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Spectrum of the Dirac operator in shrinking tubes

Nour Kerraoui1

1Aix-Marseille Université, CNRS, I2M, Marseille, France.

Abstract

In this paper we investigate the spectrum of the Dirac operator posed in a tubular neigh-

borhood of a planar loop with infinite mass boundary conditions. We show that when the

width of the tubular neighborhood goes to zero the asymptotic expansion of the eigenvalues is

driven by a one dimensional operator of geometric nature involving the curvature of the loop.

1 Introduction

1.1 Motivations

The Dirichlet Laplacian in thin curved tubes was the subject of many works within the last years.
It is well known that the limit operator is a Shrödinger operator with a geometric electric potential.
See for instance [11, 4, 5] where the convergence is understood in the norm resolvent sense, see
also the works [14, 6, 8] where the adiabatic limit in neighborhoods of Riemaniann submanifolds
is investigated. Recently, the relativistic counterpart of such systems involving the Dirac operator
attracted a lot of attention. One motivation among others of these works is that quasiparticles in
promising materials such as graphene can mimic the quantum electrodynamics [1, 13].
The study of Dirac operators in domains was started in 1987 by Berry and Mondragon [2] where
the operator was subject to some boundary conditions called infinite mass boundary conditions.
The latter is obtained by coupling the standard Dirac operator with a mass term being zero inside
the domain under consideration and infinite elsewhere, this study was mathematically justified in
[15]. It initiated works concerning the self-adjointness of such operators in graphene quantum dots
[12, 7, 9] and its three dimensional equivalent, the MIT bag model [10].
The main motivation of the present paper is the work realized in [18], where the authors provided
a spectral study of the Dirac operator in a shrinking relativistic quantum waveguide. Contrary to
the non-relativistic setting, they got that the effective operator is just the free Dirac operator on
the underlying curve, the geometry is expected to appear at the following order in the asymptotic
expansion. In our paper we consider the Dirac operator posed in a tubular neighborhood of a planar
loop and we investigate the spectrum of this operator when the domain shrinks to the reference
curve. We give an expansion of the eigenvalues in the thin-width regime where the splitting of the
eigenvalues is given by a one dimensional operator. The latter is defined via its quadratic form and
involves the curvature. We use a standard strategy based on perturbation theory applied to the
square of this Dirac operator and make use of the min-max principle.
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1.2 Statement of the problem & main result

For ℓ > 0, we set T = R/ℓZ. Let γ : T → R2 be an injective arc length parametrization of a regular
planar loop of class C4 and set Γ = γ(T). We are interested in the Dirac operator with infinite mass
boundary conditions posed in a tubular neighborhood of size ε > 0 of Γ. To define this tubular
neighborhood, we consider the map

Φε :

{

T× (−1, 1) → R2

(s, t) 7→ γ(s) + εtν(s),
(1)

where for s ∈ T, ν(s) denotes the normal at the point γ(s) ∈ Γ such that (γ′(s), ν(s)) is a positively-
oriented orthonormal basis of R2. A well known result of differential geometry shows the existence
of ε0 > 0 such that for all ε ∈ (0, ε0) the map Φε is a global diffeomorphism from T× (−1, 1) to the
tubular neighborhood of Γ of width 2ε defined by Ωε := Φε

(

T × (−1, 1)
)

. As we are interested in
the regime ε → 0 there is no restriction to assume that ε ∈ (0, ε0) and we will do so all along this
paper.

On its part, for m ∈ R, the Dirac operator with infinite mass boundary conditions posed in Ωε

is defined as

dom(DΓ(ε)) :=
{

u ∈ H1(Ωε,C
2) : −iσ3σ · νεu = u on∂Ωǫ

}

,

DΓ(ε)u := −iσ · ∇u+mσ3u,
(2)

where σk, k ∈ {1, 2, 3} are the Pauli matrices defined by

σ1 :=

(

0 1
1 0

)

, σ2 :=

(

0 −i
i 0

)

, σ3 :=

(

1 0
0 −1

)

and for x = (x1, x2) ∈ C2, there holds σ · x = x1σ1 + x2σ2. Here νε denotes the outward pointing
normal vector field of Ωε.

As defined, DΓ(ε) is known to be self-adjoint [12, Theorem 1.1]. It also has compact resolvent,
this follows from the compact embedding of dom(DΓ(ε)) in L2(Ωε,C

2) and it implies that its
spectrum is composed of discrete eigenvalues accumulating to ±∞. Moreover, they are symmetric
with respect to zero due to the invariance of the system under charge conjugation, corresponding
to the operator σ1C, where C is the complex conjugation operator. Indeed, if u is an eigenfunction
associated with an eigenvalue E, one notices that σ1Cu is an eigenfunction associated with an
eigenvalue −E. All along the paper N = {1, 2, 3...} denotes the set of positive natural integer. For
j ∈ N, we denote by Ej(ε) the j-th positive eigenvalue of DΓ(ε) counted with multiplicities.

To state the main result of this paper, we need to introduce an auxiliary one-dimensional
operator defined via its quadratic form. Namely, consider the quadratic form

q1D[f ] =

∫

T

(

|f ′ + iκ(
1

2
− 1

π
)σ3f |2 −

κ2

π2
|f |2

)

ds, dom(q1D) = H1(T,C2). (3)

where for s ∈ T, κ(s) is the curvature of the curve Γ at the point γ(s). It is defined through the
Frenet formula γ′′(s) = κ(s)ν(s). This quadratic form is densely defined, closed and bounded from
below thus by Kato’s first representation theorem [16, Ch. VI, Thm. 2.1] it is associated with a
self-adjoint operator and this operator has compact resolvent.

In order to state our main theorem we need to recall the min-max priciple.
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Definition 1. Let Q be a closed semi-bounded from below sesquilinear form with dense domain
dom(Q) in a complex Hilbert space H. Let A be the unique self-adjoint operator acting on H
generated by the sesquilinear form Q. We define the j-th min-max value of A by

µj(A) = inf
W⊂dom(Q)
dimW=n

sup
u∈W\{0}

Q(u, u)

‖ u ‖2H
. (4)

Proposition 1 (min-max principle). Let Q be a closed semi-bounded from below sesquilinear form
with dense domain in a Hilbert space H and let A be the unique self-adjoint operator associated
with Q. If we assume that A has a compact resolvent then µj(A) is the j-th eigenvalue of A counted
with multiplicities.

