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Introduction: β-arrestin 1, a protein encoded by ARRB1 involved in receptor

signaling, is a potential biomarker for the response to antidepressant drug (ATD)

treatment in depression. We examined ARRB1 genetic variants for their

association with response following ATD treatment in METADAP, a cohort of

6-month ATD-treated depressed patients.

Methods: Patients (n = 388) were assessed at baseline (M0) and after 1 (M1), 3 (M3),

and 6months (M6) of treatment for Hamilton Depression Rating Scale (HDRS)

changes, response, and remission. Whole-gene ARRB1 variants identified from

high-throughput sequencing were separated by a minor allele frequency

(MAF)≥5%. Frequent variants (i.e., MAF≥5%) annotated by RegulomeDB as likely

affecting transcription factor binding were analyzed using mixed-effects models.

Rare variants (i.e., MAF<5%) were analyzed using a variant set analysis.

Results: The variant set analysis of rare variants was significant in explaining

HDRS score changes (T = 878.9; p = 0.0033) and remission (T = -1974.1; p =

0.034). Rare variant counts were significant in explaining response (p = 0.016),

remission (p = 0.022), and HDRS scores at M1 (p = 0.0021) and M3 (p=<0.001).
rs553664 and rs536852 were significantly associated with the HDRS score

(rs553664: p = 0.0055 | rs536852: p = 0.046) and remission (rs553664: p =

0.026 | rs536852: p = 0.012) through their interactions with time. At M6,
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significantly higher HDRS scores were observed in rs553664 AA homozygotes

(13.98 ± 1.06) compared to AG heterozygotes (10.59 ± 0.86; p = 0.014) and in

rs536852 GG homozygotes (14.88 ± 1.10) compared to AG heterozygotes

(11.26 ± 0.95; p = 0.0061). Significantly lower remitter rates were observed

in rs536852 GG homozygotes (8%, n = 56) compared to AG heterozygotes

(42%, n = 105) at M6 (p = 0.0018).

Conclusion: Our results suggest ARRB1 variants may influence the response to

ATD treatment in depressed patients. Further analysis of functional

ARRB1 variants and rare variant burden in other populations would help

corroborate our exploratory analysis. β-arrestin 1 and genetic variants of

ARRB1 may be useful clinical biomarkers for clinical improvement following

ATD treatment in depressed individuals.

Clinical Trial Registration: clinicaltrials.gov; identifier NCT00526383

KEYWORDS

high-throughput sequencing, pharmacogenetics, major depressive disorder, β
Arrestin, ARRB1

1 Introduction

Major Depressive Disorder (MDD) is the leading contributor

to global disability (World Health Organization, 2017). Its main

treatment option, antidepressant drugs (ATD), is only modestly

effective, with more than 65% of ATD-treated patients failing to

achieve remission (Trivedi et al., 2008). Given the rising global

burden of MDD and the lack of effective treatments, it is

necessary to identify robust biomarkers to predict treatment

response.

Two potential candidates, β-arrestin 1 and 2, are ubiquitously
expressed proteins encoded by the ARRB1 and ARRB2 genes,

respectively (Parruti et al., 1993; Lefkowitz and Shenoy, 2005).

Both have functions in receptor desensitization, especially with

many G protein-coupled receptor (GPCR) families, though roles

in protein scaffolding, clathrin-mediated endocytosis, and

G-protein-independent signaling are known (Shukla et al.,

2011; Bond et al., 2019). Indeed, the β-arrestins serve as

scaffolds for various proteins, including the phosphoinositide-

3, extracellular signal-regulated 1 and 2 (ERK1/2), and several

mitogen-activated protein (MAP) kinases, whose signaling

pathways are implicated in the treatment of mood disorders

(Golan et al., 2009; Shukla et al., 2011; Bond et al., 2019).

Additionally, β-arrestin 1 has been observed to function as a

cytoplasm-to-nucleus messenger and nuclear protein scaffold

(Golan et al., 2009). Interactions with GPCRs include

serotonin, dopamine, adrenergic, and melatonin receptors,

which are associated with different brain pathways and

implicated in the pathophysiology of MDD (Kovacs et al.,

2009; Petit et al., 2018).

Furthermore, biased agonists can preferentially activate

downstream pathways. With respect to GPCRs, this includes

classical G-protein- and/or β-arrestin-mediated pathways.

Importantly, biased signaling may lend itself to the develop of

novel therapeutic strategies in diverse pharmacological domains

(Violin and Lefkowitz, 2007; Shukla et al., 2011; Bond et al.,

2019). An example of biased agonism with respect to

antidepressants was demonstrated with the tricyclic

antidepressant, desipramine, a norepinephrine reuptake

inhibitor and α2-adrenergic receptor ligand that was observed

to lead to β-arrestin-mediated α2-adrenergic receptor

internalization and downregulation in mouse embryonic

fibroblasts (Cottingham et al., 2011).

Lower ARRB1mRNA and β-arrestin 1 protein levels have been

observed in murine models of depression, as well as in human

mononuclear leukocytes of depressed patients, compared to healthy

controls (Avissar et al., 2004; Matuzany-Ruban et al., 2005; Golan

et al., 2013; Lipina et al., 2013; Mendez-David et al., 2013). These

levels returned to levels similar to those of healthy controls in both

murine models and depressed patients following 4 weeks of

antidepressant treatment, a change that preceded clinical

improvement (Golan et al., 2013). A timeline of studies

examining β-arrestin 1 and ARRB1 in the context of depression

and its treatment with ATDs is summarized in Figure 1. These

associations suggest that β-arrestin 1 may be a promising candidate

biomarker for ATD treatment response in MDD patients (Mendez-

David et al., 2013). Factors that may alter its expression or function,

such as genetic variants, are thus of interest.

