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Abstract: Increasing the range of electric vehicles (EVs) is possible with the help of eco-driving
techniques, which are algorithms that consider internal and external factors, like performance limits
and environmental conditions, such as weather. However, these constraints must include critical
variables in energy consumption, such as driver preferences and external vehicle conditions. In
this article, a reasonable energy-efficient non-linear model predictive control (NMPC) is built for an
electric two-wheeler vehicle, considering the Paris-Brussels route with different driving profiles and
driver preferences. Here, NMPC is successfully implemented in a test bed, showing how to obtain the
different parameters of the optimization problem and the estimation of the energy for the closed-loop
system from a practical point of view. The efficiency of the brushless DC motor (BLCD) is also
included for this test bed. In addition, this document shows that the proposal increases the chance
of traveling the given route with a distance accuracy of approximately 1.5% while simultaneously
boosting the vehicle autonomy by almost 20%. The practical result indicates that the strategy based
on an NMPC algorithm can significantly boost the driver’s chance of completing the journey. If the
vehicle energy is insufficient to succeed in the trip, the algorithm can guide the minimal State of
Charge (SOC) required to complete the journey to reduce the driver energy-related uncertainty to
a minimum.

Keywords: NMPC; two wheel; electric vehicle; eco-driving profile; efficiency; optimization; auton-
omy increasing

1. Introduction

Technology is improving the efficiency and use of electric automobiles due to the
increasing number of electric vehicles (EVs) on the market. EVs are becoming increasingly
popular since they are considered a clean option in terms of pollution, even though they
face various challenges (charging time, range, standardization of the charging process,
charging stations, and the recycling process). The balance between an eco-driving profile
and performance impacts the autonomy of the electric vehicle. EVs can be charged heavily
using renewable energy systems, which means fewer carbon emissions and more use of
renewable energy [1]. Switching to EVs can help reduce greenhouse gas emissions and
help people in some countries get ahead economically.

Advanced Driver Assistance Systems (ADAS) are algorithms that assist the driver.
According to [2,3], the algorithm’s main task is to set performance boundaries for a vehicle
based on a given criterion. Theoretical models, historical data, or unsupervised learning
systems can all be used [4–6]. When the algorithm determines that the current power
demand is insufficient to complete the journey, constraints on the use of the driver modes
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are placed on the vehicle’s performance [5]. These settings can be divided into Eco, Normal,
and Sports categories. The constraints may change depending on the algorithm. In some
cases, it alludes to the maximum motor power, maximum acceleration, or top speed [7,8].
There are also cases when eco-driving is computed when receiving trip time importance
and presenting each road point’s optimal speed [9].

Several techniques can improve the driving profile and vehicle-based autonomy [10].
The two most common are the driving alert system and the eco-driving characteristics
optimizer [11]. The distinction between them is the assessment of energy needs. The
driving alert system is used to notify the driver if the energy available in the vehicle is
insufficient to continue the trip. In the eco-driving optimizer, energy estimation helps to
decide what type of driving mode is necessary to ensure an energy consumption rate for
the duration of the trip. Therefore, the bounds provided by the speed profile optimizer
are constant and, in some cases, excessive concerning the actual needs of the driver. In
particular weather and road conditions, the efficiency of the BLDC engine decreases from
64% to 12%. Moreover, it has been proven that the input parameters affect an electric
motorcycle’s dynamic characteristics and consumption characteristics [12].

In this study, evaluating autonomy involves using dynamic models and external
data to ascertain whether the driver can successfully achieve the route. Considering
factors such as traffic, vehicle limits, and driver preferences can determine the ideal speed
profile to lower total energy use. Therefore, an eco-driving approach using a non-linear
predictive controller has been developed. All-electric vehicles can use the eco-driving
strategy. However, this article concentrates on two-wheeled EVs because the driver’s
activities account for the majority of energy consumption, and the size of the vehicles
imposes additional limits that must be taken into account. In [12], a simulation model of
the electric motorcycle was used to determine the velocity, propulsion torque, and electric
consumption characteristics with variable electric motorcycle mass, driver mass, wheel
radius, frontal area, and transmission ratio.

In this article, eco-driving algorithm design incorporates thermal, electrical, mechan-
ical, and theoretical models to predict power usage. To do that, the non-linear model
predictive controller (NMPC) is a helpful technique for prediction and optimization, for
example, in speed terms, [13]. This work develops a tool that enables users to maximize
energy efficiency depending on input data such as state of charge (SOC), distance traveled,
elapsed time, and speed. Because of this procedure, the EV will tell the driver the best speed
and driving conditions to cover the remaining distance most efficiently and cost-effectively.
This research shows how to implement the NMPC and practically compute different op-
timization problem parameters, such as (i) Weights of the cost function, (ii) Necessary
physical bounds in the constraints, and (iii) Efficiency of the motor concerning torque and
speed. This article gives a deeper understanding of what the authors proposed in [14] and
presents experimental results through a testbed platform. Here, it is shown how the test
bed is built and adapted to emulate the route Paris-Brussels. Practical implementation in
the test bed is crucial since it validates results from theory. Results indicate that the strategy
based on an MPC algorithm can significantly boost the driver’s chance of completing the
journey. If the vehicle’s energy is insufficient to succeed in the trip, the algorithm can guide
the minimal State of Charge (SOC) required to complete the journey to reduce the driver’s
energy-related uncertainty to a minimum. It gives results that can be achieved afterward to
integrate different power sources [15].

