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Abstract

Generators of space-time dynamics in bioimaging have become essential to build
ground truth datasets for image processing algorithm evaluation such as biomolecule
detectors and trackers, as well as to generate training datasets for deep learning algo-
rithms. In this contribution, we leverage a stochastic model, called birth-death-move
(BDM) point process, in order to generate joint dynamics of biomolecules in cells.
This approach is very flexible and allows us to model a system of particles in mo-
tion, possibly in interaction, that can each possibly switch from a motion regime (e.g.
Brownian) to another (e.g. a directed motion), along with the appearance over time
of new trajectories and their death after some lifetime, all of these features possibly
depending on the current spatial configuration of all existing particles. We explain
how to specify all characteristics of a BDM model, with many practical examples
that are relevant for bioimaging applications. Based on real fluorescence microscopy
datasets, we finally calibrate our model to mimic the joint dynamics of Langerin and
Rab11 proteins near the plasma membrane. We show that the resulting synthetic
sequences exhibit comparable features as those observed in real microscopy image
sequences.

Keywords: Simulation and Image Synthesis, Intracellular dynamics and Molecular
Motion, Fluorescence Microscopy, Birth-death-move process, Spatial Statistics.
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1 Introduction

A long-term goal in fundamental biology is to decipher the spatio-temporal dynamic coor-
dination and organization of interacting molecules within molecular complexes at the single
cell level. This includes the characterization of intracellular dynamics, which is essential to
a better understanding of fundamental mechanisms like membrane transport. To that end,
dedicated image analysis methods have been developed to process challenging temporal
series of 2D-3D images acquired by fluorescence microscopy, see for instance [13].

In this context, mathematical and biophysical models are indispensable to decode the
traffic flows of biomolecules. They constitue crucial prior motion models in most particle
tracking procedures [8; 24], and they are needed to carry out simulations in order to, for
instance, evaluate the performance of image analysis algorithms and train complex models
like supervised deep neural networks [16; 1]. In past years, stochastic models for individual
trajectories of particles have been introduced, allowing for Brownian, confined or directed
motions with variable velocities within the cell [4; 5; 10; 6; 23; 7; 16], and possibly sup-
ported along a cytoskeleton network [14; 12]. However, these modelling approaches hardly
represent the collective motion of particles and global biomolecule trafficking. The latter
should ideally include possible interactions between biomolecules, in particular between
different types of proteins, giving raise to the colocalisation phenomena observed in several
applications [2; 9; 15; 19]. It should also be able to generate the lifetime of each trajectory,
its spatial distribution and its starting time during the simulated image sequences.

We propose in this contribution to leverage a tailored stochastic model introduced in
[18], which is able to generate the aforementioned features. This so-called birth-death-move
(BDM) spatial point process is a flexible model for the dynamics of a system of particles
(here a group of biomolecules), that move over time, while some new particles may appear
in the cell and some existing particles may disappear. We further add the possibility for
each particle to be marked by a given label, e.g. among different possible labeled proteins
and/or different types of motion regimes, and this mark may change over time, e.g. a
particle may switch from one regime (e.g. Brownian) to another (e.g. subdiffusive). This
switch of a mark is sometimes called a “mutation” in the literature, but we prefer here to use
the term “transformation” to avoid misunderstanding with a genuine biological mutation.
Moreover the trajectories can be driven by any continuous Markov diffusion model, that
includes all models for individual trajectories previously considered in the literature, and
some interactions may be introduced so that colocalization phenomena can be generated.
The intensity of births, that govern the waiting time before the next appearance of a new
particle, may depend on the current configuration of particles, and similarly for the intensity
of deaths. For instance, we may design that the more biomolecules in the cell there are,
the higher the death intensity is, implying a rapid disappearance. Some spatial effects may
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also be taken into account, in order to create distinct motion regimes in some regions of the
cell, or to encourage some spatial regions for the appearance of a new particle, e.g. nearby
some existing particles due to colocalization.

Figure 1: Left: set of all trajectories detected and tracked over a real image sequence of Langerin
proteins, colored by their estimated motion regime (Brownian in blue, superdiffusive in red and
subdiffusive in green). Right: result from a synthetic sequence generated by our stochastic model.

The remainder of the paper is organized as follows. In Section 2, we give the precise
definition of our stochastic process, and we in particular list all ingredients needed to fully
specify the model. An iterative construction is presented in Section 2.2, clarifying how
the dynamics proceeds, and an effective simulation algorithm is formally detailed in the
appendix and made available online. In Section 2.3, we provide numerous examples for the
specifications of the model, that we think are relevant for many real biomolecules dynam-
ics. In Section 3, we demonstrate the potential of our generator by focusing on the joint
dynamics of Langerin and Rab11 proteins being involved in membrane trafficking. Our
approach starts by the inspection of a real dataset in order to choose and calibrate judi-
ciously the different parameters of the BDM model. This dataset consists of a sequence of
images acquired by 3D multi-angle TIRF (total internal reflection fluorescence) microscopy
technique [3], depicting the locations of Langerin and Rab11 proteins close to the plasma
membrane of the cell, specifically over a distance of 1 µm in the z-axis. After some post-
processing, the sequence shows a set of trajectories for both type of proteins, that follow
different motion regimes, are spatially distributed within the cell in a specific way, and
occur at different periods during the sequence, which is in perfect line with the dynamics
of a BDM process. The observed trajectories for the Langerin channel are depicted on the
leftmost plot of Figure 1. We compute a set of descriptors from this dataset in order to cal-
ibrate the parameters of our stochastic process, but also to create some benchmark features
for the assessment of our synthetic sequences. Finally, in Section 3.2, we generate several
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simulated sequences and show that they exhibit comparable features as those observed in
the real sequence. An example of generated trajectories is displayed in the rightmost plot
of Figure 1.

