip
https://cmp.felk.cvut.cz/~dlaskto2/code/VSAC-SR.zip

Proposition 4. For any X ⊆ DV , the set A↑(X) is closed under intersections, i.e., for
any A1, A2 ⊆ T we have A1, A2 ∈ A↑(X) =⇒ A1 ∩A2 ∈ A↑(X).

Proof. If X ⊆ SOL(A1) and X ⊆ SOL(A2), then X ⊆ SOL(A1)∩ SOL(A2) = SOL(A1 ∩
A2), where the equality holds by Proposition 3.

Proposition 4 implies Amin(X) ∈ A↑(X), i.e., X ⊆ SOL(Amin(X)). This shows
that Amin(X) is the smallest CSP whose solution set includes X. It follows that X =
SOL(Amin(X)) if and only if X = SOL(A) for some A ⊆ T .

The minimal CSP for X can be equivalently defined in terms of tuples:

Proposition 5 ([45, 46]). We have Amin(X) = { (S, k) ∈ T | ∃x ∈ X : x[S] = k }.

Proof. Denote A′ = { (S, k) ∈ T | ∃x ∈ X : x[S] = k }. By definition of A′ we have
SOL(A′) ⊇ X, so A′ ∈ A↑(X) and Amin(X) =

⋂
A↑(X) ⊆ A′.

It remains to show that Amin(X) ⊇ A′. For contradiction, suppose there is a tuple
(S∗, k∗) ∈ A′ − Amin(X). By definition of A′, there exists x ∈ X such that x[S∗] = k∗.
However, since (S∗, x[S∗]) = (S∗, k∗) /∈ Amin(X), we have x /∈ SOL(Amin(X)). By
x ∈ X, this contradicts X ⊆ SOL(Amin(X)).

Recall that a CSP A is positively consistent [47, 48] (called ‘minimal’ in [45, 46]) if and
only if for each (S, k) ∈ A there exists x ∈ SOL(A) such that x[S] = k, i.e., each allowed
tuple is used by at least one solution, i.e., no tuple can be forbidden without losing some
solutions. Proposition 5 shows that Amin(X) is positively consistent for every X ⊆ DV .

Theorem 8. For any X ⊆ DV and A ⊆ T , we have

Amin(X) ⊆ A ⇐⇒ X ⊆ SOL(A). (34)

Proof. If Amin(X) ⊆ A, then by isotony of SOL we have SOL(Amin(X)) ⊆ SOL(A).
Since X ⊆ SOL(Amin(X)), we have X ⊆ SOL(A).

If X ⊆ SOL(A), i.e., A ∈ A↑(X), then Amin(X) =
⋂
A↑(X) ⊆ A.

Comparing (34) with (33) shows that the set A↑(X) is just an interval (w.r.t. the
partial ordering by inclusion):

A↑(X) = {A | Amin(X) ⊆ A ⊆ T } = [Amin(X), T]. (35)

Theorem 8 further reveals that the maps Amin and SOL form a Galois connection [49]

between sets 2(DV) and 2T , partially ordered by inclusion24. Associated with the Galois
connection are the closure operator SOL ◦Amin and the dual closure operator25 Amin ◦
SOL. We have already seen their meaning:

• For any CSP A ⊆ T , the CSP Amin(SOL(A)) is the positive consistency closure26

of A, i.e., the smallest CSP with the same solution set as A. A CSP A is positively
consistent if and only if Amin(SOL(A)) = A.

24To our knowledge, we are the first to notice this.
25Recall that an operator is a closure [resp. dual closure] if it is isotone, idempotent and increasing

[resp. decreasing], see e.g. [50, §1.4].
26The term consistency closure, as used in constraint programming [51], is a dual closure in our

notation because taking a consistency closure of a CSP deletes some of its allowed tuples (it would be a
closure if the CSP was defined by a set of forbidden tuples).

26

1 2
0

-10
1

1 2

1

1

1

1

1
0

0

1

1
0
0

(a) WCSP g with B(g) = 7

1 1
1

-9
1

1 1

1

1

1

1

1
1

1

1

1
1
1

(b) WCSP f with B(f) = 6

Figure 6: WCSP f is an optimal super-reparametrization of WCSP g. It is easy to verify that A∗(f) =
Amin(OPT(g)) but OPT(f) = SOL(A∗(f))) OPT(g).