The rest of the paper is organized as follows. Section 2 presents the mathematical
model used in this work. Section 3 explains the closed-loop controller considering pertur-
bations. The experimental platform development that served as the basis for the present
research can be detailed in Section 4. The model validation is presented in Section 5, and the
experimental results and some findings of this research are presented in Section 6. Finally,
conclusions and future studies are given in Section 7.
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2. Mathematical Model

This section summarizes the mechanical model used to represent the degrees of
freedom of the vehicle motion. All the variables are listed at the beginning of this article.
The longitudinal model examines the accumulation of forces along the X-axis. Longitudinal
dynamics are set as shown in Figure 1. Other phenomena, such as wheel slip and angular
velocity, are excluded from this study [16–18]. According to [16], Newton’s second law of
motion in the X-axis is stated in Equation (1).

Figure 1. Force Diagram.

mẍ =
T

Rw f
+ Froll + Faerx + Fwsin(θs)sin(β) (1)

Considering that the aerodynamic force, rolling resistance force, and road slope are all
critical forces in a vehicle’s longitudinal motion [19,20], the aerodynamic force and Rolling
Resistance Force are stated as in (2) and (3), respectively.

Faer =
−1
2

ρCd A f (Vwind ∗ cos(αair))
2 (2)

Froll = −(µ0 + µ1 ẋ2)Fzcos(θs) (3)

Road friction parameters can take values from 0.001 to 0.00082 according to the road
conditions (new, wet, frozen, etc.) [20]. β is assumed used to be near 90◦. Road Slope
is stated as Fw = mg. The total traction force, from the right-hand of Equation (1), is
computed based on a power profile associated with θs. This process is vital for comparing
the performance of different vehicles since the energy demand depends indirectly on speed
values and the energy required by the EV to maintain a desired speed, for example, if there
are considered different road classifications (urban or rural), climate, and driving skills can
also be included in driving profiles.

The driving profile is the representation of vehicle speed vs. time. The shapes are
advantageous to designing, calibrating, or improving the test. Different driving cycles exist,
such as (EPA - United States Environmental Protection Agency, WLTP, and NEDC—created
by UNECE World Forum for Harmonization of Vehicle Regulations, Artemis—cycles
created during the Artemis project in EU) [21]. Figure 2 shows six different driving profiles,
which is helpful for the research.
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Figure 2. Driving Cycles for Evaluation.

Therefore, the energy used is a function of how a vehicle of 150 kg is affected by outside
forces and how well it works electrically. The study’s target route is Paris to Brussels, and
Google Maps determines the slope profile and wind speed data. Its analysis is required
to improve the performance of the controller. Moreover, according to [22], energy losses
may exist in various electrical or mechanical devices. Indeed, power losses are caused
by the BLDC motor’s electrical and magnetic properties. Magnetic losses are caused by
temperature fluctuations in the motor’s magnetic material. There are also losses which are
due to power loss in the winding. When the winding is loaded, core losses result from the
unintended magnetization of the core via inductive action [23–26].

Consequently, an efficiency map’s geometric representation can orient the optimal
controller in the correct direction and reduce the energy estimation error [18,27]. In [14], a
“Cauer network” is proposed in each circumstance to alter the resistance and capacitance
values anticipated by electrical models under temperature changes. The battery losses are
incorporated into the model, allowing for consideration of the internal losses of the battery
and their temperature-dependent change. Then, the expected error in energy use can be
kept below 5% without making the electrical models challenging to understand [28,29].
Therefore, according to [14], energy E can be modeled as stated in (4).

Ė =
T

Rw f E f f (ẋ, T)
ẋ (4)

where E f f (ẋ, T) represents the geometrical abstraction of the motor efficiency that shows
how the vehicle can behave in the real world [14].
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3. Model Predictive Control

This section shows a proposal for a Non-linear model predictive control (NMPC).
Its objective is to determine the proper torque T to drive a given distance using the least
feasible energy. Figure 3 depicts the implemented controller. It has a prediction horizon of
N = 10. These values balance the compilation time and speed/acceleration dynamics.

Figure 3. Control Diagram.

The proposed controller Figure 3 calculates the energy required to finish the trip εec

based on the remaining distance traveled Dreq and the current vehicle dynamics. External
variables related to noise from the Na actuators and Ns sensors are also included in the
control loop. The vehicle’s driver determines the speed x2re f . However, based on the
driver’s behavior and the estimated energy path, the system suggests the optimal driving
style β2 to be adopted by the driver. The algorithm implemented by the NMPC controller is
shown in Figure 4. There are both external and internal sources of errors. External factors,
such as traffic signals, influence the behavior of a vehicle driver. Internal sources include
sensors and actuators and can also alter the operation depending on their performance.
The closed-loop controller must also be able to reduce the impact of disturbances on vehicle
energy performance.

