
HAL Id: hal-04021499
https://hal.science/hal-04021499v1

Submitted on 9 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Feature-based benchmarking of distance-based
multi/many-objective optimisation problems: A machine

learning perspective
Arnaud Liefooghe, Sébastien Verel, Tinkle Chugh, Jonathan Fieldsend,

Richard Allmendinger, Kaisa Miettinen

To cite this version:
Arnaud Liefooghe, Sébastien Verel, Tinkle Chugh, Jonathan Fieldsend, Richard Allmendinger, et
al.. Feature-based benchmarking of distance-based multi/many-objective optimisation problems: A
machine learning perspective. EMO 2023 - 12th International Conference on Evolutionary Multi-
Criterion Optimization, Mar 2023, Leiden, Netherlands. pp.260-273, �10.1007/978-3-031-27250-9_19�.
�hal-04021499�

https://hal.science/hal-04021499v1
https://hal.archives-ouvertes.fr


Feature-based Benchmarking of Distance-based
Multi/Many-objective Optimisation Problems:

A Machine Learning Perspective

Arnaud Liefooghe1[0000−0003−3283−3122], Sébastien Verel2[0000−0003−1661−4093],
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Abstract. We consider the application of machine learning techniques
to gain insights into the effect of problem features on algorithm per-
formance, and to automate the task of algorithm selection for distance-
based multi- and many-objective optimisation problems. This is the most
extensive benchmark study of such problems to date. The problem fea-
tures can be set directly by the problem generator, and include e.g. the
number of variables, objectives, local fronts, and disconnected Pareto
sets. Using 945 problem configurations (leading to 28 350 instances) of
varying complexity, we find that the problem features and the avail-
able optimisation budget (i) affect the considered algorithms (NSGA-II,
IBEA, MOEA/D, and random search) in different ways and that (ii) it is
possible to recommend a relevant algorithm based on problem features.

Keywords: Multi/many-objective distance problems · Feature-based
performance prediction · Automated algorithm selection.

1 Introduction

Given a collection of problems and algorithms, the algorithm selection prob-
lem [24] is concerned with identifying an algorithm that is most suitable, in
terms of some performance criteria, for a given problem at hand. An additional
component is the availability of features characterising a problem. One can first
extract problem features to generate a feature space, and then act on it as op-
posed to on the problem space. Significant research has been carried out on



2 Liefooghe, Verel, Chugh, Fieldsend, Allmendinger, Miettinen

algorithm selection during the past two decades. Amongst others, tackling more
efficiently a variety of continuous and mixed discrete/continuous [12,27], combi-
natorial [26] and multi-objective (continuous) optimisation problems [19], as well
as supervised learning [22]. For algorithm selection, extracting problem features
that drive algorithm performance is critical; doing this efficiently is the focus
of fitness and exploratory landscape analysis [20,21]. Furthermore, understand-
ing which and how problem features drive algorithm performance is valuable
information when designing artificial problems of different complexity for bench-
marking and tuning of algorithms. This information can then be used, e.g., to
develop problem generators that can create test problems that meet user-defined
problem characteristics. Such generators exist, for example, for many-objective
distance-based optimisation [10] and cluster analysis [25].

Our focus is to advance the area of feature design and algorithm selection
for multi- and many-objective optimisation problems. This is motivated by the
prominence of problems in practice, combined with our limited understanding
on suitable multi-objective problem features [12,20]. The most relevant work is
given in [19], where features from landscape analysis (adapted from [17]) are ap-
plied on a benchmark set of 1 200 randomly-generated bi-objective interpolated
continuous optimisation problems [30]. The study concluded that combining a
classification model with a range of landscape features used as predictors can
deliver a similar accuracy to predicting algorithm performance based on param-
eters used to generate the problems. It also investigated the relative importance
of features for performance prediction and algorithm selection.

