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Abstract— In wideband (high range resolution) radar, moving
targets migrate along the range during the coherent processing
interval (CPI). In this paper, we propose to use the information
brought by this migration to alleviate the velocity ambiguity
that occurs in low pulse repetition frequency (PRF) mode. More
specifically, a Bayesian algorithm is implemented to give a sparse
representation of the received signal while unfolding properly the
range-velocity map. Though computationally intensive, the algo-
rithm demonstrates the possibility of designing a non-ambiguous
radar mode with a single PRF in case of a multi-target scenario.

I. INTRODUCTION

For radar systems, high range resolution (HRR) is a feature
in great demand as it may enhance detection of small targets
in adverse environment. HRR can be achieved through the use
of wideband pulse waveform [1]. However, while decreasing
the range resolution cell, a phenomenon of range migration
occurs for moving targets. Naturally, this migration has to
be taken into account during signal processing. Despite this
apparent complication, range migration can also be of great
interest as it contains additional information about target
velocity. If correctly processed, this information can be used
to alleviate the ambiguous velocity and thus allow a non-
ambiguous mode to be obtained in case of low PRF. Such
possibility is investigated in this paper.

Former studies on wideband radar have shown that the target
signature can be easily expressed in the fast-frequency/slow-
time domain thereby leading to the definition of a coherent
integration processing [2], [3]. However, sidelobes occurring
at ambiguous velocities are very high and prevent from de-
tecting multiple scatterers. Deterministic approches have been
undertaken to decrease these sidelobes, e.g., in [4]. Here, we
propose and study an algorithm allowing a non-ambiguous and
sparse representation of the received scatterer echoes within a
Bayesian framework.

The paper is organized as follows. In section II, the wide-
band radar data model is recalled and interpreted as the
under-sampled observation of a “virtual” well-sampled signal.
Section III proposes a Bayesian model appropriate to the
sparse representation of this well-sampled signal. Performance
of the resulting Bayesian estimators is evaluated numerically
in section IV.

II. SIGNAL MODEL FOR WIDEBAND SIGNAL

A. Classical signal model

We consider in the following a radar system sending a series
of M wideband pulses with a low PRF1 fr = 1/Tr. The
instantaneous bandwidth B is thought to be on the order of
10% of the carrier frequency fc. K range gates are selected
for the processing. They define a low range resolution (LRR)
segments containing targets of interest with allowance for
range-walk.

The signature of a single point scatterer is then given in the
fast-frequency/slow-time domain, for k = 0, . . . ,K − 1 and
m = 0, . . . ,M − 1, by [3], [5]

[A]k,m = exp

{
j2π

(
−τ0

B

K
k +

2vfc
c
Trm

)}
(2D-cisoid)

× exp

{
j2π

2v

c

B

K
Trkm

}
(cross-coupling terms) (1)

where c is the speed of light, v is the target velocity and τ0 its
initial round-trip delay. The signature (1) can be interpreted as
the combination of a bi-dimensional cisoid—with frequency
pair (−τ0, 2vfc/c) and sampling periods B/K and Tr —
with cross-coupling terms that model the range migration.
These terms contain information about the target velocity v
in addition to the carrier Doppler frequency. Note that as an
LPRF mode is assumed, the Shannon sampling theorem is
not ensured for the slow-time dimension since 2vmaxfc/c >
1/(2Tr) where vmax represents the maximum target velocity
expected for a scatterer.

For a scenario with Nt scatterers, the whole signal can be
expressed in matrix or vector2 notation as

Y =

Nt∑
t=1

αtAt +N or y =

Nt∑
t=1

αtat + n (2)

where αt andAt designate respectively the complex amplitude
and the signature (1) of the t-th scatterer and N is the K×M
matrix representing the thermal noise assumed to be white

1Typical applications should be for instance detection of ground moving
targets with an X-Band radar.

2Vectors here are colon-vectors obtained from the row-vectorization of their
associated matrix.



Fig. 1. Observation and resampling of a cisoid. The solid line represents the
analog version of a cisoid with frequency 2vfc/c. The circle markers stand
for the observed data with period Tr,k . The square markers stand for samples
of the cisoid obtained with a thinner period T̄r .

from pulse to pulse and from subband to subband. (Presence
of ground clutter is not investigated in this paper.)

B. Towards a sparse representation

1) Interpretation of the target signature: The signature (1)
can be easily re-written as a 2D-cisoid with the same frequency
pair (−τ0, 2vfc/c) but with a sampling period Tr,k on the
slow-time that depends on the subband index k, i.e.,

[A]k,m = exp

{
j 2π

(
−τ0

B

K
k +

2vfc
c
Tr,km

)}
(3)

where

Tr,k = (1 + µk)Tr and µ = B/(Kfc).

