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The notion of reparametrizations of Weighted CSPs (WCSPs) (also known as equivalencepreserving transformations of WCSPs) is well-known and finds its use in many algorithms to approximate or bound the optimal WCSP value. In contrast, the concept of superreparametrizations (which are changes of the weights that keep or increase the WCSP objective for every assignment) was already proposed but never studied in detail. To fill this gap, we present a number of theoretical properties of super-reparametrizations and compare them to those of reparametrizations. Furthermore, we propose a framework for computing upper bounds on the optimal value of the (maximization version of) WCSP using super-reparametrizations. We show that it is in principle possible to employ arbitrary (under some technical conditions) constraint propagation rules to improve the bound. For arc consistency in particular, the method reduces to the known Virtual AC (VAC) algorithm. Newly, we implemented the method for singleton arc consistency (SAC) and compared it to other strong local consistencies in WCSPs on a public benchmark. The results show that the bounds obtained from SAC are superior for many instance groups.

Introduction

In the weighted constraint satisfaction problem (WCSP) we maximize the sum of (weight) functions over many discrete variables, where each function depends only on a (usually small) subset of the variables. A popular approach to tackle this NP-hard combinatorial optimization problem is via its linear programming (LP) relaxation [START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF][START_REF] Živný | The Complexity of Valued Constraint Satisfaction Problems, Cognitive Technologies[END_REF][START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF][START_REF] Batra | Tighter relaxations for MAP-MRF inference: A local primal-dual gap based separation algorithm[END_REF]. The dual of this LP relaxation minimizes an upper bound on the WCSP optimal value over reparametrizations (also known as equivalence-preserving transformations) of the original WCSP instance. For large instances, this is done only approximately, by methods based on block-coordinate descent [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF][START_REF] Globerson | Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations[END_REF][START_REF] Tourani | MPLP++: Fast, parallel dual blockcoordinate ascent for dense graphical models[END_REF][START_REF] Tourani | Taxonomy of dual block-coordinate ascent methods for discrete energy minimization[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] or constraint propagation [START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Koval | Dvumernoe programmirovanie v zadachakh analiza izobrazheniy (Two-dimensional programming in image analysis problems)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF]. Fixed points of these methods are characterized by a local consistency of the CSP formed by the active tuples (to be defined later) of the transformed WCSP [START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF][START_REF] Globerson | Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Tourani | MPLP++: Fast, parallel dual blockcoordinate ascent for dense graphical models[END_REF].

This approach is limited in that it cannot enforce an arbitrary level of local consistency, unless new weight functions are introduced. Namely, we conjecture that it can achieve at most pairwise consistency [START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF][START_REF] Werner | Marginal consistency: Upper-bounding partition functions over commutative semirings[END_REF], which for binary WCSPs reduces to arc consistency (reparametrized WCSPs corresponding to global optima of the dual LP relaxation have been called optimally soft arc consistent in [START_REF] Cooper | Optimal soft arc consistency[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF]).

In this paper, we study a different LP formulation of the WCSP, which was proposed in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] but never pursued later. It differs from the above mentioned basic LP relaxation and does not belong to the known hierarchy of LP relaxations obtained by introducing new weight functions of higher arities [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF][START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF][START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF][START_REF] Batra | Tighter relaxations for MAP-MRF inference: A local primal-dual gap based separation algorithm[END_REF] (which leads to a fine-grained version of the Sherali-Adams hierarchy [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF] for the WCSP). Our LP formulation again minimizes the upper bound on the WCSP optimal value, but this time over super-reparametrizations of the initial WCSP instance. Its remarkable feature is that it allows using almost arbitrary (up to some technical assumptions) constraint propagation techniques to improve the bound, without introducing new weight functions. On the other hand, as we are going to show, it may neither preserve the value of the individual assignments nor the set of optimal assignments, but it nevertheless provides a valid, and possibly tighter, bound on the WCSP optimal value.

To the best of our knowledge, super-reparametrizations were not utilized nor analyzed except for [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] and [START_REF] Sontag | Tree block coordinate descent for MAP in graphical models[END_REF]. In [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF], super-reparametrizations were used to obtain tighter bounds using a specialized cycle-repairing algorithm and were identified in [START_REF] Sontag | Tree block coordinate descent for MAP in graphical models[END_REF] as a property satisfied by all formulations of the linear programming relaxations based on reparametrizations. However, [START_REF] Sontag | Tree block coordinate descent for MAP in graphical models[END_REF] focuses almost solely on the relation between different formulations of reparametrizations, instead of super-reparametrizations. To fill in this gap, we theoretically analyze the associated optimization problem and also the properties of super-reparametrizations.

Compared to the previous version of this paper [START_REF] Dlask | Bounds on weighted CSPs using constraint propagation and super-reparametrizations[END_REF], we generalized our method to WCSPs of any arity, included an elaborated geometric interpretation that simplifies its understanding, and added more information on implementation details. Newly, we also analyze the cone of non-negative weighted CSPs and prove that it is dual to the marginal polytope. Most importantly, we include a study on the theoretical properties of superreparametrizations and compare them to those of reparametrizations ( §5). Unsurprisingly, we additionally show that some decision problems connected to our approach and super-reparametrizations are NP-hard (in §6).

Structure. We begin in §2 by formally defining the Weighted CSP, classical (crisp) CSP, and introducing the notation that will be used throughout the paper. Then, in §3, we formally define the optimization problem of minimizing an upper bound over reparametrizations and/or super-reparametrizations where we also state the sufficient and necessary optimality conditions. Next, §4 proposes an approach for approximate minimization of the upper bound over super-reparametrizations using constraint propagation. Additional properties of the underlying active-tuple CSPs (see definition later) and the sets of optimal (or also non-optimal) super-reparametrizations are given in §5. §6 presents the hardness results.

Notation

Let V be a finite set of variables and D a finite domain of each variable. An assignment x ∈ D V assigns 1 a value x i ∈ D to each variable i ∈ V . Let C ⊆ 2 V be a set of non-empty scopes, i.e., (V, C) can be seen as an undirected hypergraph. The triplet (D, V, C) defines the structure of a (weighted) CSP and will be fixed throughout the paper. By

T = { (S, k) | S ∈ C, k ∈ D S } = S∈C T S where T S = { (S, k) | k ∈ D S } (1) 
we denote the set of tuples, partitioned into sets T S , S ∈ C. We say that an assignment x ∈ D V uses a tuple t = (S, k) ∈ T if x[S] = k where x[S] denotes the restriction of x onto the set S ⊆ V , i.e., for S = {i 1 , ..., i |S| } we have x[S] = (x i1 , ..., x i |S| ) (where the order of the components is defined by the total order on S inherited from some arbitrary fixed total order on V ). Each assignment x ∈ D V uses exactly one tuple from each T S . An instance of the constraint satisfaction problem (CSP) is defined by the quadruple (D, V, C, A) where A ⊆ T is the set of allowed tuples (while the tuples T -A are forbidden). As the CSP structure (D, V, C) will be always the same, we will refer to the CSP instance only as A (in other words, in the sequel we identify CSP instances with subsets of T ). An assignment x ∈ D V is a solution to a CSP A ⊆ T if it uses only allowed tuples, i.e., (S, x[S]) ∈ A for all S ∈ C. The set of all solutions to the CSP will be denoted by SOL(A) ⊆ D V . The CSP is satisfiable if SOL(A) = ∅, otherwise it is unsatisfiable.

The weighted constraint satisfaction problem (WCSP) 2 seeks to find an assignment x ∈ D V that maximizes 3 the function

S∈C f S (x[S]) (2) 
where f S : D S → R, S ∈ C, are given weight functions. All the weights (i.e., the values of the weight functions) together can be seen as a vector f ∈ R T , such that for t = (S, k) ∈ T we have f t = f S (k). The WCSP instance is defined by the quadruple (D, V, C, f ). However, as the structure (D, V, C) will be always the same, we will refer to WCSP instances only as f (in other words, we identify WCSP instances with vectors from R T ). Example 1. For example, if V = {1, 2, 3, 4}, C = {{1}, {2}, {2, 3}, {1, 4}, {2, 3, 4}}, and D = {a, b, c}, then we want to maximize the expression

f {1} (x 1 ) + f {2} (x 2 ) + f {2,3} (x 2 , x 3 ) + f {1,4} (x 1 , x 4 ) + f {2,3,4} (x 2 , x 3 , x 4 )
over x 1 , x 2 , x 3 , x 4 ∈ {a, b, c}. We have, e.g., 1 As usual, D V denotes the set of all mappings from V to D, so x ∈ D V is the same as x : V → D. 2 The WCSP is also known under different names, e.g., as the finite-valued CSP [START_REF] Thapper | The complexity of finite-valued csps[END_REF][START_REF] Kolmogorov | The power of linear programming for general-valued csps[END_REF], discrete energy minimization [START_REF] Kappes | A comparative study of modern inference techniques for structured discrete energy minimization problems[END_REF], or maximum a posteriori (MAP) inference in graphical models [START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF]. It is also the main task in cost function networks [START_REF] Cooper | Valued constraint satisfaction problems[END_REF]. 3 The results for minimization problems would be analogous.

T {2,3} = {({2, 3} 

3

We will use another notation for the WCSP objective, which is common in machine learning, see, e.g., [3, §3]. We define an indicator map φ :

D V → {0, 1} T by φ t (x) = x[S] = k ∀t = (S, k) ∈ T (3) 
where • denotes the Iverson bracket, which equals 1 if the logical expression in the bracket is true and 0 if it is false. The WCSP objective (2) can now be written as the dot product

S∈C f S (x[S]) = t∈T f t φ t (x) = f, φ(x) . (4) 
This makes explicit that the WCSP objective is linear in the weight vector f . The WCSP optimal value is max

x∈D V f, φ(x) = max µ∈M f, µ (5) 
where

M = φ(D V ) = { φ(x) | x ∈ D V } ⊆ {0, 1} T . ( 6 
)
Note that M is defined only by the structure (D, V, C).

Bounding the WCSP Optimal Value

We define the function B : R T → R by

B(f ) = S∈C max k∈D S f S (k) = S∈C max t∈T S f t . (7) 
This is a convex piecewise-affine function. For f ∈ R T , we call a tuple t = (S, k) ∈ T active 4 if

f t = max t ∈T S f t . (8) 
The set of all tuples that are active for f is denoted 5 by A * (f ) ⊆ T .

Theorem 1 ([2]

). For every WCSP f ∈ R T and every assignment x ∈ D V we have:

(a) B(f ) ≥ f, φ(x) , (b) B(f ) = f, φ(x) if and only if x ∈ SOL(A * (f )).
Proof. Statement (a) can be checked by comparing expressions ( 2) and ( 7) term by term. Statement (b) says that B(f ) = f, φ(x) if and only if (S, x[S]) ∈ A * (f ) for all S ∈ C. This is again straightforward from ( 2) and [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF].

Theorem 1 says that B(f ) is an upper bound on the WCSP optimal value. Moreover, it shows that B(f ) = f, φ(x) implies that x is a maximizer of the WCSP objective (2). 4 Our term 'active tuple' comes from the term 'active inequality'. Indeed, [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF] can be calculated as the minimum of S∈C z S subject to z S ≥ ft ∀t ∈ T S , where z S ∈ R are auxiliary variables. At optimum, we have z S = max t∈T S ft and an inequality z S ≥ ft is active if and only if tuple t is active. 5 The set A * (f ) corresponds to the notion of Bool(f ) in [START_REF] Cooper | Soft arc consistency revisited[END_REF]. The characteristic vector of the set A * (f ) was denoted f in [START_REF] Tourani | MPLP++: Fast, parallel dual blockcoordinate ascent for dense graphical models[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF], f in [START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF], and mi[f ] in [START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF]. 

For assignment x = (a, b) ∈ D V (i.e., x 1 = a, x 2 = b), we have φ(x) = (1, 0, 0, 1, 0, 1, 0, 0) ∈ {0, 1} T where the order of the tuples is given by [START_REF] Tourani | MPLP++: Fast, parallel dual blockcoordinate ascent for dense graphical models[END_REF]. An example of a WCSP f with this structure is shown in Figure 1a. The weight vector reads f = (3, 4, 6, 2, -2, -4, 1, 1) ∈ R T (where the ordering is again given by (9)). Thus, the objective value of WCSP

f for x = (a, b) is f, φ(x) = 3 + 2 -4 = 1. The upper bound equals B(f ) = 4 + 6 + 1 = 11 and is tight because the CSP A * (f ) is satisfiable. In particular, f, φ(b, a) = 11.