ARRB1, located on chromosome 11q13 and comprising

16 exons, encodes for two splicing isoforms of β-arrestin 1

(Parruti et al., 1993; Calabrese et al., 1994; O’Leary et al.,

2016) (see Figure 2). Single nucleotide polymorphisms (SNP)

of ARRB1 have been studied principally in the neuropsychiatric

contexts of nicotine dependence and depression (Sun et al., 2008;

Chang et al., 2015). In a European cohort, a haplotype

constructed from 6 SNPs within ARRB1 was significantly

associated with nicotine dependence (Sun et al., 2008). In a

meta-analysis of 3 cohorts of depressed individuals of European
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ancestry, the intronic rs17133921 SNPwas associated withMDD,

specifically in the subgroup of females with recurrent MDD and

an onset age of MDD prior to the age of 31 (Shyn et al., 2011).

Furthermore, the rs12274033 SNP upstream of ARRB1, and a

haplotype including it, were both associated with the response to

mirtazapine treatment in a Korean population of MDD (Chang

et al., 2015). These findings suggest that genetic polymorphisms

of ARRB1may have an influence in different psychiatric contexts

and could thus serve as potential candidate biomarkers for the

response to ATD treatment in the context of MDD.

Advances in genetic analysis thanks to genome-wide

association studies (GWAS) and high-throughput

sequencing (HTS) technology have greatly increased the

identification of genetic variants associated with disease.

Furthermore, the Encyclopedia of DNA elements

(ENCODE) project has mapped the vast majority of the

human genome to functional elements involved in protein

coding, transcription factor (TF) binding, and chromatin

structure (The ENCODE Project Consortium, 2012).

Importantly, these data can be used to annotate genetic

FIGURE 1
Timeline of β-arrestin 1 findings in psychopharmacology. Findings pertaining to β-arrestin 1 and ARRB1 across time. Colored boxes denote
broad β-arrestin 1 findings (grey), β-arrestin 1 protein findings in the context of depression and/or antidepressants (blue), or genetic associations in
the context of neuropsychiatric disorders (orange). Distance from timeline denotes whether studies were conducted entirely in human participants
(furthest), partly (between), or in other models (closest).

FIGURE 2
ARRB1 transcript isoforms. Graphical representations of the two ARRB1 transcript isoforms along chromosome 11 (genomic position, x-axis).
Exons and 5′- and 3′-untranslated regions are represented by vertical lines and arrows. Intronic sequences are represented by the intervening
horizontal lines. Data were obtained from NCBI Genome Data Viewer, assembly GRCh37. p13 (accessed 15 August 2022).
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variants with regulatory information and offer insight into

their potential functional consequences in various disease

contexts. RegulomeDB is one such database that uses these

and other predictive data to rank genetic variants on their

likelihood to lie in a functional element and thus have a

functional consequence (Boyle et al., 2012).

However, most variants detected by HTS have a minor

allele frequency (MAF) less than the 5% threshold principally

used to delineate common variants (Momozawa et al., 2016).

The analysis of these rarer variants is thus generally more

difficult and underpowered. One approach to this issue is

grouping variants into sets—defined by genes or genomic

regions—and analyzing the association between this

cumulative variable and a trait of interest (Chen et al.,

2019). Recently, the optimal unified sequence kernel

association test (SKAT-O) variant set method was used to

identify significant associations between rarer variants in

ADH1C and GSTO1 and mRNA expression from a set of

303 pharmacokinetic-related genes (Klein et al., 2019).

Importantly, SKAT-O considers both burden and SKAT

tests, which groups variants with respect to the mean or

the variance, respectively. It thus optimizes test selection

depending on whether most variants act in the same

direction (burden) or in opposing directions, i.e., both

protectively and deleteriously (SKAT) (Lee et al., 2012).

Given that both β-arrestin 1 levels and ARRB1 genetic

variants have been associated with MDD and ATD treatment

response, the objectives of this study were to analyze the

association of clinical response following ATD treatment in

a cohort of 6-month ATD-treated MDD patients, with 1) the

set of rare variants and 2) frequent variants with likely

functional consequences, identified from exonic, intronic,

and 5′- and 3′-untranslated regions of ARRB1.

2 Materials and methods

2.1 Study design

Do Antidepressants Induce Metabolic Syndromes

(METADAP) is a 6-month prospective, multicentric, and

observational cohort study carried out in a psychiatric

setting (Corruble et al., 2015). Patients with a current

major depressive episode (MDE) in the context of MDD

were treated in naturalistic conditions and assessed before

and after beginning a new ATD treatment. This study was

registered by the French National Agency for Medicine and

Health Products Safety (ANSM) and the Commission

Nationale de l’Informatique et des Libertés (CNIL). It was

approved by the Ethics Committee of Paris-Boulogne (France)

and conformed to international ethical standards

(ClinicalTrials.gov identifier: NCT00526383).

2.2 Patient population

Males and females 18–65 years of age without a serious

medical condition were recruited. Inclusion criteria were

presentation with a current MDE in the context of MDD

(DSM-IVTR), as assessed by the Mini International

Neuropsychiatric Interview (MINI) and a score ≥18 on the

17-item Hamilton Depression Rating Scale (HDRS)

(Hamilton, 1960), as well as need for a new ATD

treatment. Patients with psychotic symptoms or other

mental disorders—such as psychotic disorder, bipolar

disorder, alcohol or drug dependence, or an eating

disorder—or those who were pregnant or who had organic

brain syndromes or serious medical conditions, were

excluded. Patients using antipsychotics or mood stabilizers

before inclusion and/or for at least 4 months during the year

before inclusion were also excluded. Concurrent use with

antipsychotics, mood stabilizers, and/or stimulants was not

allowed during the study. Benzodiazepines, at the minimum

effective dose and for the minimum time period, and

psychotherapies were allowed (Corruble et al., 2015).

Measures and samples were obtained prior to beginning

ATD treatment (M0), and after 1 month (M1), 3 months

(M3), and 6 months (M6) of ATD treatment. Data were

collected from November 2009 to March 2013 in

6 university hospital (CHU) psychiatry departments across

France in Paris (CHU Fernand-Widal and CHU Saint-

Antoine), Le Kremlin-Bicêtre (CHU Bicêtre), Grenoble

(CHU Grenoble Alps), Lille (CHU Michel Fontan 1), and

Besançon (CHU of Besançon) (Corruble et al., 2015).