The slow-time period Tr,k increases linearly with the subband
index k and a slope equal to µTr. Since an LPRF mode is
assumed, the aliasing phenomenon increases with respect to
the subband index too. The concept is illustrated in Fig. 1
where the imaginary part of a 1D-cisoid with frequency 2vfc/c
and a sampling period Tr,k has been represented. The cisoid
is observed K times but each time with an increased sam-
pling period. As the number of samples M remains constant
regardless of the subband, the observation time of the cisoid
increases with respect to the subband index k. In the following,
we intend to use these K aliased observations to reconstruct
the signal correctly (i.e., without velocity ambiguity).

2) Shannon reconstruction: The target component of the
signal in (2) is bandlimited with respect to the slow dimension
with the maximum Doppler frequency 2vmaxfc/c. Let T̄r =
1/f̄r denote a sampling period that complies with the Shannon
sampling theorem, i.e.,

2vmaxfc
c

<
1

2T̄r
.

The sampling theorem ensures then that, for k = 0, . . . ,K−1,
the sequence {[A]k,m}M−1

m=0 can be exactly reconstructed via
the following interpolation formula [6]

[A]k,m =

+∞∑
m̄=−∞

[Ā]k,m̄sinc
{
π

(
m
Tr,k
T̄r
− m̄

)}

where sinc(x) = sin(x)/x and Ā is the matrix containing the
observations of the 2D-cisoid sampled at the rate f̄r on the
slow-time dimension, i.e.,

[Ā]k,m̄ = exp

{
j 2π

(
−τ0

B

K
k +

2vfc
c
T̄rm̄

)}
.

Using the linearity of the convolution operator, the received
signal (2) can be re-written as follows

[Y ]k,m =

+∞∑
m̄=−∞

[Λ̄]k,m̄sinc
{
π

(
m
Tr,k
T̄r
− m̄

)}
+ [N ]k,m

with

Λ̄ =

Nt∑
t=1

αtĀt.

Note that if one could have access to Λ̄, the target peaks could
be recovered via standard 2D-spectral estimators (e.g., FFT,
Capon and APES filters [7], etc.). In the following, we propose
to estimate the elements of Λ̄ on a certain time window m̄ =
0, . . . , M̄ − 1 using the following approximation

[Y ]k,m ,
M̄−1∑
m̄=0

[Λ̄]k,m̄sinc
{
π

(
m
Tr,k
T̄r
− m̄

)}
+ [N ]k,m.

(4)
Note, that for the sake of simplicity, the same length M̄
has been chosen for each subband index k. The new time
sampling related to Λ̄ is represented for one cisoid with
frequency 2vfc/c in Fig. 1. Note that the new rate f̄r allows
the ambiguous velocity to be increased from va = cfr/(2fc)
to v̄a = cf̄r/(2fc).

For more convenience, a vectorized expression of (4) is used
in the remaining of the paper. More precisely, the observed
signal can be re-written as

y = T λ̄+ n (5)

where λ̄ is the vector notation for Λ̄ and T is the KM×KM̄
block diagonal matrix built from K interpolation matrices T k
of size M × M̄ and defined by

[T k]m,m̄ = sinc
{
π

[
m
Tr,k
T̄r
− m̄

]}
.

3) Transformation to fast-time/slow-frequency domain: The
vector λ̄ expressed in the fast-frequency/slow-time domain
corresponds to a sum of Nt bi-dimensional cisoids. Therefore,
the Nt scatterers can be ideally represented in the fast-
time/slow-frequency domain by Nt peaks centered around
(−τ0,t, 2vtfc/c). To obtain a representation of the scatterer
echoes as sparse as possible, the model (5) is thus finally
expressed as follows

y =
[
TF−1

] [
F λ̄
]

+ n (6)

where F is the matrix that transforms λ̄ from the fast-
frequency/slow-time domain to the fast-time/slow-frequency
domain. The matrix F is given by

F = F−1
K ⊗ F M̄ (7)



where ⊗ represents the Kronecker tensor product and F∆ is
the ∆×∆ discrete Fourier transform matrix, i.e.,

[F∆]δ1,δ2 =
1√
∆

exp

{
−j2π δ1δ2

∆

}
for δ1, δ2 ∈ {0, . . . ,∆− 1}. By noting

H = TF−1 and x = F λ̄ (8)

the data model (6) can be expressed as

y = Hx+ n. (9)