The estimated speed profile is responsive to the driver’s desires but bounds the
maximum speed values and tends to bring the average speed closer to the most efficient
speed value based on the torque required. The optimal problem solved by the NMPC is
stated in Equations (5) to (11).

min J
(

x, T, k
)

(5)

J(x, T, k) = β1β2φ1
(
x3(N)

)
+

N

∑
0
−β2φ2

(
x2(k), T(k)

)
+

(
x2(k)− x2re f

)2 (6)

s.t. Tmin ≤ T(k) ≤ Tmax (7)

0 ≤ x1(k) ≤ x1 f (8)

x2min ≤ x2(k) ≤ x2max (9)

0 ≤ x3(k) ≤ TotEne (10)

x(k + 1) = f
(
x(k), T

)
(11)

where (5) and (6) represent the objective function of the NMPC, β1 and β2 are parameters for
the optimization problem. β2 is computed to be used within the forecast horizon without
exceeding the vehicle or system capabilities and the estimation of the energy to finish
the journey εec [14]. Constraint (7) is the physical constraint that describes the maximum
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force mechanical structures can generate, including the maximum torque the system can
produce. The vehicle cannot replicate the behavior if the states are outside this feasible
region. Constraints (8) and (9) impose the feasible region and avoid an over-damped
behavior; constraint (10) is a physical limitation of the quantity of energy available in the
battery. (4), x(k) is a vector composed by the discrete variable of x, ẋ and E. Finally, φ1 to
φ2 are stated in (12) and (13) and (11) is a simplified discrete representation of the model
given in (1).

φ1
(

x3(k)
)
= x3(k) (12)

φ2
(

x2(k), T(k)
)
= E f f (x2, T) (13)

Figure 4. NMPC Algorithm.
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4. Experimental Platform

One of the objectives of this research is to propose a viable method for estimating
efficiency values in real-time of EV. In addition, it is necessary to ensure the accuracy of
the estimation process in the control algorithm. For achieving accuracy and viability, a
scale motorcycle model is built with a test bench to validate the proposed method (see
Figure 5). Furthermore, the geometric representation can be modified depending on the
engine parameters to obtain any efficiency point from the hyperbolic Equation (14). In
the test, two main characteristics are altered. First, the engine power is decreased due to
safety constraints, and the speed profile used is WLTP in urban, rural, and mixed environ-
ments. Thus, this section describes the mechanical specifications of the motorcycle platform
and the framework required to reflect internal and external events during operation accu-
rately. Experiments are conducted to determine the controller parameters indicated in the
previous section.

Figure 5. Practical Test bench image.

4.1. Specifications

The test bench consists of a BLDC motor that replicates the motorcycle’s traction
(traction motor). The traction motor is supported by a framework that ensures its integrity
even at maximum torque and speed. In addition, a system that may be adjusted to define
several torque profiles due to wind, slope, or weight variations is incorporated. In this
method, opposing forces are simulated by a torque generator by a 300-Watt auxiliary
engine connected to the traction motor through a generator-equipped bicycle chain. Both
electric machineries (traction motor and generator) are coupled to a 32-toothed cycling
disc. A Zenon load AL3008BLDC-200V-10KW MD2-1.06 is used to change the torque of
the generator. The Semikron 08753450/309 inverter interacts with the generator and the
load. This component rectifies the current profile of the asynchronous motor to supply the
changeable load with the current. Figure 5 depicts the experimental setup.

A BLDC1200 W from the OZO Speed Donkey kit with a maximum power rating of
1200 W, rated at 1000 W, and bounded to 25 A, is used. This kit converts conventional
motorcycles to electricity, and the maximum torque is 98 Nm and the maximum top speed is
30 km/h (due to the power supply of 36 V). It includes a field-oriented control mechanism
(FOC) and the option to contain or exclude Hall effect sensors. Here, dSPACE DS1104 real-
time controller board is the hardware and software interface. The traction is measured using
the encoder XCC1514TSM02Y with a constraint of 6000 rpm as the maximum revolution
speed. Figure 6 shows the electric integration between different elements.
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Figure 6. Electrical diagram of the test bench.

In determining the relationship between the voltage of the throttle signal and the
speed of the traction motor, the signal range is determined, and the throttle signal and
traction motor speed are compared. The measured voltage range for the unaltered throttle
signal is between 1.35 V and 2.65 V. This value means that the traction motor speed can
be controlled with a Vre f from 0 to 12 m/s. This values determines vmin and vmax. The
equation which describes the data behavior is Vac = Vre f ∗ (1/9.23) + (12.4/9.23), where
Vac and Vre f are the acceleration in volts and velocity in meters per second, the behavior is
showed in Figure 7.

