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Abstract 

 Objective: Ultrafast power Doppler (UPD) is an ultrasound method that can image blood flow 

at several thousands of frames per second. In particular, the high number of data provided by UPD 

enables the use of singular value decomposition (SVD) as a clutter filter for suppressing tissue signal. 

Notably, is has been demonstrated in various applications that SVD filtering increases significantly the 

sensitivity of UPD to microvascular flows. However, UPD is subjected to significant depth-dependent 

electronic noise and an optimal denoising approach is still being sought. Approach: In this study, we 

propose a new denoising method for UPD imaging: the Coherence Factor Mask (CFM). This filter is 

first based on filtering the ultrasound time-delayed data using SVD in the channel domain to remove 

clutter signal. Then, a spatiotemporal coherence mask that exploits coherence information between 

channels for identifying noisy pixels is computed. The mask is finally applied to beamformed images to 

decrease electronic noise before forming the power Doppler image. We describe theoretically how to 

filter channel data using a single SVD. Then, we evaluate the efficiency of the CFM filter for denoising 

in vitro and in vivo images and compare its performances with standard UPD and with three existing 

denoising approaches. Main results: The CFM filter gives gains in signal-to-noise ratio and contrast-to-

noise ratio of up to 22 dB and 20 dB, respectively, compared to standard UPD and globally outperforms 

existing methods for reducing electronic noise. Furthermore, the CFM filter has the advantage over 

existing approaches of being adaptive and highly efficient while not requiring a cut-off for 

discriminating noise and blood signals nor for determining an optimal coherence lag. Significance: The 

CFM filter has the potential to help establish UPD as a powerful modality for imaging microvascular 

flows. 

1 - Introduction 

  Ultrafast power Doppler (UPD) is a well-established ultrasound method for imaging blood flow 

at several thousands of frames per second [1]. In particular, the combination of advanced clutter filters 

such as singular value decomposition (SVD) filters with UPD enables the imaging of blood flows that 

were previously inaccessible to ultrasound [2]. Indeed, SVD performs spatiotemporal filtering of tissue 

signals that increases significantly the sensitivity of UPD to thin and slow blood flow [2]. Hence, it has 

been demonstrated that UPD combined with SVD filtering can image at a high frame rate microvascular 

flows in the brain, the optical system, or the spinal cord, among others [3]–[5]. In particular, the mean 

intensity of the power Doppler signal is generally accepted to be proportional to blood flow volume, 

making it possible to use UPD images to map brain activity in functional ultrasound [3]. However, due 

to acoustic attenuation, UPD images still remain subjected to a significant depth-dependent electronic 

noise, which degrades the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in deep regions. 

The standard framework for forming a UPD image is built upon the delay-and-sum (DAS) 

beamformer. In DAS beamforming, data acquired by each piezoelectric channel are first focalized on a 



pixel grid by applying the proper delays in reception. Then, the focalized signals coming from each 

channel are summed in every pixel. For increasing SNR, DAS beamforming is usually performed for 

several tilted plane waves whose corresponding beamformed images are then compounded together. 

The SVD clutter-filtering is performed after all these operations by determining a singular value cut-off 

that allows one to isolate tissue signals. Finally, the UPD image is computed as the zero-lag 

autocorrelation, i.e., the incoherent sum of clutter-filtered images [6]–[8]. In addition to compounding, 

one possible approach for reducing noise is to change the computation of UPD images. Notably, 

Tremblay-Darveau et al. [9] demonstrated that UPD images can be partially denoised if they are 

computed using a non-zero-lag autocorrelation. Also, Stanziola et al. [10] and Huang et al. [7] improved 

SNR by forming UPD images from the cross-correlation of beamformed signals acquired by subgroups 

of channels and angles, respectively. These correlation methods provide a good noise reduction without 

increasing the computational complexity. However, correlating channels necessitates careful design in 

order to avoid degrading the point spread function (PSF) of the system, and correlating angles lowers 

the overall frame rate. Moreover, several noise equalization and noise debiasing methods performed 

directly on UPD images have been proposed [11]–[13]. Yet, it is important to mention that noise 

equalization does not actually improve the SNR but rather the flow visualization. For the compounding 

step, Kang et al. [8] showed that using nonlinear compounding gives better SNR and CNR in UPD 

images. Furthermore, an alternative for increasing the SNR can be to acquire the UPD raw 

radiofrequency (RF) data using coded excitations [14], [15]. However, this approach requires a careful 

design of the coded sequences as well as their associated decoding in reception. Lastly, contrast agents 

can be used to strongly enhance the signal of blood flow [16]. Notably, the non-linear properties of 

microbubbles can be exploited using harmonic or superharmonic imaging to visualize the slowest blood 

velocities that can be suppressed by SVD [17]. However, contrast imaging is an invasive procedure by 

nature. 

Another possible approach for lowering noise in UPD images is to filter it using SVD in addition 

to tissue. Indeed, a singular value cut-off can also be determined to separate blood and noise signals in 

the spatiotemporal basis provided by SVD [6], [18]. However, since noise and blood signals are not 

perfectly decorrelated, this approach implies a trade-off between noise reduction and a full restitution 

of the blood flow [11], [19]. In addition, an optimal noise cut-off has to be determined. However, Song 

et al. (2017) demonstrated that these drawbacks can be partially compensated by a block SVD algorithm, 

which relies on local assumptions about noise and blood in images. Also, Ozgun et al. [19] proposed a 

higher-order SVD filtering of focalized signals before performing the channel summation that would 

complete the DAS process. In particular, these authors demonstrated that such a multidimensional 

filtering in the channel domain makes it possible to increase the noise reduction capacity of SVD. 

However, the higher-order SVD needs to determine multiple singular value cut-offs for blood and noise 

subspaces. 

In addition to the higher-order SVD [17], few studies have used the channel domain to perform 

noise reduction in UPD imaging. Yet, although processing in the channel domain is computationally 

expensive, it gives access to additional information compared to operating on beamformed data only. 

This is one of the key aspects of the Coherent Flow Power Doppler (CFPD) beamformer [20], [21] that 

is based on clutter filtering of the time-delayed RF data in the channel domain before forming the power 

Doppler image as a channel short-lag spatial coherence (SLSC) map. Notably, it has been demonstrated 

that the CFPD beamformer reduces electronic noise and also diffuse moving clutter. However, SLSC 

has an inherent high computational complexity and requires experimental determination of the optimal 

lag [22]. 

In this study, we propose a method that combines SVD filtering in the channel domain and 

coherence weighting of beamformed images to significantly reduce noise in UPD imaging: the 

Coherence Factor Mask (CFM) filter. First, the RF data are focalized on a pixel grid and the 

compounding is performed without the channel summation. Next, focalized and compounded data 



acquired by each channel are concatenated into a single matrix. Then, SVD clutter-filtering of tissue is 

performed on the concatenated matrix using a formalism denoted “Grouped Channel” (GC) SVD. Once 

the tissue signal is filtered using GC SVD, a channel Coherence Factor (CF) [23] is computed for each 

pixel of tissue-filtered channel data. Finally, the summation along channels is performed and the pixels 

of resulting beamformed images are multiplied by their corresponding CF. Given that the coherence 

along channels is lower for noise than for blood, the multiplication by the CF reduces the amplitude of 

pixels dominated by noise. Hence, a denoised UPD image can finally be computed from the CF-

weighted set of beamformed images. The CFM filter is compared on in vitro data with several denoising 

approaches presented previously, and demonstrates its superior ability in reducing depth-dependent 

electronic noise. Also, with the CFM filter the UPD images of the coronaries of a pig can be strongly 

enhanced compared with standard UPD. 