• For any set of assignments X ⊆ DV , SOL(Amin(X)) is the smallest (possibly non-
strict) superset of X which is the solution set of some CSP A ⊆ T . We have
X = SOL(Amin(X)) if and only if X = SOL(A) for some A ⊆ T .

Remark 5. Following [49, §7.27], it is easy to see in this case that the maps Amin

and SOL are mutually inverse bijections (even order-isomorphisms) if we restrict our-
selves only to positively consistent CSPs, i.e., {A ⊆ T | SOL(Amin(A)) = A } and sets of
assignments representable as solution sets of some CSP A ⊆ T , i.e., {SOL(A) | A ⊆ T }.

5.2. Optimal Assignments from Optimal Super-Reparametrizations

Theorem 2 says that the optimal value of (18) coincides with the optimal value
maxx〈g, φ(x)〉 of WCSP g. We now focus on the optimal assignments (rather than value)
of WCSP g. For brevity, we will denote the set of all optimal assignments of WCSP g as

OPT(g) = argmax
x∈DV

〈g, φ(x)〉 ⊆ DV . (36)

Theorem 9. If f is optimal for (18), then27 OPT(g) ⊆ OPT(f) = SOL(A∗(f)).

Proof. To show OPT(g) ⊆ OPT(f), let x∗ ∈ OPT(g). By Theorem 2, 〈g, φ(x∗)〉 = B(f).
Analogously to the proof of Theorem 2: since B(f) ≥ 〈f, φ(x∗)〉 ≥ 〈g, φ(x∗)〉, we have
that B(f) = 〈f, φ(x∗)〉 = 〈g, φ(x∗)〉, thus x∗ is optimal for WCSP f .

The equality OPT(f) = SOL(A∗(f)) follows from B(f) = maxx∈DV 〈f, φ(x)〉 =
maxx∈DV 〈g, φ(x)〉 and Theorem 1.

Our main goal in §5 is to characterize when the inclusion in Theorem 9 holds with
equality, which is given by Theorem 11 below.

Proposition 6. For every g ∈ RT and A ⊆ T such that OPT(g) ⊆ SOL(A), there exists
f ∈ RT optimal for (18) such that A = A∗(f).

27The statement in Theorem 2(c) is equivalent to SOL(A∗(f)) ∩ W 6= ∅ where W = {x ∈
DV | 〈f, φ(x)〉 = 〈g, φ(x)〉 }, i.e., satisfiability of CSP A∗(f) with an additional global constraint x ∈W .
As a corollary of Theorem 9, we have that SOL(A∗(f)) ∩W 6= ∅ =⇒ SOL(A∗(f)) ∩W = OPT(g) for
any super-reparametrization f of g.

27

Proof. Define the vector f as

ft =

{
F1/|C| if t ∈ A
F2/|C| if t /∈ A

∀t ∈ T (37)

where

F1 = max
x∈DV

〈g, φ(x)〉, F2 = max{ 〈g, φ(x)〉 | x ∈ DV , 〈g, φ(x)〉 < F1 } (38)

are the best and the second-best value of WCSP g. Note, if OPT(g) = DV , then F2 is
undefined but it does not matter because it is never used in (37).

Since ∅ 6= OPT(g) ⊆ SOL(A), CSP A is satisfiable. Therefore for each S ∈ C we
have A ∩ TS 6= ∅, hence

max
t∈TS

ft = F1/|C|. (39)

Equality A = A∗(f) now follows from (37).
To show that f is feasible for (18), we distinguish two cases:

• If x ∈ OPT(g), i.e., 〈g, φ(x)〉 = F1, then x ∈ SOL(A) = SOL(A∗(f)). Therefore for
all S ∈ C we have (S, x[S]) ∈ A∗(f), hence fS(x[S]) = F1/|C| by (39). Substituting
into (4) yields 〈f, φ(x)〉 = F1. Hence 〈f, φ(x)〉 = F1 = 〈g, φ(x)〉.