Figure 7. Accelerator vs. motor speed voltage behavior.

It is important to consider noise due to hardware and software components. There
are two significant noise sources, the interaction between the sensor and the analog-to-
digital converter on the DSpace board and the exchange between the actuator and the
digital-to-analog converter. Furthermore, they can produce system oscillation.

The characteristics of the test are shown in Table 1 and in [30]. The sensors have errors
of 0.12 and 0.02, respectively. Moreover, the actuator error resulting from throttle and driver
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variations has an RMS error of 0.4, which is incorporated into the ADC resolution, which
can affect the open loop motor controllability is essential.

Table 1. Parameters related to Test bed [30].

Device Parameter Value

Motor System

Technology BLDC

Nominal power 1200 [W]

Max power 1365 [W]

Max speed 40 [km/h]

Max torque 98 [Nm]

Wheel diameter 21 [cm]

Braking System

Technology Brushless

Nominal power 300 [W]

Max current 0.95 [A]

Max speed 1500 [rpm]

BLDC inverter

Control technique full wave rectifier

Nominal voltage 15 [V]

Max voltage 56 [V]

Max output current 25 [A]

Brake inverter

Control technique Full wave rectifier

Nominal control voltage 15 [V]

Nominal voltage 200 [V]

Max output current 25 [A]

Encoder

Encoder type Incremental encoder

Shaft diameter 14 [mm]

Resolution 256 to 4096 [points]

Max speed 60,006 [rpm]

Voltage Supply 5 to 30 [V]- DC

Voltage sensor

Range 500 [V]

Resolution 100 [mV]

Voltage Supply 220–240 [V]-AC

Current sensor

Range 50 [A]

Resolution 10 [mA]

Supply voltage 220–240 [V] - AC

Variable load

Voltage range 10–1000 [V]

Voltage resolution 100 [mV]

Max input power 14 [kW]

Current resolution 100 [mA]

Voltage Supply 220–240 [V] tri phases

DSpace card

I/O range −10 to 10 [V]

I/O resolution 1 [mV]

I/O max current 0.005 [A]

Voltage Supply 12 [V]
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Speed profile NREL class 3 described in Section 2 gives the least sensitive energy
behavior for external perturbations, with a 16% increase over the projected energy per
kilometer. In addition, the WLTC class 2 velocity profile is most influenced by disturbances
present on the experimental platform, with an increase in power per kilometer of 25%.

4.2. Efficiency and Bounds

The mechanical limits and efficiency maps were derived by logical programming,
co-simulation, and the magnetic simulation software ANSYS/Maxwell©), such as in [31].
The assessed parameters of the electric motor are shown in Table 1 as in [30]. This initial
stage allows the estimation of subsequent phases’ and predicts outcomes.

Then, perform rotor blocking testing. This test attempts to impede the rotor with a
progressive load. Throughout each trial, the load must exceed the motor’s maximum load
at maximum speed. Consequently, the rotor’s speed must decrease, and the mechanical
limits of the engine will be identified. This process is crucial to prevent motor damage
and to remember that the maximum torque obtained during this test must be less than
90 percent of the maximum torque motor limitation. Next, the values of the efficiency
maps inside the area identified by the rotor blockage test were calculated. The data are
extracted from the datasheet, and the traction motor parameters are shown in Table 1. Then,
construct a linear representation of the mechanical motor restrictions determined in the
preceding phase. Finally, Check the maximum efficiency level. Since an initial efficiency
estimate is made in step 1, verifying the maximum value by working as near as feasible to
that point and measuring the efficiency value is necessary. After the co-simulation process
shown in Figure 8, the rotor blocking test gradually obstructs the motor’s rotor. In addition,
because torque cannot be measured, the link between speed and torque shown in the
depiction of simulated efficiency is used. A method for preventing exceeding 90 percent of
the maximum torque is keeping the speed value at no less than 30 percent of the maximum
speed. From Figure 8, it is around 160 rpm.

Figure 8. Efficiency map estimation result E f f (x2, T).

Due to the rotor blocking test, the speed restriction shown in Figure 9 is determined.
This representation is oriented and positioned again in a plane (speed-torque ) using the
following information: minimum and maximum speed (x2min = 0 and x2max = 12), minimal
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and maximal torque (Tmin = 0 and Tmax = 95), and co-simulation results as shown in
Figure 10.

Figure 9. Experimental result of speed curve during rotor blocking test

Figure 10. Simplified efficiency representation.

After obtaining the constraint speed curve, linear representations are incorporated and
integrated into the estimation process. The linear expressions defined by the expression:
Yi = miXi + bi. Where Yi is the torque, ist Xi is the velocity i-st, and bi, mi are the Y-axis
intercept and the slope. The obtained values are presented in Table 2, which shows the
linear representations of the physical limits of the system. It is essential to mention that this
approximation is made to avoid the overburden in computation time due to nonlinearity.
Figure 10 shows the speed-torque constraints of the motor with the efficiency map and the
linear approximations with the points where these limits start and end.
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Table 2. Linear approximation of torque-speed constraints.