Supplementary materials, including the Python code for simulation, the raw data and
some further simulated sequences, are available in our online GitHub repository at https:
//github.com/balsollier-lisa/BDM-generator-for-bioimaging.

2 The mathematical model

2.1 Heuristic and notations

In order to mimic the dynamics of biomolecules, we consider a multitype birth-death-move
process with mutations, denoted by (Xt)t≥0.This process is a generalisation of birth-death-
move processes, as introduced in [18]. In the following, to avoid misunderstanding we
rather use the term “transformation” instead of “mutation”, as explained in Section 1. This
section describes the spatio-temporal dynamics of (Xt)t≥0 and introduces some notation.

At each time t, Xt is a collection of particles located in a bounded set Λ of Rd. Each
particle is assigned a mark that represents a certain feature. We denote by M the collection
of possible marks. Through time, the particles move (possibly depending on their associated
mark and in interaction with each other) and three sudden changes may occur, that we
call “jumps”:

1. a “birth”: a new particle, assigned with a mark, may appear;

2. a “death”: an existing particle may disappear;

3. a “transformation”: the mark of an existing particle may change.

Example: In our biological application treated in Section 3, Λ represents a cell in dimen-
sion d = 2 or d = 3. We observe inside this cell two types of particles, associated to Langerin
and Rab11 proteins, and each of them moves according to three different possible regimes:
Brownian, superdiffusive or subdiffusive. For this example, each particle is therefore marked
out of 6 possibilities, whether it is associated to Langerin (L) or Rab11 (R), and depend-
ing on its motion regime (1 to 3), so that M = {(L, 1), (L, 2), (L, 3), (R, 1), (R, 2), (R, 3)}.
Through time, each particle moves independently of the others according to its motion
regime and eventually a new particle may appear, an existing one may disappear, and the
motion regime of some particles may change.
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We denote by n(Xt) the number of particles at time t. Each particle xi ∈ Xt, for
i = 1, . . . , n(Xt), is decomposed as xi = (zi,mi) where zi ∈ Λ stands for its position while
mi ∈M denotes its mark. Accordingly we have Xt ∈ (Λ×M)n(Xt). (Strictly speaking the
ordering of particles in Xt does not matter, because any permutation of particles leads to
the same collection of particles. We choose in this paper to bypass this nuance and use the
same notation as if Xt was a vector a particles, even it is actually a set of particles.) Since
the number of particles changes over time, the stochastic process (Xt)t≥0 takes its values
in the space

E =
⋃
n∈N

(Λ×M)n.

To stress the fact that Xt is not a simple value but encodes the positions and marks of a
system of particles, we will say that this system at time t is in configuration Xt.

To fully specify the dynamics of (Xt)t≥0, we need the following ingredients:

1. A system of equations (Move) that rules the way each particle of Xt moves continu-
ously between two jumps. We will typically consider a system of stochastic differential
equations acting on the position of each particle, possibly depending on their associ-
ated mark and in interaction with the other particles;

2. Three continuous bounded functions β, δ and τ from E to [0,∞), called birth, death
and transformation intensity functions respectively, that govern the waiting times
before a new birth, a new death and a new transformation. At each time t, we may
interpret β(Xt)dt as the probability that a birth occurs in the interval [t, t+dt], given
that the system of particles is in the configuration Xt, and similarly for δ and τ .

3. Three transition probability functions that indicate how each jump occurs:

• pβ((z,m)|x): probability density function that the birth occurs at the position
z with the mark m, given that there is a birth and that the system of particles
is in configuration x at the birth time;

• pδ(xi|x), for xi ∈ x: probability that the death concerns the particle xi in x,
given that there is a death and that the system of particles is in configuration
x at the death time;

• pτ ((zi,mi),m|x), for (zi,mi) ∈ x: probability that the particle xi = (zi,mi) in
x changes its mark and that this transformation leads to the new mark m 6=
mi, given that there is a transformation and that the system of particles is in
configuration x at the transformation time.
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We provide in Section 2.3 some examples for the choice of these characteristics. Finally,
we will denote by T1, T2, . . . the jump times of the process and we agree that T0 = 0.

2.2 Algorithmic construction

Assume we are given the characteristics of the process (Xt)t≥0 as introduced in the previous
section, that are the system of equations (Move), the intensity functions β, δ, τ , and the
transition probability functions pβ, pδ, pτ . Then, starting from an initial configuration X0

at time T0 = 0, we construct iteratively the process in the time interval [0, T ] as follows.
Here we set α = β + δ + τ to be the total intensity of jumps.

1. Generate n(X0) continuous trajectories as solutions of (Move) in the interval [0, T −
T0], given the initial conditions X0. Denote (Yt)t∈[0,T−T0] these trajectories.

2. By flipping a coin, test whether the jump time T1 occurs after T (this is with proba-
bility p) or before T (this is with probability 1− p), where

p = exp

(
−
∫ T−T0

0

α(Yu)du

)
.

• If T1 > T , then Xt = Yt−T0 for all t ∈ [T0, T ], which completes the simulation.

• Otherwise, we continue by generating T1 in [T0, T ] and the associated jump as
in the following.