The paper is organized as follows. First, we recall the basics of standard UPD imaging with 

SVD filtering. Next, we present in detail three existing denoising approaches and the theory behind the 

proposed approach. Then, we describe the in vitro and in vivo experiments conducted for the comparison 

of the proposed method with existing approaches and standard UPD. We present the results of these 

experiments before ending the paper with a discussion and a conclusion about the presented work. 

Furthermore, some theoretical insights into SVD and GC SVD are provided in an Appendix at the end 

of the paper. 

2 – Materials and Methods 

2. 1 Basics of Ultrafast Power Doppler (UPD) 

a) Plane wave acquisitions 

 Let us consider a 1D ultrasonic array with 𝑛𝑒 emitting and receiving channel. After reception, 

signals acquired at discrete time 𝑡 = {1,2, … , 𝑛𝑡} by each channel are IQ demodulated and focalized on 

a 2D pixel grid with indices 𝑥 = {1,2, … , 𝑛𝑥} and 𝑧 = {1,2, … , 𝑛𝑧} in lateral an axial direction, 

respectively. This focalization leads to 𝑛𝑒 3D migrated channel tensors 𝓜𝑖 ∈ ℂ𝑛𝑥,𝑛𝑧,𝑛𝑡  where 𝑖 =
{1,2, … , 𝑛𝑒}. To complete DAS beamforming, channel tensors are summed as follows: 

𝓑 = ∑ 𝓜𝑖  (1)

𝑛𝑒

𝑖=1

  

where 𝓑 ∈ ℂ𝑛𝑥,𝑛𝑧,𝑛𝑡 is the tensor of DAS-beamformed images. Finally, for enhancing SNR, this DAS 

beamforming process is realized for several emission angles and the resulting beamformed tensors are 

compounded together. 

b) SVD  

To filter signals coming from tissues using SVD, the DAS-beamformed tensor 𝓑 is first 

reshaped into a spatiotemporal Casorati matrix 𝑩 ∈ ℂ𝑛𝑥𝑛𝑧,𝑛𝑡. The SVD of 𝑩 is then: 

𝑩 = 𝑼𝐵𝐒𝐵𝑽𝐵
∗  (2) 

where 𝑼𝐵 ∈ ℂ𝑛𝑥𝑛𝑧,𝑛𝑡 and 𝑽𝐵 ∈ ℂ𝑛𝑡,𝑛𝑡 are unitary matrices and 𝐒𝐵 ∈ ℂ𝑛𝑡,𝑛𝑡 is a diagonal matrix that 

contains the 𝑛𝑡 singular values 𝜎𝑖 of 𝑩; * stands for the conjugate transpose. Note that in ultrasound 

imaging the singular values are usually all distinct and sorted in 𝐒𝐵 such that 𝜎1 > 𝜎2 … > 𝜎𝑛𝑡
. Also, as 

explained by Demené et al. [2], the columns of 𝑽𝐵 contain the temporal singular vectors, which reflect 

all the temporal modes of the ultrasound data. Similarly, each column of 𝑼𝐵 contains a set of pixels 

sharing the temporal characteristics that are contained in the corresponding column of 𝑽𝐵. 



Once the SVD of 𝑩 has been computed, a rank reduction for filtering tissue signals is performed by 

setting to 0 the highest singular values. A denoising of 𝑩 can also be performed by setting to 0 the small 

singular values, which correspond to noise. 

c) Standard Ultrafast Power Doppler (UPD) 

Let us denote by �̂� the DAS-beamformed Casorati matrix where tissue signals have been 

removed with SVD. This matrix is reshaped into a tissue-filtered tensor �̂� ∈ ℂ𝑛𝑥,𝑛𝑧,𝑛𝑡, and a standard 

UPD image 𝑈𝑃𝐷 ∈ ℝ𝑛𝑥,𝑛𝑧 with the following entries is finally computed: 

𝑈𝑃𝐷(𝑥, 𝑧) = ∑|ℬ̂(𝑥, 𝑧, 𝑡)|
2

 (3)

𝑛𝑡

𝑡=1

 

d) Existing denoising methods 

We present in this section three denoising methods for UPD imaging that will be compared with 

the proposed method in the next sections. These methods are angle correlation [7], SVD noise-cut off 

as implemented by Song et al. [18], and CFPD beamformer [20], [21]. The methods were chosen 

because they represent three of the main categories of denoising approaches identified in the 

Introduction: noise reduction after beamforming and SVD, SVD-based denoising, and an alternative 

beamforming method. 

Angle correlation 

In angle correlation [7], images are separated into two non-overlapping subgroups following 

DAS beamforming and SVD tissue filtering. More precisely, each subgroup is made of images 

compounded from two different sets of angles. The UPD image 𝑃𝐷𝑎𝑛𝑔𝑙𝑒 is then formed as the cross-

correlation of the two subgroups along slow time: 

𝑃𝐷𝑎𝑛𝑔𝑙𝑒(𝑥, 𝑧) = |∑ ℬ̂1(𝑥, 𝑧, 𝑡)

𝑛𝑡

𝑡=1

ℬ̂2(𝑥, 𝑧, 𝑡)∗| (4) 

where ℬ̂1(𝑥, 𝑧, 𝑡) and ℬ̂2(𝑥, 𝑧, 𝑡) are the entries of the SVD-filtered DAS tensors of the two subsets.  

SVD noise cut-off 

We consider here the method of Song et al. [18] for determining a cut-off that allows one to 

identify the singular values that correspond to noise. A summary of other proposed methods can be 

found in the study by Baranger et al. [6]. 

First, the beamformed and tissue-filtered tensor �̂� is formed. Then, using SVD, the Doppler frequency 

of each temporal singular vector in the column of 𝑽𝐵 is computed from the respective autocorrelations. 

A preliminary singular value cut-off is identified by exploiting the change in Doppler frequency 

occurring between blood-dominated subspaces and noise-dominated subspaces. Then, this preliminary 

cut-off is used to identify the zone of the singular value curve that corresponds to the noise subspaces. 

Finally, the noise cut-off is determined from a linear fit of the singular value curve in that zone. The 

final UPD image is then computed as in equation (3). 

CFPD beamformer 

The CFPD beamformer [20], [21] operates in the channel domain on migrated channel tensors 

𝓜𝑖. First, tissue signals are removed from these tensors using separate clutter filters such as SVD for 



each channel. After the tissue-filtering, an SLSC tensor is computed from tissue-filtered tensors �̂�𝑖 

with entries:  

𝑆𝐿𝑆𝐶(𝑚, 𝑥, 𝑧, 𝑡) =
1

𝑛𝑒 − 𝑚
∑

∑ ℳ̂𝑖(𝑥, 𝑧, 𝑡)𝑧2
𝑧=𝑧1

ℳ̂𝑖+𝑚(𝑥, 𝑧, 𝑡)

√∑ ℳ̂𝑖
2(𝑥, 𝑧, 𝑡)𝑧2

𝑧=𝑧1
∑ ℳ̂𝑖+𝑚

2 (𝑥, 𝑧, 𝑡)𝑧2
𝑧=𝑧1

𝑛𝑒−𝑚

𝑖=1

 (5) 

where ℳ̂𝑖(𝑥, 𝑧, 𝑡) are the entries of filtered tensors �̂�𝑖 and 𝑚 is the number of lags to consider. 