Slope Value Intercept Value

m1 −2.92 b1 40.86

m2 −6.45 b2 68.96

m3 −10.81 b3 94.57

m4 −37.97 b4 219.74

m5 −97.18 b5 443.03

Finally, the geometrical representation needs a suitable efficiency value to orient the
optimization issue from NMPC in Equations (5)–(11). To verify convergence, the bike
training roller’s brake is used to measure torque near maximal efficiency. Zenon variable
electrical load makes modest modifications. The geometrical representation’s proposed
total efficiency point is inaccurate by 67 rpm in speed and 7.1 Nm in torque. The Speed-
Torque limitations curve and simulated efficiency map from Figure 8 are used to calibrate
this number. Thus, the geometrical representation shifts to the maximum point. The
simulation and calibration resulted in Figure 10 and Equation (14).

E f f
(
T, x2

)
= B0 − B1

(
T − xc

)2 − B2
(
x2 − yc

)2 (14)

where B0 = 92.6, B1 = 1.2859e−4, B2 = 0.0011, xc = 204 and yc = 32.6.
Figure 10 represents the physical constraints of the experiment. The absolute power

limits of the torque speed curve, which has a non-linear nature, are depicted in black “o”.
Because of the non-linear limitations, an approximation to the natural limits is required;
the approximation is replicated by the five red “o” curves. This recreation aims to develop
a series of linear functions “function by parts” to linearize the physical limits to ensure the
shortest possible computation time in the MPC structure. Each linear limit’s change limits
are denoted by an “x” in red.

4.3. Speed and Energy Coefficient

Once the efficiency function has been computed, the information must be included
in the block “energy estimation” of Figure 3. This parameter allows you to evaluate the
battery’s energy quantity concerning the required distance to perform a more stringent or
light estimation. The first test estimates the energy parameter along the velocity signal in
the form of steps. This test allows investigation of the energy coefficient at various values
to check the suggested efficiency function and demonstrate the minimal energy coefficient
the controller platform can get in constant speed profiles. The current, velocity, power, and
voltage signals are displayed in Figure 11 are acquired due to the test.

The power is integrated along the time corresponding to each step and divided by the
distance covered to calculate the energy used in each speed signal phase in stairs shapes.
Torque area test from 0 to 10 Nm is also essential. This torque spans all speeds. The driver’s
necessary distance and battery SOC are used to calculate the highest practicable energy
coefficient needed to complete the journey. The εec coefficient is determined from the total
energy consumed over the trip’s distance and represents the energy used per kilometer.
In addition, the estimation block looks at past traffic data to estimate the speed profile.
Estimating the profile is vital for the Eco-Driving Controller to work in real-time and to take
into account the randomness of the actual driving cycle. Figure 12 depicts the relationship
between EFF and β2. In this figure, while the β2 increases, the energy required to achieve
the trip decreases. Figure 12 shows the energy coefficient data and the εec energy estimation
comparison with β2.



Energies 2023, 16, 1950 13 of 28

Figure 11. Speed vs. Power.

Figure 12. Energy coefficient behavior.

Now that the whole efficiency function and parameters have been calculated, a test
to achieve the β2 value may be performed. This test estimates the speed profile along
various variables to determine the controller’s optimal performance. This test is performed
without any extra disturbance (actuator and sensor disturbances proper of test bed), and
the velocity profile estimates are assured of avoiding a perturbation that an open-loop
controller cannot fix. As a result of the tests, the most efficient velocity in this torque range
is roughly 4 m/s, which translates to 204.6 rpm. Then, increasing β2 always ensures that
the energy coefficient goes down. Lastly, Figure 12 shows the result of this test.

5. Model Validation

The approach used to validate the mathematical model with the experimental model
under specific operation settings is described in the following paragraphs. In this section,
it is vital to note that, according to [17], lateral dynamics are not required to indicate the
vehicle’s energy condition. This assumption is only valid if the speed is less than 60 km/h,
and as demonstrated below, all tests are only valid for velocities less than 60 km/h; indeed,
the testbed has a max speed of 40 km/h. The proposed road (see Figure 13) consists of
two 50-meter-radius curves with a bank angle of 30% and a junction with an elevation
of 2 meters and a slope angle of 5◦. A virtual test scenario is incorporated into a vehicle
dynamic simulation tool to validate the model’s behavior. Two tests are conducted: one with
constant and varying speeds to determine the yaw reaction at different speeds and another
with variable speeds within the same range to determine the error’s dynamic response.
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Figure 13. Designed Road.

5.1. Constant Speed Test

This test verifies the behavior shown in Equation (1) and identifies discrepancies in the
model. Using the linear pneumatic friction model, the inaccuracy of angle yaw increases
rapidly. As shown in Figure 14, the estimation is deemed acceptable if the longitudinal and
lateral speed has an error less than 5%.

Figure 14. Static speed profile results (error percentage).