The matrix F in (7) represents a discrete-Fourier transform
(DFT) basis. Accordingly, one can define a no basis mismatch
situation when every scatterer frequency verifies: ∃(kt, m̄t) ∈
{0, . . . ,K − 1} × {0, . . . , M̄ − 1} such that(

−τt,
2vtfc
c

)
=

(
−kt
K
× K

B
,
m̄t

M̄
× fs

)
. (10)

In such case, the KM̄ -length vector x defined in (8) reduces
to a vector having exactly Nt non-zero elements with value√
KM̄αt. The vector x is thus a good candidate to produce a

sparse representation of the Nt-scatterers. Observing that (9)
is an ill-posed problem (KM̄ � KM ), one could turn to
well known deterministic approaches to retrieve such vector
x (e.g., a quadratic program with an `1 penalty term [8]). In
the following section, we rather propose to follow a Bayesian
route. On one hand, prior information about the received data
will be used to regularize the problem (9). On the other hand,
a sparseness-promoting prior will be chosen to ensure a small
amount of non-zero elements in x.

III. HIERARCHICAL BAYESIAN MODEL

In this section, we describe further the data model (9) within
a Bayesian framework [9] and present an associated algorithm
to estimate the vector x. The proposed model is an extended
version of models introduced in earlier works [10]. Prior
distributions are chosen to satisfy the usual compromise, i.e.,
expressing physical constraints while ensuring mathematical
tractability. To comply with the later, priors are chosen among
a family of conjugate priors. To comply with the former, they
are designed to express our knowledge about the sparse-nature
of the data (i.e., a finite number of scatterers), the target power
and possibly the thermal noise power.

Remark 1 (Notations: vector norm): For p ∈ N∗ and x ∈
Cm the pth norm of x is defined by ‖x‖p = (

∑m
i=1 |xi|p)

1/p.
If p = 0, then the norm is defined as the number of nonzero
vector elements, i.e., ‖x‖0 = # {i ∈ {1, . . . ,m}/xi 6= 0}.

A. Bayesian data model

The hierarchical model described in this section is illustrated
in Fig. 2.

1) Observation data: The white noise n is assumed to
be complex Gaussian with variance σ2, denoted by n ∼
CNKM

(
0, σ2I

)
. The likelihood is thus given by

f(y|x, σ2) =
1

πKMσ2KM
exp

{
−‖y −Hx‖

2
2

σ2

}
. (11)

2) Parameters:
a) Prior of σ2: One assumes that the thermal noise

power is not known and has a non-informative Jeffrey’s
distribution, i.e.,

f(σ2) =
1

σ2
I[0,+∞)(σ

2) (12)

where I[a,b] is the indicator function defined on the interval
[a, b]. Note that for radar applications, the thermal noise power
can be often known with a good approximation [11]. Hence,
the prior (12) could be easily changed to an inverse-Gamma
distribution with appropriate scale and shape parameters ex-
pressing our degree of prior belief about σ2 [12].

b) Prior of x: In search of simplicity, elements of x are
supposed to be independent and identically distributed (i.i.d.).
The prior probability density function (PDF) for each element
xi = [x]i is then chosen to ensure a certain level of sparsity. To
do so, we consider a mixed type distribution which is similar
to the one investigated in [10] for sparse image recovery. More
precisely, we assign a probability (1 − w) that xi is exactly
equal to zero and a probability w that xi is Gaussian with zero
mean and variance σ2

x, i.e., for i = 1, . . . ,KM̄

f(xi|w, σ2
x) = (1− w) δ(|xi|) + w

1

πσ2
x

exp

{
−|xi|

2

σ2
x

}
.

As the xi’s are i.i.d., the prior distribution of x is given by

f(x|w, σ2
x) = (1− w)n0

(
w

πσ2
x

)n1

etr

{
−‖x‖

2
2

σ2
x

} ∏
i/xi=0

δ(|xi|)

(13)

where etr {} is the exponential of the trace of the matrix
between braces and

n1 = ‖x‖0 and n0 = KM̄ − ‖x‖0. (14)

The PDF (13) depends on two hyperparameters w and σ2
x that

are not exactly known a priori. We thus introduce another
hierarchical level in the Bayesian model and describe hereafter
the prior distributions chosen for these two hyperparameters.