• If x /∈ OPT(g), we have ft ≥ F2/|C| for all t ∈ T , hence 〈f, φ(x)〉 ≥ F2 by (4).
By (38) we also have 〈g, φ(x)〉 ≤ F2. Hence 〈f, φ(x)〉 ≥ F2 ≥ 〈g, φ(x)〉.

To show that f is optimal for (18), we use (39) to obtain B(f) =
∑
S∈C F1/|C| =

F1 = maxx〈g, φ(x)〉 and apply Theorem 2.

Theorem 10. For every g ∈ RT , we have

A↑(OPT(g)) = {A∗(f) | f is optimal for (18) }. (40)

Proof. The inclusion ⊇ says that for every optimal f we have OPT(g) ⊆ SOL(A∗(f)),
which was proved in Theorem 9. The inclusion ⊆ was proved in Proposition 6.

Now we combine the results of §5.1 and §5.2 to obtain the main result of §5. First
observe that, by (35), the set (40) is just the interval [Amin(OPT(g)), T].

Theorem 11. For every g ∈ RT , the following statements are equivalent:

(a) OPT(g) = SOL(A) for some A ⊆ T ,

(b) OPT(g) = OPT(f) for some f optimal for (18).

If both statements are true, then statement (a) holds, e.g., for A = Amin(OPT(g)) and
statement (b) holds, e.g., if A∗(f) = Amin(OPT(g)).

Proof. Let g ∈ RT . By Theorem 10, there exists f optimal for (18) satisfying A∗(f) =
Amin(OPT(g)). By Theorem 9, this f satisfies OPT(f) = SOL(A∗(f)).

By the results of §5.1, statement (a) is equivalent to OPT(g) = SOL(Amin(OPT(g))).
Therefore, if (a) holds, then (b) holds for the above f . In the other direction, if (b) holds
for the above f , then (a) holds.

28

Theorem 11 shows that the inclusion in Theorem 9 holds with equality for some
optimal f if and only if the set OPT(g) of optimal assignments of WCSP g is representable
as a solution set of some CSP with the same structure. If no such CSP exists, then
OPT(g) (OPT(f) for all optimal f . An example of WCSP g for which no such CSP
exists is in Figure 6.

It is natural to ask which WCSPs possess this property. Though we are currently
unable to provide a full characterization of such WCSPs, we identify two such classes:

Theorem 12 ([1, 2]). If the LP relaxation (12) of a WCSP g ∈ RT is tight, then
OPT(g) = SOL(A) for some A ⊆ T .

Proof. If the LP relaxation (12) is tight, then there exists a vector f ∈ RT such that
B(f) = maxx∈DV 〈g, φ(x)〉 and f is a reparametrization of g, i.e., 〈f, φ(x)〉 = 〈g, φ(x)〉
for all x ∈ DV , thus, f is also optimal for (18). It follows that the sets of optimal
assignments for f and g coincide. By Theorem 9, A∗(f) is the required CSP.

Theorem 13. If a WCSP g ∈ RT has a unique optimal assignment (i.e., |OPT(g)| = 1),
then OPT(g) = SOL(A) for some A ⊆ T .

Proof. The case with |D| = 1 is trivial, so let |D| ≥ 2 and OPT(g) = {x}.
We claim that A = { (S, x[S]) | S ∈ C } is the required CSP, i.e., SOL(A) = {x}. For

contradiction, suppose that x′ ∈ SOL(A) and x′ 6= x. By x′ ∈ SOL(A), we necessarily
have that x′[S] = x[S] for all S ∈ C. By definition (4), this implies 〈g, φ(x′)〉 = 〈g, φ(x)〉.
Thus, {x′, x} ⊆ OPT(g), which is contradictory with |OPT(g)| = 1.

5.3. Properties of General Super-Reparametrizations

Finally, we present one property of general super-reparametrizations f of a fixed
WCSP g ∈ RT , i.e., f is only feasible (but possibly not optimal) for (18).