Of the 643 patients included in METADAP, 19 had major

protocol deviations and were excluded. Of the 624 available

for analysis, 519 patients provided samples for genetic studies.

From these, 400 have undergone HTS. Two samples were

removed due to technical difficulties. As our objective was to

examine clinical response following ATD treatment,

10 patients without follow-up measures (i.e., at M1, M3,

and M6) were removed. Thus, 388 patients were analyzed.

Genetic analyses may have included fewer than 388 patients if

overall call quality was high, but individual calls were poor

and removed (discussed further below). The reasons for

dropout included loss to follow-up (n = 87, 48.6%), ATD

changes (n = 75, 41.9%), use of unauthorized drugs, including

antipsychotics, mood stabilizers, and stimulants (n = 8, 4.5%),

the presence of an exclusion criterion (i.e., unstable medical

condition, psychiatric disorder, substance abuse, or

pregnancy) during follow-up (n = 8, 4.5%), or death (n = 1,

0.5%). Missing data at M1 (n = 21) included 8 dropouts

(38.1%; 4 lost to follow-up and 4 due to ATD changes),

while missing data at M3 (n = 121) included 110 dropouts

(90.9%; 62 lost to follow-up, 36 due to ATD changes, 6 due to

unauthorized drug use, 5 due to the presence of an exclusion
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criterion, and 1 due to death. Information about ancestry was

self-reported. Caucasian ethnicity was defined as having

Caucasian parents, African as having Sub-Saharan African

and/or Afro-Caribbean parents, and Asian as having East

Asian, Central Asian, and/or South Asian parents (Morales

et al., 2018). Three Asian patients were present within the

analyzed population and were combined with the seven

patients of mixed ethnicity. Education was classified into

3 levels: primary [e.g., elementary (≤5 years)]; secondary

[e.g., middle school and high school (>5 and ≤12 years)];
tertiary [e.g., any college- or university-level education

(>12 years)]. All patients provided written informed

consent for study participation and for genetic analyses.

2.3 Antidepressant treatment

ATD monotherapies were prescribed by a psychiatrist in a “real

world” psychiatric treatment setting as previously described (Corruble

et al., 2015). ATDs belonged to 1 of 4 classes: selective serotonin

reuptake inhibitors (SSRI), serotonin norepinephrine reuptake

inhibitors (SNRI), tricyclic antidepressants (TCA), or other ATD

treatments. In this ancillary study of 388 patients, 40% were

prescribed an SSRI, 41% an SNRI, 6% a TCA, and 9% another

ATD treatment; 4% received electroconvulsive therapy (ECT) instead

of an ATD monotherapy. If a change in treatment was required

during follow-up, the patient was dropped from the study.

2.4 Assessment of antidepressant
treatment response

The HDRS was used to assess depression severity at M0

(i.e., baseline) and response to treatment at M1, M3, and M6.

Responders to treatment were classified by an improved HDRS

score of ≥50% relative to baseline, remitters by a HDRS

score ≤7 after at least 4 weeks of treatment, as recommended

by the American College of Neuropsychopharmacology (ACNP)

Task Force (Rush et al., 2006). Clinical assessments were

performed blind to genotyping results. Each interview and

diagnostic assignment was reviewed by a senior psychiatrist.

For each patient, all visits were reviewed by the same psychiatrist.

2.5 High-throughput sequencing and
sequence alignment

Patient DNA samples were sequenced using a targeted panel

of genes involved in mood disorders and ATD metabolism.

Sequencing of the whole ARRB1 gene was performed,

including exons, introns, and 5′- and 3′-untranslated regions.

The HTS protocol and variant calling methods are as previously

described (Bouali et al., 2017; Chappell et al., 2021).

2.6 Variant filtration and selection pipeline

Variant Call Format data were loaded into R (v4.1.0) (R Core

Team, 2020) using the vcfR package (v1.9.0) (Knaus and

Grünwald, 2017). Variant calls were annotated for call quality.

Specifically, variant calls with a sequencing depth (DP) < 20,

SNPs with a quality score (QUAL) < 275, insertions/deletions

(indels) with a QUAL<770, heterozygous calls with an allele

balance (AB) < 0.34 or >0.79, and homozygous calls with an

AB<0.96, were annotated as poor-quality calls. Variants with a

call rate (# poor-quality calls/# of calls) < 95% were removed

(Anderson et al., 2010). Frequent and rare variants were defined

by aMAF≥5% or <5% (corresponding to both low-frequency and

rare variants (Momozawa et al., 2016), but defined here as “rare”

for simplicity), respectively. Frequent variants with a

RegulomeDB category ranking of 1 or 2, corresponding to

variants likely to directly affect TF binding—and in the case

of rank 1, linked to expression of a gene target (Boyle et al.,

2012)—were prioritized for individual analysis in association

with clinical measures.

2.7 Variant set analysis

A variant set analysis was performed on all rare variants

passing quality control (QC) using the SMMAT function from

the GMMAT package (v1.3.2), which accounts for repeated

measures in longitudinal data and can analyze both continuous

and binary variables (Chen et al., 2019). The variables to be

explained were the HDRS score, response rate, and remission

rate. A null model was constructed including age, sex, ATD class,

and visit (i.e., time) as covariables. Gaussian distributions with an

identity link function were used to model the HDRS score, while

binomial distributions with a logit link function were used to

model response and remission rates. The genomic relationship

matrix required by the SMMAT function was constructed using

the snpgdsGRM function of the SNPRelate package (v1.26.0)

(Zheng et al., 2012). The SMMAT function was run using

default settings, except that the “use.minor.allele” argument was

set to True—corresponding to the use of the minor allele as the

coding allele rather than the alternative allele—and the

“MAF.range” was set to 0.00-0.50. The SKAT-O test,

corresponding to a linear combination of the burden and

SKAT statistics, was used (Lee et al., 2012). As a single

genomic region was analyzed, a threshold of p < 0.05 was

considered significant.