3. Generate T1 − T0, given that T1 < T , according to the probability distribution

P(T1 − T0 < t|T1 < T ) =
1

1− p

(
1− exp

(
−
∫ t

0

α(Yu)du

))
, 0 < t < T − T0.

The process until the time T1 is then given by the generated trajectories, i.e.

(Xt)T0≤t<T1 = (Yt−T0)T0≤t<T1 .

4. Draw which kind of jump occurs at T1 (we denote by XT−1
the configuration of the

process just before the jump, which is YT1−T0 by continuity of (Yt)):

• this is a birth with probability β(XT−1
)/α(XT−1

);

• this is a death with probability δ(XT−1
)/α(XT−1

);

• this is a transformation with probability τ(XT−1
)/α(XT−1

).
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5. Generate the jump at t = T1 to get XT1 as follows:

• if this is a birth, generate the new particle x = (z,m) according to the probability
density function pβ((z,m)|XT−1

). Then set XT1 = XT−1
∪ (z,m);

• if this is a death, draw which particle xi ∈ XT−1
to delete according to the

probability pδ(xi|XT−1
), for i = 1, . . . , n(XT−1

). Then set XT1 = XT−1
\ xi;

• if this is a transformation, draw which particle xi = (zi,mi) ∈ XT−1
is trans-

formed and generate its transformation according to pτ ((zi,mi),m|XT−1
), for

i = 1, . . . , n(XT−1
). Then set XT1 = (XT−1

\ (zi,mi)) ∪ (zi,m).

6. Back to step 1 with T0 ← T1 and X0 ← XT1 in order to generate the new trajectories
starting from XT1 and the next jump time T2, and so on.

In the first step of the above construction, the trajectories are generated up to the final
time T . It is however very likely that the next jump occurs much before T so that it would
be sufficient and computationally more efficient to generate these trajectories on a shorter
time interval. We provide in Appendix a formal algorithm of simulation of Xt for t ∈ [0, T ],
following the above construction and including the latter idea. This algorithm has been
implemented in Python and is available in our GitHub repository.

From a theoretical side, note that the specific exponential form of the probability dis-
tribution of the inter-jump waiting time in step 3 is necessary to imply the interpretation
of β, δ and τ explained in the previous section. This exponential form also implies that
(Xt)t≥0 is a Markov process, meaning that its future dynamics only depends on its present
configuration. We refer to [18] for more details about these theoretical aspects.

2.3 Exemplified specifications of the model

2.3.1 The inter-jumps motion

Recall that during an inter-jump period, the process (Xt) has a constant cardinality n =
n(Xt) and the marks of all its particles remain constant. We denote by (Yt) a system of n
such particles (zi,t,mi), for i = 1, . . . , n, where zi,t ∈ Λ represents the position of the i-th
particle at time t and mi ∈M is its constant mark, that is

Yt = ((z1,t,m1), · · · , (zn,t,mn)).

In agreement with the construction of the previous section, the inter-jump trajectory of
each particle of (Xt) will coincide with the n trajectories of (Yt) during this period.
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As a general example, we assume that (Yt) follows the following system of stochastic
differential equation, starting at t = 0 at the configuration y0 ∈ (Λ×M)n,

(Move) :

{
dzi,t = vi(t,Yt)dt+ σi(t,Yt)dBi,t, t ≥ 0, i = 1, . . . , n,
Y0 = y0,

where the drift functions vi take their values in Rd, the diffusion σi are non-negative func-
tions, and (Bi,t), i = 1, . . . , n, are n independent standard Brownian motions in Rd. Here,
y0, vi and σi are free parameters to be chosen.

Some conditions on the drift and diffusion functions are necessary to ensure the existence
and unicity of the solution of (Move). This holds for instance if these functions are Lipschitz
[20], a condition met for the following examples. In addition, since each particle is supposed
to evolve in the bounded set Λ of Rd, we need in practice to force the trajectories of (Move)
to stay in Λ. This may be achieved by reflecting the trajectories at the boundary of Λ.

In its general form, (Move) allows the motion of each particle to depend on its mark,
but also on the position and mark of the other particles (that are part of Yt). We detail
several examples below, that may be realistic for biological applications.

Example 1(Brownian motions): If vi(t,Yt) = 0 and σi(t,Yt) = σ (for σ > 0) is con-
stant, then each particle follows a Brownian motion with the same diffusion coefficient σ,
independently of the other particles.

Example 2(spatially varying diffusion coefficients): If vi(t,Yt) = 0 and σi(t,Yt) =
σmi

(zi,t), where σmi
is a positive fonction defined on Λ, then each particle follows an in-

dependent diffusive motion, where the diffusive coefficient depends on the associated mark
and may vary in space. For instance, assume that Λ = Λ1 ∪Λ2 with Λ1 ∩Λ2 = ∅ and that
for m ∈M,

σm(z) =

{
σ1,m if z ∈ Λ1,

σ2,m if z ∈ Λ2,

where σ1,m > 0, σ2,m > 0. Then each particle with mark m follows locally in Λ1 a Brownian
motion with diffusion coefficient σ1,m and locally in Λ2 a Brownian motion with diffusion
coefficient σ2,m. Note that as such, σm is not Lipschitz and it needs to be smooth so as
to fit the theoretical setting. This may be achieved by taking the convolution of σm by a
bump function.