Minimal Upper Bound over Reparametrizations

We say that a WCSP f ∈ R T is reparametrization of a WCSP g ∈ R T (also known as an equivalence-preserving transformation of g) [START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF][START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF][START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF][START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF][START_REF] Cooper | Optimal soft arc consistency[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Tourani | Taxonomy of dual block-coordinate ascent methods for discrete energy minimization[END_REF] if

f, φ(x) = g, φ(x) ∀x ∈ D V . ( 10 
)
That is, f -g ∈ M ⊥ where

M ⊥ = { d ∈ R T | d, µ = 0 ∀µ ∈ M } = { d ∈ R T | d, φ(x) = 0 ∀x ∈ D V } (11) 
is the orthogonal space [26, Chapter 1] of the set [START_REF] Batra | Tighter relaxations for MAP-MRF inference: A local primal-dual gap based separation algorithm[END_REF]. Here, 'd' stands for 'direction' but note that any d ∈ M ⊥ , as a vector from R T , can be also seen as a standalone WCSP. The set M ⊥ is a subspace of R T , consisting of all WCSPs that have zero objective value for all assignments. Although M ⊥ is defined by an exponential number of equalities in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF], it has a simple, polynomial-sized description (for binary WCSP see [2, §B], for WCSPs of any arity see [15, §3.2]). An example of WCSP d ∈ M ⊥ is in Figure 1b. The set of all reparametrizations of f is the affine subspace

6 f + M ⊥ = { f + d | d ∈ M ⊥ }.
Clearly, the binary relation 'is a reparametrization of' (on the set of WCSPs with a fixed structure) is reflexive, transitive and symmetric, hence an equivalence.

Given a WCSP g ∈ R T , it is a natural idea to minimize the upper bound on its optimal value by reparametrizations:

min{ B(f ) | f is a reparametrization of g } = min f ∈g+M ⊥ B(f ). ( 12 
)
By introducing auxiliary variables (as in Footnote 4), this problem can be transformed to a linear program, which is the dual LP relaxation of the WCSP g [START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF][START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF]. Every f feasible for [START_REF] Cooper | Soft arc consistency revisited[END_REF] satisfies

B(f ) ≥ f, φ(x) = g, φ(x) ∀x ∈ D V , (13) 
i.e., B(f ) is an upper bound on the optimal value max x g, φ(x) of WCSP g. If inequality [START_REF] Koval | Dvumernoe programmirovanie v zadachakh analiza izobrazheniy (Two-dimensional programming in image analysis problems)[END_REF] holds with equality for some x, then f is optimal for [START_REF] Cooper | Soft arc consistency revisited[END_REF] and the LP relaxation is tight. Necessary and sufficient conditions for optimality can be obtained from complementary slackness, see [START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF][START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF]. Problem [START_REF] Cooper | Soft arc consistency revisited[END_REF] has been widely studied [START_REF] Schlesinger | Sintaksicheskiy analiz dvumernykh zritelnikh signalov v usloviyakh pomekh (syntactic analysis of two-dimensional visual signals in noisy conditions)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Cooper | Optimal soft arc consistency[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Živný | The Complexity of Valued Constraint Satisfaction Problems, Cognitive Technologies[END_REF][START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF][START_REF] Batra | Tighter relaxations for MAP-MRF inference: A local primal-dual gap based separation algorithm[END_REF] and many approaches for its (approximate) large-scale optimization have been proposed, typically based on blockcoordinate descent [START_REF] Globerson | Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations[END_REF][START_REF] Tourani | MPLP++: Fast, parallel dual blockcoordinate ascent for dense graphical models[END_REF][START_REF] Tourani | Taxonomy of dual block-coordinate ascent methods for discrete energy minimization[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF][START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF][START_REF] Sontag | Tree block coordinate descent for MAP in graphical models[END_REF][START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF] or constraint propagation [START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Koval | Dvumernoe programmirovanie v zadachakh analiza izobrazheniy (Two-dimensional programming in image analysis problems)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Cooper | Cyclic consistency: a local reduction operation for binary valued constraints[END_REF][START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF]. If f is optimal for (12), then the CSP A * (f ) has a non-empty pairwise-consistency (PWC) closure (for binary WCSPs, PWC reduces to arc consistency) [START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF]. We conjecture that PWC is in general the strongest level of local consistency of A * (f ) that can be achieved by reparametrizations without enlarging the WCSP structure (i.e., without introducing new weight functions).

We remark that some approaches [START_REF] Cooper | Optimal soft arc consistency[END_REF][START_REF] Cooper | Soft arc consistency revisited[END_REF] achieve only (generalized) arc consistency rather than PWC because they optimize over a subset of all possible reparametrizations corresponding to a subspace of M ⊥ . In this case, WCSPs f optimal for [START_REF] Cooper | Soft arc consistency revisited[END_REF] have been called optimally soft arc consistent (OSAC).

Minimal Upper Bound over Super-Reparametrizations

We say that a WCSP f ∈ R T is a super-reparametrization

7 of a WCSP g ∈ R T if f, φ(x) ≥ g, φ(x) ∀x ∈ D V . (14) 
That is, f -g ∈ M * where

M * = { d ∈ R T | d, µ ≥ 0 ∀µ ∈ M } = { d ∈ R T | d, φ(x) ≥ 0 ∀x ∈ D V } (15) 
is the dual cone [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF]Chapter 1] to the set [START_REF] Batra | Tighter relaxations for MAP-MRF inference: A local primal-dual gap based separation algorithm[END_REF]. It is a polyhedral convex cone, consisting of the WCSPs that have nonnegative objective value for all assignments. This cone is not pointed (i.e., does not contain a line [28, §2.4]) because M ⊥ ⊆ M * and the subspace M ⊥ is non-trivial (assuming |V | > 1). The set of all super-reparametrizations of f is the

translated cone f + M * = { f + d | d ∈ M * }. For a given d ∈ R T , deciding whether d / ∈ M * is NP-complete, as shown later in Corollary 2.
The binary relation 'is a super-reparametrization of' (on the set of WCSPs with a fixed structure) is reflexive and transitive, hence a preorder. It is not antisymmetric: f -g ∈ M * and g -f ∈ M * does not imply f = g but merely f -g ∈ M ⊥ , i.e., that f is a reparametrization of g. This is because the cone M * is not pointed, see [29, §2] and [28, §2.4].

Remark 1. The optimal value (5) of a WCSP f can be also written as

max µ∈M f, µ = max µ∈conv M f, µ (16) 
where conv denotes the convex hull operator [START_REF] Boyd | Convex optimization[END_REF]. The equality in [START_REF] Werner | Marginal consistency: Upper-bounding partition functions over commutative semirings[END_REF] follows from the well-known fact that a linear function on a polytope attains its minimum in at least one vertex of the polytope [START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF]Corollary 3.44]. The set conv M ⊆ [0, 1] T is known as the marginal polytope and has the central role in approaches to WCSP based on linear programming (see [START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF][START_REF] Savchynskyy | Discrete graphical models -an optimization perspective[END_REF] and references therein). It is easy to show that

M * = (conv M ) * = (cone M ) * ( 17 
)
where cone denotes the conic hull operator [START_REF] Boyd | Convex optimization[END_REF] and * the dual cone operator. Thus, (15) can also be seen as the dual cone to the marginal polytope which, to the best of our knowledge, has not been mentioned before.

Following [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF], we consider the problem min{ B(f

) | f is a super-reparametrization of g } = min f ∈g+M * B(f ). ( 18 
)
Again, this can be reformulated as a linear program. Every f feasible for (18) (i.e., every super-reparametrization of g) satisfies

B(f ) ≥ f, φ(x) ≥ g, φ(x) ∀x ∈ D V . (19) 
The next theorem characterizes optimal solutions: Theorem 2. Let f be feasible for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. The following are equivalent:

(a) f is optimal for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF].

(b) B(f ) = max x∈D V f, φ(x) = max x∈D V g, φ(x) (c) CSP A * (f ) has a solution x satisfying f, φ(x) = g, φ(x) .
Proof. (a)⇔(b): Denote m = max x g, φ(x) , which by [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF] implies B(f ) ≥ m. To see that this bound is attained, define f by f t = m/|C| for all t ∈ T . It can be checked from ( 2) and ( 7) that B(f ) = f, φ(x) = m for all x, so f is feasible and optimal. (b)⇒(c): Since every feasible f satisfies [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF], (b) implies B(f ) = f, φ(x) = g, φ(x) for some x. By Theorem 1(b), this implies (c).

(c)⇒(b): By Theorem 1(b) together with [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF], (c) implies B(f ) = f, φ(x) = g, φ(x) for some x. Statement (b) now follows from Theorem 1(a). Theorem 2 in particular says that the optimal value of ( 18) is equal to the optimal value of WCSP g (this has been observed already in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF]Theorem 1]). This is not surprising because the complexity of the WCSP is hidden in the exponential set of constraints of [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. Let us remark that for f ∈ g + M * , deciding whether f is optimal for (18) is NP-complete, as shown later in Corollary 3.

Theorem 2 has a simple corollary:

Theorem 3. Let g ∈ R T . CSP A * (g) is satisfiable if and only if B(g) ≤ B(f ) for every f ∈ g + M * .
Proof. By Theorem 2, A * (g) is satisfiable if and only if [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF] attains its optimum at the point f = g, i.e., B(g) ≤ B(f ) for every f ∈ g + M * .

Iterative Method to Improve the Bound by Super-Reparametrizations

In this section we present an iterative method to suboptimally solve [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. Starting from a feasible solution to [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF], every iteration finds a new feasible solution with a lower objective, which by [START_REF] Sherali | A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems[END_REF] corresponds to decreasing the upper bound on the optimal value of the initial WCSP.

Outline of the Method

Consider a WCSP f feasible for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF], i.e., f ∈ g + M * . By Theorem 2, a necessary (but not sufficient) condition for f to be optimal for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF] 

is that CSP A * (f ) is satisfiable. By Theorem 3, A * (f ) is satisfiable if and only if B(f ) ≤ B(f ) for all f ∈ f + M * .
In summary, we have the following implications and equivalences:

f is optimal for (18) =⇒ CSP A * (f ) is satisfiable B(f ) ≤ B(f ) ∀f ∈ g + M * =⇒ B(f ) ≤ B(f ) ∀f ∈ f + M * (20) 
The left-hand equivalence is just the definition of the optimum of ( 18), the right-hand equivalence is Theorem 3, and the top implication follows from Theorem 2. The bottom implication independently follows from transitivity of super-reparametrizations, which says that

f ∈ g + M * implies f ∈ f + M * (assuming f ∈ g + M * ).
Suppose for the moment that we have an oracle that, for a given f ∈ R T , decides if A * (f ) is satisfiable and if it is not, finds some f ∈ f + M * such that B(f ) < B(f ) (which exists by Theorem 3). By transitivity of super-reparametrizations, such f is feasible for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. This suggests an iterative scheme to improve feasible solutions to [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. We initialize f 0 := g and then for k = 0, 1, 2, . . . repeat the following iteration:

If CSP A * (f k ) is satisfiable, stop. Otherwise, find f k+1 ∈ f k + M * such that B(f k+1 ) < B(f k ).
Note that transitivity of super-reparametrizations implies f k ∈ f 0 + M * for every k, so every f k is feasible for (18) as expected. An example of a single iteration is shown in Figure 2a and2b.

This iterative method belongs to the class of local search methods to solve [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]: having a current feasible estimate f k , we search for the next estimate f k+1 with a strictly better objective within a neighborhood f k + M * of f k . We can define local optima of [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF] with respect to this method to be super-reparametrizations f of g such that A * (f ) is satisfiable.

Properties of the Method

By transitivity of super-reparametrizations, for every k we have

f k+1 + M * ⊆ f k + M * (21) 
which holds with equality if and only if f k+1 ∈ f k +M ⊥ (i.e., f k+1 is a reparametrization of f k ). This shows that the search space of the method may shrink with increasing k, in other words, a larger and larger part of the feasible set f 0 + M * of ( 18) is cut off and 8 (a) WCSP f 0 , A * (f 0 ) unsatisfiable. becomes forever inaccessible. If, for some k, all (global) optima of ( 18) happen to lie in the cut-off part, the method has lost any chance to find a global optimum. This is illustrated in Figure 3.

(b) WCSP f 1 , B(f 1 ) < B(f 0 ). 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 -1 -1 0 0 1 1 0 (c) Certificate d of unsatisfiability of A * (f 0 ), f 1 = f 0 + d.
This has the following consequence. Every f k satisfies

B(f k ) ≥ min f ∈f k +M * B(f ) = max x∈D V f k , φ(x) . (22) 
In every iteration, the left-hand side of inequality [START_REF] Thapper | The complexity of finite-valued csps[END_REF] decreases and the right-hand side increases or stays the same due to [START_REF] Dlask | Bounds on weighted CSPs using constraint propagation and super-reparametrizations[END_REF]. If both sides meet for some k, the CSP A * (f k ) becomes satisfiable by Theorem 1(b) and the method stops. Monotonic increase of the right-hand side can be seen as 'greediness' of the method: if we could choose f k+1 from the initial feasible set f 0 + M * rather than from its subset f k + M * , the right-hand side could also decrease. Any increase of the right-hand side is undesirable because the bounds B(f k ) in future iterations will never be able to get below it. This is illustrated in Figures 4 and5. Unlike in [START_REF] Cooper | Soft arc consistency revisited[END_REF], note that not every optimal assignment for WCSP f (i.e., an assignment x satisfying B(f ) = f, φ(x) ) is optimal for WCSP g (i.e., B(g) = g, φ(x) ). We will return to this in §5.