 The CFPD image 𝑃𝐷𝐶𝐹𝑃𝐷 is finally computed as: 

𝑃𝐷𝐶𝐹𝑃𝐷(𝑥, 𝑧) = ∑ ( ∑ 𝑆𝐿𝑆𝐶(𝑚, 𝑥, 𝑧, 𝑡) 

𝑁

𝑚=1

)

2

 (6)

𝑛𝑡

𝑡=1

 

where 𝑁 is the maximum number of lags on which the UPD image is computed.  

2. 2 Proposed denoising method 

The proposed denoising method consists of two main steps. First, tissue signals are removed from 

focalized and compounded data using a single SVD in the channel domain. Then, a denoising mask for 

the resulting beamformed images is computed from a channel domain coherence analysis. 

a) Grouped channel SVD (GC SVD) 

We propose to perform SVD filtering of tissue in the channel domain as in the CFPD beamformer 

[20], [21] and higher-order SVD [19]. However, contrary to higher-order SVD, we do not use 

multidimensional filtering of the data. Indeed, higher-order SVD filters tissue along the slow time but 

also along channels. This multidimensional filtering needs two cut-offs for isolating the tissue subspace: 

one for the slow-time direction and one for the channel direction. Here, we keep a cut-off along the slow 

time only. In CFPD beamforming, this SVD filtering along the slow-time direction is performed 

separately for each channel. Here, for more computational efficiency, we propose to perform SVD 

filtering on a single Casorati matrix, which is the concatenation of all channel data. We denote this 

grouped channel SVD by “GC SVD”. 

First, each channel tensor 𝓜𝑖 is reshaped into a Casorati matrix 𝑴𝑖 ∈ ℂ𝑛𝑥𝑛𝑧,𝑛𝑡. For each matrix 𝑴𝑖, a 

compounding of several emission angles is realized for enhancing SNR. The concatenated Casorati 

matrix 𝑴 ∈ ℂ𝑛𝑒𝑛𝑥𝑛𝑧,𝑛𝑡  is then formed as:  

𝑴 = [𝑴1 … 𝑴𝑛𝑒
]

𝑇
 (7) 

Finally, the GC SVD of the channel data is: 

𝑴 = 𝑼𝑀𝐒𝑀𝑽𝑀
∗  (8) 

where 𝐒𝑀 and 𝑽𝑀 are of the same dimensions as 𝐒𝐵 and 𝑽𝐵 and 𝑼𝑀 ∈ ℂ𝑛𝑒𝑛𝑥𝑛𝑧,𝑛𝑡. As for 𝑩, a rank 

reduction can be performed on 𝑴 with GC SVD for filtering the tissue subspace. Then, the tissue-filtered 

matrix �̂� ∈ ℂ𝑛𝑒𝑛𝑥𝑛𝑧,𝑛𝑡 is re-separated into tissue-filtered channel matrices �̂�𝑖 ∈ ℂ𝑛𝑥𝑛𝑧,𝑛𝑡. Lastly, a 

channel summation is performed on matrices �̂�𝑖 to complete the beamforming process. 

b) Comparison of SVD and GC SVD 

One may ask whether the blood subspace in the SVD tissue-filtered matrix �̂� can be recovered 

after the channel summation of matrices �̂�𝑖. This condition is indeed mandatory when using GC SVD 

as a channel-domain clutter filter. For this, we make the simplifying assumption that tissue, noise and 



blood subspaces are perfectly orthogonal. As stated in the Introduction, this assumption is not perfectly 

true in practice, but it will help to understand the effect of GC SVD on tissue filtering. Let us denote:  

𝑼𝑀 = [(𝑼𝑀)1 … (𝑼𝑀)𝑛𝑒
]

𝑇
 (9) 

with (𝑼𝑀)𝑖 ∈ ℂ𝑛𝑥𝑛𝑧,𝑛𝑡 the 2D sub-matrix of 𝑼𝑀 that contains all the spatial singular vectors relative to 

the i-th channel. The notation (9) is possible because GC SVD conserves the ordering of the channels 

in 𝑼𝑀 like SVD conserves the spatial ordering of pixels in 𝑼𝐵. Equations (7), (8), and (9) imply: 

𝑴 = [(𝑼𝑀)1 … (𝑼𝑀)𝑛𝑒
]

𝑇
𝐒𝑀𝑽𝑀

∗  

= [(𝑼𝑀)1𝐒𝑀𝑽𝑀
∗ … (𝑼𝑀)𝑛𝑒

𝐒𝑀𝑽𝑀
∗ ]

𝑇
 

= [𝑴1 … 𝑴𝑛𝑒
]

𝑇
(10) 

From equation (10), one may note that 𝑴𝑖 = (𝑼𝑀)𝑖𝐒𝑀𝑽𝑀
∗ . However, (𝑼𝑀)𝑖𝐒𝑀𝑽𝑀

∗  is not the SVD 

decomposition of 𝑴𝑖.  

Now, let us suppose that the tissue singular values in 𝐒𝑀 are set to 0. Because 𝑴𝑖 = (𝑼𝑀)𝑖𝐒𝑀𝑽𝑀
∗ , each 

channel matrix 𝑴𝑖 will be tissue-filtered using the same rank-reduction and the resulting tissue-filtered 

concatenated matrix �̂� will be: 

�̂� = [(𝑼𝑀)1𝐒𝑀
𝑏+𝑛𝑽𝑀

∗ … (𝑼𝑀)𝑛𝑒
𝐒𝑀

𝑏+𝑛𝑽𝑀
∗ ]

𝑇
 

= [�̂�1 … �̂�𝑛𝑒
]

𝑇
 (11) 

where 𝐒𝑀
𝑏+𝑛 (b: blood, n: noise) is the matrix 𝐒𝑀 in which singular values corresponding to tissue have 

been set to 0. Next, the beamforming process is completed with the channel summation of matrixes �̂�𝑖 

: 

�̂�𝐺𝐶 = ∑ �̂�𝑖

𝑛𝑒

𝑖=1

= (∑(𝑼𝑀)𝑖

𝑛𝑒

𝑖=1

) 𝐒𝑀
𝑏+𝑛𝑽𝑀

∗  (12) 

where �̂�𝐺𝐶 ∈ ℂ𝑛𝑥𝑛𝑧,𝑛𝑡 denotes the Casorati set of beamformed images obtained after GC SVD tissue-

filtering and channel summation. 

Based on developments presented in the Appendix section, we now assume that the following 

approximate equalities hold:  

- {

𝐒𝑀 ≈ 𝐒𝐵 

𝑉𝑀
𝑡 ≈ 𝑉𝐵 

𝑡

V𝑀
𝑏 ≈ 𝑉𝐵  

𝑏
 (13) 

where the exponent 𝑡 denotes the indices of columns in 𝑽𝐵 that contain tissue signals and the exponent 

𝑏 denotes columns with blood signals.  