Theorem 14. For every g ∈ RT we have

{A∗(f) | f is a super-reparametrization of g } = {A∗(f) | f ∈ RT }. (41)

Proof. The inclusion ⊆ is trivial. To prove ⊇, let f ′ ∈ RT be arbitrary. Define f ∈ RT
as ft = B(g)/|C| + Jt ∈ A∗(f ′)K, t ∈ T . Clearly, f is a super-reparametrization of g
due to 〈f, φ(x)〉 ≥ B(g) ≥ 〈g, φ(x)〉 for any x ∈ DV . In addition, by definition of f ,
maxt∈TS

ft = |B(g)|/|C|+ 1 for any S ∈ C, hence A∗(f ′) = A∗(f).

Theorem 14 shows that the left-hand set in (41) does not depend on g at all. There-
fore, if we approximately optimize (18), i.e., we find a (possibly non-optimal) super-
reparametrization f of g, then there is in general no relation between sets OPT(f) and
OPT(g). However, as shown in §3.2, an arbitrary super-reparametrization still main-
tains the valuable property that it provides an upper bound B(f) on the optimal value
maxx〈g, φ(x)〉 of WCSP g.

29

6. Hardness Remarks

Unsurprisingly, a number of decision and optimization problems related to (18) is
computationally hard since the optimization problem (18) is hard itself. We overview a
number of such problems here.

Theorem 15. The following problem is NP-complete: Given f, g ∈ QT , decide whether
f is not a super-reparametrization of g (i.e., whether f is not feasible for (18)).

Proof. Membership in NP can be shown easily by the notion of a non-deterministic
algorithm [52, §10]. First, one can choose any x ∈ DV and then in polynomial time
decide whether 〈f, φ(x)〉 < 〈g, φ(x)〉.

To show NP-hardness, we perform a reduction from CSP satisfiability which is known
to be NP-complete. Let A ⊆ T be a CSP. We would like to decide whether SOL(A) 6= ∅.

Let us define g ∈ {0, 1}T by

gS(k) = J(S, k) ∈ AK ∀(S, k) ∈ T. (42)

Thus, for any x ∈ DV , 〈g, φ(x)〉 equals to the number of constraints in CSP A that are
satisfied by the assignment x. So, 〈g, φ(x)〉 ∈ {0, 1, . . . , |C|} and 〈g, φ(x)〉 = |C| if and
only if x ∈ SOL(A). Consequently, maxx〈g, φ(x)〉 ≤ |C| − 1 if and only if SOL(A) = ∅.

We define f ∈ QT by ft = (|C| − 1)/|C|, t ∈ T . In analogy to Theorem 2, 〈f, φ(x)〉 =
|C| − 1 for all assignments x ∈ DV . Hence, SOL(A) = ∅ if and only if f is a super-
reparametrization of g.

Corollary 2. The following problem is NP-complete: Given d ∈ QT , decide whether
d /∈M∗.

Proof. Membership in NP is analogous to Theorem 15. The question of whether f is not
a super-reparametrization of g from Theorem 15 reduces to whether d = f−g /∈M∗.

Corollary 3. The following problem is NP-complete: Given f, g ∈ {0, 1}T where f is a
super-reparametrization of g, decide whether f is optimal for (18).

Proof. Membership in NP follows from Theorem 2: as in Theorem 15, one can choose x ∈
DV and then in polynomial time decide whether 〈f, φ(x)〉 = 〈g, φ(x)〉 and x ∈ SOL(A∗(f)).

The hardness part is completely analogous to the proof of Theorem 15 except that
we define f ∈ {0, 1}T by ft = 1, t ∈ T , so B(f) = |C|. Clearly, f is element-wise greater
or equal to g, so it is a super-reparametrization. Moreover, |C| = maxx〈g, φ(x)〉 if and
only if SOL(A) 6= ∅, so f is optimal for (18) if and only if SOL(A) 6= ∅.

Recall that in formula (26), the number δ had the concrete value given by Theorem 4.
However, sometimes the value of δ can be decreased while (26) still remains to be an
R-deactivating direction for A. Finding a small such δ is desirable because then (26)
results in smaller values 〈d, φ(x)〉, as explained in §4.1.1. Unfortunately, finding the least
value of δ is likely intractable:

Theorem 16. The following problem is NP-complete: Given δ ∈ Q and R ⊆ A ⊆ T
satisfying SOL(A) = SOL(A − R), decide whether vector d given by (26) is not an
R-deactivating vector for A.