If A * (f k ) is unsatisfiable, there are usually many vectors f k+1 ∈ f k + M * satisfying B(f k+1 ) < B(f k ).
We should choose among them the one that does not cause 'too much' shrinking of the search space and/or increase of the right-hand side of [START_REF] Thapper | The complexity of finite-valued csps[END_REF]. Inclusion [START_REF] Dlask | Bounds on weighted CSPs using constraint propagation and super-reparametrizations[END_REF] holds with equality if and only if f k+1 ∈ f k + M ⊥ , so whenever possible we should choose f k+1 to be a reparametrization (rather than just a super-reparametrization) of f k . Unfortunately, we know of no other useful theoretical results to help us choose f k+1 , so we must recourse to heuristics. One natural heuristic is to choose f k+1 such that the vector f k+1 -f k is sparse and its positive components are small. Unfortunately, this can sometimes be too restrictive because, e.g., vectors from M ⊥ can be dense and their components have unbounded magnitudes.

Employing Constraint Propagation

So far we have assumed we can always decide if CSP A * (f ) is satisfiable. This is unrealistic because the CSP is NP-complete. Yet the approach remains applicable even if we detect unsatisfiability of A * (f ) only sometimes, e.g., using constraint propagation. Then our iteration changes to:

f 2 f 1 f 0 = g argmin f ∈g+M * B(f )
Figure 3: The shrinking of the search space of the iterative method. The figure illustrates the translated cones f i + M * and several contours of the objective B(f ). After the second iteration, all global minima of the original problem (marked in grey) become inaccessible as the right hand side of ( 22) increases. 

B(f k ) min f ∈f k +M * B(f ) = max x f k , φ(x) min f ∈g+M * B(f ) = max x g, φ(x) B(g) iteration k
) = 11 < B(g) = 12 and max x∈D V f, φ(x) = 11 > max x∈D V g, φ(x) = 8. Assignment x = (b, b) is not optimal for g despite that B(f ) = f, φ(x)
. Naming of variables and domain values is the same as in Figure 1.

Try to prove that CSP

A * (f k ) is unsatisfiable. If we succeed, find f k+1 ∈ f k + M * such that B(f k+1 ) < B(f k ).
If we fail, stop.

In this case, stopping points of the method will be even weaker local minima of ( 18), but they nevertheless might be still non-trivial and useful.

In the sequel we develop this approach in detail. In particular we show, if

A * (f k ) is unsatisfiable, how to find a vector f k+1 ∈ f k + M * satisfying B(f k+1 ) < B(f k ).
We will do it in two steps. First (in §4.2), given the set A * (f k ) we find a direction d ∈ M * using constraint propagation. This direction is a certificate of unsatisfiability of the CSP A * (f k ) and, at the same time, an improving direction for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. Second (in §4.3), given d and f k we find a step length α > 0 such that f k+1 = f k + αd. An example of such a certificate of unsatisfiability is shown in Figure 2c.

Relation to Existing Approaches

The Augmenting DAG algorithm [START_REF] Koval | Dvumernoe programmirovanie v zadachakh analiza izobrazheniy (Two-dimensional programming in image analysis problems)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF] and the VAC algorithm [START_REF] Cooper | Soft arc consistency revisited[END_REF] are (up to the precise way of computing certificates d and steps lengths α) an example of the described approach, which uses arc consistency to prove unsatisfiability of A * (f k ). In this favorable case, there exist certificates d ∈ M ⊥ , so we are, in fact, applying local search to [START_REF] Cooper | Soft arc consistency revisited[END_REF] rather than [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. For stronger local consistencies, such certificates, in general, do not exist (i.e., inevitably d, φ(x) > 0 for some x).

The algorithm proposed in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] can be also seen as an example of our approach. It interleaves iterations using arc consistency (in fact, the Augmenting DAG algorithm) and iterations using cycle consistency.

As an alternative to our approach, stronger local consistencies can be achieved by introducing new weight functions (of possibly higher arity) into the WCSP objective [START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF] and minimizing an upper bound by reparametrizations, as in [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF][START_REF] Batra | Tighter relaxations for MAP-MRF inference: A local primal-dual gap based separation algorithm[END_REF][START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF][START_REF] Werner | Marginal consistency: Upper-bounding partition functions over commutative semirings[END_REF][START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF]. In our particular case, after each update

f k+1 = f k + αd we could introduce 8 a new weight function with scope S = { S | (S, k) ∈ T, d S (k) = 0 } (23) 
and values

f S (k) = - S∈C S⊆S d S (k[S]) (24) 
where k ∈ D S . In this view, our approach can be seen as enforcing stronger local consistencies but omitting these compensatory higher-order weight functions, thus saving memory.

Finally, the described approach can be seen as an example of the primal-dual approach [START_REF] Dlask | Bounding linear programs by constraint propagation: application to Max-SAT[END_REF] to optimize linear programs using constraint propagation. In detail, [START_REF] Dlask | Bounding linear programs by constraint propagation: application to Max-SAT[END_REF] proposed to construct the complementary slackness system for a given feasible solution and apply constraint propagation to detect if the system is satisfiable. If it is not satisfiable, this implies the existence of a certificate of unsatisfiability that can be used to improve the current solution. In our particular case, if ( 18) is formulated as a linear program, then the complementary slackness conditions (expressed in terms of the dual variables) are equivalent to the optimality conditions stated in Theorem 2 expressed as a set of linear equalities with an exponential number of non-negative variables. Applying constraint propagation on this system is in correspondence with constraint propagation on a CSP.

Certificates of Unsatisfiability of CSP

Constraint propagation 9 is an iterative algorithm, which in each iteration (executed by a propagator ) infers that some allowed tuples R ⊆ A of a current CSP A ⊆ T can be forbidden without changing its solution set, i.e., SOL(A) = SOL(A -R), and forbids these tuples, i.e., sets A := A -R. The algorithm terminates when it is no longer able to forbid any tuples (in which case the propagator returns R = ∅) or when it becomes explicit that the current CSP is unsatisfiable. The former usually happens when the CSP achieves some local consistency level Φ. The latter happens if A ∩ T S = ∅ for some S ∈ C, which implies unsatisfiability of A because 10 every assignment has to use one tuple from each T S .

In this section, we show how to augment constraint propagation so that if it proves a CSP unsatisfiable, it also provides its certificate of unsatisfiability d ∈ M * . This certificate is needed as an improving direction for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF], as was mentioned in §4.1.2. First, in §4.2.1, we introduce a more general concept, deactivating directions. One iteration of constraint propagation constructs an R-deactivating direction for the current CSP A, which certifies that SOL(A) = SOL(A-R). Then, in §4.2.2, we show how to compose the deactivating directions obtained from individual iterations of constraint propagation to a single deactivating direction for the initial CSP. If the initial CSP has been proved unsatisfiable by the propagation, this composed deactivating direction is then its certificate of unsatisfiability. 9 We speak only about constraint propagation but the approach outlined in this section is applicable to any method that proves unsatisfiability of a CSP by iteratively forbidding subsets of tuples. In theory, as a stronger alternative one could also use any CSP solver that is augmented to provide a certificate of unsatisfiability (which is always possible, as we will discuss later in this section). 10 If |S| = 1, this event is often called a 'domain wipe-out'.

Deactivating Directions

Definition 1. Let A ⊆ T and R ⊆ A. An R-deactivating direction for CSP A is a vector d ∈ M * satisfying (a) d t < 0 for all t ∈ R,
(b) d t = 0 for all t ∈ A -R.

For fixed A and R, all R-deactivating directions for A form a convex cone. Here is one way how to construct a deactivating direction:

Theorem 4. Let R ⊆ A ⊆ T be such that SOL(A) = SOL(A -R). Denote 11 δ = |{ S ∈ C | T S ∩ R = ∅ }|. ( 25 
)
Then vector d ∈ R T with components

d t =      -1 if t ∈ R δ if t ∈ T -A 0 otherwise (i.e., t ∈ A -R) (26) 
is an R-deactivating direction for A.

Proof. Conditions (a) and (b) of Definition 1 are clearly satisfied, so it only remains to show that d ∈ M * . We have

d, φ(x) = t∈T d t φ t (x) = t∈R -φ t (x) + t∈T -A δφ t (x) = -n 1 (x) + δn 2 (x) (27) 
where Proof. The statement is trivially true for R = ∅, so we assume R = ∅. Observe that SOL(A) = SOL(A -R) is equivalent to SOL(A) ⊆ SOL(A -R) because forbidding tuples may only remove solutions, i.e., SOL is an isotone map (see §5. Combining Theorems 4 and 5 yields that an R-deactivating direction for A exists if and only if SOL(A) = SOL(A -R). Thus, any R-deactivating direction for A is a certificate of the fact that SOL(A) = SOL(A -R).

n 1 (x) = |{ S ∈ C | (S, x[S]) ∈ R }| and n 2 (x) = |{ S ∈ C | (S, x[S]) ∈ T -A }|. For contradiction, let x ∈ D V satisfy d, φ(x) < 0. This implies n 1 (x) >
Unfortunately, vectors d calculated naively by [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] can have many non-zero components, which is undesirable as explained in §4.1.1. However, it is clear from Definition 1 that if A ⊆ A ⊆ T and d is an R-deactivating direction for A , then d is an R-deactivating direction also for A. Moreover, [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] shows that larger sets A give rise to sparser vectors d. This offers us a possibility to obtain a sparser R-deactivating direction for A if we can provide a superset A ⊇ A of the allowed tuples satisfying SOL(A ) = SOL(A -R).

Given A ⊆ T and R ⊆ A, finding a maximal (w.r.t. the partial ordering by inclusion) superset A ⊇ A such that SOL(A ) = SOL(A -R) is closely related to finding a minimal unsatisfiable core 12 of an unsatisfiable CSP. While finding a maximal such subset is very likely intractable 13 , for obtaining a 'sparse enough' vector d it suffices to find a 'large enough' such superset A . Such a superset is often cheaply available as a side result of executing the propagator. Namely, we take A = T -P where P is the set of forbidden tuples that were visited during the run of the propagator. Clearly, tuples not visited by the propagator could not be needed to infer SOL(A) = SOL(A -R). Note that P need not be the same for each CSP instance, even for a fixed level of local consistency: for example, if the arc consistency closure of A is empty, then A is unsatisfiable but a domain wipe-out may occur sooner or later depending on A, which affects which tuples needed to be visited.

Let us emphasize that an R-deactivating direction for A need not be always obtained using formula [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF], any other method can be used as long as d satisfies Definition 1. We will now give examples of deactivating directions corresponding to some popular constraint propagation rules. In these examples, we assume that our CSP contains all unary constraints (i.e., {i} ∈ C for each i ∈ V ), so that rather than deleting domain values we can forbid tuples of the unary constraints. 

If, for some S ∈ C, i ∈ S and k ∈ D, the left-hand statement in (28) is true and the right-hand statement is false, the AC propagator infers SOL(A) = SOL(A-R) where R = {({i}, k)}. To infer this, it suffices to know that the tuples P = { (S, l) | l ∈ D S , l i = k } are all forbidden. An R-deactivating direction d for A can be chosen as in [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] where

δ = |{ S ∈ C | T S ∩ R = ∅ }| = 1 and A is replaced by T -P . Note that then we have d ∈ M ⊥ .
If the left-hand statement in (28) is false and the right-hand statement is true, the AC propagator infers

SOL(A) = SOL(A -R) where R = { (S, l) | l ∈ D S , l i = k } ∩ A. To
12 Given an unsatisfiable CSP A ⊆ T , finding a maximal set A ⊇ A such that A is still unsatisfiable is a finer-grained (tuple-based rather than variable-based) version of finding a minimal unsatisfiable core of a CSP as described in [START_REF] Grégoire | On finding minimally unsatisfiable cores of CSPs[END_REF]. Note that we are looking here for a maximal superset A in contrast to a minimal unsatisfiable core because we define CSP instances by allowed tuples while cores are CSP instances defined by forbidden tuples.

infer this, it suffices to know that the tuple P = {({i}, k)} is forbidden. In this particular case, rather than using (26) (with A replaced by T -P ), it is better to choose d as

d t =      -1 if t ∈ { (S, l) | l ∈ D S , l i = k } 1 if t ∈ P 0 otherwise . ( 29 
)
Vector (29) satisfies d ∈ M ⊥ , in contrast to vector [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] which satisfies only d ∈ M * . Thus, the update f k+1 = f k + αd is a mere reparametrization 15 , which is desirable as explained in §4.1.1.