In this paper, we follow a similar approach to investigate the predictive power
of parameters (problem features) used to generate distance-based multi/many-
objective point problems (DBMOPPs) proposed in [10]. More precisely, we (i) gen-
erate 945 problems with different characteristics (as defined by 7 problem fea-
tures), then (ii) test the correlation between the problem features and the perfor-
mance of three popular multi-objective evolutionary algorithms and one baseline
approach (random search), and finally assess the problem features as predictors
for (iii) algorithm performance prediction and (iv) algorithm selection on ma-
chine learning regression and classification, respectively. This is the first study
of DBMOPPs and the generator/problem features proposed in [10].

The paper is organised as follows. Section 2 introduces DBMOPPs, together
with the generator and its parameters (problem features) used to control the
generation of such problems. Section 3 gives the experimental setup and dis-
cusses algorithm performance. Section 4 presents an experimental analyses of
the problem features for automated performance prediction and algorithm se-
lection. Finally, Section 5 concludes the paper and discusses further research.

2 Distance-based Multi/Many-objective Problems

In multi-objective optimisation (with 2 or 3 competing objectives) and many-
objective optimisation (with 4+ objectives), a set of solutions is typically sought
that approximates the optimal trade-off combinations between the objectives,
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given any constraints on decision vectors. Formally, the tuple of a decision
vector x, and its evaluation under the objective vector f() define a solution
s = (x, f(x)). A solution s is said to dominate another s′ if s performs better
than s′ on at least one objective, and no worse on all others. The maximal set
of non-dominated decision vectors is known as the Pareto set, and its image in
the objective space is known as the Pareto front.

A wide range of scalable test problem frameworks have been developed for
multi- and many-objective optimisation, which are used (together with set qual-
ity indicators) to assess the performance of optimisers. These encapsulate a range
of known problem characteristics (e.g. [3,6,11]). In addition, means for generat-
ing instances of problems have been created to prevent “tuning” of optimisers to
particular suites of tests, to the detriment of performance on practical problems.

Frameworks for DBMOPPs have been developed over the last decade. They
incorporate the range of features exhibited in other test suites (constraints, neu-
trality, multi-modality, dominance resistance regions, local fronts, etc.) and en-
able direct visualising of the search space in a plane. Initial work in this area in-
cludes [13,14], and [10] includes a summary of the features incorporated into this
test problem design approach over the last 15 years. Arbitrarily many objectives
can be defined. If |x| > 2 the decision vector is projected into two dimensions
via a pair of orthogonal vectors prior to function evaluation. We now describe
the construction of DBMOPPs, and the generator we recently developed. We
will then extensively investigate its characteristics.

Properties and Features of DBMOPPs. Point-based distance problems
are parameterised by sets of attractor vectors, where the minimum distance to
a member of the ith set, Vi, defines the ith objective value:

fi(x) = min
v∈Vi

dist(v,x). (1)

Further complexity can be added by imposing regions of constraint violation
which locally adjust the distance function, and thereby can introduce disconti-
nuities and neutrality to particular objectives, amongst other modifications.

In [10], we introduced a DBMOPP6 instance generator, where problems can
incorporate a range of properties, a subset of which are listed in Table 1 which
we consider here. An example 3-objective problem with local fronts and domi-
nance resistance regions is illustrated in Figure 1, along with its local dominance
landscape [9], PLOS-net [18] and PLON [8] network visualisations. In this work,
we focus on box-constrained problems.

3 Experimental Setup

This section describes our experimental setup covering the approach adopted to
generate problems, algorithms and their settings, and performance metrics.