The main result of this paper reads as follows.

Theorem 1. Let j ∈ N, there exists ε1 > 0 such that for all ε ∈ (0, ε1) there holds

Ej(ε) =
π

4ε
+

2

π
m− 16

π3
m2ε+

2

π
(m2 + µ2j(q

1D))ε+O(ε2).

The proof of Theorem 1 is performed working with the quadratic form associated with the
square of the operator DΓ(ε). First, we rewrite the problem in tubular coordinates using the map
Φε introduced in (1). The obtained quadratic form is posed on a weighted L2-space that we modify
to obtain a flat metric. Roughly speaking, the resulting quadratic form is tensored up to higher
order terms. Then, we use a standard reduction dimension argument by finding an upper and a
lower bound for the eigenvalues of the square of DΓ(ε) using the min-max principle. The main idea
is that the first order term in the expansion is given by a transverse operator which can be explicitly
analyzed and the constant order term involves a longitudinal operator defined via the quadratic
form q1D introduced in (3).

1.3 Structure of the paper

In section 2 we give some spectral properties of a one dimensional transverse Dirac operator.
Section 3 contains some auxiliary quadratic forms that we need to study the square of the operator
DΓ(ε). The last section is devoted to prove Theorem 1 by giving an upper and a lower bound for
the eigenvalues of the square of the operator.

2 The transverse operator

In this section we investigate a one dimensional transverse operator wich appears in the study of
our main operator.

Let δ ≥ 0 and x = (x1, x2)
⊤ ∈ S1, we consider the one-dimensional transverse operator Tx(δ)

defined as follows

Tx(δ) = −i(σ · x) d
dt

+ δσ3, dom(Tx(δ)) = {f ∈ H1((−1, 1),C2) : f2(±1) = ±i(x1 + ix2)f1(±1)}.

The main result of this paragraph is the next proposition.
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Proposition 2. The following holds.

(i) Tx(δ) is self-adjoint, has compact resolvent, its spectrum is symmetric with respect to zero
and does not depend on x. Moreover, if we denote by λj(Tx(δ)) the j-th positive eigenvalue
of Tx(δ) there holds

(2j − 1)2
π2

16
≤ λj(Tx(δ))2 − δ2 ≤ j2

π2

4
. (5)

If φ+
j,δ is a normalized eigenfunction associated with λj(Tx(δ)), then φ−

j,δ := σ1φ
+
j,δ is a nor-

malized eigenfunction associated with −λj(Tx(δ)).

(ii) There holds

λj(Tx(δ)) =
(2j − 1)π

4
+

2

(2j − 1)π
δ +

( −16

(2j − 1)3π3
+

2

(2j − 1)π

)

δ2 +O(δ3),

(iii) For j ∈ N, a normalized eigenfunction associated with ±λj(Tx(δ)) verifies

φ±
j,δ(t) := φ±

j (t) +O(δ), (6)

where φ+
j is defined as

φ+
j (t) =

1

2
cos

(

(2j − 1)π

4
(t+ 1)

)(

1
−i(x1 + ix2)

)

+
1

2
sin

(

(2j − 1)π

4
(t+ 1)

)(

1
i(x1 + ix2)

)

(7)

and φ−
j = σ1φ

+
j . Here, the remainder is understood in the L∞-norm.

(iv) For all f ∈ dom(Tx(δ)) there holds

‖Tx(δ)f‖2L2((−1,1),C2) = ‖f ′‖2L2((−1,1),C2) + δ2‖f‖2L2((−1,1),C2) + δ
(

|f(1)|2 + |f(−1)|2
)

.

The proof of the above proposition is similar to the proof of [18, Prop.10], nevertheless we give
it for the sake of completeness

Proof. Since the multiplication operator by σ3 is bounded and self-adjoint in L2((−1, 1),C2) the
operator Tx(δ) is self-adjoint if and only if Tx(0) is self-adjoint. We can easily show that the operator
Tx(0) is symmetric using an integration by parts.

For all v ∈ D := C∞
0 ((−1, 1),C2) and u ∈ domTx(0)∗, there holds

〈T ∗
x (0)u, v〉L2((−1,1),C2) = 〈u, Tx(0)v〉L2((−1,1),C2) = 〈u,−iσ · v′〉L2((−1,1),C2)

=
〈

u,−iσ · v′
〉

D′,D

= 〈−iσ · u′, v〉D′,D

= 〈Tx(0)∗u, v〉D′,D ,
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where there 〈., .〉D′,D is the duality bracket of distributions. In particular, we know that Tx(0)∗ =

−iσ · u′ ∈ L2((−1, 1),C2) thus we get u ∈ H1((−1, 1),C2). Next, an integration by parts gives for
u = (u1, u2)

⊤ ∈ dom(Tx(0)∗) and v = (v1, v2)
⊤ ∈ dom(Tx(0))

〈Tx(0)∗u, v〉L2((−1,1),C2) = 〈u, Tx(0)v〉L2((−1,1)C2) + (i(x1 + ix2)u2(1)− u1(1))v1(1)

+ (−i(x1 + ix2)u2(−1)− u1(−1))v1(−1).

Recall that v ∈ dom(Tx(0)), so necessarily there holds

0 = (i(x1 + ix2)u2(1)− u1(1))v1(1) + (−i(x1 + ix2)u2(−1)− u1(−1))v1(−1).

Since this is true for all v ∈ dom(Tx(0)), we get u2(±1) = ±i(x1 + ix2)u1(±1) which yields
Tx(0)∗ = Tx(0).
The compactness of the resolvent of Tx(0) is a consequence of the graph theorem and the compact-
ness of the embedding of H1((−1, 1),C2) in L2((−1, 1),C2).
Let u ∈ Tx(δ), we have

‖Tx(δ)u‖2L2((−1,1),C2) = ‖ − iσ · xu′‖2L2((−1,1),C2) + δ2‖u‖2L2((−1,1),C2)

+ 2δℜ(〈−iσ · xu′, σ3u〉L2((−1,1),C2)) ≥ δ2‖u‖2L2((−1,1),C2),

since an integration by parts and the boundary conditions gives us

2ℜ
(

〈−iσ · xu′, σ3u〉L2((−1,1),C2)

)

= |u(1)|2 + |u(−1)|2.