Example 4. We now consider cycle consistency as defined in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF]. 16 As this local consistency was defined only for binary CSPs, we assume that |S| ≤ 2 for each S ∈ C and denote E) is an undirected graph. Let L be a (polynomially sized) set of cycles in the graph (V, E). A CSP A is cycle consistent if for each tuple ({i}, k) ∈ A (where i ∈ V and k ∈ D) and each cycle L ∈ L that passes through node i ∈ V , there exists an assignment x with x i = k that uses only allowed tuples in cycle L. It can be shown that the cycle repair procedure in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] constructs a deactivating direction whenever an inconsistent cycle is found. Moreover, the constructed direction in this case coincides with [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] where A is replaced by T -P for a suitable set P that contains a subset of the forbidden tuples within the cycle.

E = { S ∈ C | |S| = 2 }, so that (V,
Example 5. Recall that a CSP A is singleton arc consistent (SAC) if for every tuple

t = ({i}, k) ∈ A (where i ∈ V and k ∈ D), the CSP 17 A| xi=k = A -(T {i} -{({i}, k)})
has a non-empty arc-consistency closure. Good (i.e., sparse) deactivating directions for SAC can be obtained as follows. For some ({i}, k) ∈ A, we enforce arc consistency of CSP A| xi=k , during which we store the causes for forbidding each tuple. If A| xi=k is found to have empty AC closure, we backtrack and identify only those tuples which were necessary to prove the empty AC closure. These tuples form the set P . The deactivating direction is then constructed as in [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] where R = {({i}, k)} and A is replaced by T -P . Note that SAC does not have bounded support as many other local consistencies [START_REF] Bessiere | Theoretical analysis of singleton arc consistency[END_REF] do, so the size of P can be significantly different for different CSP instances.

Composing Deactivating Directions

Consider now a propagator which, for a current CSP A ⊆ T , returns a set R ⊆ A such that SOL(A) = SOL(A -R) and an R-deactivating direction for A. This propagator is applied iteratively, each time forbidding a different set of tuples, until the current CSP achieves the desired local consistency level Φ or it becomes explicit that the CSP is unsatisfiable. This is outlined in Algorithm 1, which stores the generated sets R i of tuples being forbidden and the corresponding R i -deactivating directions d i . By line 5 of the algorithm, we have

A i = A - i-1 j=0 R j for every i = 0, . . . , n + 1. Therefore, by Theorem 5, we have SOL(A) = SOL(A 1 ) = SOL(A 2 ) = • • • = SOL(A n+1 ), which implies that if A n+1 is unsatisfiable then so is A. 1 procedure (S, (R i ) n i=0 , (d i ) n i=0 ) = propagate(A) 2 Initialize n := 0, A 0 := A. 3 while A n is not Φ-consistent do 4 Find a set R n ⊆ A n and an R n -deactivating direction d n for A n . 5 A n+1 := A n -R n 6 if ∃S ∈ C : A n+1 ∩ T S = ∅ then 7 return (S, (R i ) n i=0 , (d i ) n i=0 ) 8 n := n + 1 9 return (∅, (R i ) n-1 i=0 , (d i ) n-1 i=0
)) Algorithm 1: The procedure propagate applies constraint propagation to CSP A ⊆ T and returns the sequence (R i ) n i=0 of tuple sets that were forbidden and the corresponding deactivating directions (d i ) n i=0 . If all tuples in some scope S ∈ C become forbidden during propagation, propagate returns also S, otherwise it returns S = ∅.

In this section, we show how to compose the generated sequence of R i -deactivating directions d i for A i into a single n i=0 R i -deactivating direction for A. This can be done using the following composition rule:

Theorem 6. Let A ⊆ T and R, R ⊆ A where R ∩ R = ∅. Let d be an R-deactivating direction for A. Let d be an R -deactivating direction for A -R. Let δ = 0 if d t ≤ -1 for all t ∈ R, max{ (-1 -d t )/d t | t ∈ R, d t > -1 } otherwise. ( 30 
)
Then d = d + δd is an (R ∪ R )-deactivating direction for A.
Proof. First, if d t ≤ -1 for all t ∈ R, then d = d satisfies the required condition immediately. Otherwise, δ > 0 since d t < 0 for all t ∈ R by definition and -1 -d t < 0 due to d t > -1 in the definition of δ. We will show that d satisfies the conditions in Definition 1.

For t ∈ R with d t ≤ -1, d t = d t + δd t < d t ≤ -1 because δd t < 0. If t ∈ R and d t > -1, then δ ≥ (-1 -d t )/d t , so d t = d t + δd t ≤ -1. Summarizing, we have d t < 0 for all t ∈ R.
For t ∈ R , d t < 0 and d t = 0 holds by definition due to R ⊆ A -R, thus d t = d t + δd t = d t < 0 which together with the previous paragraph yields condition (a).

Due to Theorem 6 allows us to combine R i -deactivating direction

A -R ⊇ (A -R) -R = A -(R ∪ R ), for any t ∈ A -(R ∪ R )
d i for A i = A i-1 -R i-1 with R i-1 -deactivating direction d i-1 for A i-1 into a single (R i-1 ∪ R i )-deactivating direction for A i-1 .
Iteratively, we can thus gradually build a n i=0 R i -deactivating direction for A, which certifies unsatisfiability of A whenever Algorithm 1 detects on line 6 that A n+1 (and thus also A) is unsatisfiable. This is outlined in Algorithm 2, which composes only a subsequence of directions d i based on a given set of indices I ⊆ {0, . . . , n} and constructs an R * -deactivating direction with R * ⊇ i∈I R i . Although Algorithm 2 is applicable for any set I, in our case I is obtained by taking a scope S ∈ C such that A n+1 ∩ T S = ∅ and then setting

1 procedure (R * , d * ) = compose((R i ) n i=0 , (d i ) n i=0 , I) 2 Initialize i := max I, d * := d i , R * := R i . 3 while i > 0 do 4 i := i -1 5 if i ∈ I or ∃t ∈ R i : d * t =
I = { i ∈ {0, . . . , n} | R i ∩ T S = ∅ } (31) 
so that (A -R * ) ∩ T S = ∅ due to the following fact:

Proposition 1. Let S ∈ C be such that (A - n i=0 R i ) ∩ T S = ∅.
Let I be given by [START_REF] Grégoire | On finding minimally unsatisfiable cores of CSPs[END_REF].

Then (A -i∈I R i ) ∩ T S = ∅.

Proof. For any sets A, R, T ⊆ T we have (

A -R) ∩ T = (T -R) ∩ A. In particular, (A - n i=0 R i ) ∩ T S = (T S - n i=0 R i ) ∩ A. But T S - n i=0 R i = T S -i∈I R i because for each i / ∈ I we have R i ∩ T S = ∅ which is equivalent to T S -R i = T S .
Correctness of Algorithm 2 is given by the following theorem:

Proposition 2. Algorithm 2 returns an R * -deactivating direction d * for A where i∈I R i ⊆ R * ⊆ n i=0 R i . Proof. The fact that R * ⊇ i∈I R i is obvious due to R max I ⊆ R *
by initialization on line 2 and R i ⊆ R * for any i ∈ I such that i < max I because in such case the update on line 7 is performed. Similarly, R * ⊆ n i=0 R i holds by initialization of R * on line 1 and updates on line 7.

It remains to show that d * is R * -deactivating, which we will do by induction. We claim that vector d * is always R * -deactivating direction for A i on line 3 and R * -deactivating direction for A i+1 on line 5.

Initially, we have d * = d i , so d * is R i -deactivating (i.e., R * -deactivating since R * = R i before the loop is entered) for A i . Also, when vector d * is first queried on line 5, i decreased by 1 due to the update on line 4, so d * is R * -deactivating for A i+1 . The required property thus holds when the condition on line 5 is first queried with i = max I -1.

We proceed with the inductive step. If the condition on line 5 is not satisfied, then necessarily

d * t = 0 for all t ∈ R i . So, if d * is R * -deactivating for A i+1 , then it is also R * -deactivating for A i = A i+1 ∪ R i , as seen from Definition 1.
If the condition on line 5 is satisfied, d * is R * -deactivating for A i+1 before the update on lines 6-7. Since A i+1 = A i -R i and d i is R i -deactivating for A i , Theorem 6 can be applied to d i and d * to obtain an (R * ∪ R i )-deactivating direction for A i . After updating R * on line 7, it becomes R * -deactivating for A i .

When eventually i = 0, d * is R * -deactivating for A 0 = A by line 2 in Algorithm 1.

Remark 2. This is similar to what the VAC [START_REF] Cooper | Soft arc consistency revisited[END_REF] or Augmenting DAG algorithm [START_REF] Koval | Dvumernoe programmirovanie v zadachakh analiza izobrazheniy (Two-dimensional programming in image analysis problems)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF] do for arc consistency. To attempt to disprove satisfiability of CSP A * (f ), these algorithms enforce AC of A * (f ), during which the causes for forbidding tuples are stored.

If the empty AC closure of A * (f ) is detected (which corresponds to T S ∩ A s+1 = ∅ for some S ∈ C), these algorithms do not iterate through all previously forbidden tuples but only trace back the causes for forbidding the elements of the wiped-out domain (here, the elements of T S ).

Line Search

In §4.2 we showed how to construct an R-deactivating direction d for a CSP A, which certifies unsatisfiability of A whenever (A -R) ∩ T S = ∅ for some S ∈ C. Given a WCSP f ∈ R T , to obtain f ∈ f + M * with B(f ) < B(f ) (as in Theorem 3), we need to find a step length α > 0 so that f = f + αd, as discussed in §4.1.2. That means, we need to find α > 0 such that B(f + αd) < B(f ). This task is known in numerical optimization as line search.

Finding the best step size (i.e., exact line search) would require finding a global minimum of the univariate convex piecewise-affine function α → B(f + αd). As this would be too expensive for large WCSP instances, we find only a sub-optimal step size (approximate line search) in the following theorem. 18 Theorem 7. Let f ∈ R T . Let d be an R-deactivating direction for A * (f ). Denote 19

β = min max t∈T S f t -f t d t S ∈ C, t ∈ T S , d t > 0 , γ = min f t -f t d t -d t S ∈ C, (A * (f ) -R) ∩ T S = ∅, t ∈ T S ∩ R, t ∈ T S -R, d t > d t .
Then β, γ > 0 and for every S ∈ C and α ∈ R, WCSP f = f + αd satisfies: 18 In detail, the step size γ computed in Theorem 7 corresponds to the first break (i.e., nondifferentiable) point of the univariate function with a lower objective. This step size is decreased to β if γ > β so that no maximum increases. This is analogous to the first-hit strategy in [35, §3.1.4]. 19 β is always defined: by Definition 1 we have d, φ(x) ≥ 0 for all x, hence ∃t : dt < 0 ⇒ ∃t : d t > 0. γ is defined and needed only in (b), where we assume that (A

* (f ) -R) ∩ T S = ∅ for some S ∈ C. (a) If (A * (f ) -R) ∩ T S = ∅ and 0 ≤ α ≤ β, then max t∈T S f t = max t∈T S f t . (b) If (A * (f ) -R) ∩ T S = ∅ and 0 < α < β, then A * (f ) ∩ T S = (A * (f ) -R) ∩ T S . (c) If (A * (f ) -R) ∩ T S = ∅ and 0 < α ≤ min{β, γ}, then max t∈T S f t < max t∈T S f t .
Proof. We have β > 0 because d t > 0 implies t is an inactive tuple, so max t∈T S f t > f t . We have γ > 0 because in f t -f t tuple t is always active and t is inactive, hence f t > f t .