30

Proof. Membership in NP is analogous to Theorem 15. Since conditions (a) and (b) from
Definition 1 are satisfied, the question boils down to deciding whether d ∈M∗.28

To show hardness, we proceed by reduction from the 3-coloring problem [53, 54]:
given a graph G∗ = (V ∗, E∗), decide whether it is 3-colorable. Let G = (V,C) be the
graph sum (also known as the disjoint union of graphs) of G∗ and K4 [53, §8.1.2]. K4 is
the complete graph with 4 vertices.29

Let CSP A have the structure (D,V,C) where |D| = 3 and

A = {({i, j}, (ki, kj)) | {i, j} ∈ C, ki, kj ∈ D, ki 6= kj}. (43)

Hence, any x ∈ DV can be interpreted as an assignment of colors to the nodes of G
and x ∈ SOL(A) if and only if x is a 3-coloring of G. Since G contains K4 as its
subgraph, it is not 3-colorable and A is unsatisfiable. Hence, setting R = A satisfies
SOL(A−R) = SOL(∅) = ∅ = SOL(A).

For the purpose of our reduction, let us define δ = (|C|−2)/2 > 0. We will show that
for such a setting, d is not an R-deactivating vector for A if and only if G∗ is 3-colorable.

Plugging the above-defined sets A and R into the definition of d in (26) yields

〈d, φ(x)〉 =
∑
{i,j}∈C
xi 6=xj

(−1) +
∑
{i,j}∈C
xi=xj

δ = δ(|C| − COL(x))− COL(x) (44)

where COL(x) = |{ {i, j} ∈ C | xi 6= xj }| is the number of edges in G whose adjacent
vertices have different colors in assignment x ∈ DV .

If G∗ is 3-colorable, then there is x ∈ DV such that COL(x) = |C| − 1. In other
words, only for a single edge in C−E∗ (i.e., edge of graph K4), the adjacent vertices are
assigned the same color, so 〈d, φ(x)〉 = −|C|/2 < 0 by (44) and definition of δ. Hence,
d is not an R-deactivating vector for A.

For the other case, if G∗ is not 3-colorable, then for any x ∈ DV , COL(x) ≤ |C| − 2.
The reason is that for at least one edge in K4 and at least one edge in G∗, the adjacent
vertices will be assigned the same color in any assignment. By substituting the value of δ
and a simple manipulation of (44), one obtains

〈d, φ(x)〉 = δ|C| − (δ + 1) COL(x) = |C| (|C| − 2− COL(x)) /2 ≥ 0 (45)

where the term in brackets is non-negative due to COL(x) ≤ |C| − 2 for any x ∈ DV .
So, d is an R-deactivating vector for A.

In connection to §5.1, a number of decision problems concerning the minimal CSP
have been also proved hard. For recent results, see [55, 56].

7. Summary

We have proposed a method to compute upper bounds on the (maximization version
of) WCSP. The WCSP is formulated as a linear program with an exponential number

28This cannot be reduced to the case in Corollary 2 because d in (26) has a special form.
29Informally, G is the graph obtained from G∗ by adding 4 new vertices and including an edge between

each pair of these new vertices.

31

of constraints, whose feasible solutions are super-reparametrizations of the input WCSP
instance (i.e., WCSP instances with the same structure and greater or equal objective
values). Whenever the CSP formed by the active (i.e., maximal in their weight functions)
tuples of a feasible WCSP instance is unsatisfiable, there exists an improving direction
(in fact, a certificate of unsatisfiability of this CSP) for the linear program. As this
approach provides only a subset of all possible improving directions, it can be seen as a
local search. We showed how these improving directions can be generated by constraint
propagation (or, more generally, by other methods to prove unsatisfiability of a CSP).
We showed that super-reparametrizations are closely related to the dual cone to the
well-known marginal polytope.

Special cases of our approach are the VAC / Augmenting DAG algorithm [12, 13, 2],
which uses arc consistency, and the algorithm in [11], which uses cycle consistency. We
have newly implemented the approach for singleton arc consistency, resulting in VSAC-
SR algorithm. When compared to existing soft local consistency methods on a public
dataset, VSAC-SR provides comparable or better bounds for many instances.