6 Available in Matlab (https://github.com/fieldsend/DBMOPP_generator),
and in Python (https://github.com/industrial-optimization-group/
desdeo-problem/tree/master/desdeo_problem/testproblems/DBMOPP).

https://github.com/fieldsend/DBMOPP_generator
https://github.com/industrial-optimization-group/desdeo-problem/tree/master/desdeo_problem/testproblems/DBMOPP
https://github.com/industrial-optimization-group/desdeo-problem/tree/master/desdeo_problem/testproblems/DBMOPP
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Table 1. Problem features considered from the DBMOPP generator [10].

description name domain

number of variables n var J2, 20K
number of objectives n obj J2, 10K
non-identical Pareto sets nonident ps {no, yes}
varying density var density {no, yes}
number of disconnected Pareto sets n discon ps J0, 6K
number of local fronts n local fronts J0, 6K
number of dominance resistance regions n resist regions J0, 6K
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Fig. 1. Top-left : an example 3-objective problem with regions creating local fronts
(green triangles), dominance resistance regions (points and lines) and Pareto set (red
triangle). Top-right : its corresponding local dominance landscape – black regions are
locally dominance neutral, shaded grey regions denote basins (for all basin members
all neighbouring dominating moves lead to the same dominance neutral region), and
white regions denote locations where immediate neighbours lead to different basins
(saddles). Bottom-left : PLOS-net and Bottom-right : PLON network visualisations.
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Table 2. Setting of the population size according to the number of objectives.

number of objectives 2 3 4 5 6 7 8 9 10
population size 100 105 120 126 132 112 156 90 275

3.1 Dataset

We generated 945 problems with different parameter settings. A random latin
hypercube sample [4] of size 1 000 was generated, among which 55 problems were
discarded due to restrictions in the benchmark generator. For each parameter
setting, 30 instances (folds) were independently created using the generator and
thus the total number of instances was 945 × 30 = 28 350. Features used to
create the problems are provided in Table 1. All 30 folds for a given problem
had the same complexity in terms of features. However, folds could be different
from each other because of the randomness in the generator. For each fold, we
ran different algorithms (one run per instance): NSGA-II [5], IBEA [32] with
the ε indicator, MOEA/D [31] with the Chebyshev scalarising function and
random search for up to 50 000 evaluations. For a fair comparison, we kept
the same initial population for a fold and used the same population size. It
was selected based on the number of objectives and is given in Table 2. We
employed an out of the shelf implementation with simulated binary crossover
and polynomial mutation with probability of 0.8 and 1

n var
and distribution index

of 20 and 20, respectively; κ = 0.5 for IBEA. For each algorithm, we calculated
the normalised hypervolume (hypervolume of final solutions/hypervolume of the
Pareto front7) after 5 000, 10 000, 30 000 and 50 000 evaluations for all 30 folds of
each problem. Normalised hypervolume values were then averaged for each of the
945 problems and 4 algorithms. The code is available at: https://github.com/
tichugh/Feature_Analysis_DBMOPP_EMO_2023, and the corresponding dataset
at: https://doi.org/10.5281/zenodo.7155803.

3.2 Algorithm Performance

We analysed results with R [23] using the caret [15], rpart [28] and ggplot2 [29]
packages. In Figure 2 (left), we show the average normalised hypervolume (and
the 95% confidence interval) for each algorithm with respect to the search bud-
get over all considered 945 problems. Figure 2 (right) gives the proportion of
problems where each algorithm obtained the best average performance, over the
30 folds, for the considered budgets. We observe that IBEA was consistently
the best-performing algorithm, whatever the budget, and outperformed others
in at least 50% of problems (for a budget of 5 000 evaluations), and at most 80%
(10 000 evaluations). It was followed by NSGA-II (almost as good as IBEA for

7 1 000 members drawn from the Pareto front plus all non-dominated points found
by the union of the algorithms’ approximation sets for each instance. The reference
point for hypervolume was 1.1 × maximum of objective values on the Pareto front
and estimated via Monte Carlo [7] with 50 000 samples for 4+ objectives.

https://github.com/tichugh/Feature_Analysis_DBMOPP_EMO_2023
https://github.com/tichugh/Feature_Analysis_DBMOPP_EMO_2023
https://doi.org/10.5281/zenodo.7155803
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Fig. 2. Hypervolume (left) and proportion of problems where each algorithm obtains
the best average hypervolume (right) with respect to the search budget.