With equation (13) and by definition of SVD, one should have (∑ (𝑈𝑀
𝑡 )𝑖

𝑛𝑒
𝑖=1 )  ≈ 𝑈𝐵

𝑡  and 

(∑ (𝑈𝑀
𝑏 )

𝑖

𝑛𝑒
𝑖=1 )  ≈ 𝑈𝐵

𝑏. Furthermore, if we denote by 𝐒𝐵
𝑏 and 𝐒𝑀

𝑏  the matrices 𝐒𝐵 and 𝐒𝑀 where tissue and 

noise singular values have been set to 0 and by 𝐒𝐵
𝑛 and 𝐒𝑀

𝑛  the same matrices but with tissue and blood 

singular values set to 0, equation (12) becomes:  



�̂�𝐺𝐶 = (∑(𝑼𝑀)𝑖

𝑛𝑒

𝑖=1

) 𝐒𝑀
𝑏+𝑛𝑽𝑀

∗   

= (∑(𝑼𝑀)𝑖

𝑛𝑒

𝑖=1

) 𝐒𝑀
𝑏 𝑽𝑀

∗ + (∑(𝑼𝑀)𝑖

𝑛𝑒

𝑖=1

) 𝐒𝑀
𝑛 𝑽𝑀

∗  

≈ 𝑼𝐵𝐒𝐵
𝑏𝑽𝐵

∗ + 𝑵 (14) 

Hence, GC SVD tissue-filtering followed by channel summation gives the same blood subspace 

𝑼𝐵𝐒𝐵
𝑏𝑽𝐵

∗  as SVD tissue-filtering plus a different noise subspace 𝑵. However, one may note that each 

pixel in 𝑵 will just be a different realization of the noise distribution of the corresponding pixel in 𝑩. 

Based on these results, one can now use GC SVD to perform tissue filtering in the channel domain.  

c) CFM filtering of beamformed images 

Let us consider the 𝑛𝑒 tensors �̂�𝑖 ∈ ℂ𝑛𝑥,𝑛𝑧,𝑛𝑡 obtained after (1) focusing of RF data on a pixel grid, 

(2) compounding, (3) suppression of tissue signals using GC SVD, and (4) reshaping of the Casorati 

matrix. Because we now have access to the contribution of blood and noise in each pixel, one can 

compute a coherence factor weight 𝑪𝑭 ∈ ℂ𝑛𝑥,𝑛𝑧,𝑛𝑡 whose entries are:  

𝑪𝑭(𝑥, 𝑧, 𝑡) =
|∑ �̂�𝑖(𝑥, 𝑧, 𝑡)𝑛𝑒

𝑖=1 |
2

𝑛𝑒 ∑ |�̂�𝑖(𝑥, 𝑧, 𝑡)|2 
𝑛𝑒
𝑖=1

 (15) 

where �̂�𝑖(𝑥, 𝑧, 𝑡) is the pixel in �̂�𝑖 of coordinates (𝑥, 𝑧, 𝑡), which is the tissue-filtered pixel of 

coordinates (𝑥, 𝑧) acquired at discrete time 𝑡 by the i-th channel. 

By definition, the entries of 𝑪𝑭 in equation (15) will be significantly higher for pixels that contain 

mostly blood because they are more coherent across channels than pixels that contain mostly noise. 

Hence, the tensor 𝑪𝑭 can be seen as a 3D denoising mask that makes it possible to enhance the 

contribution of pixels where blood signal is dominant. To avoid strong discontinuities between blood-

dominated and noise-dominated pixels, a 2D Gaussian filtering with a standard deviation 𝜎 is applied 

to the 3D mask 𝑪𝑭 at each discrete time 𝑡. The impact of the parameter 𝜎 is detailed in the Results and 

Discussion sections. Then, the set of beamformed images obtained after GC SVD and channel 

summation is multiplied pixel-wise by the CF mask. Finally, a denoised UPD image is formed as in 

equation (3). 



The aforementioned steps of the CFM filter are summarized in Figure 1 using the in vivo data presented 

in the next sections. 

 

Figure 1 – Graphical representation of the CFM filter. First, the raw RF data are time-delayed and 

compounded. Then, time-delayed and compounded data acquired by each channel are concatenated 

into a single Casorati matrix. The tissue signal is removed using GC SVD and the Casorati matrix is re-

separated into SVD-filtered channel data. A pixel-wise coherence factor is then computed from the 

filtered channel data to obtain a spatiotemporal coherence mask. Next, the data from each channel are 

summed to complete the beamforming process and the resulting beamformed images are multiplied 

pixel-wise by the coherence mask for filtering noise. Finally, a denoised power Doppler image is formed 

from the set of noise-filtered images. 

3 - Experimental settings 

a) In vitro experiments 

In vitro acquisitions were performed using an L22-8 CMUT linear probe (128 elements, transmit 

frequency: 15.625 MHz). The probe was driven with a Vantage 256 research scanner (Verasonics, 

Kirkland, USA). The sampling frequency of the scanner was set to 62.5 MHz. 

The experimental phantom consisted in a tissue-mimicking layer molded around a PVC tube (inner 

diameter: 1.5 mm, outer diameter: 2.1 mm) in a plastic box. The tissue-mimicking layer was composed 

of agar (2% of its mass), silica powder (1%), and water (97%). First, the PVC tube was inserted and 

glued through holes perforated in the box at 25 mm deep. Then, some ultrasound gel was added around 

the tube to ensure good coupling with the tissue-mimicking layer. Finally, the tissue-mimicking layer 

was melted at 80°C and then slowly pounded in the box. 

A mixture of water and cellulose was used to mimic flowing scatterers inside the tube of the 

phantom. The flow rate was imposed at the entrance of the tube using a syringe pump (InfusionOne, 



New Era Pump Systems, New York, USA). During ultrasound acquisitions, the phantom was immerged 

in a water bath.  

Three types of ultrasound experiments were conducted on the phantom: longitudinal acquisitions 

with the probe parallel to the flow axis, transversal acquisitions with the probe perpendicular to the flow, 

and freehand acquisitions with the probe held parallel to the flow by hand. The freehand acquisitions 

were made to mimic a more realistic imaging situation, with moving clutter in addition to electronic 

noise. For the longitudinal and transversal experiments, four flow rates were investigated with values of 

0.5 mL.min-1, 1 mL.min-1, 2 mL.min-1, and 4 mL.min-1, corresponding to a theoretical mean flow 

velocity of 4.7 mm.s-1, 9.4 mm.s-1, 18.8 mm.s-1 and 37.6 mm.s-1, respectively. Five sets of 128 frames 

were acquired for each flow rate. For freehand acquisitions, three sets of 128 frames were acquired at a 

flow rate of 1 mL.min-1. The Pulse Repetition Frequency (PRF) of longitudinal and transversal 

experiments was set to 500 Hz and the PRF for freehand experiments was set to 50 Hz for capturing 

hand movements. For all experiments, nine plane waves were used with compounding angles ranging 

from -4° to 4° with a step of 1°. An additional longitudinal experiment at a flow rate of 2 mL.min-1 was 

conducted with 17 angles ranging from -8° to 8° to evaluate how the number of compounding angles 

impacts the denoising methods. 

b) In vivo experiments 

The in vivo data were acquired with a Vantage 256 scanner (Verasonics, Kirkland, USA) using 

an L12-5 linear probe (Philips, Amsterdam, Netherlands) having 256 elements and a central frequency 

of 7.8 MHz. The sampling frequency of the scanner was set to 62.5 MHz. Three compounding angles 

were used and the PRF between each compounded image was 9000 Hz. The probe was positioned at the 

surface of the heart of a pig during an open-chest experiment to acquire UPD images of the coronaries. 