2.8 Haplotype analysis and functional
annotation of prioritized variants

Hardy-Weinberg equilibrium (HWE) and linkage

disequilibrium (LD) were assessed using Haploview (v4.2) in
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the subgroup of Caucasian patients comprising 91% of the

patient population (Barrett et al., 2005). Variants were

considered to be in LD and assigned to a haplotype block as

defined by an r2 ≥ 0.8. The genetic variant with the highest MAF

from each haplotype block was selected as a proxy for further

analysis. Genetic variants were analyzed according to an additive

model. Data from RegulomeDB (v2.0.3) and HaploReg (v4.1),

including LD information, chromatin state, bound proteins, and

altered TF motifs obtained from sources including the

1000 Genomes Project, ENCODE, and JASPAR, were used to

annotate variants (Boyle et al., 2012; Ward and Kellis, 2016). LD

between analyzed variants and undetected variants or variants

outside of our sequencing range were further assessed using

LDLink (Machiela and Chanock, 2015).

2.9 Data analysis

Statistical analyses were performed in R (v4.1.0) (R Core

Team, 2020). Quantitative variables were analyzed using

nonparametric Kruskal–Wallis rank-sum tests, while

qualitative variables were analyzed using Fisher Exact tests.

Mixed-effects models were used to analyze these longitudinal

data. Importantly, missing data (e.g., due to dropout) does not

result in a complete loss of information as these models allow

for an average estimate to be calculated from the non-missing

data (Mallinckrodt et al., 2003). Linear mixed-effects models

and generalized linear mixed-effects logistic models were

constructed with the lme4 package (v1.1-27.1) (Bates et al.,

2015). The main variable to explain was the HDRS score.

Other variables to explain were response and remission rates.

Age, sex, ATD class, and visit were included a priori as fixed-

effect covariables in all models. Demographic variables that

significantly differed between genotype groups (i.e., p < 0.05)

were also added as fixed-effects covariables. Individual was

added as the random effect to account for repeated measures.

Rare variant counts, variant genotype, and its interaction with

visit, were the main explanatory variables examined. Rare

variant counts were calculated by summing the number of

MAF<5% variants present (i.e., heterozygous or homozygous

genotype) in each individual. Given the exploratory nature of

our study, we considered p < 0.05 as significant (Bender and

Lange, 2001). Significance of fixed effects was assessed with

the Satterthwaite method in linear mixed-effects models and

with the Wald chi-square test in generalized linear mixed-

effects models. In the event of a significant main or interaction

effect, post hoc comparisons were carried out by performing

linear and logistic regressions at individual timepoints

(i.e., M1, M3, and M6) or by using the emmeans package

(Lenth, 2022). Briefly, models were input into the emmeans

function (with the “type” argument set to response) to

estimate emmeans (for the HDRS) and probabilities (for

response and/or remission) according to variant genotypes

after controlling for other covariables. Comparisons were

performed with the contrast function (with the “method”

argument set to pairwise and the “infer” argument set to

True) using the emmeans output.

3 Results

3.1 Patient demographics

Sociodemographic characteristics for the whole cohort are

shown in Table 1. The mean age was 45.4, 68% of subjects were

women, and 91% of subjects were Caucasian. 38% were current

smokers at baseline and 73% had previously experienced

an MDE.

TABLE 1 Sociodemographic characteristics. Sociodemographic
characteristics of METADAP patients are shown for the whole
sample. Kruskal–Wallis tests were used to compare age, tobacco
consumption, onset age of MDE, and baseline HDRS scores
(presented as mean ± standard deviation (m±sd)). Fisher Exact
tests were used to compare sex, socio-education status, ethnicity,
smoking status at baseline, MDE recurrence, prescribed ATD drug,
and dropout rates across study time (presented as the number of
patients and percentage). *: p < 0.05; **: p < 0.01; ***: p < 0.001.
ATD, antidepressant drug; ECT, electroconvulsive therapy; HDRS,
17-item Hamilton Depression Rating Scale; m, mean; M1, after
1 month of treatment; M3, after 3 months of treatment; M6, after
6 months of treatment; MDE, major depressive episode; n,
number of patients; p: p-value; SNRI, serotonin norepinephrine
reuptake inhibitor; sd, standard deviation; SSRI, selective
serotonin reuptake inhibitor; TCA, tricyclic antidepressant.

Total sample n = 388

Age (in years) (m±sd) 45.4 ± 13.3

Female [n (%)] 263 (68)

Education [n (%)] Primary 36 (9)

Secondary 168 (43)

Tertiary 183 (47)

Ethnicity [n (%)] Caucasian 353 (91)

African 24 (6)

Mixed 10 (3)

Current smoker [n (%)] 149 (38)

Pack years (m±sd) 15.2 ± 14.9

Recurrent MDE [n (%)] 284 (73)

Onset age MDE (m±sd) 35.3 ± 14.5

Baseline HDRS (m±sd) 24.8 ± 4.9

Prescribed ATD [n (%)] SSRI 157 (40)

SNRI 158 (41)

TCA 24 (6)

Other 34 (9)

ECT 15 (4)

Missing at follow-up [n (%)] M1 21 (5)

M3 121 (31)

M6 179 (46)
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3.2 Genetic variant selection and linkage
analysis

Genetic variant selection is summarized in Figure 3. A total of

953 unique genetic variants were identified from extracted Variant

Call data, of which 832 were SNPs and 121 were indels (see

Supplementary Table S1). 195 variants with call rates <95%

(119 SNPs and 76 indels) were removed. Thus, 758 variants were

available for analysis. 643 variants were rare (i.e., MAF<5%)
(602 SNPs and 41 indels), of which 610 had a MAF<1% and

415 were identified in 1 individual (see Supplementary Table S1).

Among the 115 frequent variants (i.e., MAF≥5%) (111 SNPs and

4 indels), 12 SNPs had a RegulomeDB category rank of 1 or

2 [i.e., linked to expression of a gene target (rank 1) and likely to

directly affect TF binding (ranks 1 and 2)] and were prioritized for

individual analysis (see Figure 3). Information for each prioritized

SNP is shown in Table 2. Prioritized SNPs did not significantly

deviate from HWE. Ten of the twelve prioritized SNPs were

intronic, eight of which were located in intron 1.