Note that using ‖ − iσ · xu′‖L2((−1,1),C2) = ‖u′‖L2((−1,1),C2) proves Point (iv). By the min-max
principle we deduce that if λ ∈ Sp(Tx(δ)), then |λ| ≥ δ. Actually, the inequality is strict. Indeed, if
u is an eigenfunction of Tx(δ) associated with λ such that |λ| = δ we necessarily obtain that u is a
constant fuction on (−1, 1) verifying the boundary conditions. This not possible unless u is 0. We
have shown that Sp(Tx(δ)) ∩ [−δ, δ] = ∅.
Now, we compute its spectrum. To do so we pick λ ∈ Sp(Tx(δ)) and chose a corresponding
eigenfunction u = (u1, u2)

⊤ ∈ dom(Tx(δ)). We get

−u′′
1 = E2u1, E2 = λ2 − δ2. (8)

Taking into acount that δ ≥ 0 and E > 0, we obtain

u1(t) = A cos(E(t+ 1)) +B sin(E(t+ 1)),

where A, B ∈ C and since λ+ δ 6= 0 there holds

u2(t) =
−i(x1 + ix2)E

λ+ δ
B cos(E(t+ 1)) +

i(x1 + ix2)E

λ+ δ
A sin(E(t+ 1)).

Using the boundary conditions at t = −1 we get

√
λ+ δA−

√
λ− δB = 0.
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The boundary condition at t = 1 gives

A(−
√
λ+ δ cos 2E +

√
λ− δ sin 2E)−B(

√
λ− δ cos 2E +

√
λ+ δ sin 2E) = 0.

To obtain a non-zero eigenfunction u, there must hold

∣

∣

∣

∣

√
λ+ δ −

√
λ− δ√

λ− δ sin 2E −
√
λ+ δ cos 2E −

√
λ− δ cos 2E −

√
λ+ δ sin 2E

∣

∣

∣

∣

= 0

which yields the following implicit equation

δ sin(2E) + E cos(2E) = 0. (9)

In particular, this implies that the spectrum of Tx(δ) is symmetric with respect to the origin. If
δ = 0 then we have E = |λ| = k π

4 , where k ∈ N. If δ > 0, then we have cos(2E) 6= 0 and we get

tan(2E) +
E

δ
= 0. (10)

Let us consider the following function

f0 : I0 = [0,
π

2
) → R

x 7→ tan(x) +
x

2δ
,

we easily show that x = 0 is the unique solution to f0(x) = 0.
In the same way we define for p ∈ N the following function

fp : Ip = ((2p− 1)
π

2
, (2p+ 1)

π

2
) → R

x 7→ tan(x) +
x

2δ
.

Notice that f ′
p > 0 and

lim
x→(2p−1)π

2
+
fp(x) = −∞, fp(pπ) = p

π

2δ
> 0.

Thus, fp(x) = 0 admits a unique solution xp that verifies xp ∈ ((2p− 1)π2 , pπ). Using (10) and (8),

we obtain that λp(Tx(δ))
2 :=

x2
p

4 + δ2 is the p-th positive eigenvalue of Tx(δ). In particular, we get
(5).

Now, consider the following C∞ function

F :

{

R× R → R

(µ, δ) 7→ 2δ sin(µ) + µ cosµ.
(11)

Since for p ∈ N we have F ( (2p−1)π
2 , 0) = 0 and ∂µF ( (2p−1)π

2 , 0) = (−1)(p+1) (2p−1)π
2 one gets by

the implicit function theorem that there exists θ1, θ2 > 0 and a C∞ function µp : (−θ1, θ1) →
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( (2p−1)π
2 − θ2,

(2p−1)π
2 + θ2) verifying µp(0) = (2p − 1)π2 and such that for all |δ| < θ1 we have

F (µp(δ), δ) = 0. Moreover, when δ → 0 we obtain

µp(δ) = µp(0) + µ′
p(0)δ +

µ′′
p(0)

2
δ2 +O(δ3) = (2p− 1)

π

2
+

4

(2p− 1)π
δ − 32

(2p− 1)3π3
δ2 +O(δ3).

Hence, when δ → 0, we get

λp(Tx(δ)) =
(2p− 1)π

4
+

2

(2p− 1)π
δ +

( −16

(2p− 1)3π3
+

2

(2p− 1)π

)

δ2 +O(δ3),

this proves (ii). Finally we prove (iii). For p ∈ N, let φ+
p,δ be a corresponding normalized eigenfunc-

tion to λp(Tx(δ)) given by

φ+
p,δ(t) =

1

N
1
2

p,δ

cos(Ep(t+ 1))

(

1
−i(x1 + ix2)

)

+
1

N
1
2

p,δ

sin(Ep(t+ 1))

(

λp(Tx(δ))+δ

Ep

i(x1 + ix2)
Ep

λp(Tx(δ))+δ

)

,

(12)

where we have set Ep =
√

λp(Tx(δ))2 − δ2 and

Np,δ = 2(1 +
1

4Ep

sin(4Ep)) + (1− 1

4Ep

sin(4Ep))

(

(

λp(Tx(δ)) + δ

Ep

)2

+

(

Ep

λp(Tx(δ)) + δ

)2
)

+
1

2Ep

(1− cos 4Ep)

(

λp(Tx(δ)) + δ

Ep

− Ep

λp(Tx(δ)) + δ

)

.