Example 3(superdiffusive and subdiffusive motions): If vi(t,Yt) = vmi
(zi,t) and σi(t,Yt) =

σmi
, where vmi

is defined on Λ and σmi
> 0, then each particle evolves independently of

each other with a drift and a diffusion coefficient that depend on its mark. This example
includes the superdiffusive case considered in [6] when vmi

(z) = vmi
is a constant drift.
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It also includes the Ornstein-Uhlenbeck dynamics, also considered in [6], when vmi
(zi,t) =

−λmi
(zi,t − zi,0), where λmi

> 0 can be interpreted as a force of attraction towards the
initial position zi,0, leading to a confined trajectory.

Example 4(interacting particles): In this example, we show how we can include inter-
actions between the particles through a Langevin dynamics. To do so, we introduce, for
m,m′ ∈ M, pairwise interaction functions Φm,m′ , as considered in statistical physics: For
r > 0, Φm,m′(r) represents the pairwise interaction between a particle with mark m and
a particle with mark m′ at a distance r apart. If Φm,m′(r) = 0, there is no interaction, if
Φm,m′(r) > 0 there is inhibition between the two particles at distance r, and if Φm,m′(r) < 0
there is attraction. Examples of inhibitive interaction functions can be found in [17]. The
(overdamped) Langevin dynamics associated to these interactions reads as (Move) with
σi(t,Yt) = σmi

, σmi
> 0, and

vi(t,Yt) = −
∑
j 6=i

∇Φmi,mj
(‖zi,t − zj,t‖),

where ∇ denotes the Gradient operator. Accordingly, each particle moves in a direction
that tend to decrease the value of the pairwise interaction function with the other particles.

Example 5(colocalized particles): Assume that some particles, say with mark m, are
thought to be colocalized with particles having the mark m̃. This means that we expect
the former to be localised nearby the latter and to follow approximately the same motion.
Specifically, to let the particle i with mark m be colocalized with the particle j with mark
m̃, we may simply define zi,t = zj,t + σiBi,t, t > 0, where Bi,t is a standard Brownian
motion in Rd representing the deviation of the trajectory i around the trajectory j, and
σi > 0 quantifies the strength of this deviation. Here zj,t may be defined as in the previous
examples, for instance as the typical trajectory of a particle with mark m̃.

2.3.2 The intensity functions

Recall that the intensity functions β, δ and τ rule the waiting times until the next birth,
death and transformation, respectively. Heuristically, the probability that a birth occurs in
the time interval [t, t+ dt] given that the particles are in configuration Xt is β(Xt)dt, and
similarly for δ and τ . As a consequence these probabilities may evolve over time according
to the configuration of particles, making for instance a death more likely to happen when
there are many particles or a high concentration of them in some region, due to competition.
We provide some natural examples below. For each example, any of β, δ or τ can be set
similarly, even if we focus only on one of them.
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Example 6(constant intensities): The simplest situation is when the intensity functions
are constant, for instance β(Xt) = β with β > 0. Then births appear at a constant rate
and we can expect that in average β× (s− t) new particles appear during the interval [s, t].

Example 7(intensities depending on the cardinality): If δ(Xt) = δn(Xt), with δ > 0, then
the more particles there are, the more deaths we observe. This is a natural situation when
each particle is thought to have a constant death rate δ, so that the total death intensity
for the system of particles at time t is just the sum of them, that is δn(Xt).

Example 8(spatially varying intensities): Assume that the mark of a particle (say its
motion regime) has more chance to change in some region of Λ than another, then the
transformation intensity τ may reflect this dependency. Let for instance Λ = Λ1 ∪Λ2 with
Λ1 ∩ Λ2 = ∅ and define τ(Xt) = τ1n1(Xt) + τ2n2(Xt) where τ1 < τ2 and n1(Xt) (resp.
n2(Xt)) denotes the number of particles in Λ1 (resp. in Λ2). Then for a given cardinality
n(Xt), the more proportion of particles in Λ2, the more transformations happen. Note that
in order to be rigorous, we should consider a continuous version of τ , which can be achieved
by convolution with a bump function.

Example 9(transformation due to colocalization): Assume that some m-particles (that
are the particles with mark m) can be colocalized with some m̃-particles. Assume in
addition that the particles are assigned a second mark that encodes their motion regime
(e.g. diffuse, subdiffusive or superdiffusive). Eventually, during the dynamics of particles,
a non-colocolized m-particle may become colocolized with a m̃-particle, meaning that it
becomes D-close to a m̃-particle, where D is some prescribed colocalization distance. If so,
we may expect that the motion regime of the m-particle becomes similar as the m̃-particle,
so that a transformation must occur. Let nD,m,m̃(Xt) be the number of D-close pairs of
particles with marks m and m̃, whose motion regimes are different. Then we may define
τ(Xt) = τ nD,m,m̃(Xt), for some τ > 0, so that a transformation (of motion regime here)
is very likely to occur when the aforementioned situation happen. Note that if τ is large,
such transformation will quickly happen as soon as nD,m,m̃(Xt) = 1, and so nD,m,m̃(Xt) > 1
will be unlikely to be observed. Here again a smooth version of τ can be introduced by
convolution to ensure its continuity.

2.3.3 The transition probability functions

We detail examples for the three possible transitions, in order below: births, deaths and
transformations.

For the births, remember that pβ((z,m)|x) denotes the probability density function
(pdf) that a particle appears at the position z with the mark m, given that the system of
particles are in configuration x. To set this probability, two approaches are possible:
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1. First drawing the mark m of the new particle with respect to some probability
pβ(m|x), then the position of the new particle given its mark according to some
pdf pβ(z|x,m). This leads to the decomposition pβ((z,m)|x) = pβ(m|x)pβ(z|x,m).