Among the 12 prioritized SNPs, 3 pairs were observed in LD.

rs501372 and rs567807 comprised haplotype block 1 (ht1),

rs553664 and rs506233 (ht2), and rs569796 and rs504683 (ht3)

(see Table 2 and Supplementary Figure S1). rs501372, rs553664, and

rs504683 were selected as proxy SNPs for further analysis from each

haplotype block. Nine SNPs were thus analyzed.

3.3 Variant set and accumulation analyses
of rare variants

SMMAT was used to assess the association of the 643 rare

(i.e., MAF<5%) variants with clinical measures over time. The

643 rare variants were significant in explaining changes in the

HDRS score over time in burden (T = 878.9; Φ = 89194.6; p =

0.0033) and SKAT-O tests (p = 0.0069) and remission rates in the

burden test (T = -1974.1;Φ = 869281.1; p = 0.034), but not response

rates, though a statistical trend was observed in the burden test

(T = −1773.9; Φ = 937912.7; p = 0.07) (see Table 3). To further

FIGURE 3
ARRB1 genetic variant selection pipeline. Flowchart for ARRB1
genetic variant selection. Gray boxes correspond to analyzed
variants. Indel, insertion/deletion; MAF, minor allele frequency;
SNP, single nucleotide polymorphism.

TABLE 2 Genomic and other information about the 12 prioritized frequent SNPs. For the prioritized SNPs (i.e., MAF≥5% and RegulomeDB category
rank of 1 or 2), the rs#, genomic position relative to the human genome assembly, hg19, and genomic region are shown. RegulomeDB rankings
correspond to likely to affect binding and linked to expression of a gene target (1b, 1f) and likely to affect binding (2b, 2c). Themajor andminor alleles
and minor allele frequency (MAF (%)) with respect to the Caucasian subpopulation are also shown. Hardy-Weinberg equilibrium p-values (HWE),
haplotype blocks (Haplotype block), and linkage disequilibrium r2 values (LD (r2)) relative to the Caucasian subpopulation are also given. HWE,
Hardy-Weinberg equilibrium; MAF, minor allele frequency; LD, linkage disequilibrium.

rs # Position Region RegulomeDB
rank

Major Minor MAF
(%)

HWE Haplotype
block

LD
(r2)

rs2279130 74977185 3′UTR 2b C T 7.2 0.5

rs501372 74993593 intron 5 2b C A 38.2 0.24 ht1 0.96

rs877711 74994352 exon5 2b G A 11.8 0.18

rs567807 75000189 intron 2 2b A G 37.2 0.13 ht1

rs553664 75005209 intron 1 2b G A 44.4 0.58 ht2 0.98

rs506233 75012535 intron 1 1f A G 43.7 0.38 ht2

rs536852 75017436 intron 1 2b G A 49.1 0.98

rs1676887 75019296 intron 1 1f G A 10.4 0.38

rs113636971 75033020 intron 1 2b A G 6.4 0.88

rs569796 75050842 intron 1 1b G C 29.9 0.48 ht3 0.98

rs504683 75051233 intron 1 2c A G 30.2 0.39 ht3

rs561923 75058004 intron 1 2b C A 25.4 0.8
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analyze the associations of rare variant accumulation with clinical

measures, rare variant counts were calculated and analyzed. After

controlling for age, sex, ATD class, and visit, a significantmain effect

of the rare variant count was observed in themixed-effectsmodels of

response [χ2 (df = 1, n = 388) = 5.81, p = 0.016] and remission [χ2

(df = 1, n = 388) = 4.56, p = 0.033], as was a significant interaction

with visit in the mixed-effects model of the HDRS score (F3,918 =

3.88, p = 0.0090) (see Table 4). In simplified mixed-effects models

(i.e., without interaction) controlling for the same factors, the rare

variant count was indeed significant in models of response (odds

TABLE 3 SMMAT results. Data and results for variant set analyses of the association between rare (i.e., MAF<5%) variants passing quality control and
HDRS scores, response rates, and remission rates. All models included age, sex, antidepressant class, and visit as covariables. Shown are themean
allele frequency, the burden test score statistic and variance, and the associated p-values of the burden, SKAT, and SKAT-O tests. bold text*: p < 0.05.
AF, allele frequency; p: p-value.

Clinical
measure

Minimum
frequency

Mean
frequency

Maximum
frequency

Burden
stat

Burden
variance

Burden
p

SKAT
p

SKAT-
O
p

HDRS 0.00129 0.00442 0.5 878.9 89194.6 0.0033* 0.41 0.0069*

Response −1773.9 937912.7 0.07 0.47 0.12

Remission −1974.1 869281.1 0.034* 0.37 0.06

TABLE 4 Mixed-effects model results. Associations for each of the clinical measures (HDRS, response, and remission) with 1) the rare (i.e., MAF<5%)
variant count and its interaction with visit (i.e., time) and 2) the 9 prioritized frequent (i.e., MAF≥5% and RegulomeDB rank of 1 or 2) SNPs analyzed
and their interactions with visit. Significant (i.e., p < 0.05) associations are highlighted in dark gray and bolded. Significance of fixed effects was
assessed with the Satterthwaite method in mixed-effects models of the HDRS score and with the Wald chi-square test in mixed-effects models of
response and remission. All models were adjusted for age, sex, antidepressant class, and any sociodemographic characteristics that significantly
(bold text and *: p < 0.05) differed between genotypes (see Supplementary Table S2).