The approach in general requires storing all the weights of the super-reparametrized
WCSP instance. This may be a drawback when the domains are large and/or the weight
functions are not given explicitly as a table of values but rather by an algorithm (oracle).

We expect our improved bounds to be useful to prune the search space during branch-
and-bound search, when solving WCSP instances to optimality. However, we have done
no experiments with this, so it is open whether during search the tighter bounds would
outweigh the higher complexity of the algorithm. We leave this for future research.
Our approach can be also useful to solve more WCSP instances even without search
(similarly, as the VAC algorithm solves all supermodular WCSPs without search) or,
given a suitable primal heuristic, to solve WCSP instances approximately.

The approach can be straightforwardly extended to WCSPs with different domain
sizes30 and some weights equal to minus infinity (i.e., some constraints being hard). Of
course, further experiments would be needed to evaluate the quality of the bounds if
infinite weights are allowed. The WCSP framework also usually assumes a pre-defined
specific finite bound that is updated during branch-and-bound [25] – although the pre-
sented pseudocode does not support this, it is not difficult to extend it in this way.

Finally, we presented a theoretical analysis of the concept of super-reparametrizations
of WCSPs, describing the properties of optimal super-reparametrizations and character-
izing the set of active-tuple CSPs induced by different optimal super-reparametrizations.
For example, even optimal super-reparametrization may change the set of optimal as-
signments, as shown in §5.2. Additionally, we have shown that general (i.e., possibly
non-optimal) super-reparametrizations are only weakly related to the original WCSP
instance.

Acknowledgements

Tomáš Dlask was supported by the Grant Agency of the Czech Technical Univer-
sity in Prague (grant SGS19/170/OHK3/3T/13) and the Czech Science Foundation

30In fact, our implementation already supports different domain sizes. We did not present our theo-
retical results for this generalized setting only to simplify notation.

32

(grant 19-09967S). Tomáš Werner was supported by the Czech Science Foundation (grant
19-09967S) and the OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765. Simon de
Givry was supported by the French Agence nationale de la Recherche (ANR-19-P3IA-0004
ANITI).

References

[1] M. Schlesinger, Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (syn-
tactic analysis of two-dimensional visual signals in noisy conditions), Kibernetika 4 (113-130) (1976)
2.

[2] T. Werner, A linear programming approach to max-sum problem: A review, IEEE Transactions on
Pattern Analysis and Machine Intelligence 29 (7) (2007) 1165–1179.

[3] M. J. Wainwright, M. I. Jordan, Graphical models, exponential families, and variational inference,
Foundations and Trends in Machine Learning 1 (1-2) (2008) 1–305.

[4] S. Živný, The Complexity of Valued Constraint Satisfaction Problems, Cognitive Technologies,
Springer, 2012.

[5] B. Savchynskyy, Discrete graphical models – an optimization perspective, Foundations and Trends
in Computer Graphics and Vision 11 (3-4) (2019) 160–429.

[6] D. Batra, S. Nowozin, P. Kohli, Tighter relaxations for MAP-MRF inference: A local primal-dual
gap based separation algorithm, in: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, 2011, pp. 146–154.

[7] V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 28 (10) (2006) 1568–1583.

[8] A. Globerson, T. S. Jaakkola, Fixing max-product: Convergent message passing algorithms for
MAP LP-relaxations, in: Advances in Neural Information Processing Systems, 2008, pp. 553–560.

[9] S. Tourani, A. Shekhovtsov, C. Rother, B. Savchynskyy, MPLP++: Fast, parallel dual block-
coordinate ascent for dense graphical models, in: Proceedings of the European Conference on
Computer Vision, 2018, pp. 251–267.

[10] S. Tourani, A. Shekhovtsov, C. Rother, B. Savchynskyy, Taxonomy of dual block-coordinate ascent
methods for discrete energy minimization, in: International Conference on Artificial Intelligence
and Statistics, PMLR, 2020, pp. 2775–2785.

[11] N. Komodakis, N. Paragios, Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles,
in: European conference on computer vision, Springer, 2008, pp. 806–820.

[12] M. C. Cooper, S. de Givry, M. Sanchez, T. Schiex, M. Zytnicki, T. Werner, Soft arc consistency
revisited, Artificial Intelligence 174 (7-8) (2010) 449–478.