2. First generating the position of the new particle with respect to some pdf pβ(z|x),
then its mark m given the position with probability pβ(m|x, z). This leads to the
decomposition pβ((z,m)|x) = pβ(z|x)pβ(m|x, z).

Example 10(uniform births): This is the simple example where the births do not depend
on the environment, are uniform in space and the marks are drawn with respect to some
prescribed probabilities pm, where

∑
m∈M pm = 1. The two above approaches then coincide

with pβ(m|x) = pβ(m|x, z) = pm and pβ(z|x,m) = pβ(z|x) = 1/|Λ| for z ∈ Λ.

Example 11(colocalized births): We adopt here the first approach above. We first draw
the marks independently of the environment by setting pβ(m|x) = pm with

∑
m∈M pm = 1,

as in the previous example. Second, in order to generate the position of a new m-particle,
thought to be colocalized with the m̃-particles, we may use a mixture of isotropic normal
distribution, centered at each m̃-particle, with deviation σ > 0. Denoting by ñ(x) the
number of m̃-particles in x and z̃i their positions (i = 1, . . . , ñ(x)), this means that

pβ(z|x,m) =
1

ñ(x)

ñ(x)∑
i=1

1

(σ
√

2π)d
exp

(
−‖z − z̃i‖

2σ2

)
. (2.1)

Note that to be rigorous pβ(z|x,m) should be restricted to Λ with a proper normalisation,
otherwise some particles might be generated outside Λ. We omit these details.

Example 12(spatially dependent new marks): We may adopt the second approach by
first generating a uniform position for the new particle, i.e. pβ(z|x) = 1/|Λ| for z ∈ Λ,
and second by drawing the mark according to the generated position. Let for instance
Λ = Λ1 ∪ Λ2 with Λ1 ∩ Λ2 = ∅ and set

pβ(m|x, z) =

{
p1,m if z ∈ Λ1,

p2,m if z ∈ Λ2,

where
∑

m∈M p1,m =
∑

m∈M p2,m = 1. Then depending on the position, the distribution of
the marks may be different.

We now focus on the death transition, namely the probability pδ(xi|x), for xi ∈ x, that
the particle xi in x disappears when there is a death.
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Example 13(uniform deaths): The simplest example is when a death occurs uniformly
over the existing particles, that is pδ(xi|x) = 1/n(x) for i = 1, . . . , n(x).

Example 14(deaths due to competition): We may imagine that, due to competition, a
particle is more likely to disappear if there are too many neighbours around it. Let nD(xi)
be the number of neighbouring particles around xi within distance D > 0. To take into
account the competition at distance D > 0, we may define pδ(xi|x) = nD(xi)/

∑n(x)
j=1 nD(xj).

Similarly, if relevant, we may count the number of neighbours of a certain mark only.

Finally, we focus on pτ ((zi,mi),m|x), for (zi,mi) ∈ x, which is the probability that the
particle xi = (zi,mi) in x changes its mark from mi to m 6= mi, when a transformation
happens. Similarly as for the birth transition probability, it is natural to decompose this
probability as

pτ ((zi,mi),m|x) = pτ ((zi,mi)|x)pτ (m|x, (zi,mi)),

where pτ ((zi,mi)|x) represents the probability to choose the particle (zi,mi) in the config-
uration x, in order to change its mark, and pτ (m|x, (zi,mi)) is the probability to choose
the new mark m given that the transformed particle is located at zi with mark mi.

Example 15(transformations independent on the environment): A typical situation is
when the particle to transform is drawn uniformly over the existing particles, that is
pτ ((zi,mi)|x) = 1/n(x), and the transformation is carried out independently on the envi-
ronment, according to a transition matrix with entries pm,m′ ≥ 0, m,m′ ∈M, representing
the probability to be transformed from mark m to mark m′. Here, for all m ∈ M, we as-
sume pm,m = 0 in order to ensure a genuine transformation, and of course

∑
m′∈M pm,m′ = 1.

With this formalism, we thus have pτ (m|x, (zi,mi)) = pmi,m.

Example 16(spatially dependent transformations): To make the previous example spa-
tially dependent, introduce pm(z), a pdf in Λ representing the locations in Λ where a
particle with mark m is more or less likely to be transformed. Then we may set

pτ ((zi,mi)|x) =
ni(x)

n(x)

pmi
(zi)∑ni(x)

j=1 pmi
(z

(mi)
j )

,

where ni(x) denotes the number of particles with marks mi in x and z
(mi)
j , j = 1, . . . , ni(x),

their positions. In this expression ni(x)/n(x) is a weight accounting for the prevalence of
mark mi in x and the sum in the denominator is a normalisation so that the probabili-
ties sum to 1. Note that if pm(z) is the uniform pdf on Λ, then we recover the uniform
distribution pτ ((zi,mi)|x) = 1/n(x). Furthermore, once the particle is chosen as above,
we may apply a spatially dependent transformation as follows. Let Λ = Λ1 ∪ Λ2 with
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Λ1 ∩ Λ2 = ∅ and let two different transition matrices with respective entries p
(1)
m,m′ and

p
(2)
m,m′ , for m,m′ ∈M. Then we may set

pτ (m|x, (zi,mi)) =

{
p

(1)
mi,m if zi ∈ Λ1,

p
(2)
mi,m if zi ∈ Λ2.

Accordingly, the transformation does not follow the same distribution, whether the chosen
particle to be transformed is located in Λ1 or Λ2.