HDRS Response Remission

SS MS df (num) df (den) F p χ2 df p χ2 df p

MAF<5% count

MAF<5% count 804.264 804.264 1 438.056 26.87 <0.001* 5.81 1 0.016* 4.56 1 0.033

Visit:MAF<5% count 348.786 116.262 3 918.602 3.88 0.0090* 0.53 2 0.77 1.99 2 0.37

Prioritized variants (MAF≥5% and RegulomeDB rank ≤ 2)

rs2279130 59.196 29.598 2 401.121 0.98 0.38 1.48 2 0.48 4.11 2 0.13

Visit:rs2279130 122.998 20.500 6 914.026 0.68 0.67 3.03 4 0.55 1.94 4 0.75

rs501372 5.277 2.638 2 371.393 0.09 0.92 1.16 2 0.56 1.50 2 0.47

Visit:rs501372 168.779 28.130 6 882.364 0.93 0.47 4.64 4 0.33 2.00 4 0.73

rs877711 29.797 14.898 2 411.229 0.50 0.61 1.17 2 0.56 1.10 2 0.58

Visit:rs877711 195.206 32.534 6 942.398 1.09 0.36 0.63 4 0.96 4.59 4 0.33

rs553664 147.286 73.643 2 399.038 2.51 0.08 0.49 2 0.78 3.76 2 0.15

Visit:rs553664 541.248 90.208 6 919.440 3.08 0.0055* 8.86 4 0.06 11.02 4 0.026*

rs536852 213.512 106.756 2 385.710 3.53 0.030* 0.85 2 0.66 3.85 2 0.15

Visit:rs536852 390.451 65.075 6 886.704 2.15 0.046* 7.11 4 0.13 12.84 4 0.012*

rs1676887 50.854 25.427 2 372.885 0.85 0.43 1.36 2 0.51 1.78 2 0.41

Visit:rs1676887 194.069 32.345 6 887.639 1.08 0.37 1.71 4 0.79 5.43 4 0.25

rs113636971 10.977 5.489 2 379.137 0.18 0.83 0.23 2 0.89 0.14 2 0.93

Visit:rs113636971 94.369 15.728 6 896.752 0.52 0.79 0.57 4 0.97 0.74 4 0.95

rs504683 64.300 32.150 2 373.296 1.05 0.35 2.47 2 0.29 2.47 2 0.29

Visit:rs504683 74.684 12.447 6 892.312 0.41 0.87 0.79 4 0.94 0.79 4 0.94

rs561923 17.422 8.711 2 366.270 0.28 0.75 1.03 2 0.60 0.31 2 0.86

Visit:rs561923 37.649 6.275 6 883.377 0.20 0.98 2.06 4 0.72 2.62 4 0.62

χ2, chi-square value; den, denominator; df, degrees of freedom; F, F-value; HDRS, 17-itemHamilton Rating Depression scale; MAF, minor allele frequency; MS, mean sum of squares; num,

numerator; p: p-value; SS, sum of squares; “:” designates an interaction between model terms.
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ratio (OR) = 0.95; 95% confidence interval (95%CI) [0.91–0.99]; p =

0.016) and remission (OR = 0.92; 95%CI [0.86–0.99]; p = 0.022) (see

Figures 4A,B). Following Bonferroni correction, it was also a

significant factor explaining the HDRS score in multiple linear

regressions at M1 (coefficient = 0.26; 95%CI [0.11–0.41]; p =

0.0021) and M3 (coefficient = 0.46; 95%CI [0.28–0.64];

p=<0.001) (see Figures 4C,D), but not at M6 (coefficient = 0.25;

95%CI [−0.01–0.51]; p = 0.19).

3.4 Clinical response according to
prioritized variants

Sociodemographic characteristics and significant differences

between prioritized SNP genotypes are shown in Supplementary

Table S2. Mixed-effects model associations of clinical measures

with genotype and genotype × visit interactions for the

9 prioritized SNPs are summarized in Table 4. In mixed-

effects models of the HDRS score controlling for age, sex,

ATD class, ethnicity, and smoking status—and baseline HDRS

scores for rs553664—the genotype × visit interaction was a

significant explanatory factor for rs553664 (F6,919 = 3.08, p =

0.0055) and rs536852 (F6,886 = 2.15, p = 0.046) (see Table 4). In

mixed-effects models of remission controlling for these same

variables, the genotype × visit interaction was also significant for

rs553664 [χ2 (df = 4, n = 388) = 11.02, p = 0.026] and rs536852 [χ2
(df = 4, n = 388) = 12.84, p = 0.012]. Following Bonferroni

correction, a significantly higher HDRS score was observed in

rs553664 AA homozygotes (13.98 ± 1.06) compared to AG

heterozygotes (10.59 ± 0.86) at M6 (coefficient = 3.39, 95%CI

[1.29–5.49], p = 0.014) (see Figure 5A) and in rs536852 GG

homozygotes (14.88 ± 1.10) compared to AG heterozygotes

(11.26 ± 0.95) at M6 (coefficient = 3.62, 95%CI [1.54–5.71],

p = 0.0061) (see Figure 5B). A significantly lower remitter rate

FIGURE 4
Association of MAF < 5% variant count with clinical measures. Model estimates adjusted for themean age (45.36), sex (male), and antidepressant
class (SSRI) of (A) the probability of response, (B) the probability of remission, (C) the HDRS score at M1, and (D) the HDRS score at M3 (y-axis)
according to the MAF<5% variant count (x-axis). HDRS, 17-item Hamilton Depression Rating Scale; M1, 1 month after beginning antidepressant
treatment; M3, 3 months after beginning antidepressant treatment; MAF, minor allele frequency.
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was also observed in rs536852 GG homozygotes (8%, n = 56)

compared to AG heterozygotes (42%, n = 105) at M6 (OR = 0.12,

95%CI [0.39–0.37], p = 0.0018) (see Figure 6). No significant

differences in response rates, or in remitter rates between

rs553664 genotypes, were observed.

3.5 Functional analysis of
ARRB1 polymorphisms

Annotations from RegulomeDB (v2.0.3) and HaploReg

(v4.1) for rs553664 and rs536852—associated with clinical

measures—and any variants in LD with them are shown in

Table 5. rs553664 was observed to be in LD with

rs506233 and an intronic deletion, rs35731045. rs536852 was

not observed to be in LD with any variants within ±500,000 base

pairs of its genomic position in non-Finnish European

populations. It was most closely linked to rs553664 and

rs506233, though these associations (r2 = 0.67 and r2 = 0.68,

respectively) were weaker than in our sample (see Supplementary

Figures S1, S2). rs553664, rs506233, and rs35731045 were

annotated as binding FOS, NFIC, USF1, and IKZF1.

rs536852 was annotated as binding POLR2A, FOS, and JUN.