Therefore, a speed profile estimator cannot use yaw information as a constraint under
these conditions. Figure 15 displays the test’s error rate.
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Figure 15. Static speed profile results (error percentage).

5.2. Dynamic Speed Test

Due to changing speed references, this test’s error rate may rise. As illustrated in
Figure 16, under dynamic speed conditions, a forecast horizon of fewer than 10 s is reason-
able.

Figure 16. Dynamic speed profile results (error percentage).

Figure 17 depicts the prediction horizon for the model’s present accuracy. These results
demonstrate the prediction horizon in 8 s for errors in longitudinal velocity and yaw angle
of less than 10%.
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Figure 17. Dynamic speed profile results (error percentage).

To fully understand the impact of the current findings, a sensitivity analysis must be
conducted to see how the error % varies as a function of the friction coefficients. However,
the Pacejka equation represents the friction coefficients’ non-linear behavior in the simulator,
despite the model’s assumption that they are constant. (see Figure 18 [17]), better results
are expected with a more accurate estimation of these parameters for a 0 to 60 km/h urban
drive profile.

Figure 18. Tire Pressure Curve Calculator (with Magical Formula- Pacejka equation).

5.3. Simulation Results after Sensitivity Test

The sensitivity test is based on how each adjustment in friction coefficient impacts
the average percentage error between the analytical model and the simulated model. The
pneumatics industry has recognized physical limits to pneumatic dynamics and friction
coefficients, which are described by minimum and maximum test results. It is crucial to
note that in the test with an a priori estimation value, only one of the four parameters
changes during the experiment. The selected delta values guarantee that the model’s
state does not fluctuate by more than half a percent from iteration to iteration. The aver-
age yaw error fell by 73% after new friction coefficients were implemented, as expected
by the sensitivity analysis. According to the results of the static speed test (shown in
Figures 19 and 20, the average error percentage is 1.15 percent for longitudinal speed and
3.40 percent for yaw angle. Even if the mean errors increase during the test, the ratio stays
around 1/100 s for a longitudinal speed and 1/40 s for a yaw angle.
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Figure 19. Static speed profile results after sensitivity test.

Figure 20. Static speed profile results after sensitivity test (error percentage).

Moreover, the dynamic speed test in Figures 21 and 22 indicate a mean error percentage
of 4.47% for longitudinal speed and 23.12% for yaw angle, with the sensitivity changes.
The revised friction coefficients determined by the sensitivity test drop to 71.97% of the
mean error percentage during the dynamic speed test compared to the previously reported
yaw mean error percentage.
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Figure 21. Dynamic speed results after sensitivity test.

As shown in Figure 22, even though the yaw angle implies the error percentage is still
significant, the improved results allow for a forecast horizon of 66 s when an acceptable
yaw error is less than 10%. Results may be satisfactory up to a speed of 60 km/h (urban
speed profile); however, the lateral dynamic model can reproduce the mechanical behavior
of a motorcycle in the presence of roll, slope, and bank angles with a maximum error of
10% on time around 1 min; this error represents an unacceptable energetic representation
in the electric model. The lateral dynamic model’s maximum speed values will be used
as constraints in estimating behavior since their primary function is to ensure the driver’s
safety and comfort over the proposed speed profile. Because of its ability to provide an
energy estimate that is both fast and precise enough for use in the control phases, the
longitudinal model is chosen.

Figure 22. Dynamic speed profile results after sensitivity test (error percentage).

6. Test Results

This section covers the elements needed to determine the eco-driving strategy’s oper-
ating torque and speed range. The purpose of the exam is to:

• Expected autonomy exploration and comparison with autonomy attained using speed
and position state feedback.

• To contrast predicted autonomy with autonomy attained in a particular scenario with
energy feedback.
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• The effect of the velocity estimator on the control signal is investigated. Because the
velocity estimator has a 28% possibility of misinterpreting, this inaccuracy generates
an initial energy estimate error that the closed-loop controller must fix. To understand
the controller capabilities appropriately, the estimation results must address the worst-
case scenario.

The first test consists in running the same distance many times at different speed
profiles with a specific Set on β2 value to establish the energy consumption throughout the
path. Then, β2 is varied to assess its impact on all velocity profiles, sensor, and actuator
errors. Additionally, β2 is adjusted based on the maximum normalized energy usage
(kW/km) for each WLTC category (class 6, class 3, class 2, and class 1). Each criterion
assesses the maximum normalized energy usage based on a rural and urban trajectory.
Figure 23 illustrates the relationship between β2 and the normalized peak energy consump-
tion (kW/km). In Figure 24 is presented the autonomy behavior of the test.