Due to strong movements of the heart, UPD images were assessed using windows of 16 frames. 

One should note that we did not use the same probe for in vitro and in vivo experiments. Indeed, we 

chose the CMUT transducer for in vitro experiments because the strong acoustic attenuation that occurs 

at 15 MHz allowed us to have a high level of electronic noise in power Doppler images. For in vivo 

experiments, we had to use a lower frequency in order to obtain an exploitable imaging depth. Also, we 

wanted to evaluate with at least two different imaging frequencies whether the RF data can be clutter-

filtered in the channel domain. 

c) Post processing 

All acquired RF data were first IQ-demodulated. The IQ data were then time-delayed and 

projected on a pixel grid to obtain the migrated channel tensors 𝓜𝑖. These tensors were finally summed 

along the channel direction to obtain the DAS-beamformed tensor 𝓑 as in equation (1). A detailed 

explanation of the whole beamforming process can be found in the study by Perrot et al [24]. However, 

one should note that we did not use the matrix formulation of DAS to separate the time-delaying and 

channels summation steps. 

To remove tissue signals, all cut-offs were the same for SVD and GC SVD. The cut-offs ranged 

between the second and the third singular value for longitudinal and transversal experiments and were 

equal to 19, 30, and 35 for the three freehand acquisitions. For in vivo data, the cut-off was set to the 

seventh singular values for all experiments. 

In all of the experiments, the standard deviation of the Gaussian smoothing in the CFM filter 

was set to 1 pixel.  

The SVD noise cut-offs computed with the method of Song et al. [18] in the longitudinal 

experiments were 22±4, 34±1, 52±1, and 64±3 for a flow rate of 0.5 mL.min-1, 1 mL.min-1, 2 mL.min-

1, and 4 mL.min-1, respectively. For the transversal experiments, the cut-offs were 20±3, 32±1, 48±1, 



59±2 for the same flow rates and for the freehand experiments the cut-offs were 70, 84, and 65 for the 

three acquisitions at 1 mL.min-1. 

The number of lags for the CFPD beamformer was chosen to 𝑁=10 for the longitudinal and 

freehand experiments as this value maximized the SNR and CNR of the corresponding power Doppler 

images. However, with such a number of lags, a distortion of flow was observed in images for the 

transversal and in vivo experiments. To have the best compromise between good quality metrics and 

low flow distortion, we had to increase the number of lags to 𝑁=64 for the transversal experiment and 

to 𝑁=16 for the in vivo experiment. Furthermore, we selected 𝑧 = 𝑧1 = 𝑧2 for all experiments. 

d) Quality metrics 

The efficiency of the different denoising methods was quantified with signal-to-noise ratio 

(SNR) and contrast-to-noise ratio (CNR) on UPD images. The SNR quantifies the amplitude of the 

selected signal region of interest (ROI) compared to the noise ROI. The CNR quantifies the contrast of 

the signal ROI compared to the noise ROI standard deviation. 

 𝑆𝑁𝑅 = 10 log (
√

1

𝑁
∑ 𝐼𝑠 

2(𝑖)𝑁
𝑖=1

√
1

𝑁
∑ 𝐼𝑛 

2 (𝑖)𝑁
𝑖=1

) (16) 

 𝐶𝑁𝑅 = 10 log (
|µ𝑠− µ𝑛|

𝜎𝑛
) (17) 

with 𝐼𝑛 the UPD image in the noise ROI, 𝐼s the UPD image in the signal ROI, 𝜇n and 𝜇s their respective 

mean, and 𝜎n the standard deviation of noise. 

For in vitro data, the signal ROI was selected from the B-mode image and covered the whole 

inner tube. The noise ROI was selected by translating the signal ROI under the tube to the greatest depth 

available. 

For in vivo data, the signal ROI was manually selected in flow regions that were clearly visible 

with all denoising methods. The noise ROI was selected by translating the signal ROI at the greatest 

depth available such as for in vitro data. 

4 – Results  

Figure 2 describes how the Gaussian standard deviation 𝜎 impacts the CFM filter. The line (A) 

shows denoising masks computed from the 𝑪𝑭 in equation (15) as a function of 𝜎. All denoising masks 

have been averaged along slow time for better visualization. The line (B) shows the corresponding power 

Doppler images after CFM filtering. Finally, the graph (C) displays the CNR and SNR measured in the 

images of (B) as a function of 𝜎. As expected, we can see in (A) that flow pixels exhibit a coherence 

factor higher than noise pixels by several decibel. Also, it can be seen in the masks that the coherence 

factor mitigates some incoherent imaging artifacts present at the top of the flow, which are most likely 

due to the wall of the measurement tube. The Gaussian filtering provides a smoothing of the denoising 

masks, which homogenizes locally the coherence factor in flow, noise, and artifact regions. However, if 

the Gaussian filtering is too aggressive, the smoothing blurs the denoising masks, as can be seen when 

𝜎>1 pixel. In (B) and (C), we can see how the Gaussian filtering affects the power Doppler images 

computed from the various denoising masks. The SNR and CNR increase with 𝜎 up to 𝜎=1 pixel thanks 

to the homogenization of the coherence factor provided by Gaussian smoothing. However, when 𝜎>1 

pixel, the SNR decreases with 𝜎 and the CNR stays approximatively constant. Furthermore, the power 

Doppler images get progressively blurred causing a loss of spatial resolution. 



 

Figure 2 – (A) Denoising masks computed from the coherence factor and after a Gaussian smoothing 

of standard deviation 𝜎. (B) Power Doppler images denoised using the various denoising masks. (C) 

SNR and CNR in power Doppler images as a function of the standard deviation 𝜎. 

Figure 3 shows power Doppler images produced from the different processing and denoising 

methods. The images in line (A), (B), and (C) have been acquired in longitudinal, transversal, and 

freehand phantom experiments, respectively. Globally, all methods enable denoising of the images 

compared with the standard UPD approach but not with the same efficiency. The SVD cut-off and angle 

correlation approaches provide a moderate reduction of noise in all experiments. Furthermore, the angle 

correlation produces grainy images thus limiting the gain of contrast provided by the denoising. 

However, it is evident that angle correlation mitigates more the movement artifacts at the top of the 

freehand images in (C) compared with the SVD cut-off. In comparison, the CFPD beamformer and the 

CFM filter provide strong noise reduction in all experiments. In particular, the CFPD beamformer gives 

an excellent contrast between the flow and background in the longitudinal experiments. However, its 

noise reduction capacity is lower in the transversal experiments because of the higher number of lags 

(64 instead of 10) used for its computation. Despite the high number of lags, it can be seen that the 

CFPD beamformer still slightly distorts the transversal flow. Also, in freehand experiments, the CFPD 

beamformer enhances some unwanted artifacts at the top of the flow that are similar to those that are 

attenuated by the CFM filter in Figure 2. Overall, the CFM filter provides a significant reduction in the 

depth-dependent noise in all the experiments without distorting the flow. However, it can be seen in the 

transversal experiments that the CFM filter enhances more the pixels in the center of the flow. This 

behavior causes the flow in the transversal experiments to appear less homogeneous when the CFM 

filter is used. 