[13] V. K. Koval, M. I. Schlesinger, Dvumernoe programmirovanie v zadachakh analiza izobrazheniy
(Two-dimensional programming in image analysis problems), Automatics and Telemechanics 8
(1976) 149–168, in Russian.

[14] H. Nguyen, C. Bessiere, S. de Givry, T. Schiex, Triangle-based consistencies for cost function
networks, Constraints 22 (2) (2017) 230–264.

[15] T. Werner, Revisiting the linear programming relaxation approach to Gibbs energy minimization
and weighted constraint satisfaction, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 32 (8) (2010) 1474–1488.

[16] T. Werner, Marginal consistency: Upper-bounding partition functions over commutative semirings,
IEEE Transactions on Pattern Analysis and Machine Intelligence 37 (7) (2015) 1455–1468.

[17] M. C. Cooper, S. de Givry, T. Schiex, Optimal soft arc consistency., in: Proceedings of the 20th
International Joint Conference on Artifical Intelligence, Vol. 7, 2007, pp. 68–73.

[18] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, Y. Weiss, Tightening LP relaxations for MAP
using message passing (2008).

[19] H. D. Sherali, W. P. Adams, A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems, SIAM Journal of Discrete Mathematics 3 (3)
(1990) 411–430.

[20] D. Sontag, T. Jaakkola, Tree block coordinate descent for MAP in graphical models, in: Artificial
Intelligence and Statistics, 2009, pp. 544–551.

[21] T. Dlask, T. Werner, S. de Givry, Bounds on weighted CSPs using constraint propagation and
super-reparametrizations, in: L. D. Michel (Ed.), 27th International Conference on Principles and
Practice of Constraint Programming (CP 2021), Vol. 210 of Leibniz International Proceedings in

33

Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021,
pp. 23:1–23:18. doi:10.4230/LIPIcs.CP.2021.23.

[22] J. Thapper, S. Živný, The complexity of finite-valued csps, Journal of the ACM (JACM) 63 (4)
(2016) 1–33.

[23] V. Kolmogorov, J. Thapper, S. Zivny, The power of linear programming for general-valued csps,
SIAM Journal on Computing 44 (1) (2015) 1–36.

[24] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin, D. Batra, S. Kim, B. X.
Kausler, T. Kröger, J. Lellmann, N. Komodakis, B. Savchynskyy, C. Rother, A comparative study
of modern inference techniques for structured discrete energy minimization problems, Intl. J. of
Computer Vision 115 (2) (2015) 155–184.

[25] M. C. Cooper, S. de Givry, T. Schiex, Valued constraint satisfaction problems, in: A Guided Tour
of Artificial Intelligence Research, Springer, 2020, pp. 185–207.

[26] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, 2002.
[27] M. C. Cooper, Cyclic consistency: a local reduction operation for binary valued constraints, Arti-

ficial Intelligence 155 (1-2) (2004) 69–92.
[28] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university press, 2004.
[29] J. Jahn, T. X. D. Ha, New order relations in set optimization, Journal of Optimization Theory and

Applications 148 (2) (2011) 209–236.
[30] T. Dlask, T. Werner, Bounding linear programs by constraint propagation: application to Max-

SAT, in: International Conference on Principles and Practice of Constraint Programming, Springer,
2020, pp. 177–193.

[31] E. Grégoire, B. Mazure, C. Piette, On finding minimally unsatisfiable cores of CSPs, International
Journal on Artificial Intelligence Tools 17 (04) (2008) 745–763.

[32] C. H. Papadimitriou, D. Wolfe, The complexity of facets resolved, Tech. rep., Cornell University
(1985).

[33] C. Bessiere, S. Cardon, R. Debruyne, C. Lecoutre, Efficient algorithms for singleton arc consistency,
Constraints 16 (1) (2011) 25–53.

[34] C. Bessiere, R. Debruyne, Theoretical analysis of singleton arc consistency, in: Workshop on Mod-
elling and Solving Problems with Constraints, 2004, pp. 20–29.

[35] T. Dlask, Minimizing convex piecewise-affine functions by local consistency techniques, Master’s
Thesis.

[36] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network flows: Theory, applications and algorithms,
Prentice-Hall, Upper Saddle River, New Jersey, USA.