To prove (a), let t * ∈ (A * (f ) -R) ∩ T S . Hence, by Definition 1, d t * = 0 and the value max t∈T S f t does not decrease for any α since f t * = f t * + αd t * = f t * . To show the maximum does not increase, consider a tuple t ∈ T S such that d t > 0 (due to α ≥ 0, tuples with d t ≤ 0 cannot increase the maximum). It follows that α ≤ β ≤ 

max t∈T S ft-f t d t , so f t = f t + d t α ≤ max t∈T S f t . To prove (b), let (A * (f ) -R) ∩ T S = ∅. As in (a), we have max t∈T S f t = max t∈T S f t . If t ∈ (A * (f ) -R) ∩ T S ,
, f t = f t + d t α < max t ∈T S f t , so t / ∈ A * (f ). To prove (c), let (A * (f ) -R) ∩ T S = ∅. For all t ∈ T S ∩ R, we have f t = f t + αd t < f t by d t < 0 and α > 0, i.e., max t∈T S ∩R f t < max t∈T S ∩R f t . We proceed to show that f t ≤ max t ∈T S ∩R f t for every t ∈ T S -R. Let t * ∈ T S ∩ R satisfy f t * = max t∈T S ∩R f t . If d t > d t * , α ≤ γ ≤ f t * -f t d t -d t * implies f t * = f t * + αd t * ≥ f t + αd t = f t . If d t ≤ d t * , then also αd t ≤ αd t * and f t = f t +αd t ≤ f t * +αd t * = f t * holds for any α ≥ 0 since f t < f t * . As a result, max t ∈T S -R f t ≤ max t∈T S ∩R f t < max t∈T S ∩R f t = max t∈T S f t .
If d is an R-deactivating direction for CSP A * (f ) and for all S ∈ C we have (A * (f ) -R) ∩ T S = ∅ then, by Theorem 7(a,b), there is α > 0 such that f = f + αd satisfies B(f ) = B(f ) and A * (f ) = A * (f ) -R. This justifies why such direction d is called R-deactivating: a suitable update of f along this direction makes tuples R inactive for f . Remark 3. This might suggest that to improve the current bound B(f ), we need not use Algorithm 2 to construct an R * -deactivating direction d * with (A * (f ) -R * ) ∩ T S = ∅ for some S ∈ C, but instead, perform steps using the intermediate R i -deactivating directions d i to create a sequence

f i+1 = f i + α i d i satisfying B(f 0 ) = B(f 1 ) = • • • = B(f n ) > B(f n+1 ).
Unfortunately, it is hard to make this work reliably as there are many choices for the intermediate step sizes 0 < α i < β i . We empirically found Algorithm 3 to be preferable.

If d is an R-deactivating direction for A * (f ) and for some S ∈ C we have (A * (f ) -R) ∩ T S = ∅, then, by Theorem 7(a,c), there is α > 0 such that f = f + αd satisfies B(f ) < B(f ). The following corollary of Theorem 7 finally justifies why the certificate d of unsatisfiability of CSP A * (f ) is an improving direction for (18):

Corollary 1. CSP A ⊆ T is unsatisfiable if and only if there is d ∈ M * such that for every f ∈ R T with A = A * (f ) there exists α > 0 such that B(f + αd) < B(f )
Proof. First, if for some S ∈ C we have that A∩T S = ∅, A is unsatisfiable and no f ∈ R T satisfies A = A * (f ), so the second condition is trivially satisfied by choosing any d ∈ M * .

Otherwise, let d be any A-deactivating direction (which exists by Theorem 4). It follows from Theorem 7 that for any f ∈ R T with A * (f ) = A, we can compute a input:

WCSP g ∈ R T 1 Initialize f := g. 2 repeat 3 (S, (R i ) n i=0 , (d i ) n i=0 ) := propagate(A * (f )) 4 if S = ∅ then 5 
Set I as in [START_REF] Grégoire | On finding minimally unsatisfiable cores of CSPs[END_REF].

6 (R * , d * ) := compose(I, (R i ) n i=0 , (d i ) n i=0 ) 7 
Update f := f + min{β, γ}d * following Theorem 7.

8 until S = ∅; 9 return B(f ) Algorithm 3: The final algorithm to iteratively improve feasible solutions to [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF].

suitable step size α > 0 such that B(f + αd) < B(f ). The remaining part follows from Theorem 3.

Final Algorithm

Having certificates of unsatisfiability from §4.2 and step lengths from §4.3, we can now formulate in detail the iterative method outlined in §4.1.2, see Algorithm 3. First, constraint propagation is applied to CSP A * (f ) by Algorithm 1 until either A * (f ) is proved unsatisfiable or no more propagation is possible. In the latter case, the algorithm halts and returns B(f ) as the best achieved upper bound on the optimal value of WCSP g. Otherwise, if A * (f ) is proved unsatisfiable due to A n+1 ∩T S = ∅ for some S ∈ C, define I as in [START_REF] Grégoire | On finding minimally unsatisfiable cores of CSPs[END_REF] so that (A * (f )-i∈I R i )∩T S = ∅, and compute an R * -deactivating direction d * where R * ⊇ i∈I R i using Theorem 2. Since (A * (f ) -R * ) ∩ T S = ∅, we can update WCSP f using Theorem 7. Consequently, the bound B(f ) strictly improves after each update on line 7.

In Algorithm 3 we additionally used a heuristic analogous to capacity scaling in network flow algorithms [36, §7.3]. We replace the active tuples A * (f ) with 'almost' active tuples

A * θ (f ) = t = (S, k) ∈ T f t ≥ max t ∈T S f t -θ (32) 
for some threshold θ > 0. 20 This forces the algorithm to disprove satisfiability using tuples that are far from being active, thus hopefully leading to larger step sizes and faster decrease of the bound. Initially, θ is set to a high value and whenever we are unable to disprove satisfiability of A * θ (f ), the current θ is decreased as θ := θ/10. The process continues until θ becomes very small.

Although our theoretical results are more general, our implementation is limited only to binary WCSPs, i.e., instances where the maximum arity of the weighted constraints is at most 2. We implemented two versions of Algorithm 3 (including capacity scaling 21 ), differing in the local consistency used to attempt to disprove satisfiability of CSP A * (f ):

• Virtual singleton arc consistency via super-reparametrizations (VSAC-SR) uses singleton arc consistency. Precisely, we alternate between AC and SAC propagators: whenever a single tuple (i, k) ∈ V ×D is removed by SAC, we step back to enforcing AC until no more AC propagations are possible, and repeat.

• Virtual cycle consistency via super-reparametrizations (VCC-SR) is the same as VSAC-SR except that SAC is replaced by CC. Though our implementation is different than [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] (we compose deactivating directions rather than alternate between the cycle-repair procedure and the Augmenting DAG algorithm), it has the same fixed points.

The procedures for generating deactivating directions for AC, SAC and CC were implemented as described in Examples 3, 5, and 4. In SAC and CC it is useful to step back to AC whenever possible because deactivating directions of AC correspond to reparametrizations rather than super-reparametrizations, which is desirable as explained in §4.1.1.

Remark 4. In analogy to [START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF], let us call a WCSP instance f virtual Φ-consistent (e.g., virtual AC or virtual RPC) if A * (f ) has a non-empty Φ-consistency closure. Then, a virtual Φ-consistency algorithm naturally refers to an algorithm to transform a given WCSP instance to a virtual Φ-consistent WCSP instance. In the VAC algorithm, this transformation is equivalence-preserving, i.e., a reparametrization. But in our case, it is a super-reparametrization, which is why we call our algorithms VSAC-SR and VCC-SR.

Since we restricted ourselves to binary WCSPs, let E) is an undirected graph. The cycles in VCC-SR were chosen as follows: if 2|E|/|V | ≤ 5 (i.e., the average degree of the nodes in (V, E) is at most 5), then all cycles of length 3 and 4 present in the graph (V, E) are used. If 2|E|/|V | ≤ 10, then all cycles of length 3 present in the graph are used. If 2|E|/|V | > 10 or the above method did not result in any cycles, we use all fundamental cycles w.r.t. a spanning tree of the graph (V, E). No additional edges are added to the graph. Note, [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] experimented with grid graphs (where 4-cycles and 6-cycles of the grid were used) and complete graphs (where 3-cycles were used).

E = { S ∈ C | |S| = 2 } so that (V,
Since both VSAC-SR and VCC-SR start by enforcing VAC (i.e., making A * (f ) arc consistent by reparametrizations), before running these methods we used toulbar2 to reparametrize the input WCSP instance to a VAC state (because a specialized algorithm is faster than the more general Algorithm 3). We employed specialized data structures for storing the sequences (R i ) n i=0 and (d i ) n i=0 from Algorithm 1, which utilize the property that the sets (R i ) n i=0 are disjoint and make easier sequential querying of (sparse) vectors (d i ) n i=0 in Algorithm 2. Note that the sequence (A i ) n+1 i=0 need not be stored and is only needed for theoretical analysis. Moreover, sparse representations were used when composing deactivating directions in Algorithm 2. To avoid working with 'structured' tuples (1), we employed a bijection between T and {1, . . . , |T |} to work with numerical indices instead.

Besides the above improvements, we did not fine-tune our implementation for efficiency. Thus, the set A * (f ) was always calculated by iterating through all tuples (which could be made faster if sparsity of the improving direction was taken into account). The hyper-parameters of our algorithm (e.g., the decrease schedule of θ or constants mentioned in Footnote 21) were not learned nor systematically optimized. SAC was checked on all active tuples without warm-starting or using any faster SAC algorithm than SAC1 [START_REF] Bessiere | Efficient algorithms for singleton arc consistency[END_REF][START_REF] Debruyne | Some practicable filtering techniques for the constraint satisfaction problem[END_REF]. Perhaps most importantly, we did not implement inter-iteration warm-starting as in [START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF][START_REF] Dlask | Minimizing convex piecewise-affine functions by local consistency techniques[END_REF], i.e., after updating the weights on line 6 of Algorithm 3, some deactivating directions in the sequence that were not used to compose the improving direction may be preserved for the next iteration instead of being computed from scratch. Except for computing deactivating vectors, the code was the same for VSAC-SR and VCC-SR. We implemented everything in Java.

Experiments

We compared the bounds calculated by VSAC-SR and VCC-SR with the bounds provided by EDAC [START_REF] De Givry | Existential arc consistency: Getting closer to full arc consistency in weighted CSPs[END_REF], VAC [START_REF] Cooper | Soft arc consistency revisited[END_REF], pseudo-triangles (option -t=8000 in toulbar2, adds up to 8 GB of ternary weight functions), PIC, EDPIC, maxRPC, and EDmaxRPC [START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF], which are implemented in toulbar2 [40].

We did the comparison on the Cost Function Library benchmark [41]. Due to limited computation resources, we used only the smallest 16500 instances (out of 18132). Of these, we omitted instances containing weight functions of arity 3 or higher. Moreover, to avoid easy instances, we omitted instances that were solved by VAC without search (i.e., toulbar2 with options -A -bt=0 found an optimal solution). We also omitted the validation instances that are used for testing and debugging. Overall, 5371 instances were left for our comparison.

For each instance and each method, we only calculated the upper bound and did not do any search. For each instance and method, we computed the normalized bound

Bw-Bm

Bw-B b where B m is the bound computed by the method for the instance and B w resp. B b is the worst resp. best bound for the instance among all the methods. Thus, the best bound 22 transforms to 1 and the worst bound to 0, i.e., greater is better.

For 26 instances, at least one method was not able to finish in the prespecified 1-hour CPU-time limit. These timed-out methods were omitted from the calculation of the normalized bounds for these instances. From the point of view of the method, the instance was not incorporated into the average of the normalized bounds of this particular method. We note that implementations of VSAC-SR and VCC-SR provide a bound when terminated at any time, whereas the implementations of the other methods provide a bound only when they are left to finish. Time-out happened 5, 2, 3, 6, and 24 times for pseudo-triangles, PIC, EDPIC, maxRPC, and EDmaxRPC, respectively. This did not affect the results much as there were 5731 instances in total.

The results in Table 1 show that no method is best for all instance groups, instead, each method is suitable for a different group. However, VSAC-SR performed best for most groups and otherwise was often competitive to the other strong consistency methods. VSAC-SR seems particularly good at spinglass maxcut [42], planning [START_REF] Cooper | A weighted CSP approach to cost-optimal planning[END_REF] and qplib [START_REF] Furini | QPLIB: a library of quadratic programming instances[END_REF] instances. Taking the overall unweighted average of group averages (giving the same importance to each group), VSAC-SR achieved the greatest average value. We also evaluated the ratio to worst bound, B m /B w , for instances with B w = 0; the results were qualitatively the same: VSAC-SR again achieved the best overall average of 3.93 (or 4.15 if only groups with ≥ 5 instances are considered) compared to second-best pseudo-triangles with 2.71 (or 2.84).

The runtimes (on a laptop with i7-4710MQ processor at 2.5 GHz and 16GB RAM) are reported in Table 2. Again, the results are group-dependent and one can observe that the methods explore different trade-offs between bound quality and runtime. However, the strong consistencies are comparable in terms of runtime on average, except for pseudotriangles, which are faster but need significantly more memory.

The code that was used to obtain these results is available at https://cmp.felk. cvut.cz/ ~dlaskto2/code/VSAC-SR.zip.

Additional Properties of Super-Reparametrizations

In this section, we present a more detailed study of properties of WCSPs that are preserved by (possibly optimal) super-reparametrizations. To that end, we first revisit in §5.1 the notion of a minimal CSP for a set of assignments. The key result of §5 is presented in §5.2, where we study the relation of the set of optimal assignments of some WCSP to the set of optimal assignments of its super-reparametrization optimal for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF], showing that they need not coincide in general. In §5.3, we give some properties of general (i.e., not necessarily optimal for (18)) super-reparametrizations.