Remark that when δ → 0 we get

1

N
1
2

p,δ

=
1

2
+O(δ),

λp(Tx(δ)) + δ

Ep

= 1 +O(δ) and
Ep

λp(Tx(δ)) + δ
= 1 +O(δ) (13)

and also that we have for all t ∈ (−1, 1)

cos(Ep(t+ 1))− cos((2p− 1)
π

4
(t+ 1)) = cos(

π

4
(2p− 1)(t+ 1))(cos(cδ(t+ 1))− 1)

− sin(
π

4
(2p− 1)(t+ 1)) sin(cδ(t+ 1)),

for some constant cδ = O(δ) when δ → 0. By the mean value theorem applied to the cosine and
sine functions we get

| cos(Ep(t+ 1))− cos((2p− 1)
π

4
(t+ 1))| ≤ 2|cδ(t+ 1)| ≤ 4|cδ|.

Hence, cos(Ep(t + 1)) = cos((2p − 1)π4 (t + 1)) + O(δ) with a uniform remainder. Similarly, one
would get sin(Ep(t+ 1)) = sin((2p− 1)π4 (t+ 1)) +O(δ). Hence, from this and from (12) and (13)
we get

φ+
p,δ(t) = φ+

p (t) +O(δ),

with a uniform remainder and we obtain (6).
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3 Auxiliary quadratic forms

In this section we give a two-sided estimate of the quadratic form of the square of the operator
DΓ(ε).

Let us introduce the quadratic form associated with DΓ(ε)
2 defined as

a[u] := ‖DΓ(ε)u‖2, dom(a) := dom(DΓ(ε)).

We have the following proposition

Proposition 3. There exists ε′ > 0 and a constant C > 0 such that for all ε ∈ (0, ε′) there exists
a unitary map U : L2(Ωε,C

2) → L2(T× (−1, 1),C2) such that for all u ∈ dom(a) we have

c+[Uu] ≤ a[u] ≤ c−[Uu],

where c± are the quadratic forms given by

c±[w] := (1± Cε)

∫

T×(−1,1)

|∂sw|2dsdt−
∫

T×(−1,1)

κ2

4
|w|2dsdt+ (m2 ± Cε) ‖w‖2

+
1

ε2

(

∫

T

(

∫ 1

−1

|∂tw|2dt+mε(|w(s, 1)|2 + |w(s,−1)|2)
)

ds
)

,

dom(c±) = U(dom(a)) = {u ∈ H1(T× (−1, 1),C2) : ∀s ∈ T,∓iσ3σ · ν(s)u(s,±1) = u(s,±1)}.

Proof. By adapting the proof of [17, Lemma 3.3, Prop. 3.5], for all u ∈ dom(a), there holds

a[u] =

∫

Ωε

|∇u|2dx+m2‖u‖2 +
∫ ℓ

0

(

m+
κ(s)

2(1 + εκ(s))

)

|u(Φε(s,−1))|2(1 + εκ(s))ds

+

∫ ℓ

0

(m− κ(s)

2(1− εκ(s))
)|u(Φε(s, 1))|2(1− εκ(s))ds.

Consider the unitary map U1 defined as follows

U1 : L2(Ωε) → L2(T× (−1, 1), gε(s, t)dsdt), (U1u)(s, t) := u(Φε(s, t)).

where the metric gε is given by gε(s, t) := ε(1− εtκ(s)). In particular, for all v ∈ U1(dom(a)) there
holds

b[v] := a[U−1
1 v] =

∫

T×(−1,1)

( 1

(1− εtκ(s))2
|∂sv|2 +

1

ε2
|∂tv|2

)

gε(s, t)dsdt

+
1

ε

∫ ℓ

0

(

(m+
κ(s)

2(1 + εκ(s))
)|v(s,−1)|2gε(s,−1)

)

ds

+
1

ε

∫ ℓ

0

(

(m− κ(s)

2(1− εκ(s))
)|v(s, 1)|2gε(s, 1)

)

ds+m2

∫

T×(−1,1)

(

|v|2gε(s, t)
)

dsdt.

Now, consider the unitary map

U2 : L2(T× (−1, 1), gε(s, t)dsdt) → L2(T × (−1, 1)), (U2v)(s, t) :=
√

gε(s, t)v.

8



For w =
√
gεv, there holds

(∂tv)(s, t) = ∂t(
1

√

gε(s, t)
w(s, t)) =

ε2κ(s)

2gε(s, t)
3
2

w(s, t) +
1

√

gε(s, t)
∂tw(s, t)

and

(∂sv)(s, t) = ∂s(
1

√

gε(s, t)
w(s, t)) =

ε2tκ′(s)

2gε(s, t)
3
2

w(s, t) +
1

√

gε(s, t)
∂sw(s, t).

In particular we get

1

ε2
|∂tv|2gε(s, t) =

1

ε2
|∂tw|2 +

κ2

4(1− εtκ)2
|w|2 + κ

2ε(1− εtκ)
∂t(|w|2)

and

1

(1 − εtκ)2
|∂sv|2gε(s, t) =

1

(1− εtκ)2
|∂sw|2 +

ε2t2(κ′)2

4(1− εtκ)4
|w|2 + εtκ′

2(1− εtκ)3
∂s(|w|2).

Remark that an integration by parts yields

∫ 1

−1

κ

2ε(1− εtκ)
∂t(|w|2)dt = −

∫ 1

−1

κ2

2(1− εtκ)2
|w|2dt+ κ

2ε(1− εκ)
|w(s, 1)|2

− κ

2ε(1 + εκ)
|w(s,−1)|2,

as well as
∫

T

εtκ′

2(1− εtκ)3
∂s(|w|2)ds = −ε

∫

T

tκ′′

2(1− εtκ)3
|w|2ds− ε2

∫

T

3t2(κ′)2

2(1− εtκ)4
|w|2ds.

Now, pick w ∈ U2(U1dom(a)) and set v = U−1
2 w. In particular, remark that it yields

c[w] := b[U−1
2 w] =

∫

T×(−1,1)

( 1

(1 − εtκ)2
|∂sw|2 − ε

tκ′′

2(1− εtκ)3
|w|2 − ε2

5

4

t2(κ′)2

(1− εtκ)4
|w|2

)

dsdt

−
∫

T×(−1,1)

( κ2

4(1− εtκ)2
|w|2

)

dsdt+

∫

T×(−1,1)

( 1

ε2
|∂tw|2

)

dsdt

+
m

ε

∫

T

(

|w(s,−1)|2 + |w(s, 1)|2
)

ds+m2‖w‖2.