Example 17(transformation due to colocalization): Assume that we are in the same sit-
uation as in Example 9 where m-particles can be colocalized to m̃-particles. We assume
like in this example that a transformation occurs if nD,m,m̃(Xt) ≥ 1, where nD,m,m̃(Xt) de-
notes the number of D-close pairs of particles with marks m and m̃, whose motion regimes
are different. Then, when a transformation happens, we may choose the m-particle to
be transformed uniformly over those m-particles that are D-close to a m̃-particle with a
different motion regime. Then the transformation makes the motion regime of the selected
m-particle similar as the motion regime of its closest m̃-particle.

3 Application to the joint dynamics of Langerin/Rab11

proteins

3.1 Description of the dataset

The dataset we consider comes from the observation by a 3D multi-angle TIRF (total
internal reflection fluorescence) microscopy technique of the intracellular trafficking of m-
Cherry Langerin and GFP Rab11 proteins in a RPE1 living cell [3], specifically projected
along the z-axis onto the 2D plane close to the plasma membrane. This provides a 2D image
sequence of 1199 frames, each lasting 140 ms and showing the simultaneous locations of
the two types of proteins. The two images at the top of Figure 2 depict the first frame of
the raw sequence for the Langerin fluorescent channel and the Rab11 fluorescent channel,
respectively, recorded simultaneously using a dual-view optical device. Note that the cell
adheres on a fibronectin micropattern, which constrains intracellular constituents such as
cytoskeleton elements and gives a reproducible shape, explaining the “umbrella” shape
of the cell. These raw sequences are post-processed following [22; 21], then each bright
spot is represented by a single point, and we apply the U-track algorithm [11] to estimate
particle trajectories. The bottom images of Figure 2 show the resulting trajectories for
the Langerin channel and the Rab11 channel, respectively. These trajectories have been
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further analysed by the method developed in [6] to classify them into three diffusion regimes:
Brownian, superdiffusive and subdiffusive, which corresponds to the blue, red and green
colors, respectively, in Figure 2.

To be more specific in the analysis of all trajectories, we fit three parametric models to
each of them, following [6], depending on their regime:

1. For a Brownian regime (in blue): a Brownian motion,

2. for a superdiffusive regime (in red): a Brownian motion with constant drift,

3. for a subdiffusive regime (in green): an Ornstein-Uhlenbeck process.

Each trajectory has its individual parameters (see Examples 1 and 3), estimated by maxi-
mum likelihood. Furthermore, some trajectories may change from one regime to another,
which corresponds to a “transformation” in the BDM model that will be specified in the
next section.

Figure 3 summarises different features of the obtained trajectories for the Langerin
sequence (the same characteristics have been analysed for the Rab11 sequence, but are not
detailed here). The histograms at the bottom display the duration of all trajectories (in
frames), according to their regime. We can observe that the (blue) Brownian and (red)
superdiffusive trajectories have quite a short lifetime in average, in comparison with the
subdiffusive trajectories (in green). The top-right boxplots represent the distribution of the
number of particles per frame, according to their regime: there is a majority of Brownian
motions, followed by subdiffusive motions and a minority of superdiffusive motions. Finally,
the top-left circular histogram aims at depicting the orientation of the drift vectors for the
superdiffusive (red) trajectories. Specifically, for this plot, we have recorded the deviation
of the drift angle (in degrees) with respect to the direction towards the center of the cell.
For instance this deviation is 0◦ if the drift goes towards the center, and 180◦ if it goes in
the opposite direction. It appears from this plot that most deviation angles are around 0◦

or 180◦, meaning that the red trajectories mainly move in a radial direction going to (or
starting from) the center of the cell.

The above descriptors will be helpful to calibrate the parameters of the BDM model
in the next section and they will also serve as benchmarks to evaluate the quality of
our simulations. However it is important to keep in mind that they come with some
approximations and errors induced by imperfect tracking algorithms. In particular, no
trajectory can last less than 10 frames in the data, which is a minimal length of detection
for our tracking method. It is also clear in the bottom plots of Figure 2, that some directed
(superdiffusive) trajectories appear wrongly in blue, which can be explained by the multiple
testing procedure of [6] that aims at minimizing the number of false positives (that are bad
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Figure 2: Top: first frame of the raw sequence showing in bright spots the location of Langerin
proteins (on the left) and of Rab11 proteins (on the right). Bottom: Set of all trajectories detected
and tracked over the sequence of Langerin proteins (on the left) and Rab11 proteins (on the right),
colored by their estimated motion regime (Brownian in blue, superdiffusive in red and subdiffusive
in green).
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Figure 3: Descriptors of the Langerin trajectories of the real-data sequence. Top-left: circular
histogram of the deviation angle (from the direction towards the center of the cell) of the drifts
of the superdiffusive trajectories. Top-right: boxplots of the number of trajectories per frame,
according to their regime (blue: Brownian, red: superdiffusive, green: subdiffusive). Bottom:
histograms of the lifetime (in frames) of each trajectory according to its regime (same color
label).

green or bad red trajectories) to the detriment of possibly too many false negatives (that
are wrong blue trajectories).

Concerning the births and deaths of trajectories, we summarize in Table 1 their total
numbers observed in the real-dataset, according to the type of proteins and motion regime.
The number of regime transformations is in turn given in Table 2 for the Langerin proteins.
For the Rab11 proteins, only one switching from a Brownian motion to a subdiffusive motion
was observed during the sequence.