50 000 evaluations). However, one should note that NSGA-II was not significantly
better than random search for 5 000 evaluations. MOEA/D was efficient for the
budget 5 000, but the increase of budget did not improve its performance as
much as for the others. Indeed, the average hypervolume obtained by MOEA/D
went from 0.77 for a budget of 5 000 to 0.79 for 50 000. A similar observation
was reported in [10]. We conjecture that MOEA/D is significantly impacted by
an increase in local Pareto fronts and multi-modality. Random search was dom-
inated by other algorithms for the two lowest budgets. However, surprisingly, it
surpassed MOEA/D for the highest budgets. In fact, random search was even
the best for 1 problem for a budget of 30 000, and 2 problems for 50 000.

Interestingly, whatever the budget, there is no algorithm that outperforms
the others for all problems. For the smallest budgets, IBEA and MOEA/D share
the success almost equally on more than 95% of the 945 problems. For the largest
budgets, NSGA-II and IBEA share the success on more than 99% of problems.

4 Experimental Study

This section uses a machine learning perspective to investigate the relationship of
problem features and algorithm performance, the predictive power of features for
performance prediction, and classification for feature-based algorithm selection.

4.1 Problem Features vs. Algorithm Performance

We first investigate how problem features impact search performance. Figure 3
shows how the normalised hypervolume of algorithms is individually impacted
by each of the 7 problem features. Due to space restrictions, we report only two
budgets. In addition, Figure 4 gives the Spearman’s rank correlation coefficient
between each problem feature and algorithm performance for all budgets. A
larger hypervolume indicates a better performance and thus a positive correlation
means that the problem feature has a favourable effect on algorithm performance.

For a given problem feature, the trend is similar for all algorithms and bud-
gets (there is no feature with a positive effect for one algorithm and a negative ef-
fect for another algorithm). The same goes for the budgets. However, the strength
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Fig. 3. Hypervolume vs. each problem feature and 5 000 and 30 000 evaluations.

of correlation is at times different. For instance, although a larger number of ob-
jectives (n obj) means a worse performance for all algorithms and budgets, it is
more impactful for NSGA-II than for other algorithms for large budgets.

The more variables (n var), the worst the performance. However we see in
Figure 3 (top-left) that, for a budget of 5 000, NSGA-II is good for a small
number of variables, and becomes worse than random search as the number of
variables increases. Correspondingly, while the number of objectives and hav-
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Fig. 4. Correlation between problem features and algorithm performance.

ing non-identical Pareto sets (nonident ps) negatively impact performance, the
number of dominance resistance regions (n resist regions) has a positive ef-
fect. For a budget of 30 000, NSGA-II is as good as IBEA with few objectives
and few dominance resistance regions, but IBEA gets better as both numbers in-
crease. Besides, the fewer local fronts (n local fronts) and disconnected Pareto
sets (n discon ps), the better the performance of all algorithms with all bud-
gets. The varying density (var density) has a minor impact on performance.
Overall, problem features in the 945 problems often imply a significant difference
between algorithms independently of other features.

4.2 Performance Prediction by Regression

The previous results concerned the individual effect of problem features on per-
formance. We now investigate their combined effect by constructing a regression
model for predicting the hypervolume reached by the algorithms under different
budgets. We thus end up with 4 (algorithms) × 4 (budgets) = 16 models aim-
ing at predicting performance separately for each algorithm and budget, using
the problem features as predictors. We consider random forest [1,16] with de-
fault parameters, a well-established state-of the-art ensemble learning method
that constructs multiple decision trees for regression. We start by evaluating
the prediction accuracy of the trained models using 30 independent replicates
of 10-fold cross-validation. We report the repeated cross-validated coefficient of
determination (R2) for each algorithm and budget in Figure 5. We observe that
the smallest R2 obtained over all folds and repetitions is above 0.7, and the me-
dian R2 is always above 0.85, whatever the algorithm and budget. This suggests
that more than 85% of the variance in hypervolume values across all problems
is explained by the model, and thus by problem features. The slight drop in
the prediction accuracy for IBEA and NSGA-II as the budget increases is not
significant and the R2 values remain quite satisfactory. The prediction accuracy
for random search is particularly high, regardless of the budget.