Now, using that κ, κ′ and κ′′ are in L∞(T), |t| < 1 and taking U = U2U1 we get the proposition.

4 Proof of Theorem 1

In this section we will prove the main theorem by deriving an upper and a lower bound for the
eigenvalues of the square of DΓ(ε).
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4.1 Upper bound

The aim of this paragraph is to prove the following proposition.

Proposition 4. Let j ∈ N, there exists ε1 > 0 such that for all ε ∈ (0, ε1)

µj(a) ≤
λ1(Tν(mε))2

ε2
+ µj(q

1D) +O(ε).

In order to give the proof we need the folowing lemma

Lemma 1. Let φ±
1,mε be the eigenfunctions of the transverse operator Tν(mε) given in (iii) of

Proposition 2. Then, we have

∂sφ
±
1,mε(t) := ∂sφ

±
1 (t) +O(ε),

∂2
sφ

±
1,mε(t) := ∂2

sφ
±
1 (t) +O(ε) (14)

where

∂sφ
+
1 (t) =

1

2
cos(

π

4
(t+ 1))

(

0
κn

)

+
1

2
sin(

π

4
(t+ 1))

(

0
−κn

)

(15)

and

∂2
sφ

+
1 (t) =

1

2
cos(

π

4
(t+ 1))

(

0
∂s(κn)

)

+
1

2
sin(

π

4
(t+ 1))

(

0
−∂s(κn)

)

and for j ∈ {1, 2}, ∂j
sφ

−
1 = σ1∂

j
sφ

+
1 with n = ν1 + iν2. Here, the remainder is understood in the

L∞-norm.

Proof. After remarking that for all t ∈ (−1, 1) and j ∈ {1, 2}, we have

∂j
sΦ

+
1,mε(t) =

1

N
1
2
1,mε

cos(E1(mε)(t+1))

(

0
∂j−1
s (κn)

)

+
1

N
1
2
1,mε

sin(E1(mε)(t+1))

(

0

−∂j−1
s (κn) E1(mε)

λ1(Tν(mε))+mε

)

from this point the proof of Lemma 1 goes along the same lines as the proof of Point (iii) Proposition
2.

Proof of Proposition 4 . Let f± ∈ H1(T) and consider the trial-function u = f+φ+
1,mε+f−φ−

1,mε.
One notices that u ∈ dom(c+) and by definition of u there holds

c+[u] = (1 + Cε)

∫

T×(−1,1)

|∂su|2dsdt−
∫

T×(−1,1)

κ2

4
|u|2 + 1

ε2
λ1(Tν(mε))2‖u‖2 + Cε‖u‖2.

We remark that thanks to the orthogonality of φ+
1,mε and φ−

1,mε in L2((−1, 1),C2) we have

‖u‖2 =
∫

T

(

|f+|2 + |f−|2
)

ds = ‖f‖2,
∫

T×(−1,1)

(κ2

4
|u|2
)

dsdt =

∫

T

κ2

4
|f |2ds,

10



where we have set f =

(

f+

f−

)

∈ H1(T,C2). Moreover, there holds

|∂su|2 = |(f+)′φ+
1,mε + (f−)′φ−

1,mε|2 + |f+∂s(φ
+
1,mε) + f−∂s(φ

−
1,mε)|2

+ 2ℜ
(

〈(f+)′φ+
1,mε + (f−)′φ−

1,mε, f
+∂s(φ

+
1,mε) + f−∂s(φ

−
1,mε)〉

)

. (16)

In particular, we have
∫ 1

−1

(

|(f+)′φ+
1,mε + (f−)′φ−

1,mε|2
)

dt = |f ′|2. (17)

By Lemma 1 we have

|f+∂s(φ
+
1,mε) + f−∂s(φ

−
1,mε)|2 =

κ2

4

(

cos(
π

4
(t+ 1))− sin(

π

4
(t+ 1))

)2

|f |2 + |f |2O(ε)

+ 2ℜ(f+f−)O(ε)

and
∫ 1

−1

(

|f+∂s(φ
+
1,mε) + f−∂s(φ

−
1,mε)|2

)

dt =
κ2

4

(

2− 4

π

)

|f |2 + |f |2O(ε) + 2ℜ(f+f−)O(ε), (18)

where all the remainder are uniform in the variable t. Moreover, we obtain

〈(f+)′φ+
1,mε+(f−)′φ−

1,mε, f
+∂s(φ

+
1,mε)+f−∂s(φ

−
1,mε)〉 = (f+)′f+〈φ+

1,mε, ∂sφ
+
1,mε〉+(f+)′f−〈φ+

1,mε, ∂sφ
−
1,mε〉

+ (f−)′f+〈φ−
1,mε, ∂sφ

+
1,mε〉+ (f−)′f−〈φ−

1,mε, ∂sφ
−
1,mε〉.

But remark that there holds
∫ 1

−1

(

〈φ+
1,mε, ∂sφ

+
1,mε〉

)

dt =
iκ

4
(
4

π
− 2) +O(ε)

as well as
∫ 1

−1

(

〈φ+
1,mε, ∂sφ

−
1,mε〉

)

dt = O(ε).

Using that φ−
1,mε = σ1φ

+
1,mε, we get that

∫ 1

−1

(

〈φ−
1,mε, ∂sφ

−
1,mε〉

)

dt =
iκ

4
(2− 4

π
) +O(ε)

and
∫ 1

−1

(

〈φ−
1,mε, ∂sφ

+
1,mε〉

)

dt = O(ε).