Minimal CSP

Let us ask when for a given set X ⊆ D V of assignments (i.e., a |V |-ary relation over D) does there exist A ⊆ T such that X = SOL(A), i.e., when is X representable as the solution set of a CSP with a given structure (D, V, C). For that, denote

A min (X) = A ↑ (X) where A ↑ (X) = { A ⊆ T | X ⊆ SOL(A) }. (33) 
Thus, A ↑ (X) is the set of all CSPs whose solution set includes X and A min (X) is the intersection of these CSPs. We call A min (X) the minimal CSP for X. For CSPs with only binary relations, this concept was studied in [START_REF] Montanari | Networks of constraints: Fundamental properties and applications to picture processing[END_REF] and [46, §2.3.2].

Proposition 3. The map SOL preserves intersections 23 , i.e., for any

A 1 , A 2 ⊆ T we have SOL(A 1 ∩ A 2 ) = SOL(A 1 ) ∩ SOL(A 2 ).
Proof. For any x ∈ D V we have (a) WCSP g with B(g) = 7

x ∈ SOL(A 1 ) ∩ SOL(A 2 ) ⇐⇒ x ∈ SOL(A 1 ), x ∈ SOL(A 2 ) ⇐⇒ ∀S ∈ C : (S, x[S]) ∈ A 1 , (S, x[S]) ∈ A 2 ⇐⇒ ∀S ∈ C : (S, x[S]) ∈ A 1 ∩ A 2 ⇐⇒ x ∈ SOL(A 1 ∩ A 2 ).
1 1 1 -9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 (b) WCSP f with B(f ) = 6
Figure 6: WCSP f is an optimal super-reparametrization of WCSP g. It is easy to verify that A * (f ) = A min (OPT(g)) but OPT(f ) = SOL(A * (f )) OPT(g).

• For any set of assignments X ⊆ D V , SOL(A min (X)) is the smallest (possibly nonstrict) superset of X which is the solution set of some CSP A ⊆ T . We have X = SOL(A min (X)) if and only if X = SOL(A) for some A ⊆ T .

Remark 5. Following [49, §7.27], it is easy to see in this case that the maps A min and SOL are mutually inverse bijections (even order-isomorphisms) if we restrict ourselves only to positively consistent CSPs, i.e., { A ⊆ T | SOL(A min (A)) = A } and sets of assignments representable as solution sets of some CSP A ⊆ T , i.e., { SOL(A) | A ⊆ T }.

Optimal Assignments from Optimal Super-Reparametrizations

Theorem 2 says that the optimal value of (18) coincides with the optimal value max x g, φ(x) of WCSP g. We now focus on the optimal assignments (rather than value) of WCSP g. For brevity, we will denote the set of all optimal assignments of WCSP g as

OPT(g) = argmax x∈D V g, φ(x) ⊆ D V . ( 36 
)
Theorem 9. If f is optimal for (18), then27 OPT(g) ⊆ OPT(f ) = SOL(A * (f )).

Proof. To show OPT(g) ⊆ OPT(f ), let x * ∈ OPT(g). By Theorem 2, g, φ(x * ) = B(f ). Analogously to the proof of Theorem 2: since B(f ) ≥ f, φ(x * ) ≥ g, φ(x * ) , we have that B(f ) = f, φ(x * ) = g, φ(x * ) , thus x * is optimal for WCSP f . The equality OPT(f ) = SOL(A * (f )) follows from B(f ) = max x∈D V f, φ(x) = max x∈D V g, φ(x) and Theorem 1.

Our main goal in §5 is to characterize when the inclusion in Theorem 9 holds with equality, which is given by Theorem 11 below. Proposition 6. For every g ∈ R T and A ⊆ T such that OPT(g) ⊆ SOL(A), there exists f ∈ R T optimal for (18) such that A = A * (f ).

Theorem 11 shows that the inclusion in Theorem 9 holds with equality for some optimal f if and only if the set OPT(g) of optimal assignments of WCSP g is representable as a solution set of some CSP with the same structure. If no such CSP exists, then OPT(g) OPT(f ) for all optimal f . An example of WCSP g for which no such CSP exists is in Figure 6.

It is natural to ask which WCSPs possess this property. Though we are currently unable to provide a full characterization of such WCSPs, we identify two such classes:

Theorem 12 ([1, 2]). If the LP relaxation (12) of a WCSP g ∈ R T is tight, then OPT(g) = SOL(A) for some A ⊆ T .
Proof. If the LP relaxation ( 12) is tight, then there exists a vector f ∈ R T such that B(f ) = max x∈D V g, φ(x) and f is a reparametrization of g, i.e., f, φ(x) = g, φ(x) for all x ∈ D V , thus, f is also optimal for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF]. It follows that the sets of optimal assignments for f and g coincide. By Theorem 9, A * (f ) is the required CSP.

Theorem 13. If a WCSP g ∈ R T has a unique optimal assignment (i.e., | OPT(g)| = 1), then OPT(g) = SOL(A) for some A ⊆ T .

Proof. The case with |D| = 1 is trivial, so let |D| ≥ 2 and OPT(g) = {x}.

We claim that A = { (S, x[S]) | S ∈ C } is the required CSP, i.e., SOL(A) = {x}. For contradiction, suppose that x ∈ SOL(A) and x = x. By x ∈ SOL(A), we necessarily have that x [S] = x[S] for all S ∈ C. By definition (4), this implies g, φ(x ) = g, φ(x) . Thus, {x , x} ⊆ OPT(g), which is contradictory with | OPT(g)| = 1.

Properties of General Super-Reparametrizations

Finally, we present one property of general super-reparametrizations f of a fixed WCSP g ∈ R T , i.e., f is only feasible (but possibly not optimal) for (18). Theorem 14. For every g ∈ R T we have

{ A * (f ) | f is a super-reparametrization of g } = { A * (f ) | f ∈ R T }. (41) 
Proof. The inclusion ⊆ is trivial. To prove ⊇, let f ∈ R T be arbitrary. Define f ∈ R T as f t = B(g)/|C| + t ∈ A * (f ) , t ∈ T . Clearly, f is a super-reparametrization of g due to f, φ(x) ≥ B(g) ≥ g, φ(x) for any x ∈ D V . In addition, by definition of f , max t∈T S f t = |B(g)|/|C| + 1 for any S ∈ C, hence A * (f ) = A * (f ).

Theorem 14 shows that the left-hand set in (41) does not depend on g at all. Therefore, if we approximately optimize [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF], i.e., we find a (possibly non-optimal) superreparametrization f of g, then there is in general no relation between sets OPT(f ) and OPT(g). However, as shown in §3.2, an arbitrary super-reparametrization still maintains the valuable property that it provides an upper bound B(f ) on the optimal value max x g, φ(x) of WCSP g.

Hardness Remarks

Unsurprisingly, a number of decision and optimization problems related to ( 18) is computationally hard since the optimization problem ( 18) is hard itself. We overview a number of such problems here.

Theorem 15. The following problem is NP-complete: Given f, g ∈ Q T , decide whether f is not a super-reparametrization of g (i.e., whether f is not feasible for (18)).

Proof. Membership in NP can be shown easily by the notion of a non-deterministic algorithm [52, §10]. First, one can choose any x ∈ D V and then in polynomial time decide whether f, φ(x) < g, φ(x) .

To show NP-hardness, we perform a reduction from CSP satisfiability which is known to be NP-complete. Let A ⊆ T be a CSP. We would like to decide whether SOL(A) = ∅.

Let us define g ∈ {0, 1} T by

g S (k) = (S, k) ∈ A ∀(S, k) ∈ T. (42) 
Thus, for any x ∈ D V , g, φ(x) equals to the number of constraints in CSP A that are satisfied by the assignment x. So, g, φ(x) ∈ {0, 1, . . . , |C|} and g, φ(x) = |C| if and only if x ∈ SOL(A). Consequently, max x g, φ(x) ≤ |C| -1 if and only if SOL(A) = ∅. We define f ∈ Q T by f t = (|C| -1)/|C|, t ∈ T . In analogy to Theorem 2, f, φ(x) = |C| -1 for all assignments x ∈ D V . Hence, SOL(A) = ∅ if and only if f is a superreparametrization of g. Corollary 3. The following problem is NP-complete: Given f, g ∈ {0, 1} T where f is a super-reparametrization of g, decide whether f is optimal for (18).

Proof. Membership in NP follows from Theorem 2: as in Theorem 15, one can choose x ∈ D V and then in polynomial time decide whether f, φ(x) = g, φ(x) and x ∈ SOL(A * (f )). The hardness part is completely analogous to the proof of Theorem 15 except that we define f ∈ {0, 1} T by f t = 1, t ∈ T , so B(f ) = |C|. Clearly, f is element-wise greater or equal to g, so it is a super-reparametrization. Moreover, |C| = max x g, φ(x) if and only if SOL(A) = ∅, so f is optimal for (18) if and only if SOL(A) = ∅.

Recall that in formula [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF], the number δ had the concrete value given by Theorem 4. However, sometimes the value of δ can be decreased while [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] still remains to be an R-deactivating direction for A. Finding a small such δ is desirable because then [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] results in smaller values d, φ(x) , as explained in §4.1.1. Unfortunately, finding the least value of δ is likely intractable: Theorem 16. The following problem is NP-complete: Given δ ∈ Q and R ⊆ A ⊆ T satisfying SOL(A) = SOL(A -R), decide whether vector d given by [START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] is not an R-deactivating vector for A.

Proof. Membership in NP is analogous to Theorem 15. Since conditions (a) and (b) from Definition 1 are satisfied, the question boils down to deciding whether d ∈ M * . 28To show hardness, we proceed by reduction from the 3-coloring problem [START_REF] Rosen | Handbook of Discrete and Combinatorial Mathematics[END_REF][START_REF] Karp | Reducibility among combinatorial problems[END_REF]: given a graph G * = (V * , E * ), decide whether it is 3-colorable. Let G = (V, C) be the graph sum (also known as the disjoint union of graphs) of G * and K 4 [53, §8.1.2]. K 4 is the complete graph with 4 vertices. 29Let CSP A have the structure (D, V, C) where |D| = 3 and

A = {({i, j}, (k i , k j )) | {i, j} ∈ C, k i , k j ∈ D, k i = k j }. (43) 
Hence, any x ∈ D V can be interpreted as an assignment of colors to the nodes of G and x ∈ SOL(A) if and only if x is a 3-coloring of G. Since G contains K 4 as its subgraph, it is not 3-colorable and A is unsatisfiable. Hence, setting R = A satisfies SOL(A -R) = SOL(∅) = ∅ = SOL(A).

For the purpose of our reduction, let us define δ = (|C| -2)/2 > 0. We will show that for such a setting, d is not an R-deactivating vector for A if and only if G * is 3-colorable.

Plugging the above-defined sets A and R into the definition of d in ( 26 

where COL(x) = |{ {i, j} ∈ C | x i = x j }| is the number of edges in G whose adjacent vertices have different colors in assignment x ∈ D V . If G * is 3-colorable, then there is x ∈ D V such that COL(x) = |C| -1. In other words, only for a single edge in C -E * (i.e., edge of graph K 4 ), the adjacent vertices are assigned the same color, so d, φ(x) = -|C|/2 < 0 by [START_REF] Furini | QPLIB: a library of quadratic programming instances[END_REF] and definition of δ. Hence, d is not an R-deactivating vector for A.

For the other case, if G * is not 3-colorable, then for any x ∈ D V , COL(x) ≤ |C| -2. The reason is that for at least one edge in K 4 and at least one edge in G * , the adjacent vertices will be assigned the same color in any assignment. By substituting the value of δ and a simple manipulation of (44), one obtains d, φ(x) = δ|C| -(δ + 1) COL(x) = |C| (|C| -2 -COL(x)) /2 ≥ 0 [START_REF] Montanari | Networks of constraints: Fundamental properties and applications to picture processing[END_REF] where the term in brackets is non-negative due to COL(x) ≤ |C| -2 for any x ∈ D V . So, d is an R-deactivating vector for A.

In connection to §5.1, a number of decision problems concerning the minimal CSP have been also proved hard. For recent results, see [START_REF] Gottlob | On minimal constraint networks[END_REF][START_REF] Escamocher | Pushing the frontier of minimality[END_REF].

Summary

We have proposed a method to compute upper bounds on the (maximization version of) WCSP. The WCSP is formulated as a linear program with an exponential number of constraints, whose feasible solutions are super-reparametrizations of the input WCSP instance (i.e., WCSP instances with the same structure and greater or equal objective values). Whenever the CSP formed by the active (i.e., maximal in their weight functions) tuples of a feasible WCSP instance is unsatisfiable, there exists an improving direction (in fact, a certificate of unsatisfiability of this CSP) for the linear program. As this approach provides only a subset of all possible improving directions, it can be seen as a local search. We showed how these improving directions can be generated by constraint propagation (or, more generally, by other methods to prove unsatisfiability of a CSP). We showed that super-reparametrizations are closely related to the dual cone to the well-known marginal polytope.