 

Figure 3 – (A) Power Doppler images from the longitudinal phantom experiment computed using the 

various methods. (B) Power Doppler images from the transversal phantom experiment. (C) Power 

Doppler images from the freehand phantom experiment. 

Figure 4 displays box-and-whisker plots of the SNR (longitudinal: A, transversal: B, and freehand: C) 

and CNR (longitudinal: E, transversal: F, and freehand: G) computed for power Doppler images 

acquired in phantom experiments. The box-and-whisker plots have been computed for all flow rates, 

that is, five acquisitions per four flow rates for longitudinal and transversal cases and three acquisitions 

for only one flow rate for the freehand case. Figure 4 (D) and (H) also show the SNR and CNR gains 

obtained with each denoising methods compared with UPD. These gains have been averaged on all in 

vitro acquisitions, that is, longitudinal+transversal+freehand experiments. The box-and-whisker plots 

show that the best SNR enhancement is on average obtained with the CFM filter in all experiments, 

even if the performance of the CFPD beamformer is close in the longitudinal (A) and freehand (C) cases. 

As already observed in Figure 3, SVD cut-off and angle correlation generally give lower SNR 

enhancement than the CFPD and CFM approaches. The only exception is for the transversal experiments 

(B) where angle correlation and CFPD have a close performance because the efficiency of the CFPD in 

terms of SNR is decreased by the high number of lags. Globally, angle correlation provides a better SNR 

compared with SVD cut-off, except in the freehand experiments where both methods are close to UPD. 

Overall, the denoising methods provide an SNR gain over standard UPD in (D) of 4.1±2.0 dB, 6.5±1.1 

dB, 10.4±3.3 dB, and 14.5±1.9 dB for SVD cut-off, angle correlation, CFPD, and CFM, respectively. 

For the CNR, the CFPD beamformer and the CFM filter also offer a significant improvement compared 

with the SVD cut-off and angle correlation. However, in the longitudinal experiments (E), the CNR is 

globally better for the CFPD than for the CFM and both approaches are roughly equivalent in terms of 

CNR in the freehand experiments (G). Again, the CFPD beamformer performs worse than the CFM 

filter in the transversal experiments (F). SVD cut-off and angle correlation provide negligible to small 

improvements in terms of CNR over standard UPD depending on the experiment. Overall, the denoising 

   

    

      

  

  

  

  
  

 
 

                                   

   

   

   

   

   

  

 
  

   

   

   



methods provide a CNR gain over standard UPD in (H) of 3.2±1.8 dB, 1.5±1.4 dB, 10.0±3.4 dB, and 

11.7±1.1 dB for SVD cut-off, angle correlation, CFPD, and CFM, respectively. 

Figure 4 – (A)-(B)-(C) SNR for power Doppler images from longitudinal, transversal, and freehand 

phantom experiments using the various approaches. (E)-(F)-(G) CNR for power Doppler images from 

longitudinal, transversal, and freehand experiments using the various approaches. (D)-(H) SNR and 

CNR gains of all denoising methods over standard UPD. The gains have been averaged on the three 

types of phantom experiments. 

Figure 5 shows how SNR and CNR evolve as a function of compounding angles for a 

longitudinal experiment performed at 2 mL.min-1. As expected, both metrics increase with the number 

of angles for all methods except for the angle correlation, for which the SNR stays roughly constant and 

the CNR decreases slightly. Similar trends are observed to those in Figure 4 (A) with the CFM filter that 

gives the best SNR for all number of angles followed closely by the CFPD beamformer and inversely 

for the CNR. However, it is worth noting that the CFM filter has a better CNR than the CFPD 

beamformer when 17 compounding angles are used (A). 

 

  

  

 
 

 
  

 
 

 

                    

 

  

  
 

 
 

  
 

 
 

                   

 

  

  

  

 
 

 
  

 
 

 

                

  

  

  

 
 

 
  

 
 

 

                    

 

  

  

 
 

 
  

 
 

 

                   

  

  

  

 
 

 
  

 
 

 

                

 

 

  

  

  

 
 

 
  

 
  

  
 

 
 

                   

 

 

 

 

 

  

  

  

 
 

 
  

 
  

  
 

 
 

                   



 

Figure 5 – SNR (left) and CNR (right) of a longitudinal experiment as a function of the number of 

compounding angles. 

Figure 6 presents the power Doppler images acquired in vivo during the open-chest experiment. 

The three lines (A), (B), and (C) correspond to three sets of images acquired at different times during 

the experiment. As with the phantom data, SVD cut-off and angle correlation present a reduction of the 

depth-dependent noise, which is quite limited. In all experiments, the CFPD beamformer has a better 

performance but presents some unwanted artifacts in (C), most likely due to movements during 

acquisitions. The CFM filter reduces significantly the depth-dependent noise in comparison with all the 

other approaches without altering the vasculature.  

Figure 6 – B-mode and corresponding power Doppler images computed with the various approaches 

for the open-chest experiment. (A), (B), and (C) correspond to acquisitions made at three different times 

during the experiment. 

Figure 7 shows the SNR and CNR measured from in vivo power Doppler images for all methods. 

Figure 7 also shows the signal and noise ROI used for SNR and CNR computation. The CFM 

outperforms all the other denoising methods for the computed metrics. The CFPD beamformer gives 

significantly better SNR and CNR compared with the SVD cut-off and angle correlation, which both 

provide small improvements compared with standard UPD. Overall, the denoising methods provide an 

      

                            

 

  

  

  

  

  

  

  

 
 

 
  

 
 

 

   
           
                 
    
   

      

                            

  

  

  

  

  

  

  

  

 
 

 
  

 
 

 

     

      

      

  

  

  

  
  

 
 

                                      

   

 
  

   

 
  

   

 
  

   

   

   



SNR gain over standard UPD of 6.0±1.3 dB, 4.0±2.3 dB, 11.3±4.4 dB, and 22.1±5.5 dB for SVD cut-

off, angle correlation, CFPD, and CFM, respectively. The CNR gain is 3.4±1.6 dB, 2.5±1.7 dB, 

10.1±3.4 dB, and 19.7±4.3 dB for SVD cut-off, angle correlation, CFPD, and CFM, respectively. 

Figure 7 – SNR and CNR measured for the in vivo experiment. The metrics are computed on the three 

sets of acquisitions presented in Figure 6. The signal and noise ROI are indicated on the corresponding 

CFM images. 

Finally, Figure 8 illustrates how the mean power Doppler intensity in CFM and UPD images 

evolves as a function of the flow rate in the longitudinal experiments. The mean intensity is normalized 

between 0 and 1 and has been computed using the signal mask defined for the quality metrics. It can be 

seen that both the CFM filter and standard UPD exhibit very similar intensity variations as a function of 

the flow rate. 

 

Figure 8 – Variations of mean power Doppler intensity as a function of the flow rate in UPD and CFM 

images. 