Hence, we obtain

∫ 1

−1

〈(f+)′φ+
1,mε + (f−)′φ−

1,mε, f
+∂s(φ

+
1,mε) + f−∂s(φ

−
1,mε)〉

= (f+)′f+
iκ

4
(
4

π
− 2) + (f−)′f−

iκ

4
(2 − 4

π
) +O(ε)

(

(f+)′f+ + (f+)′f− + (f−)′f+ + (f−)′f−
)

=

〈

f ′,
iκ

4
(2− 4

π
)σ3f

〉

+O(ε)
(

(f+)′f+ + (f+)′f− + (f−)′f+ + (f−)′f−
)

. (19)
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Substituting (17), (18) and the above equality in (16) we get, for some constant c′ > 0

∫ 1

−1

|∂su|2dt ≤ |f ′ + iκ(
1

2
− 1

π
)σ3f |2 + κ2

(1

2
− 1

π

)2

|f |2 + c′ε|f ′|2 + c′ε|f |2. (20)

Now, remark that

|f ′|2 = |f ′ + iκ(
1

2
− 1

π
)σ3f − iκ(

1

2
− 1

π
)σ3f |2

= |f ′ + iκ(
1

2
− 1

π
)σ3f |2 + κ2

(1

2
− 1

π

)2|f |2 − 2ℜ
(

〈f ′ + iκ(
1

2
− 1

π
)σ3f, iκ(

1

2
− 1

π
)σ3f〉

)

≤ |f ′ + iκ(
1

2
− 1

π
)σ3f |2 + c′′|f |2 + c′′(|f ′ + iκ(

1

2
− 1

π
)σ3f |2), (21)

for some constant c′′ > 0, where we have used the Cauchy-Schwarz inequality to control the last
term and the elementary identity ab ≤ 1

2a
2 + 1

2b
2 (for a, b ∈ R).

Taking into account (20) and (21) we finally obtain for some new constants k, k′ > 0 that

c+[u] ≤ (1 + kε)

∫

T

(

|f ′ + iκ(
1

2
− 1

π
)σ3f |2 −

κ2

π2
|f |2

)

ds+
( 1

ε2
λ1(Tν(mε))2 + k′ε)

)

‖f‖2.

Using the min-max principle one gets the expected result. �

4.2 Lower bound

The goal of this paragraph is to prove the following proposition.

Proposition 5. Let j ∈ N, there exists ε1 > 0 such that for all ε ∈ (0, ε1)

µj(a) ≥
λ1(Tν(mε))2

ε2
+ µj(q

1D) +O(ε).

In order to prove the above proposition we need the next lemma.

Lemma 2. Let Πε be the orthogonal projectors initialy defined for u ∈ L2((−1, 1),C2) by

Πεu = 〈u, φ+
1,mε〉φ+

1,mε + 〈u, φ−
1,mε〉φ−

1,mε, Π⊥
ε = Id−Πε.

Then, the map [∂s,Πε]u := ∂s(Πεu)−Πε(∂su) defined for u ∈ C1(T, L2(−1, 1)) extends by density
to a bounded operator from Hq(T, L2(−1, 1)) to Hq(T, L2(−1, 1)) still denoted [∂s,Πε] and whose
norm remains uniformly bounded for ε → 0 ( for q ∈ {0, 1}). The same conclusion holds for
[∂s,Π

⊥
ε ] = −[∂s,Πε].

Proof. The first part is proven by noticing that for u ∈ C1(T, L2(−1, 1)) we have

[∂s,Πε]u = 〈u, ∂sφ+
1,mε〉φ+

1,mε + 〈u, ∂sφ−
1,mε〉φ−

1,mε +
〈

u, φ+
1,mε

〉

∂sφ
+
1,mε +

〈

u, φ−
1,mε

〉

∂sφ
−
1,mε (22)
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and

‖[∂s,Πε]u‖ ≤ ‖〈u, ∂sφ+
1,mε〉φ+

1,mε‖+ ‖〈u, ∂sφ−
1,mε〉φ−

1,mε‖+ ‖
〈

u, φ+
1,mε

〉

∂sφ
+
1,mε‖

+ ‖
〈

u, φ−
1,mε

〉

∂sφ
−
1,mε‖

≤
(

∫

T

|〈u, ∂sφ+
1,mε〉|2ds

)
1
2

+
(

∫

T

|〈u, ∂sφ−
1,mε〉|2ds

)
1
2

+
(

∫

T

|〈u, φ+
1,mε〉|2

(

∫ 1

−1

|∂sφ+
1,mε|2dt

)

ds
)

1
2

+
(

∫

T

|〈u, φ−
1,mε〉|2

(

∫ 1

−1

|∂sφ−
1,mε|2dt

)

ds
)

1
2

≤
(

∫

T

(

∫ 1

−1

|u|2dt
)(

∫ 1

−1

|∂sφ+
1,mε|2dt

)

ds
)

1
2

+
(

∫

T

(

∫ 1

−1

|u|2dt
)(

∫ 1

−1

|∂sφ−
1,mε|2dt

)

ds
)

1
2

+
(

∫

T

|〈u, φ+
1,mε〉|2

(

∫ 1

−1

|∂sφ+
1,mε|2dt

)

ds
)

1
2

+
(

∫

T

|〈u, φ−
1,mε〉|2

(

∫ 1

−1

|∂sφ−
1,mε|2dt

)

ds
)

1
2

.

Thanks to Lemma 1 and the explicit expression of ∂sφ
±
1,mε given in (15) we know that there exists

c, k > 0 such that for all s ∈ T we have for ε sufficiently small

∫ 1

−1

|∂sφ±
1,mε|2dt ≤ (c+ kε)2.

Here we have used that by hypothesis κ ∈ L∞(T). It yields

‖[∂s,Πε]u‖ ≤ 2(c+ kε)‖u‖+ (c+ kε)
((

∫

T

|〈u, φ+
1,mε〉|2ds

)
1
2

+
(

∫

T

|〈u, φ−
1,mε〉|2ds

)
1
2
)

≤ 4(c+ kε)‖u‖,

where we have used that the last two-terms in the first line are controlled by the norm of the
orthogonal projectors on φ±

1,mε. Now, recall that γ is of class C4 which implies that φ±
1,mε ∈

C3(T, C∞(−1, 1)) and ∂sφ
±
1,mε ∈ C2(T, C∞(−1, 1)). Taking this into account for all u ∈ C1(T, L2((−1, 1)))

we have

∂s[∂s,Πε]u = [∂s,Πε]∂su+
∑

j=±

(

〈u, ∂2
sφ

j
1,mε〉φj

1,mε + 〈u, φj
1,mε〉∂2

sφ
j
1,mε + 2〈u, ∂sφj

1,mε〉∂sφj
1,mε

)

Proceeding as above and using once again Lemma 1, we get that for ε small enough there exists
some constant c > 0 such that

‖∂s[∂s,Πε]u‖ ≤ c
(

‖∂su‖+ ‖u‖
)

.