To address in detail these jumps dynamics, we leverage the study carried out for the
same dataset in [18], where it has been concluded that for each type of proteins and
motion regimes, the birth intensity is constant, like in Example 6, while the death intensity
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Brownian Superdiffusive Subdiffusive Total

Births
Langerin 603 78 66 747

1248
Rab11 393 24 84 501

Deaths
Langerin 602 77 89 768

1282
Rab11 395 26 93 514

Table 1: Total number of births and deaths of trajectories observed in the realdataset sequence,
according to the type of proteins and the motion regime.

From \ To Brownian Superdiffusive Subdiffusive

Brownian 0 0 9

Superdiffusive 0 0 1

Subdiffusive 5 0 0

Table 2: Number of observed regime transformations for the real-data Langerin trajectories

is proportional to the number of existing particles, like in Example 7. Given the small
number of observed motion regime transformations, its intensity can also be considered
as constant. Concerning the transition probability functions, the deaths occur uniformly
over all existing particles, like in Example 13. As to the birth transition, there is no
reason to choose another density than the uniform distribution over the cell for the Rab11
proteins (Example 10). But due to colocalization (as observed for this dataset in [19]),
the birth density for the Langerin positive structures can be approximated by a mixture
between a uniform distribution, for 93% of the Langerin births, and a colocalized density
around the existing Rab11 vesicles, like in Example 11, for 7% of the Langerin births.
These proportions, along with the other parameters, have been estimated by maximum
likelihood.

3.2 Simulation of synthetic sequences

3.2.1 Model parameters setting

Based on the data analysis of the previous section, we are now in position to specify
all characteristics of the BDM process with transformations presented in Section 2, so
as to mimic the joint dynamics of Langerin/Rab11 proteins within a cell. To make the
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connection with the theoretical notation, the region of interest Λ represents the cell in
dimension d = 2. Each particle in Λ will be marked by a label from the set M =
{(L, 1), (L, 2), (L, 3), (R, 1), (R, 2), (R, 3)}, where L stands for the Langerin proteins, R for
the Rab11 proteins, and the number 1, 2 or 3 indicates the motion regime of the particle:
Brownian, superdiffusive or subdiffusive, respectively.

Concerning the motion of each trajectory, it follows the regime indicated by its mark
and is in agreement with the observed trajectories from the real-dataset detailed in the
previous section, see also Examples 1 and 3:

• For a Brownian motion, we draw the diffusion coefficient according to the empirical
distribution of the diffusion coefficients estimated from the Brownian motions of the
real-dataset, for the same type of proteins (L or R);

• For a superdiffusive motion, we generate a Brownian motion with constant drift,
with the same strategy for the choice of the diffusion coefficient, and where the drift
vector is chosen as follows: it is by default oriented towards the center of the cell,
this orientation being subjected to a deviation drawn from the empirical distribution
depicted in the top-left circular histogram of Figure 3. In addition, its norm is drawn
from the empirical distribution of the drift norms observed from the real-dataset.
Here again, each set of parameters is distinct for the Langerin and Rab11 proteins;

• For a subdiffusive motion, we generate an Ornstein-Uhlenbeck process with diffu-
sion coefficient 0.4 for all particles (which is the average from the real-dataset), and
parameter λ = 5.96 for the Langerin proteins, and λ = 7.41 for the Rab11 proteins.

In these values, the unit is pixels, and one pixel is 160× 160 nm2 in our images.

Concerning the intensity functions, we set the birth intensity and the transformation
intensity to constant values, as concluded from the real-data analysis. In agreement with
Table 1, the total birth intensity can be estimated by β(x) = 1248/167.86 = 7.43, whatever
the configuration x of particles is, because 1248 is the total number of observed births and
167.86 is the total time length of the sequence (in seconds). Similarly we set τ(x) =
16/167.86 = 0.095 since 16 transformations have been observed in the real sequence. For
the death intensity, for each mark m ∈M, we let it proportional to the number of particles,
that is δmnm(x), where nm(x) is the number of particles with mark m in the configuration
x and δm has been estimated from the real-dataset as follows: δm = 0.17 if m = (L, 1),
δm = 0.14 if m = (L, 2), δm = 0.07 if m = (L, 3), δm = 0.21 if m = (R, 1), δm = 0.25 if
m = (R, 2), and δm = 0.08 if m = (R, 3). The total death intensity for the configuration x
of particles is then δ(x) =

∑
m∈M δmnm(x).
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Finally we set the transition probability functions as follows. For the death transition,
the probability to kill the particle xi = (zi,mi) in the configuration x is set to

pδ((zi,mi)|x) =
δmi

δ(x)
,

which means that we first draw the mark m with probability δmnm(x)/δ(x) and then
the particle uniformly among all existing particles with mark m. For the transformation
transition, we first select the type of proteins to transform with probability 15/16 for
Langerin and 1/16 for Rab11, in line with the transformations rates observed in the real-
sequence, second we choose a particle uniformly among all existing particles of this type,
and third, as in Example 15, we apply a regime transformation with respect to the following
transition matrix (from the regime in rows to the regime in columns):


1 2 3

1 0 1/4 3/4
2 1/2 0 1/2
3 1 0 0

.
This matrix is in agreement with Table 2 concerning the Langerin proteins, where we have
added some possible transitions from regime 1 to 2, and from regime 2 to 1, that appear
to us likely to occur, even if they were not observed in the (quite rare) transformations in
the real-sequence. The same transition matrix has been set for the Rab11 proteins, since
there is not enough observed transformations in the real-sequence (only one) to design a
finer choice.