Altered TF binding motifs included the CCCTC-binding factor

(CTCF). Each variant had at least one annotation with histone

marks/chromatin state (see Table 5).

4 Discussion

The present study is an ancillary investigation of the

METADAP cohort that aimed to analyze the association

between genetic variants of ARRB1 and response following

ATD treatment. Overall, 758 genetic variants passed quality

control measures and were further filtered based on allelic

FIGURE 5
Average HDRS scores according to rs553664 and
rs536852 genotypes over the course of antidepressant treatment.
Average HDRS scores (y-axis) according to rs553664 (A) and
rs536852 (B) genotypes (see legend) are shown across time
(x-axis) after controlling for age, sex, antidepressant class,
ethnicity, and significantly different demographic factors (see
Supplementary Table S3). Error bars correspond to the standard
error estimates frommixed-effects models. *: p < 0.0056 (0.05/9)
**: p < 0.0011 (0.01/9). HDRS, 17-itemHamilton Depression Rating
Scale; M0, baseline, prior to beginning antidepressant treatment;
M1, 1 month after beginning antidepressant treatment; M3,
3 months after beginning antidepressant treatment; M6, 6 months
after beginning antidepressant treatment.

FIGURE 6
Remission rates according to rs536852 genotypes over the
course of antidepressant treatment. The probability of remission
(y-axis) according to rs536852 genotypes (see legend) are shown
across time (x-axis) after controlling for age, sex,
antidepressant class, ethnicity, and significantly different
demographic factors (see Supplementary Table S2). Error bars
correspond to the standard error estimates from mixed-effects
models. **: p < 0.0011 (0.01/9). M1, 1 month after beginning
antidepressant treatment; M3, 3 months after beginning
antidepressant treatment; M6, 6 months after beginning
antidepressant treatment.
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frequency and their functional annotations as likely to affect TF

binding. Analyses were carried out to assess the association of

clinical response following ATD treatment with 1) the

cumulative effect of rare (i.e., MAF<5%) variants and 2)

frequent (i.e., MAF≥5%) variants with likely functional

consequences. Twelve SNPs were prioritized, of which three

pairs were observed to be in LD. Thus, 9 SNPs (3 proxies and

6 individual) were analyzed.

The variant set analysis using SMMAT (Chen et al., 2019)

and leveraging the SKAT-O framework (Lee et al., 2012),

suggests that the accumulation of rare ARRB1 variants is

associated with HDRS score changes and remission rates over

the course of ATD treatment, as the burden test results were

significant. As such, increased variant accumulation in ARRB1

may have an impact on clinical response following ATD

treatment. Furthermore, as reflected by the significant finding

in the burden test, but not the SKAT test, a large proportion of

these variants likely have causal effects on ATD response that,

overall, act in the same direction (Lee et al., 2012). This was

further highlighted by the significant association of greater rare

variant counts with higher HDRS scores—notably at M1 and

M3—and overall lower response and remission rates during

treatment. Of note, certain rare variants in our cohort,

including those in LD with the rs12274033 polymorphism

that was previously associated with remission rates following

mirtazapine treatment in a Korean population (Chang et al.,

2015), may contribute to the observed associations with HDRS

score changes and remission rates.

The 9 prioritized SNPs we analyzed have not been previously

examined. They were prioritized for analysis from over

900 variants identified from HTS data spanning the ARRB1

gene, including exons, introns, and 5′- and 3′-untranslated
regions. Given that ARRB1 mRNA and β-arrestin 1 protein

levels have been previously associated with depression and

ATD treatment (Avissar et al., 2004; Matuzany-Ruban et al.,

2005; Golan et al., 2013), variants annotated as likely to lie in a

functional element—and thus be more likely to impact ARRB1

expression or β-arrestin function—were prioritized using

RegulomeDB (Boyle et al., 2012). RegulomeDB has previously

been used to select and study genetic variants in various disease

backgrounds (Lee et al., 2015; Hong et al., 2018; Huo et al., 2019).

Specifically, variants with a category ranking of 1 or 2,

corresponding to variants likely to directly affect TF binding,

were prioritized for further analysis. To our knowledge, this is the

first study to leverage functional annotations to prioritize

variants for analysis in the context of MDD and its treatment

with ATDs.

Protein binding annotations from HaploReg and

RegulomeDB, utilizing ChIP-seq data from ENCODE, suggest

that rs553664 (and its proxies, including rs506233) and rs536852,

associated with the HDRS score and remission in METADAP, lie

within functional elements that bind various proteins including

USF1, NFIC, FOS, JUN, and POLR2A. Genetic risk factors that

overlap with TF-binding sites for USF1, NFIC, and POLR2A

have been identified in relation to schizophrenia and MDD (Huo

et al., 2019; Li et al., 2020).

FOS and JUN can dimerize to form a member of the

Activator Protein-1 (AP-1) TF family, a leucine-zipper TF

shown to regulate proliferation, differentiation, and apoptosis

(Garces de los Fayos Alonso et al., 2018). Both FOS and JUN are

expressed in the brain where they have context-dependent

influences on neurodegeneration and/or neuroprotection

(Herdegen and Waetzig, 2001). Recently, AP-1 was observed

to have a role in fluoxetine response in a murine model of

heightened anxiety (Chottekalapanda et al., 2020), and was also

found to be activated by other factors such as BDNF, which is

itself a factor influencing the response to different ATD

treatments (Colle et al., 2015). It is known that ATDs can

TABLE 5 HaploReg and RegulomeDB annotations. For rs553664 and rs536852, the rs#’s in linkage disequilibrium (i.e., r2 > 80) with the given SNP, the
associated histone marks/chromatin state in brain tissues, the bound proteins, and known and discovered altered motifs, are given.