5 – Discussion 

 We introduced in this study a new filtering approach for reducing electronic noise in UPD 

images: the CFM filter. This filter is based on filtering the RF data in the channel domain using grouped 

channel SVD (GC SVD) to remove clutter signal. Then, a pixel-wise coherent factor is computed from 

clutter-filtered channel data and used to generate a denoising mask that weighs the pixels of beamformed 

images. This weighting reduces the amplitude of noisy pixels thanks to their lowest coherent factor 

compared with blood pixels, thus strongly enhancing the quality of the final power Doppler image. The 

performance of the CFM filter was compared in vitro and in vivo with standard UPD and with three 

                

                 
  

 

 

   

   

   

   

 

 
 

  
 

   
 

 
  
 

  
 

 
  
 
  

 
  

 

            
   

          

         

 

  

  

  

  

 
 
 
  
 
 
 

 

  

  

  

  

 
 
 
  
 
 
 



other denoising methods: angle correlation [7], SVD noise cut-off [18], and CFPD beamformer [20], 

[21].  

 It is challenging to compare different denoising approaches for UPD imaging, and this study 

does not claim to be an exhaustive comparison of the investigated methods. Indeed, a study with more 

data and types of noise, clutter, and artifacts would be necessary to fully understand the pros and cons 

of each filter. However, we can propose some data-driven interpretations for the reduction of depth-

dependent electronic noise. Overall, angle correlation [7] provided a noteworthy gain in SNR but a very 

limited gain in CNR, even when increasing the number of angles. This moderate performance can be 

expected since angle correlation exploits less information than denoising methods based on SVD or 

signal coherence. However, angle correlation has a very low computational complexity and is 

straightforward to implement. The SVD noise cut-off method [18] also showed a limited denoising 

capacity in terms of SNR and CNR. This can be explained by the fact that methods based on SVD noise 

cut-off assume that blood and noise subspaces are orthogonal. Thus, in practice, the consequent amount 

of noise that overlaps with blood in the SVD subspaces cannot be reduced by these methods without 

losing blood signal. More generally, the SVD noise cut-off cannot suppress, without losing blood signal, 

any artifact that shares the same subspaces as blood, such as the incoherent artifacts considered in the 

study by Huang et al. [7]. Nonetheless, as mentioned in the Introduction, it is important to note that 

advanced SVD algorithms such as block SVD [18] and higher-order SVD [19] possess better noise 

reduction capabilities than standard SVD. The CFPD beamformer is the only method that gave metrics 

close to or even better than the CFM filter in some experimental configurations. However, a comparison 

of the two approaches is difficult because of the flow distortions that CFPD caused in some data, which 

in turn impacted the choice of the optimal number of lags for the method. Also, it has been demonstrated 

that the CFPD beamformer is efficient for removing other types of unwanted signals than electronic 

noise such as reverberation artifacts [20]. As such artifacts are out of the scope of this study, we cannot 

offer a general conclusion on the comparison between the performance of the CFPD and the CFM. 

However, our results tend to prove that the CFM filter is better than the CFPD beamformer for removing 

noise that is purely electronic. Also, compared to the CFPD beamformer, the CFM filter has a much 

lower computational cost once the channel RF data are filtered, and it has a more versatile setting as 

well. Indeed, the only hyperparameter of the CFM filter is the standard deviation of the Gaussian 

smoothing, and its value was kept fixed during all of the experiments.  

A potential limitation of the CFM filter is that the denoising mask can over-attenuate the flow 

regions that have a relatively low coherence factor. This behavior can be seen in the transversal power 

Doppler images of Figure 2 (B). However, this unwanted effect can be mitigated by reducing the 

standard deviation of the Gaussian smoothing that occurs in the filter. Also, the computational cost of 

the GC SVD, which is 𝑂(𝑛𝑒 × 𝑛𝑥 × 𝑛𝑧 × 𝑛𝑡
2) [23], is a general limitation of all denoising methods that 

exploit the channel domain RF data. However, a randomized algorithm for computing GC SVD could 

reduce its computational time to 𝑂(𝑛𝑒 × 𝑛𝑥 × 𝑛𝑧 × 𝑛𝑡 × 𝑙𝑜𝑔(𝑘)), where 𝑘 is the number of singular 

values corresponding to the tissue subspace [25], [26]. Notably, such randomized algorithms have 

enabled real-time ultrasound imaging using conventional SVD filtering [26].  

As mentioned in the Introduction, the mean power Doppler intensity in UPD images is proportional 

to blood flow volume and hence is of considerable interest in functional ultrasound imaging [3]. For the 

CFM filter, Figure 8 tends to prove that the pixel-wise weighting of the denoising mask preserves the 

same intensity variations as standard UPD. In other words, the increase of intensity in a flow pixel does 

not impact the relative amplitude of its coherence factor. This result suggests that the mean power 

Doppler intensity in images denoised by the CFM filter should also be proportional to blood flow 

volume. These observations will have to be confirmed in future in vivo studies. Also, the mean intensity 

of flow pixels in CFM images can be impacted by the Gaussian smoothing of the denoising mask. In 

particular, the pixels at the borders of the flow can have their intensity decreased by the presence of 



neighboring noise pixels. With the decreased SNR observed in Figure 2 when 𝜎 >1, this is an additional 

reason to perform only a slight Gaussian smoothing of the denoising mask. 

The number of frames used for the computation of power Doppler images in vivo is limited and does 

not represent the true capabilities of the UPD method. However, using such a short ensemble has the 

advantage of providing a strong electronic noise and thus a good environment in which to evaluate the 

different denoising methods. Interestingly, the strong denoising provided by the CFM filter proves that 

the approach can be used to acquire denoised power Doppler images with short ensembles of frames. 

This result is of interest for reducing the ensemble lengths used in vivo, thus potentially avoiding some 

movement artifacts. Nonetheless, more in vivo experiments will be needed to evaluate the CFM filter 

and in particular experiments realized on larger ensembles of frames. Also, another limitation of the in 

vivo experiment is that a single animal has been used. Data should be acquired on several animals or 

organs to ensure a fully meaningful comparison between the denoising methods. 

The theoretical framework presented for GC SVD shows that its equivalence with SVD mainly 

depends on the coherence between acquisition channels. Indeed, it is because ultrasound channels 

acquire data with a similar temporal content that it is reasonable to assume that SVD and GC SVD 

decompositions have similar singular values and singular vectors. Of course, we do not demonstrate 

here that SVD and GC SVD will always be strictly equivalent. However, we think that the coherence 

between channels should generally be sufficient for filtering tissue signals in the channel domain, as 

supported by our results. Also, it is worth mentioning that GC SVD is mode 2 of the higher-order SVD 

proposed by Ozgun et al. [19]. However, in this last study, the authors enhanced the intrinsic 

performance of SVD filtering and did not use an additional denoising method. 

 Finally, as stated in the introduction, UPD imaging is a powerful modality for imaging vascular 

and microvascular phenomena at a high frame rate in the human body. The CFM filter is of significant 

interest for the field, since lower electronic noise leads to more exploitable power Doppler images for 

the clinician. In turn, UPD could greatly help in the detection and diagnosis of microvascular diseases. 