[37] R. Debruyne, C. Bessiere, Some practicable filtering techniques for the constraint satisfaction prob-
lem, in: Proceedings of IJCAI’97, 1997, pp. 412–417.

[38] T. Werner, A linear programming approach to max-sum problem: A review, Tech. Rep. CTU-CMP-
2005-25, Center for Machine Perception, Czech Technical University (December 2005).

[39] S. de Givry, F. Heras, M. Zytnicki, J. Larrosa, Existential arc consistency: Getting closer to full
arc consistency in weighted CSPs, in: IJCAI, Vol. 5, 2005, pp. 84–89.

[40] https://miat.inrae.fr/toulbar2.
[41] https://forgemia.inra.fr/thomas.schiex/cost-function-library, commit 356bbb85.
[42] https://software.cs.uni-koeln.de/spinglass.
[43] M. C. Cooper, M. de Roquemaurel, P. Régnier, A weighted CSP approach to cost-optimal planning,

AI Communications 24 (1) (2011) 1–29.
[44] F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner, N. Gould, L. Liberti, A. Lodi, R. Mis-

ener, H. Mittelmann, et al., QPLIB: a library of quadratic programming instances, Mathematical
Programming Computation 11 (2) (2019) 237–265.

[45] U. Montanari, Networks of constraints: Fundamental properties and applications to picture pro-
cessing, Information sciences 7 (1974) 95–132.

[46] R. Dechter, D. Cohen, et al., Constraint processing, Morgan Kaufmann, 2003.
[47] J. Astesana, L. Cosserat, H. Fargier, Constraint-based vehicle configuration: A case study, in: 2010

22nd IEEE International Conference on Tools with Artificial Intelligence, Vol. 1, 2010, pp. 68–75.
[48] C. Bessiere, H. Fargier, C. Lecoutre, Global inverse consistency for interactive constraint satisfac-

tion, in: C. Schulte (Ed.), Principles and Practice of Constraint Programming, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013, pp. 159–174.

[49] B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge university press, 2002.
[50] T. Blyth, Lattices and Ordered Algebraic Structures, Universitext, Springer London, 2005.
[51] C. Bessiere, Constraint propagation, in: Handbook of Constraint Programming, Elsevier, 2006,

Ch. 3.

34

http://dx.doi.org/10.4230/LIPIcs.CP.2021.23
https://miat.inrae.fr/toulbar2
https://forgemia.inra.fr/thomas.schiex/cost-function-library
356bbb85
https://software.cs.uni-koeln.de/spinglass

[52] M. Alsuwaiyel, Algorithms: Design Techniques and Analysis, World Scientific, 1999.
[53] K. H. Rosen, J. G. Michaels, Handbook of Discrete and Combinatorial Mathematics, Boca Raton,

FL: CRC Press, 2000. 1232 p., 2000.
[54] R. M. Karp, Reducibility among combinatorial problems, in: Complexity of computer computations,

Springer, 1972, pp. 85–103.
[55] G. Gottlob, On minimal constraint networks, Artificial Intelligence 191 (2012) 42–60.
[56] G. Escamocher, B. O’Sullivan, Pushing the frontier of minimality, Theoretical Computer Science

745 (2018) 172–201.

35

	1 Introduction
	2 Notation
	3 Bounding the WCSP Optimal Value
	3.1 Minimal Upper Bound over Reparametrizations
	3.2 Minimal Upper Bound over Super-Reparametrizations

	4 Iterative Method to Improve the Bound by Super-Reparametrizations
	4.1 Outline of the Method
	4.1.1 Properties of the Method
	4.1.2 Employing Constraint Propagation
	4.1.3 Relation to Existing Approaches

	4.2 Certificates of Unsatisfiability of CSP
	4.2.1 Deactivating Directions
	4.2.2 Composing Deactivating Directions

	4.3 Line Search
	4.4 Final Algorithm
	4.5 Experiments

	5 Additional Properties of Super-Reparametrizations
	5.1 Minimal CSP
	5.2 Optimal Assignments from Optimal Super-Reparametrizations
	5.3 Properties of General Super-Reparametrizations

	6 Hardness Remarks
	7 Summary