3) Hyperparameters:
a) Prior of w: According to (13), the weight w controls

the level of sparsity in the vector x. Within this work, we do
not favor any particular level of sparsity and assume a non-
informative uniform prior for w, denoted as w ∼ U[0,1], i.e.,

f(w) = I[0,1](w). (15)

b) Prior of σ2
x: According to (13), the hyperparameter

σ2
x represents the power of each non-zero element of x, i.e.,

E
{
|xi|2|xi 6= 0

}
= σ2

x. (16)

Moreover, in case of no basis mismatch (10), one has

E
{
|xi|2|xi 6= 0

}
= KM̄ × E

{
|αt|2

}
. (17)

Expressions (16) and (17) show that σ2
x is directly related to

the power of the scatterers echoes that can be approximately
predicted by the radar equation [11]. To ensure mathematical
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Fig. 2. Graphical representation of the proposed Bayesian model.

tractability, an inverse-Gamma PDF is chosen with shape
and scale parameters (β0, β1). This distribution is denoted
hereafter by σ2

x|β0, β1 ∼ IG (β0, β1) and is such that

f(σ2
x|β0, β1) ∝ e−β1/σ

2
x

σ2
x

(β0+1)
I[0,+∞)(σ

2
x) (18)

where ∝ means “proportional to”. Mean and variance for
IG (β0, β1) are given, when they exist, by

E
{
σ2
x|β0, β1

}
=

β1

β0 − 1
(β0 > 1) (19a)

var
{
σ2
x|β0, β1

}
=

β2
1

(β0 − 1)2(β0 − 2)
(β0 > 2). (19b)

Numerical values for (β0, β1) can be chosen to obtain a
prior either tightly clustered around its mean or diffuse when
the prior belief about the target power becomes low. For
instance, when β0, β1 → 0 a flat prior is obtained, e.g.,
IG
(
10−10, 10−10

)
[12]. As seen later in Section IV, we have

rather considered values that lead to a moderately-informative
prior where σ2

x has well-defined mean and variance (19).

B. Bayesian estimation

From now on, our goal is to estimate the random vector x
of length KM̄ given the observation y and the hierarchical
Bayesian model represented in Fig. 2 and defined by (9), (11),
(12), (13), (15) and (18). We recall that the known quantities3

of this model are
y the observed data
H the interpolation-transform matrix
(β0, β1) parameters set by the operator

while x, σ2, w, σ2
x are unknown and need to be estimated.

Common Bayesian estimators are the minimum mean square
error (MMSE) and the maximum a posteriori (MAP) esti-
mators [9], [13]. They are respectively defined as the mean of
the posterior distribution and the argument that maximizes this
former. For the parameter of interest x, they are thus defined
as follows

x̂MMSE =

∫
xf(x|y)dx (20a)

x̂MAP = arg max
x

f(x|y). (20b)

3For the sake of convenience, constant and known terms (aside the observed
data y) are omitted in the conditional terms.

Both rely on the posterior distribution f(x|y) that is given,
according to our hierarchical model, by

f(x|y) ∝ B(1 + n1, 1 + n0) Γ(β0 + n1)

(β1 + ‖x‖22)
β0+n1 ‖y −Hx‖2KM2

∏
i/xi=0

δ(|xi|)

(21)

where B(.) and Γ() are the Beta and Gamma functions respec-
tively. Observing (21) and recalling that n0 and n1 depends
on x via (14), it is to our knowledge not possible to derive in
closed form either the MMSE or the MAP estimator of x. We
propose instead to obtain them via numerical simulations by
implementing a Monte-Carlo Markov chain (MCMC). Such
chain generates, after an appropriate number of iterations Nbi,
samples (σ2(mc)

, w(mc),x(mc), σ2
x

(mc)
) that are distributed

according to the joint posterior PDF f(x, σ2, w, σ2
x|y). It has

also the property to have each of its subsequence4 (θ(mc))
asymptotically distributed according to the posterior PDF
f(θ|y). Therefore, empirical estimators of x can be obtained
in the following way

x̂MMSE ,
1

Nr

Nr∑
mc=1

x(mc+Nbi) (22a)

x̂MAP , arg max
{θ(mc+Nbi)}Nr

mc=1

f(x(mc)|y) (22b)

where Nr is the number of samples required to approximate
correctly the MMSE estimator. In this work, the implemented
MCMC method is a multi-stage Gibbs sampler [13] consisting
of four main iterative steps where for each parameter a sample
is drawn according to its conditional posterior distribution.
These four moves are built according to the joint posterior
PDF given by (details can be found in [14])

f(σ2, w,x, σ2
x, |y) ∝ f(y|x, σ2) (23)

×f(x|w, σ2
x)f(σ2

x)f(w)f(σ2).