Special cases of our approach are the VAC / Augmenting DAG algorithm [START_REF] Cooper | Soft arc consistency revisited[END_REF][START_REF] Koval | Dvumernoe programmirovanie v zadachakh analiza izobrazheniy (Two-dimensional programming in image analysis problems)[END_REF][START_REF] Werner | A linear programming approach to max-sum problem: A review[END_REF], which uses arc consistency, and the algorithm in [START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF], which uses cycle consistency. We have newly implemented the approach for singleton arc consistency, resulting in VSAC-SR algorithm. When compared to existing soft local consistency methods on a public dataset, VSAC-SR provides comparable or better bounds for many instances.

The approach in general requires storing all the weights of the super-reparametrized WCSP instance. This may be a drawback when the domains are large and/or the weight functions are not given explicitly as a table of values but rather by an algorithm (oracle).

We expect our improved bounds to be useful to prune the search space during branchand-bound search, when solving WCSP instances to optimality. However, we have done no experiments with this, so it is open whether during search the tighter bounds would outweigh the higher complexity of the algorithm. We leave this for future research. Our approach can be also useful to solve more WCSP instances even without search (similarly, as the VAC algorithm solves all supermodular WCSPs without search) or, given a suitable primal heuristic, to solve WCSP instances approximately.

The approach can be straightforwardly extended to WCSPs with different domain sizes 30 and some weights equal to minus infinity (i.e., some constraints being hard). Of course, further experiments would be needed to evaluate the quality of the bounds if infinite weights are allowed. The WCSP framework also usually assumes a pre-defined specific finite bound that is updated during branch-and-bound [START_REF] Cooper | Valued constraint satisfaction problems[END_REF] -although the presented pseudocode does not support this, it is not difficult to extend it in this way.

Finally, we presented a theoretical analysis of the concept of super-reparametrizations of WCSPs, describing the properties of optimal super-reparametrizations and characterizing the set of active-tuple CSPs induced by different optimal super-reparametrizations. For example, even optimal super-reparametrization may change the set of optimal assignments, as shown in §5.2. Additionally, we have shown that general (i.e., possibly non-optimal) super-reparametrizations are only weakly related to the original WCSP instance.
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Figure 1 :Example 2 .

 12 Figure 1: Visualisations of two WCSPs f and d with structure as in Example 2. Variables (elements of V ) are depicted as rounded rectangles, tuples (elements of T ) as circles and line segments, and weights ft (and dt) are written next to the circles and line segments. Black circles and full lines indicate active tuples, whereas white nodes and dashed lines indicate non-active tuples.
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 2 Figure 2: Example of one iteration on a binary WCSP whose (hyper)graph is a cycle of length 4.

Figure 4 :

 4 Figure 4: Illustration to the iterative scheme: B(g) and B(f k ) are shown by the full lines, maxx g, φ(x) and maxx f k , φ(x) are represented by the dashed lines.

Figure 5 :

 5 Figure 5: WCSP f is a super-reparametrization of WCSP g and this pair of WCSPs satisfies B(f ) = 11 < B(g) = 12 and maxx∈D V f, φ(x) = 11 > max x∈D V g, φ(x) = 8. Assignment x = (b, b) is not optimal for g despite that B(f ) = f, φ(x). Naming of variables and domain values is the same as in Figure1.

  0 and n 2 (x) = 0, where the latter is because n 1 (x) ≤ δ by the definition of δ. That is, we have (S * , x[S * ]) ∈ R for some S * ∈ C and (S, x[S]) ∈ A for all S ∈ C. But the latter means x ∈ SOL(A) and the former implies x / ∈ SOL(A -R), a contradiction. Theorem 5. Let A ⊆ T and R ⊆ A. If there exists an R-deactivating direction for A, then SOL(A) = SOL(A -R).

  1). Let d be an R-deactivating direction for A and let x ∈ SOL(A) -SOL(A -R), so (S, x[S]) ∈ R for some S ∈ C. By (4), we have d, φ(x) < 0 because d S (x[S]) = 0 for all (S, x[S]) ∈ A -R by condition (b) in Definition 1 and d S (x[S]) < 0 for all (S, x[S]) ∈ R by condition (a). This contradicts d ∈ M * .

Example 3 .

 3 Let us consider (generalized) arc consistency (AC). A CSP A is (G)AC if for all S ∈ C, i ∈ S and k ∈ D we have the equivalence 14 ({i}, k) ∈ A ⇐⇒ (∃l ∈ D S : (S, l) ∈ A, l i = k).

  we have d t = 0 and d t = 0, which implies d t = d + δd = 0, thus verifying condition (b). Finally, we have d ∈ M * because d, d ∈ M * and δ ≥ 0.

0 then 6 d 7 R 2 :

 672 * := d * + δd i (where δ is given by[START_REF] Dlask | Bounding linear programs by constraint propagation: application to Max-SAT[END_REF] where d, R are replaced byd i , R i ) * := R * ∪ R i 8 return (R * , d * ) Algorithm The procedure compose takes the sequences (R i ) n i=0 and (d i ) n i=0(generated by the procedure propagate) and an index set I ⊆ {0, . . . , n} and composes them to an R * -deactivating direction d * for A.However, it is not always necessary to construct a full n i=0 R i -deactivating direction because not every iteration of constraint propagation may have been necessary to prove unsatisfiability of A. Instead, we can use the scope S ∈ C satisfying A n+1 ∩ T S = ∅ (where A n+1 = A -n i=0 R i , as mentioned above) returned by Algorithm 1 on line 7 and construct an R * -deactivating direction for a (usually smaller) set R * ⊆ n i=0 R i such that (A -R * ) ∩ T S = ∅. Such direction d * still certifies unsatisfiability of A and can be sparser and/or may have lower values d * , φ(x) than a n i=0 R i -deactivating direction, which is desirable as explained in §4.1.1.

Corollary 2 .

 2 The following problem is NP-complete: Given d ∈ Q T , decide whether d / ∈ M * .Proof. Membership in NP is analogous to Theorem 15. The question of whether f is not a super-reparametrization of g from Theorem 15 reduces to whether d = f -g / ∈ M * .

  xi=xj δ = δ(|C| -COL(x)) -COL(x)

  then d t = 0 and such tuples remain active byf t = f t . Tuples t ∈ R ∩ T S become inactive since f t = f t + d t α < f t = max t ∈T S ft by d t < 0 and α > 0. Tuples t / ∈ A * (f ) either satisfy d t ≤ 0 and cannot become active or satisfy d t > 0 and by α < β ≤

	max t ∈T S	f t -ft
	dt	

Table 1 :

 1 Results on instances from Cost Function Library: Average normalized bounds.

	Instance Group	Instances EDAC	VAC	VSAC-SR	VCC-SR	Pseudo-tr. PIC	EDPIC	maxRPC EDmaxRPC
	/biqmaclib/	157	0.02	0.11	0.90	0.22	0.92	0.83	0.81	0.79	0.81
	/crafted/academics/	8	0.88	0.88	0.97	0.95	0.88	0.88	0.88	0.88	1.00
	/crafted/auction/paths/	420	0.00	0.09	0.91	0.35	0.99	0.45	0.68	0.64	0.57
	/crafted/auction/regions/	411	0.00	0.05	0.99	0.10	0.98	0.08	0.18	0.23	0.13
	/crafted/auction/scheduling/	419	0.00	0.02	1.00	0.09	0.80	0.41	0.38	0.41	0.24
	/crafted/coloring/	33	0.94	0.94	0.99	0.97	0.98	1.00	1.00	1.00	0.99
	/crafted/feedback/	6	0.00	0.00	0.54	0.58	0.71	0.49	0.53	0.51	0.72
	/crafted/kbtree/	1800	0.25	0.29	0.60	0.67	0.80	0.73	0.81	0.76	0.89
	/crafted/maxclique/dimacs maxclique/	49	0.06	0.24	0.98	0.39	0.87	0.39	0.50	0.51	0.55
	/crafted/maxcut/spinglass maxcut/unweighted/	5	0.00	0.00	1.00	0.42	0.15	0.15	0.15	0.15	0.15
	/crafted/maxcut/spinglass maxcut/weighted/	5	0.00	0.00	1.00	0.38	0.17	0.17	0.17	0.17	0.17
	/crafted/modularity/	6	0.17	0.19	0.38	0.25	0.99	0.96	0.94	0.96	0.97
	/crafted/planning/	65	0.00	0.54	0.94	0.72	0.32	0.07	0.09	0.07	0.17
	/crafted/sumcoloring/	43	0.04	0.15	0.47	0.50	0.81	0.53	0.63	0.64	0.61
	/crafted/warehouses/	49	0.35	0.99	1.00	0.99	0.35	0.42	0.42	0.42	0.42
	/qaplib/	5	0.40	0.40	0.40	0.41	0.99	0.97	0.97	0.98	0.97
	/qplib/	23	0.00	0.10	0.96	0.38	0.27	0.25	0.25	0.24	0.25
	/random/maxcsp/completeloose/	50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	/random/maxcsp/completetight/	50	0.00	0.12	0.57	0.72	0.88	0.94	0.99	0.69	0.76
	/random/maxcsp/denseloose/	50	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	/random/maxcsp/densetight/	50	0.02	0.14	0.52	1.00	0.68	0.48	0.49	0.52	0.60
	/random/maxcsp/sparseloose/	90	0.96	0.96	1.00	0.96	0.96	0.96	0.96	0.96	0.96
	/random/maxcsp/sparsetight/	50	0.01	0.12	0.54	1.00	0.64	0.40	0.40	0.43	0.51
	/random/maxcut/random maxcut/	400	0.00	0.00	0.77	0.13	0.95	0.98	0.98	0.97	0.99
	/random/mincut/	500	0.09	1.00	1.00	1.00	0.10	0.10	0.10	0.10	0.10
	/random/randomksat/	493	0.01	0.02	0.75	0.22	0.95	0.91	0.89	0.86	0.87
	/random/wqueens/	6	0.00	0.52	0.96	0.94	0.48	0.12	0.29	0.13	0.72
	/real/celar/	23	0.00	0.05	0.08	0.16	0.97	0.66	0.66	0.78	0.95
	/real/maxclique/protein maxclique/	1	0.00	0.00	1.00	0.03	0.93	0.04	0.04	0.08	0.04
	/real/spot5/	1	0.00	0.08	1.00	0.49	1.00	0.74	0.66	0.41	0.74
	/real/tagsnp/tagsnp r0.5/	23	0.04	0.86	0.95	0.86	0.31	0.31	0.33	0.29	0.46
	/real/tagsnp/tagsnp r0.8/	80	0.13	0.66	0.91	0.68	0.29	0.39	0.38	0.33	0.47
	Average over all groups	5371	0.20	0.36	0.82	0.58	0.72	0.56	0.58	0.56	0.62
	Average over groups with ≥ 5 instances	5369	0.21	0.38	0.80	0.60	0.71	0.57	0.59	0.58	0.63

Table 2 :