rs # rs #’s in LD
(r2 > 0.8)a

Histone marksa/
chromatin stateb

(brain)

Bound proteins Altered TF motifs

rs553664 rs506233,
rs35731045

Strong transcriptionb NFYAa, USF1a, USF1b, USF2b, RAD51b,
NFYCb, FOSb, EMSYb, CBFA2T2b,
ZNF316b

Brachyury_1a, HP1-site-factora, IRX3b, TBXTb

rs506233 rs553664,
rs35731045

Enhancera, promotera,
enhancersb, strong
transcriptionb

NFICb Myc_known8a

rs35731045 rs553664,
rs506233

Strong transcriptionb IKZF1b ERalpha-a_disc1a, ERalpha-a_disc2a, ERalpha-a_known1a,
ERalpha-a_known4a, Esr2, RARa, RXRA_disc1a,
RXRA_known5a, SF1a, STAT_disc3a

rs536852 Enhancera, promotera,
enhancersb, strong
transcriptionb

CFOSa, CJUNa, FOSb, JUNb, POLR2Ab CTCF_disc9a, Irf_disc4a, Pax-4_3a, SP1_known2a,
TATA_disc4a, TR4_disc3a, PAX4b

aAnnotation from HaploReg v4.1.
bAnnotation from RegulomeDB, v2.0.3. LD, linkage disequilibrium; TF, transcription factor.
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modify the activation of different genes through their modulation

of serotonergic pathways (Lesch and Heils, 2000). Indeed, several

TFs have been associated with ATD response or have been shown

to be altered in depression (Pittenger and Duman, 2008;

Sasayama et al., 2013). Moreover, the beta-arrestins act as

scaffolds for kinases, including c-Jun N-terminal kinases of

the JNK axis, which are implicated in neuronal plasticity,

memory, and neuronal maturation (Herdegen and Waetzig,

2001; Shukla et al., 2011). As such, the potential impact

rs553664 and/or rs536852 may have on AP-1 and/or the

binding of other TFs could alter β-arrestin 1 expression and,

consequently, any downstream functions of β-arrestin 1,

including the transmission of receptor-mediated signals

during ATD treatment or the scaffolding of proteins.

A putative binding motif for CTCF was also associated

with rs536852. CTCF is a conserved zinc-finger TF with

important roles in transcriptional regulation and 3D

genome organization (Li et al., 2020). In a study of risk

alleles for schizophrenia, SNPs lying in CTCF binding sites

were enriched among those analyzed (Huo et al., 2019).

Furthermore, in a study of MDD genetic risk factors, 11 of

the 34 TF binding-disrupting SNPs analyzed were specific to

CTCF binding sites, suggesting that disruption of CTCF

binding may be a shared mechanism among genetic risk

variants of MDD (Li et al., 2020). ATD-induced

transcriptional alterations in the brain may also be

influenced by CTCF (Piechota et al., 2015). Of course,

whether CTCF binding is disrupted and, if so, the

biological and clinical consequences of this, should be

verified and further investigated.

Our findings demonstrate an association between genetic

variants of ARRB1 and clinical outcomes of response following

ATD treatment. These findings suggest that these genetic factors

might influence various mechanisms involved in the response to

ATD therapy. Given that biased agonists can preferentially

activate or bypass β-arrestin 1-mediated processes (Violin and

Lefkowitz, 2007; Cottingham et al., 2011; Shukla et al., 2011;

Bond et al., 2019), patients carrying either an excess of rare

ARRB1 variants or the rs553664 and rs536852 polymorphisms

may benefit from the use of ATD treatments that 1) favor

G-protein-mediated pathways and 2) circumvent β-arrestin-
mediated pathways and the desensitization of GPCRs.

Alternatively, these patients could also benefit from the

addition of other therapeutical strategies, such as

psychotherapies (i.e., talk therapies) or brain stimulation

therapies, including ECT and repetitive transcranial magnetic

stimulation.

Our study has several limitations. First, the proportion of

missing data was relatively high, though the proportion at

6 months (46.1%) was comparable to the proportions in the

STAR*D cohort at 9 (43%) and 12 weeks (61%) (Trivedi et al.,

2006; Muthén et al., 2011). Additionally, mixed-effects models

are a robust method to control for the bias imposed by these

missing data (Mallinckrodt et al., 2003). Second, hard filters

were used to filter out poor-quality variants, which could have

removed variants near the cutoff threshold. Importantly, these

variants could have had significant associations with clinical

measures. Third, it should be noted that the functions of β-
arrestin 1 and 2 often overlap. Thus, any impact that variants

of ARRB1 may have on β-arrestin 1 expression or function

may be compensated for by β-arrestin 2, at least within the

cytoplasm (Shukla et al., 2011). The strengths of this study

include its prospective and naturalistic design, which allows

for the analysis of treatment response across a 6-month period

and better reflects “real-world” clinical practice. Additionally,

this study leveraged functional annotations to select and

prioritize variants with likely functional consequences on

ARRB1 expression for analysis since reduced β-arrestin
1 levels have been previously associated with depression

severity and the response to ATD treatment (Avissar et al.,

2004; Matuzany-Ruban et al., 2005; Golan et al., 2013).

Finally, to date, this is the largest cohort analysis of ARRB1

variants in relation to response following ATD treatment in

patients with MDD. The findings from this exploratory

analysis should be replicated in independent cohorts of

depressed individuals undergoing ATD treatment.

To conclude, ARRB1 genetic variants were associated with

clinical measures of response following ATD treatment in a

cohort of ATD-treated depressed patients. Specifically, we

observed associations between clinical measures and 1) rare

variant accumulation and 2) two frequent variants with

probable functional consequences, rs553664 and rs536852.

These findings suggest that variants of ARRB1, and perhaps

especially those within genomic regulatory regions, may

contribute to clinical response following ATD treatment.

Functional analyses would help confirm the potential effect(s)

that these polymorphisms have on clinical improvement

following antidepressant treatment. Further study in larger

cohorts would also help corroborate the findings of our

exploratory analysis.
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