IV. NUMERICAL SIMULATIONS

A. Simulation scenario

Radar data to be processed are generated synthetically
according to the model described by (2). Nt = 7 scatterers
are generated without basis mismatch (10). These scatterers
correspond to three targets distant from one or two ambiguous
velocities. Two of these targets are extended in range. The
signal-to-noise ratio (SNR) for the t-th scatterer is defined as

SNRt = E
{
|αt|2

}
‖at‖22 ×

[
KMσ2

]−1
.

SNRs and positions of the scatterers are depicted in Fig. 3(a).
Also, for each scatterer the argument of the amplitude is drawn
randomly on [0, 2π[. Other scenario and processing parameters
are depicted in Tables I and II. Note that a scatterer with
velocity va = 15 m/s would migrate of 6.4 range gates during
the CPI while the range resolution is equal to c/(2B) = 15 cm.

4The notation θ designates successively σ2, w, σ2
x and x.



TABLE I
SCENARIO PARAMETERS

carrier fc = 10 GHz
bandwidth B = 1 GHz
PRF fr = 1 kHz
# pulses M = 64
LRR segment K = 8
noise power σ2 = 1

TABLE II
PROCESSING PARAMETERS

σ2
x prior (β0, β1) ≈ (28, 7.2e4)

virtual PRF f̄r ≈ 4.67 kHz
virtual # pulses M̄ = 329
burn-in Nbi = 500
Gibbs-iterations Nr = 2e3

Also, the virtual PRF has been multiplied by a factor ≈ 5 so
that the new ambiguous velocity is v̄a ≈ 70 m/s. Finally, the
hyperparameters (β0, β1) that define the prior for σ2

x have been
chosen according to (19) to ensure that on average the scatterer
power is equal to the thermal noise level, i.e., E

{
σ2
x|β0, β1

}
=

KM̄σ2, while allowing a large deviation from this value (see
Fig. 4(b)).

B. Results

Performance of the Bayesian estimators (22) is illustrated
hereafter and compared to the one obtained with the coherent
integration defined by [3](

aHy
)
/‖a‖22. (24)

Fig. 3 shows the range-velocity maps obtained with the
different algorithms. As can be seen, the coherent integra-
tion (24) does not give a proper analysis of the radar signal. In
particular, the signal amplitudes are not estimated accurately
with this method. Furthermore, sidelobes present at ambiguous
velocities are very high as expected and prevent from a
correct identification of the scatterers. The MAP and MMSE
estimators (22) give actually a sparse representation of the
radar signal. Relative amplitudes are well restituted. Only a
small amount of non-zero elements that do not correspond to
a true scatterer are present on both maps. For the MMSE map,
they are even not visible here5.

Fig. 4 shows prior and empirical posterior PDFs for the
parameters σ2, w, σ2

x. One can see that the histograms and
MMSE estimates are in accordance with the scenario parame-
ters even when flat prior distributions have been chosen (for σ2

and w). Hence, the proposed Bayesian estimators (22) are able
to use properly the range migration to alleviate the velocity
ambiguity while giving an adequate sparse representation of
the signal. Performances are satisfying even in a challenging
scenario where range extended targets are hidden in the
sidelobes of one another. Note that a very-low threshold would
be required to remove false target detection. This threshold

5The lowerbound of the colorbar has been set to the sixth-sidelobe level of
the less powerful scatterers observed with (24) (≈ f0/(BM)/6).

would be slightly higher for the MAP estimator. Finally,
though computationally intensive, the Bayesian approach has
the advantage to give further information such as an estimated
value for the level of sparsity (contained in parameter w).

V. CONCLUSION

We have proposed a new Bayesian algorithm able to give an
adequate sparse representation of multiple scatterer echoes for
wideband LPRF radar waveforms. The method investigated in
this work uses the additional information brought by the range
migration to alleviate the velocity ambiguity with encouraging
performance. The price to pay with the proposed method is
its computational complexity which might be reduced using
other MCMC methods or variational Bayes algorithms. Effects
and robustification methods towards grid mismatches will be
investigated in near future. Finally, to be implemented in real
scenarios, the method ought to be further integrated in a wider
detection scheme involving a clutter pre-filtering operation.
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(a)

(b)

(c)

(d)

Fig. 3. Range-velocity map (amplitude only, in decibels). (a) True target
map. (b) Coherent integration. (c) MMSE estimation. (d) MAP estimation.

(a)

(b)

(c)

Fig. 4. Prior and empirical posterior PDFs. The circle markers represent the
prior PDFs. The dashed lines represent the MMSE estimates. (a) Prior and
posterior PDF of σ2. The plain line represents the true value for σ2. (b) Prior
and posterior PDF of σ2

x. (c) Prior and posterior PDF of w.