Hence, this extends by density to any function in H1(T, L2((−1, 1))) and the lemma is proved.

Proof of Theorem 5. Note that for all u ∈ dom(c−) there holds

∫

T×(−1,1)

|∂su|2dsdt =
∫

T×(−1,1)

|∂s(Πεu+Π⊥
ε u)|2dsdt = ‖∂sΠεu‖2+‖∂sΠ⊥

ε u‖2+2ℜ
(

〈∂sΠεu, ∂sΠ
⊥
ε u〉

)

.
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Let us focus on the last term in the last equality. There holds

〈∂sΠεu, ∂sΠ
⊥
ε u〉 = 〈∂sΠ2

εu, ∂s(Π
⊥
ε )

2u〉 = 〈([∂s,Πε] + Πε∂s)Πεu, ([∂s,Π
⊥
ε ] + Π⊥

ε ∂s)Π
⊥
ε u〉

= 〈[∂s,Πε]Πεu, [∂s,Π
⊥
ε ]Π

⊥
ε u〉+ 〈[∂s,Πε]Πεu,Π

⊥
ε ∂sΠ

⊥
ε u〉+ 〈Πε∂sΠεu, [∂s,Π

⊥
ε ]Π

⊥
ε u〉

:= J1 + J2 + J3.

Now, we deal with each term appearing in the right-hand side of the last expression. Using Lemma

2, and the elementary inequality ab ≤ a2ε
2 + b2

2ε , where a, b ∈ R and ε > 0, we obtain

|J1| ≤ ‖[∂s,Πε]Πεu‖‖[∂s,Π⊥
ε ]Π

⊥
ε u‖ ≤ c1

2
ε‖Πεu‖2 +

c1
2ε

‖Π⊥
ε u‖2,

where c1 > 0 is a constant. Regarding J3, similarly one gets that there exists c2 > 0 such that

|J3| ≤ ‖Πε∂sΠεu‖‖[∂s,Π⊥
ε ]Π

⊥
ε u‖ ≤ c2‖∂sΠεu‖‖Π⊥

ε u‖ ≤ c2
2
ε‖∂sΠεu‖2 +

c2
2ε

‖Π⊥
ε u‖2.

We are left with the investigation of the term J2. Note that there holds

J2 = 〈Π⊥
ε [∂s,Πε]Πεu, ∂sΠ

⊥
ε u〉.

In particular, we get

Π⊥
ε [∂s,Πε]Πεu = 〈Πεu, φ

+
1,mε〉Π⊥

ε ∂sφ
+
1,mε + 〈Πεu, φ

−
1,mε〉Π⊥

ε ∂sφ
−
1,mε (23)

and we note that Π⊥
ε [∂s,Πε]Πεu ∈ H1(T× (−1, 1),C2). In particular performing an integration by

parts, one gets
〈Π⊥

ε [∂s,Πε]Πεu, ∂sΠ
⊥
ε u〉 = −〈∂sΠ⊥

ε [∂s,Πε]Πεu,Π
⊥
ε u〉,

as the boundary term vanishes. Now, using (23) we note that

∂sΠ
⊥
ε [∂s,Πε]Πεu = 〈∂sΠεu, φ

+
1,mε〉Π⊥

ε ∂sφ
+
1,mε+〈∂sΠεu, φ

−
1,mε〉Π⊥

ε ∂sφ
−
1,mε+〈Πεu, ∂sφ

+
1,mε〉Π⊥

ε ∂sφ
+
1,mε

+ 〈Πεu, ∂sφ
−
1,mε〉Π⊥

ε ∂sφ
−
1,mε + 〈Πεu, φ

+
1,mε〉∂sΠ⊥

ε ∂sφ
+
1,mε

+ 〈Πεu, φ
−
1,mε〉∂sΠ⊥

ε ∂sφ
−
1,mε. (24)

By Lemma 2, there exists c3 > 0 such that

‖∂sΠ⊥
ε [∂s,Πε]Πεu‖ ≤ c3(‖∂sΠεu‖+ ‖Πεu‖).

Hence, for J2, there holds

|J2| ≤ c3(‖∂sΠεu‖+ ‖Πεu‖)‖Π⊥
ε u‖ ≤ c3

ε

2
(‖∂sΠεu‖+ ‖Πεu‖)2 + c3

1

2ε
‖Π⊥

ε u‖2

≤ c3ε‖∂sΠεu‖2 + c3ε‖Πεu‖2 +
c3
2ε

‖Π⊥
ε u‖2.

Hence, collecting all the estimates, one gets for some c4 > 0
∫

T×(−1,1)

|∂su|2dsdt ≥ (1− c4ε)‖∂sΠεu‖2 − c4ε‖Πεu‖2 −
c4
ε
‖Π⊥

ε u‖2.
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Thus, we obtain

c−[u] ≥ (1−Cε)(1−c4ε)‖∂sΠεu‖2−(1−Cε)c4ε‖Πεu‖2−(1−Cε)
c4
ε
‖Π⊥

ε u‖2−
∫

T×(−1,1)

κ2

4
|Πεu|2dsdt

−
∫

T×(−1,1)

κ2

4
|Π⊥

ε u|2dsdt+
1

ε2
λ1(Tν(mε))2‖Πεu‖2

+
1

ε2
λ2(Tν(mε))2‖Π⊥

ε u‖2 − Cε‖u‖2

≥ (1 − c5ε)‖∂sΠεu‖2 −
∫

T×(−1,1)

κ2

4
|Πεu|2dsdt+

( 1

ε2
λ1(Tν(mε))2 − c5ε

)