The estimated autonomy in the test bench findings is reduced from 30% in simulation
to 20%. The energy coefficient exhibited similar behavior to that observed in the simulation
but with notable changes in autonomy. While the speed profiles have equal autonomy
with low β2 values, the simulations demonstrate that the “Class 3” speed profile is the
most battery-consuming. Furthermore, rural speed profiles are more likely to improve
autonomy than urban speed profiles. Both variances are due to motor power and projected
efficiency function. The speed range of the motor is limited. It results in a distinct behavior
of the efficiency function, leading the stop times and lower speed trajectories to be more
efficient than in a larger motor, even when the speed profiles are normalized to be coherent
between both tests. At the same time, there are striking parallels. The ranges of autonomy
estimation are still consistent across the two studies. Except for the “NREL Class 3” speed
profile in its urban and rural approaches, the autonomy variation of β2 from minimum to
maximum is roughly 20% (in the simulation experiment, it was 30%). Because of the halted
time in each speed profile, the autonomy augmentation recorded by the “Class 3” speed
profile is more significant than 30% in both circumstances (simulation and test bench). The
controller’s primary function is to assure the trip distance required by the driver under
various beginning conditions. For these reasons, it is important to investigate the dynamic
of energy estate and how β values can correct miscalculations caused by the speed profile
estimator.
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Figure 23. Energy coefficient along each speed profile.

Figure 24. Autonomy comparison.

In the second test, the energy state is sent to the controller so that the energy coefficient
can be fixed through the β2 parameter. This value is dynamically varied from 0 to 5 β2maxA
without traffic restrictions and from 0 to 2 with traffic constraints β2maxNA . The test results
are provided in Table 3.
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Table 3. Closed-Loop distance error values.

Maximum β2 → β2maxA

SOC [%] Expected by
Estimator [km] Reference [km] Computed [km] Distance Error [%]

100 79.70 71.73 71.05 −0.95

50 39.84 35.86 35.48 −1.06

20 15.93 14.34 14.07 −1.92

Middle β2 → β2maxNA

SOC [%] Expected by
Estimator [km] Reference [km] Computed [km] Distance Error [%]

100 70.5 70.5 70.61 0.16

50 35.25 35.25 35.25 0.54

20 14.1 14.1 14.08 0.09

Minimum β2 → β2min

SOC [%] Expected by
Estimator [km] Reference [km] Computed [km] Distance Error [%]

100 60.7 60.7 64.07 5.49

50 30.36 30.36 32 5.4

20 12.1 12.14 12.24 0.8

As can be seen, distance error (difference between driver request and vehicle location)
is always less than 5.5%. This indicator can improve if only cases in which the trip still
needs to be completed are considered. These produce error decreases to approximately 2%
in the absence of traffic conditions.

Under traffic conditions where β2 cannot be rapidly saturated due to unplanned stops
and a brief period where traffic is not restricted (the vehicle is stopped), distance error drops
to a minimum of 0.6%, which means the eco-driving approach can guarantee 99.4% of the
distance required by the driver under realistic traffic, weather, and road circumstances. This
result shows an optimum speed profile with a correlation of approximately 0.87 with the
driver-proposed initial speed profile. The speed profile provided by the NMPC can be seen
in Figure 25. The maximum and minimum values are avoided in experimental findings and
simulation, except for unplanned stops. The resulting speed profile is sensitive to speed
changes proposed by the driver. It maintains a soft constraint over the speed values to
ensure the safety and comfort of passengers and dynamically controls the intended energy
consumption rate by integrating the speed constraint. All reported results do not account
for estimated errors. It indicates that the speed profile calculation was accurate in every
instance. The estimator’s precision is 72%. The impact of this inaccuracy is examined in the
following section.
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Figure 25. effect of speed estimation.

This evaluation uses a variety of speeds and accelerations to try to guess how much
energy will be needed to finish the trip, whether in a city or a rural setting. Appropriately
approximating the speed profile (rural or urban) yields accurate estimates. The estimation
error is 72% when the data is less than 120 s and 88% when it is 500 s. Then, from this
concept, Figures 26 and 27 show two situations of correct estimation via the behavior of
the signal beta2 and its effect on the estimated range along the route. The anticipated
speed profile utilized in instance A is “class 3 urban,” with SOC in 100% for the start and
70.5 km of distance trip. The estimation is correct in this situation, but due to the inaccuracy
produced by the amplitude of the disturbance relative to the velocity signal, β2 must fix
the energy parameter to demand the suitable energy required and reduce the distance
error to 0.82%. However, in some circumstances, the perturbation magnitude is modest
enough that the β2 value does not need to be corrected. Figure 27 depicts an example of
this circumstance. The estimation and used velocity profile are equaled, except because the
initial SOC is 20%, and the distance is 14.1 km. The distance inaccuracy in this situation is
roughly 0.18 m.
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Figure 26. Case A, Good estimation.