It remains to set the birth transition probability. First, we select the type of protein
to create with probability 747/1248 for the Langerin proteins and 501/1248 for the Rab11
proteins, following Table 1. If the selected type is Rab11, then it is generated uniformly
in the cell with regime 1 with probability 0.784, 2 with probability 0.048 and 3 with
probability 0.168, which corresponds to the relative proportion of births of each regime
over all births for the real Rab11 sequence. If the selected type is Langerin, then we flip a
coin for colocalization with probability p = 0.07. If there is no colocalization, then the new
Langerin protein is generated uniformly in the cell with regime 1 with probability 0.807, 2
with probability 0.104 and 3 with probability 0.088 (the observed relative proportions of
births). If there is colocalization, then the new Langerin protein is generated around an
existing Rab11 protein according to the density (2.1) in Example 11, where by maximum
likelihood estimation σ = 1.1. In this case, the regime of the new Langerin protein and
its drift vector for a superdiffusive motion are similar as the those of its colocalized Rab11
protein.
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3.2.2 Analysis of resulting simulations

We have generated 100 sequences following the model of the previous section, during the
same time length as the real-sequence of Section 3.1, that is 167.86s for 1199 frames.
Some descriptors concerning the generated Langerin trajectories coming from two simulated
sequences are depicted in Figures 4 and 5, that are to be compared with the similar outputs
of the real-data in Figures 2 and 3. The results for other simulated sequences can be seen
in our GitHub repository. We have also summarized the mean number of births and deaths
over the 100 simulated sequences in Table 3, to be compared with Table 1. Both graphical
and quantitative results demonstrate that our generator is able to create a joint dynamics
with comparable features as those observed in the real-data sequence.

Figure 4: Descriptors of the Langerin trajectories of a first simulated sequence. Top-left: set
of trajectories, coloured according to their motion regime (blue: Brownian, red: superdiffusive,
green: subdiffusive). Top-right: boxplots of the number of trajectories per frame, according to
their regime (same color label). Bottom: histograms of the lifetime (in frames) of each trajectory
according to its regime (same color label).
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Figure 5: Descriptors of the Langerin trajectories of a second simulated sequence, as in Figure 4.

4 Conclusion and perspectives

We have leveraged an original stochastic model, namely a multitype birth-death-move pro-
cess with transformations, in order to generate realistic image sequences of biomolecules
dynamics within a cell. This stochastic process not only models the individual trajec-
tory of particles, but it is also able to generate the appearance (i.e., birth), disappearance
(i.e., death) and regime switching (i.e., transformation) of each trajectory over time, the
occurence of which possibly depending on the configuration of the existing particles (e.g.
their numbers). The model is very flexible and is specified thanks to three sets of pa-
rameters: 1) a system describing the set of trajectories (typically a system of stochastic
differential equations); 2) the intensity functions, ruling the waiting time before a new ap-
pearance, a disappearance or a switching; 3) the transition probability functions, driving
where a new particle appears when there is a birth, which particle disappears when there is
a death, and which particle switches its regime (and how) when there is a transformation.
Numerous examples of these model specifications have been detailed. We demonstrated the
relevance of this approach by generating realistic image sequences of the joint dynamics of
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Brownian Superdiffusive Subdiffusive Total

Birth
Langerin 581 85 76 742

1239
Rab11 391 22 83 496

Death
Langerin 584 86 77 747

1248
Rab11 397 23 80 500

Table 3: Mean total number of births and deaths of trajectories per sequence, over 100 simulated
sequences.

Langerin/Rab11 proteins within a cell, based on a preliminary data-based analysis in order
to finely calibrate the model.

Since the model is very flexible, an important step is the choice of model characteristics
and parameters. In order to improve our approach, a deeper empirical study based from
many image sequences might help calibrating robustly the model. Once the parameters
are fitted, the generation of an image sequence is quite fast: about one minute on an
regular laptop for the generation of 2000 frames containing each about 70 trajectories in
interaction. In an effort to generate even more realistic image sequences, we may consider
to blur the system of generated particles using the point spread function, and to add some
noise and background. In relation, additional features could be computed from both the
real-image sequence and the synthetic ones in order to strengthen the quality assessment
of the generator.

Appendix: Algorithm for simulation

We provide in this appendix a formal algorithm to simulate a birth-death-move process
with mutations (or transformations), following the construction of Section 2.2. It is a
refinement of the algorithm introduced in [18] for a birth-death-move process (without
transformations). The idea is to generate the inter-jump move on a small time length ∆,
then to test whether a jump has occurred during this period (this is with probability p in the
following Algorithm 1). If so, we generate the jump time and the jump. If not, we continue
the simulation of the inter-jump move on a further time length ∆, test whether a jump has
occurred, and so on. The algorithm is valid whatever ∆ > 0 is, but an efficient choice is to
set a small value for ∆. Its implementation is available in our GitHub repository.

We let as in Section 2.2 α = β + δ + τ and T0 = 0. We denote in Algorithm 2 XT−j
the

configuration just before the jump time Tj. In order to run Algorithms 1 and 2, we need
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the following inputs:

• T > 0: final time of simulation;

• X0 ∈ E: initial configuration of particles;

• ∆ > 0: small time length for piecewise simulation;

• β, δ, τ : intensity functions of births, deaths and transformations;

• pβ, pδ, pτ : transition probability for a birth, a death and a transformation;

• Algo.Move(y0,∆): algorithm that returns, for y0 ∈ E and ∆ > 0, n(y0) trajectories
on [0,∆] following the system of SDEs (Move) with initial configuration y0.
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