For each regression model, we also compute the importance of predictors,
commonly measured as the mean decrease of prediction accuracy with random
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Fig. 5. Coefficient of determination (R2) of regression models trained by algorithm and
budget, calculated using 10-fold cross-validation with 30 repetitions.

forest [1,16]. The higher the value, the more important the predictor. Figure 6
shows the relative importance of problem features, scaled between 0 and 100.
Overall, the most important problem features remain quite consistent with their
correlation with algorithm performance reported in Section 4.1. The numbers
of variables, objectives, dominance resistance regions and the presence of non-
identical Pareto sets appear on top of the list, whereas the varying density only
has a marginal contribution to the prediction accuracy. Interestingly, the pres-
ence of non-identical Pareto sets and the number of disconnected Pareto sets get
more important as the budget increases. However, noticeable differences appear
for MOEA/D, for which the numbers of local fronts and dominance resistance
regions are highly important, regardless of the budget. They even surpass the
number of variables as the most important features for larger budgets. Thus, it
is interesting to note that even though the problem features coming from the
problem generator have a similar effect on performance overall, their strength
may be quite different depending on the considered algorithm and budget.

budget = 5000 budget = 10000 budget = 30000 budget = 50000

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
n_resist_regionsn_local_fro

ntsn_discon_psvar_densitynonident_ps
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NSGA−II IBEA MOEA/D Random

Fig. 6. Relative importance of problem features for regression models.
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Fig. 7. Accuracy (left) and regret (right) of classification models trained by budget,
calculated using 10-fold cross-validation with 30 repetitions.

4.3 Algorithm Selection by Classification

Random Forest Classification. We now focus on feature-based algorithm
selection to answer the following question: Given a problem, what is the recom-
mended algorithm for solving it under a particular budget? The interest is no
longer in which problem features have more impact on the performance of algo-
rithms, but which features best distinguish algorithms from each other. We still
apply random forest, this time for classification. We construct 4 classification
models (one per budget) to predict the best algorithm using problem features as
predictors. Their classification accuracy, based on 30 repetitions of 10-fold cross-
validation, is reported in Figure 7 (left). The lowest accuracy obtained over all
folds and repetitions is 0.64, and the median accuracy is always above 0.75 for all
budgets. This means that the classifier is able to predict the best algorithm in at
least 75% of the cases, which is significantly better than a random classifier (with
an accuracy of 25%), or a dummy classifier that would always select IBEA, the
most frequent best algorithm for any budget, which outperformed other algo-
rithms in 53%, 80%, 63%, and 58% of problems respectively, for budgets of 5 000,
10 000, 30 000, and 50 000 evaluations, as reported in Section 3.2. The accuracy
of random forest is slightly higher for a budget of 10 000. We attribute this to
the fact that IBEA outperforms other approaches more often under this budget,
which makes the classification problem easier. We also report in Figure 7 (right)
the relative hypervolume deviation of the feature-based random forest classi-
fier (Auto) from the virtual best algorithm, that is the ideal method, an oracle,
that always selects the best algorithm. This measure is termed regret, as it indi-
cates how far the obtained hypervolume is from an ideal classifier. It is compared
against always selecting each one of the considered algorithms. Notice the log
scale in the plot. The regret obtained by the feature-based classifier ranges from
0.0016 to 0.0044 and deviates from an ideal classifier by less than 0.5%. This is
less than IBEA, the most frequent best algorithm for all budgets, by an order of
magnitude. Compared to an ideal classifier, the relative performance of NSGA-II
increases with the budget, while MOEA/D moves away from it.
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In Figure 8, we report the rela-
tive importance of problem features for
the random forest classifiers. As sug-
gested earlier, the importance of the
number of variables decreases with the
budget. By contrast, the importance
of the numbers of objectives and of
dominance resistance regions increases
with the budget, and even exceeds the
number of variables for larger budgets.
The numbers of disconnected Pareto
sets and local fronts are less important
for algorithm selection than for perfor-
mance regression. In fact, they have a
low importance similar to the presence of non-identical Pareto sets and to the
varying density for some budgets. Thus, although they have a significant effect
on algorithm performance, the impact on all algorithms is the same. The feature
analysis for classification shows that it is possible to recommend an algorithm
based on problem features with a fairly high accuracy. Moreover, the features
have a different impact on the choice of the algorithm depending on the budget.