Figure 27. Case B, Good estimation.
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Between proper and inaccurate categorization, a medium category will be designated
(wrong estimation). An accurate velocity estimation seeks to decrease the distance error,
but the random behavior of the disturbances accounts for a significant portion of the error
compared to the speed data. The proportional energy controller can manage the energy co-
efficient inaccuracy with some time delays if the speed profile is incorrect, but the approach
(rural or urban) is right. The outcomes of these cases are depicted in Figure 28. In this
scenario, the starting SOC is 50% and is configured at 35.25 km for the trip. The inaccuracy
induced by incorrect velocity profile estimation generates an inaccuracy corrected by the
controller, but the control signal is sluggish due to the significant variation in sampling
time. In those circumstances, though, the distance inaccuracy remains at approximately
1.3 percent. This final distance mistake is determined by the amount of distance traveled
and the misunderstood speed profile.

Figure 28. Correct urban/rural estimation.

A “completely erroneous estimation” is achieved when the urban/rural approach
and velocity profile are misconstrued or the anticipated velocity profile has a high energy
coefficient compared to the genuine one. As seen in Figure 29, the control signal saturates
itself to minimize the energy coefficient error as much as possible. If the required distance
is short, the inaccuracy can be as low as 4% if enough time is allowed. The inaccuracy is
even reduced to 2.12%. (as in the presented example). In certain circumstances, the control
signal climbs to the maximum speed variable limitations, resulting in a trip that behaves
more like a driver-controlled experience than an autonomous experience.
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Figure 29. Bad speed profile estimation.

Furthermore, the distance error is negative, indicating that the vehicle will not be
able to complete the journey. The likelihood of encountering this circumstance within a
measurable period of 120 s is approximately 20%. This reduces the possibility of completing
the trip with a distance error of less than 1.5% from 98.4% to 78.4%. As a result, an additional
estimating tool is used. When the difference between the predicted and observed energy
coefficient is more than 10 W/m, the rural/urban approach estimates are replaced by the
hypothetical rural/urban approach inferred from the road type used (highway, urban road,
etc.). Using this approach, if the distance error is about 1.3 percent and the error is positive,
it is considered “totally incorrect estimation,” in addition to “bad estimation” (It means the
trip is completed with the remaining energy in the battery).

7. Conclusions

This article presented a practical energy-efficient non-linear model predictive for an
electric two-wheeler vehicle with different driving profiles and driver preferences. In the
proposal, the feedback loop allows energy computation and estimates the parameters in
the cost function of the problem. Moreover, it is shown how to implement the NMPC
in a test bed with its specifications and the different test. The proposed method has
been successful regarding the energy consumption of the vehicle. Indeed, the presented
implementation concludes that the NMPC can be used under realistic conditions with
specific configurations well adapted to real-time operation. Comparisons with simulations
showed an excellent approach. Even if the speed profile estimator has 72% reliability, the
supplemental information on the rural/urban component of the speed profile derived
from historical data was enough to guarantee a 98% probability of finishing the trip with
various initial SOC or driving behaviors. The gap between the absolute needed and the
final required distance was less than 1.5 percent. The distance error is positive in 98% of
the cases, which indicates that the distance traveled is always more significant than the
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amount required by the driver. Finally, the tighter speed profile restrictions allow for a 20%
increase in autonomy.

Future research could compare and improve new speed profile estimators to mitigate
this effect. Lastly, estimating energy use increases autonomy by about 20%, even when
the estimated speed profile keeps a 68% correlation with the driver’s most demanding
speed profile. The eco-driving technique suggested and validated in this work effectively
reduces the energy requirements for transportation. It is a tool for increasing the presence
of electric vehicles in the transportation sector due to the driver’s confidence in the vehicle’s
autonomy capacity and the reduction in energy needs.
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Abbreviations
ADAS Advance Driver Assistance System
BLDC Brushless DC
EV Electric Vehicles
FOC Feld-Oriented Control
GUI User Graphic Interface
MPC Model Predictive Controller
NMPC Nonlinear Model Predictive Controller
NREL National Renewable Energy Laboratory Drive Cycle
PI Proportional–Integral
SOC State of Charge
WLTC Worldwide harmonized Light-duty vehicles Test Cycles
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Nomenclature
ẍ Acceleration
Faerx Aerodynamic Force in X-axis
ρ Air Density
αair Angle Between Air and Vehicle Direction
β Bank Angle
Nc Control Horizon
ẋ1 Distance
Cd Drag Coefficient
Rw f Effective Radius of Rear Wheel
EVs Electric Vehicles
E Energy
εec Energy necessary to end the trip
t f Final Time
A f Front Area
g Gravity
t0 Initial Time
m Mass
Tmax Maximum Torque
Tmin Minimum Torque
E f f (X2, T) Motor Efficiency Abstraction
Fz Normal Force
β11 Cost Function Normalized coeff
β13 Cost Function Normalized coeff
β12 Cost Function Normalized coeff
Np Prediction Horizon
µ0,1,2 Road Parameters
µ1,2 Road Parameters
Froll Roll Resistance
s Seconds
θs Slope
ẋ Speed
t Time
ts Time Period (1000 s)
T Torque
TotEne Total Energy
d(t) Travel Distance
Fl Uncontrolled Torque Inputs (losses)
ẋ3 Vehicle energy
ẋ2 Vehicle Speed
Fw Weight
Vwind Wind Speed
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