‖Πεu‖2

+ (
1

ε2
λ2(Tν(mε))2 − c5

ε
)‖Π⊥

ε u‖2,

for some constant c5 > 0. Here we have used that µ1(Tν(mε)2) = λ1(Tν(mε))2, that µ3(Tν(mε)2) =
λ2(Tν(mε))2 and that κ ∈ L∞(T). Now we infer that

∫ 1

−1

|∂sΠεu|2dt =
∫ 1

−1

|∂s
(

〈u, φ+
1,mε〉

)

φ+
1,mε+∂s

(

〈u, φ−
1,mε〉

)

φ−
1,mε+〈u, φ+

1,mε〉∂sφ+
1,mε+〈u, φ−

1,mε〉∂sφ−
1,mε|2dt

=

∫ 1

−1

|∂s
(

〈u, φ+
1,mε〉

)

φ+
1,mε+∂s

(

〈u, φ−
1,mε〉

)

φ−
1,mε|2dt+

∫ 1

−1

|〈u, φ+
1,mε〉∂sφ+

1,mε+〈u, φ−
1,mε〉∂sφ−

1,mε|2dt

+2ℜ
(
∫ 1

−1

〈∂s
(

〈u, φ+
1,mε〉

)

φ+
1,mε+∂s

(

〈u, φ−
1,mε〉

)

φ−
1,mε, 〈u, φ+

1,mε〉∂sφ+
1,mε+〈u, φ−

1,mε〉∂sφ−
1,mε〉dt

)

.

Next, we set f± := 〈u, φ±
1,mε〉 and f =

(

f+

f−

)

. Remark that |f |2 =
∫ 1

−1
|Πεu|2dt. Proceeding in

the same way as for the obtention of Equations (18), (19), (20) and (21) one obtains the existence
c6 > 0 such that

∫ 1

−1

|∂sΠεu|2dt ≥ (1− c6ε)|f ′ + iκ(
1

2
− 1

π
)σ3f |2 + κ2

(1

2
− 1

π

)2|f |2 − c6ε|f |2.

Hence, there holds

c−[u] ≥ (1− c7ε)q
1D[f ] +

( 1

ε2
λ1(Tν(mε))2 − c′7ε

)

‖f‖2 +
( 1

ε2
λ2(Tν(mε))2 − c7

ε

)

‖Π⊥
ε u‖2, (25)

for some constants c7, c
′
7 > 0.

Now we define the quadratic form Q with tensor product domain:

Q(f, v) := (1 − c7ε)q
1D[f ] +

( 1

ε2
λ1(Tν(mε))2 − c′7ε

)

‖f‖2 +
( 1

ε2
λ2(Tν(mε))2 − c7

ε

)

‖v‖2,

dom(Q) := H1(T,C2)×Π⊥
ε L

2(T× (−1, 1),C2).

Next, we give the quadratic form Q1 acting on ΠεL
2(T × (−1, 1),C2) ×Π⊥

ε L
2(T× (−1, 1),C2) by
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Q(V1v1, v2) = Q1(v1, v2), where V1 is the unitary map given by

V1 : ΠεL
2(T× (−1, 1),C2) → L2(T,C2)

u 7→ V1u =

(
〈

u, φ+
1,mε

〉

〈

u, φ−
1,mε

〉

)

.

Let u ∈ dom(c−), by (25) we get

c−[u] ≥ Q(V1Πεu,Π
⊥
ε u) = Q1(Πεu,Π

⊥
ε u).

The above inequality takes the form c−[u] ≥ Q(V u), where V u = (V1Πεu,Π
⊥
ε u). As V is unitary

we get by the min-max principle that µj(c
−) ≥ µj(Q) for all j ∈ N. Remark that we have the

representation Q1 = q1⊕q2 where q1 and q2 are two quadratic forms acting on ΠεL
2(T×(−1, 1),C2)

and Π⊥
ε L

2(T × (−1, 1),C2), respectively by

q1[u] = (1− c7ε)q
1D[V1u] +

( 1

ε2
λ1(Tν(mε))2 − c′7ε

)

‖V1u‖2

and

q2[v] =
( 1

ε2
λ2(Tν(mε))2 − c7

ε

)

‖v‖2,

On the other hand since λ2(Tν(mε))2 > 9π2

16 by (ii) of Proposition 2, and λ1(Tν(mε))2 ≤
π2

4 + (mε)2 one gets that for j ∈ N, there exists ε1 > 0 such that for ε ∈ (0, ε1) we have

1

ε2
λ2(Tν(mε))2 − c7

ε
≥ (1 − c7ε)λj(q

1D) +
1

ε2
λ1(Tν(mε))2 − c′7ε.

This implies that

µj(c
−) ≥ µj(q1).

This concludes the proof of this proposition. �

Finally, we are able to prove the main theorem.
Proof of Theorem 1. The proof is obtained taking into account Propositions 4 and 5 and noting

that because of the symmetry of the spectrum we have Ej(ε) =
√

µ2j(a). Hence, there holds

Ej(ε)
2 =

λ1(Tν(mε))2

ε2
+ µ2j(q

1D) +O(ε)

=
π2

16ε2
+

m

ε
− 4

π2
m2 +m2 + µ2j(q

1D) +O(ε).

Hence, there holds

Ej(ε) =
π

4ε

√

1 +
16

π2
mε− 64

π4
m2ε2 +

16

π2
(m2 + µ2j(q1D))ε2 +O(ε2)

=
π

4ε

(

1 +
8

π2
mε− 64

π4
m2ε2 +

8

π2

(

m2 + µ2j(q
1D)
)

ε2
)

+O(ε2)

=
π

4ε
+

2

π
m− 16

π3
m2ε+

2

π
(m2 + µ2j(q

1D))ε+O(ε2)

which proves Theorem 1. �
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(2015), 2535−2568. ‘

[15] Stockmeyer, E., Vugalter, S.: Infinite mass boundary conditions for Dirac operators. J. Spectr.
Theory 9 (2019), no. 2, pp. 569−600.

[16] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, 1995, Reprint of the
Corr. Print. of the 2nd ed. 1980.

17



[17] V. Lotoreichik and T. Ourmières-Bonafos,A sharp upper bound on the spectral gap for graphene

quantum dots, Math. Phys. Anal. Geom. (2019).
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