Decision trees. We conclude with a basic classifier for algorithm selection
based on a decision tree. Its construction follows the well-established CART
algorithm [2,28], whose segmentation criterion is the Gini diversity index and
which generates binary decision trees (i.e. a node has two children at most). In
Figure 9, we show decision trees for a budget of 5 000 (left) and 30 000 eval-
uations (right). Numbers below each node are the number of times NSGA-II,
IBEA, MOEA/D and random search are each the best algorithm, respectively,
followed by the proportion of problems covered by the node. There are only three
values on the first rows for a budget of 5 000 since random search is never the
best. Although the accuracy is slightly lower than that of a random forest (0.75
and 0.79, respectively, for a budget of 5 000 and 30 000), we argue that this can
provide a useful recommendation system for algorithm selection, with only three
levels of decision in these examples.

The tree levels are consistent with the importance of features depicted by
random forest, but their joint effect appears more explicitly. Under the smaller
budget, the first decision is based on the number of variables. For example, with
less than 13 variables, more than 2 local fronts, and less than 10 objectives, IBEA
is the best. For a larger budget, and as expected from our previous comments, the
feature that appears on top of the tree is the number of objectives. In this case,
NSGA-II is the best with few objectives and few variables or few local fronts.
Conversely, looking at the rightmost branch of the tree, IBEA is clearly the best
with 4+ objectives and 3+ dominance resistance regions. This covers 48% of the
problems. Such decision trees justify why an algorithm is recommended based
on feature values. In addition, it points out the problem characteristics for which
search mechanisms should be refined to improve performance.
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Fig. 9. Algorithm selection for budgets of 5 000 (left) and 30 000 evaluations (right).

5 Conclusions

We adopted a machine learning perspective to carry out the most extensive
feature-based benchmark study of distance-based multi/many-objective opti-
misation problems to date. We generated 28 350 instances based on 945 prob-
lem configurations by varying the complexity controlled by 7 features. Random
forests and decision trees were then used to understand correlations between the
problem features and algorithm performance, predict algorithm performance,
and automate the task of algorithm selection for a given problem and budget at
hand. We find that, although the considered problem features affect the perfor-
mance of algorithms in distinctive ways, when used as predictors in a random
forest classifier we can predict the best algorithm with an accuracy of 75% or
more. Thus, problem features can control the complexity of a problem, and
lend themselves to selecting an algorithm when faced with a previously unseen
problem. This is the first automated algorithm selection study for continuous
problems with more than 2 objectives. We observed that the number of objec-
tives is (i) negatively correlated with algorithm performance, (ii) one of the most
important problem features for predicting algorithm performance, especially for
larger budgets, and (iii) a key feature to making an accurate algorithm selection
when faced with an unseen problem. Future work could investigate if consid-
ering additional problem and landscape features can help increase prediction
accuracy further. Some expected algorithm behaviours with respect to specific
problem features could also be corroborated based on a fine-grained analysis of
the data produced in this work. At last, it would be worth studying the sensi-
tivity of algorithm parameters, and their joint impact with problem features on
performance.
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19. Liefooghe, A., Verel, S., Lacroix, B., Zăvoianu, A.C., McCall, J.: Landscape features
and automated algorithm selection for multi-objective interpolated continuous op-
timisation problems. In: Proceedings of the Genetic and Evolutionary Computation
Conference. pp. 421–429 (2021)

20. Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algo-
rithms 14(2), 40 (2021)

21. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proceedings of the Genetic and Evolutionary
Computation Conference. pp. 829–836 (2011)
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