 2 Results on instances from Cost Function Library: Average CPU time in seconds.

	Instance Group	Instances EDAC	VAC VSAC-SR VCC-SR	Pseudo-tr.	PIC	EDPIC	maxRPC EDmaxRPC
	/biqmaclib/	157	0.11	0.12	180.07	34.60	83.25 1240.00 1241.29	1242.16	1271.86
	/crafted/academics/	8	0.11	0.11	28.61	1.04	29.08	121.44	120.86	108.08	104.47
	/crafted/auction/paths/	420	0.04	0.04	1.96	0.83	1.92	0.19	0.23	0.48	0.64
	/crafted/auction/regions/	411	0.20	0.32	32.14	9.45	673.42	49.85	51.37	102.61	110.48
	/crafted/auction/scheduling/	419	0.10	0.12	16.22	2.03	49.85	26.90	26.89	32.06	32.30
	/crafted/coloring/	33	0.09	0.10	4.99	1.40	0.20	545.50	545.50	545.51	545.50
	/crafted/feedback/	6	0.70	0.70	3588.39	3600.11	11.64 1860.89 1874.08	1875.93	1873.07
	/crafted/kbtree/	1800	0.02	0.02	3.13	11.25	0.10	0.04	0.05	0.06	0.07
	/crafted/maxclique/dimacs maxclique/	49	0.71	1.32	279.08	126.90	955.60 1345.67 1342.14	1429.73	1428.12
	/crafted/maxcut/spinglass maxcut/unweighted/	5	0.02	0.02	0.82	0.44	0.02	0.01	0.01	0.01	0.01
	/crafted/maxcut/spinglass maxcut/weighted/	5	0.02	0.02	1.09	0.53	0.02	0.01	0.01	0.01	0.01
	/crafted/modularity/	6	0.19	0.29	1023.48	127.39	66.25	706.30	783.02	741.91	1442.57
	/crafted/planning/	65	0.16	0.29	638.85	60.62	7.41	0.93	0.96	2.33	4.73
	/crafted/sumcoloring/	43	1.29	1.94	727.49	963.61	255.72 1508.37 1508.36	1509.34	1512.68
	/crafted/warehouses/	49	4.10	9.48	735.80	735.83	4.09	29.48	29.54	28.80	29.82
	/qaplib/	5	0.08	0.09	119.05	278.53	7.38 1448.63 1444.95	1450.09	1449.22
	/qplib/	23	0.13	0.14	255.85	43.11	195.32	626.25	626.24	626.27	626.36
	/random/maxcsp/completeloose/	50	0.06	0.06	1.31	0.16	0.48	0.09	0.10	0.19	0.18
	/random/maxcsp/completetight/	50	0.02	0.03	6.35	12.68	0.47	0.21	0.25	0.31	0.33
	/random/maxcsp/denseloose/	50	0.02	0.02	166.78	0.06	0.11	0.03	0.03	0.03	0.03
	/random/maxcsp/densetight/	50	0.02	0.02	4.20	17.38	0.10	0.06	0.07	0.07	0.08
	/random/maxcsp/sparseloose/	90	0.03	0.03	611.38	0.05	0.06	0.04	0.04	0.04	0.04
	/random/maxcsp/sparsetight/	50	0.02	0.02	11.00	9.74	0.06	0.04	0.05	0.05	0.05
	/random/maxcut/random maxcut/	400	0.01	0.01	0.73	0.15	0.04	0.03	0.03	0.05	0.07
	/random/mincut/	500	1.09	2.43	14.40	86.22	1.12	0.88	0.87	0.87	0.87
	/random/randomksat/	493	0.02	0.02	3.42	0.17	0.13	0.07	0.10	0.16	0.31
	/random/wqueens/	6	1.33	1.49	992.85	502.42	644.87 1800.15 1800.20	1800.18	1800.60
	/real/celar/	23	0.27	0.28	1798.51	2972.69	66.56	300.76	219.91	495.26	1066.87
	/real/maxclique/protein maxclique/	1	0.26	0.44	25.24	6.77	1196.62	114.62	114.99	215.30	220.81
	/real/spot5/	1	0.01	0.01	0.62	0.08	0.11	0.03	0.03	0.04	0.04
	/real/tagsnp/tagsnp r0.5/	23	4.83	378.77	3338.53	2897.83	239.38 3155.96 3148.66	3172.58	3295.19
	/real/tagsnp/tagsnp r0.8/	80	1.52	22.82	1239.73	858.83	90.05	195.12	206.76	359.55	409.88
	Average over all groups	5371	0.55	13.17	495.38	417.59	143.17	471.21	471.49	491.88	538.35
	Average over groups with ≥ 5 instances	5369	0.58	14.04	527.54	445.20	112.82	498.80	499.08	517.49	566.88

Note, the symbol '+' in the expression f + M ⊥ denotes the sum of a vector and a set of vectors.

Super-reparametrizations were called virtual potentials in[START_REF] Komodakis | Beyond loose LP-relaxations: Optimizing MRFs by repairing cycles[END_REF] and sup-reparametrizations in[START_REF] Sontag | Tree block coordinate descent for MAP in graphical models[END_REF].

Notice that such an added weight function would not increase the bound[START_REF] Kolmogorov | Convergent tree-reweighted message passing for energy minimization[END_REF] since its weights are non-positive due to the fact that it needs to decrease the value for some assignments.

The quantity δ is the number of scopes S such that T S contains at least one tuple from R. In other words, for every assignment x ∈ D V , (S, x[S]) ∈ R holds for at most δ scopes. We remark that the value of δ could be in some cases decreased, thus decreasing also the values d, φ(x) . However, deciding whether[START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF] is not an R-deactivating vector for A for a given value δ and A is an NP-complete problem, seeTheorem 16. 

The problem of finding a minimal unsatisfiable core has been designated in[START_REF] Grégoire | On finding minimally unsatisfiable cores of CSPs[END_REF] to be 'highly intractable' based on results from[START_REF] Papadimitriou | The complexity of facets resolved[END_REF].

[START_REF] Nguyen | Triangle-based consistencies for cost function networks[END_REF] Note, for convenience we use a slightly unusual definition of arc consistency, allowing to restrict not only domains but also constraint relations. This definition was also considered in[5, §6] or[START_REF] Werner | Revisiting the linear programming relaxation approach to Gibbs energy minimization and weighted constraint satisfaction[END_REF].

Such reparametrizations correspond to soft arc consistency operations extend and project in[START_REF] Cooper | Soft arc consistency revisited[END_REF].

This is different from cyclic consistency as defined in[START_REF] Cooper | Cyclic consistency: a local reduction operation for binary valued constraints[END_REF]. E.g., reparametrizations are sufficient to enforce cyclic consistency, whereas super-reparametrizations are needed for cycle consistency.

This can be also stated asA| x i =k = A -{ ({i}, k ) | k ∈ D -{k} }.In other words, the solutions of the CSP A| x i =k are the solutions x to CSP A satisfying x i = k. This notation is used, e.g., in[START_REF] Bessiere | Efficient algorithms for singleton arc consistency[END_REF].

This is similar to the notion of Bool θ (f ) in [12, §11.1], tolerance δ in [30, §4.2], and mi [f ] in [5, §6.2.4].

In detail, we initializedθ = max k i ,k j g {i,j} (k i , k j )-min k i ,k j g {i,j} (k i , k j )+max k g i (k)-min k g i (k)where {i, j} ∈ C and i ∈ V is the edge and variable with the lowest index (based on indexing in the

input instance). The terminating condition was θ ≤ 10 -6 . In order to improve the efficiency of our method, we also decreased θ whenever the bound did not improve by more than 10 -15 in 20 consecutive iterations.

To avoid numerical precision issues, bounds Bm within B b ±10 -4 B b or B b ±0.01 are also normalized to 1. If Bw = B b , then the normalized bounds for all methods are equal to 1 on this instance.

This implies that the map SOL is isotone, i.e., A 1 ⊆ A 2 ⊆ T implies SOL(A 1 ) ⊆ SOL(A 2 ). Although isotony is obvious (clearly, enlarging the set of allowed tuples of a CSP preserves or enlarges its solution set), note that isotony does not imply preserved intersections. A weaker result than our Proposition 3 is [45, Theorem 3.2]: in our notation, it says that SOL(A 1 ) = SOL(A 2 ) implies SOL(A 1 ∩ A 2 ) = SOL(A 1 ).

To our knowledge, we are the first to notice this.

Recall that an operator is a closure [resp. dual closure] if it is isotone, idempotent and increasing [resp. decreasing], see e.g.[50, §1.4].

The term consistency closure, as used in constraint programming[START_REF] Bessiere | Constraint propagation[END_REF], is a dual closure in our notation because taking a consistency closure of a CSP deletes some of its allowed tuples (it would be a closure if the CSP was defined by a set of forbidden tuples).

The statement in Theorem 2(c) is equivalent to SOL(A * (f )) ∩ W = ∅ where W = { x ∈ D V | f, φ(x) = g, φ(x) }, i.e., satisfiability of CSP A * (f ) with an additional global constraint x ∈ W . As a corollary of Theorem 9, we have that SOL(A * (f )) ∩ W = ∅ =⇒ SOL(A * (f )) ∩ W = OPT(g) for any super-reparametrization f of g.

This cannot be reduced to the case in Corollary 2 because d in (26) has a special form.

Informally, G is the graph obtained from G * by adding 4 new vertices and including an edge between each pair of these new vertices.

In fact, our implementation already supports different domain sizes. We did not present our theoretical results for this generalized setting only to simplify notation.
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Proposition 4. For any X ⊆ D V , the set A ↑ (X) is closed under intersections, i.e., for any A 1 , A 2 ⊆ T we have

Proof. If X ⊆ SOL(A 1 ) and X ⊆ SOL(A 2 ), then X ⊆ SOL(A 1 ) ∩ SOL(A 2 ) = SOL(A 1 ∩ A 2 ), where the equality holds by Proposition 3. Proposition 4 implies A min (X) ∈ A ↑ (X), i.e., X ⊆ SOL(A min (X)). This shows that A min (X) is the smallest CSP whose solution set includes X. It follows that X = SOL(A min (X)) if and only if X = SOL(A) for some A ⊆ T .

The minimal CSP for X can be equivalently defined in terms of tuples:

Proposition 5 ( [START_REF] Montanari | Networks of constraints: Fundamental properties and applications to picture processing[END_REF][START_REF] Dechter | Constraint processing[END_REF]). We have

It remains to show that A min (X) ⊇ A . For contradiction, suppose there is a tuple (S * , k * ) ∈ A -A min (X). By definition of A , there exists x ∈ X such that x[S * ] = k * . However, since (S * , x[S * ]) = (S * , k * ) / ∈ A min (X), we have x / ∈ SOL(A min (X)). By x ∈ X, this contradicts X ⊆ SOL(A min (X)).

Recall that a CSP A is positively consistent [START_REF] Astesana | Constraint-based vehicle configuration: A case study[END_REF][START_REF] Bessiere | Global inverse consistency for interactive constraint satisfaction[END_REF] (called 'minimal' in [START_REF] Montanari | Networks of constraints: Fundamental properties and applications to picture processing[END_REF][START_REF] Dechter | Constraint processing[END_REF]) if and only if for each (S, k) ∈ A there exists x ∈ SOL(A) such that x[S] = k, i.e., each allowed tuple is used by at least one solution, i.e., no tuple can be forbidden without losing some solutions. Proposition 5 shows that A min (X) is positively consistent for every X ⊆ D V . Theorem 8. For any X ⊆ D V and A ⊆ T , we have

Proof. If A min (X) ⊆ A, then by isotony of SOL we have SOL(A min (X)) ⊆ SOL(A). Since X ⊆ SOL(A min (X)), we have X ⊆ SOL(A). If X ⊆ SOL(A), i.e., A ∈ A ↑ (X), then A min (X) = A ↑ (X) ⊆ A.

Comparing [START_REF] Bessiere | Theoretical analysis of singleton arc consistency[END_REF] with [START_REF] Bessiere | Efficient algorithms for singleton arc consistency[END_REF] shows that the set A ↑ (X) is just an interval (w.r.t. the partial ordering by inclusion):

Theorem 8 further reveals that the maps A min and SOL form a Galois connection [49] between sets 2 (D V ) and 2 T , partially ordered by inclusion 24 . Associated with the Galois connection are the closure operator SOL •A min and the dual closure operator 25 A min • SOL. We have already seen their meaning:

• For any CSP A ⊆ T , the CSP A min (SOL(A)) is the positive consistency closure 26 of A, i.e., the smallest CSP with the same solution set as A. A CSP A is positively consistent if and only if A min (SOL(A)) = A.

Proof. Define the vector f as

where

are the best and the second-best value of WCSP g. Note, if OPT(g) = D V , then F 2 is undefined but it does not matter because it is never used in [START_REF] Debruyne | Some practicable filtering techniques for the constraint satisfaction problem[END_REF]. Since ∅ = OPT(g) ⊆ SOL(A), CSP A is satisfiable. Therefore for each S ∈ C we have A ∩ T S = ∅, hence max

Equality A = A * (f ) now follows from [START_REF] Debruyne | Some practicable filtering techniques for the constraint satisfaction problem[END_REF].

To show that f is feasible for [START_REF] Sontag | Tightening LP relaxations for MAP using message passing[END_REF], we distinguish two cases:

To show that f is optimal for (18), we use [START_REF] De Givry | Existential arc consistency: Getting closer to full arc consistency in weighted CSPs[END_REF] to obtain B(f ) = S∈C F 1 /|C| = F 1 = max x g, φ(x) and apply Theorem 2.

Theorem 10. For every g ∈ R T , we have

Proof. The inclusion ⊇ says that for every optimal f we have OPT(g) ⊆ SOL(A * (f )), which was proved in Theorem 9. The inclusion ⊆ was proved in Proposition 6.

Now we combine the results of §5.1 and §5.2 to obtain the main result of §5. First observe that, by [START_REF] Dlask | Minimizing convex piecewise-affine functions by local consistency techniques[END_REF], the set (40) is just the interval [A min (OPT(g)), T ].

Theorem 11. For every g ∈ R T , the following statements are equivalent: (a) OPT(g) = SOL(A) for some A ⊆ T , (b) OPT(g) = OPT(f ) for some f optimal for (18).

If both statements are true, then statement (a) holds, e.g., for A = A min (OPT(g)) and statement (b) holds, e.g., if A * (f ) = A min (OPT(g)).

Proof. Let g ∈ R T . By Theorem 10, there exists f optimal for (18) satisfying A * (f ) = A min (OPT(g)). By Theorem 9, this f satisfies OPT(f ) = SOL(A * (f )).

By the results of §5.1, statement (a) is equivalent to OPT(g) = SOL(A min (OPT(g))). Therefore, if (a) holds, then (b) holds for the above f . In the other direction, if (b) holds for the above f , then (a) holds.