6 – Conclusion 

 This study introduced the CFM filter, a new approach for denoising ultrafast power Doppler 

images. The CFM filter combines clutter filtering in the channel domain and weighting of pixels using 

the coherence factor in order to drastically lower electronic noise. The feasibility of the CFM filter was 

demonstrated on in vitro and in vivo data. A comparison with three existing methods demonstrated its 

strong performance in terms of SNR and CNR. The CFM filter has great potential to help establish UPD 

imaging as a powerful modality for detecting and diagnosing microvascular diseases. 
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10 - Appendix 



This appendix evaluates theoretically the relationships between temporal singular vectors and 

singular values of SVD and GC SVD, that is, between 𝑽𝐵 and 𝑽𝑀 and 𝐒𝑀 and 𝐒𝐵. 

First, we can reasonably assume that pixels in each 𝑴𝑖 present similar temporal modulations for the 

blood and the tissue to pixels in 𝑩. Indeed, if this condition were not true, the channels would be 

decorrelated along time and DAS beamforming would not produce an exploitable image. In other words, 

the pixels of the concatenation 𝑴 of all matrices 𝑴𝑖 should have the same temporal modulation as the 

pixels of 𝑩. Hence, we should have V𝑀
𝑡 ≈ V𝐵

𝑡  and V𝑀
𝑏 ≈ V𝐵

𝑏, where the exponent 𝑡 denotes the indices of 

columns in 𝑽𝐵 that contain tissue signals and the exponent 𝑏 denotes the columns with blood signals. 

However, for the noise, corresponding columns in 𝑽𝐵 and 𝑽𝑀 cannot be equal because the individual 

channels 𝑴𝑖 do not contain the same noise realizations as the DAS matrix 𝑩.  

For the matrices 𝐒𝑀 and 𝐒𝐵, we can now consider the Gram matrixes 𝑩∗𝑩 ∈ ℂ𝑛𝑡,𝑛𝑡 and 𝑴∗𝑴 ∈

ℂ𝑛𝑡,𝑛𝑡 given that their eigenvalues are the square of the singular values of 𝑩 and 𝑴. With the Casorati 

matrix form of equation (1), it is straightforward to show that the following expressions for matrices 

𝑩∗𝑩 and 𝑴∗𝑴 hold: 

𝑩∗𝑩 = (𝑴1
∗ + ⋯ + 𝑴𝑛𝑒

∗ )(𝑴1 + ⋯ + 𝑴𝑛𝑒
) = 𝑪 + 𝑪𝒙 (𝐴. 1)  

𝑴∗𝑴 = [𝑴1
∗ … 𝑴𝑛𝑒

∗ ][𝑴1 … 𝑴𝑛𝑒
]

𝑇
= 𝑪 (𝐴. 2) 

with: 

𝑪 = ∑ 𝑴𝑖
∗𝑴𝑖 

𝑛𝑒

𝑖=1

(𝐴. 3) 

𝑪𝒙 =  ∑ ∑(1 − 𝛿𝑖𝑗)𝑴𝑖
∗𝑴𝑗 

𝑛𝑒

𝑗=1

𝑛𝑒

𝑖=1

(𝐴. 4) 

where 𝛿𝑖𝑗 is the Kronecker delta with 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗. 

Hence, we see that the matrix 𝑩∗𝑩 is equal to the matrix 𝑴∗𝑴, i.e., 𝑪 ∈ ℂ𝑛𝑡,𝑛𝑡, plus a 

perturbation matrix 𝑪𝒙 ∈ ℂ𝑛𝑡,𝑛𝑡 . Two limiting cases can be identified. If the imaging medium is perfectly 

coherent, that is, we have 𝑴𝑖
∗𝑴𝑖 = 𝑴𝑖

∗𝑴𝑗, then 𝑪𝒙 = (𝑛𝑒 − 1)𝑪 and the matrices 𝑩∗𝑩 and 𝑴∗𝑴 have 

the same eigenvalues up to a constant and so on for the singular values of 𝑩 and 𝑴. If the medium is 

perfectly incoherent, 𝑪𝒙 → 0 and 𝑩 and 𝑴 have the same eigenvalues. For a more general and realistic 

case, we can write the detailed expressions of entries of 𝑪 and 𝑪𝒙: 

𝐶(𝑡1, 𝑡2) = ∑ ∑ 𝑚𝑖(𝑘, 𝑡1)(𝑚𝑖(𝑘, 𝑡2))
∗

𝑛𝑥𝑛𝑧

𝑘=1

𝑛𝑒

𝑖=1

 (𝐴. 5) 

𝐶𝑥(𝑡1, 𝑡2) = ∑ ∑(1 − 𝛿𝑖𝑗) ( ∑ 𝑚𝑖(𝑘, 𝑡1) (𝑚𝑗(𝑘, 𝑡2))
∗

𝑛𝑥𝑛𝑧

𝑘=1

)

𝑛𝑒

𝑗=1

𝑛𝑒

𝑖=1

 (𝐴. 6) 

where 𝑚𝑖(𝑘, 𝑡1) and 𝑚𝑗(𝑘, 𝑡2) are the k-th pixels acquired by channels 𝑖 and 𝑗 at times 𝑡1 and 𝑡2.  

We see from equations (A.5) and (A.6) that the entries of 𝑪 and 𝑪𝒙 are in fact quite similar 

quantities. Indeed, the entries of both matrices are the averaged dot products of pixels but estimated 

using different pairs of channels 𝑖 and 𝑗. In fact, if we assume as before that each channel has a similar 

temporal modulation for pixels of same index, then the matrix 𝑪𝒙 can be considered as an approximated 

version of 𝑪 and hence the matrix 𝑪 + 𝑪𝒙 should be quite similar to 𝑪. In other words, the eigenvalues 



of 𝑪 will be minimally perturbated by the addition of 𝑪𝒙. Thus, we can assume that 𝑩∗𝑩 and 𝑴∗𝑴 have 

close eigenvalues and so on for the corresponding singular values of 𝑩 and 𝑴, that is 𝐒𝑀 ≈ 𝐒𝐵. 

Figures A.1 and A.2 are produced from the in vivo dataset presented in the Materials and Method section. 

Figure A.1 shows the absolute value of matrices 𝑪 and 𝑪 + 𝑪𝒙 for this dataset with corresponding 

singular values computed with GC SVD and SVD for 𝑴 and 𝑩, respectively. The matrices 𝑪 and 𝑪 +

𝑪𝒙 have been both normalized by their maximum value. We can see that 𝑪 and 𝑪 + 𝑪𝒙 exhibit very 

similar entries as they both reflect the same temporal modulation of data. As a result, the singular values 

of 𝑴 and 𝑩 are very close. 

The first and second rows of Figure A.2 represent the subspaces corresponding to the singular 

values with indices 𝛼 computed with GC SVD and SVD. The subspace corresponding to 𝛼 = 1 contains 

mostly tissue signal, the subspace associated with 𝛼 = 6 contains mostly blood signal, the one with 𝛼 = 

15 contains mostly noise, and the one for 𝛼 = 9 is a mix between blood and tissue signals. We can see 

that the images associated with the subspaces 1 and 6, i.e., with tissue and blood, are almost identical 

for SVD and GC SVD. For subspace 15, a closer look reveals that the noise pattern is not the same 

between SVD and GC SVD. To better understand these observations, the last two rows of Figure A.2 

show the temporal singular vectors of SVD and GC SVD (𝑽𝐵 and 𝑽𝑀, respectively) associated with 

each subspace and also the first 1000 elements of the corresponding spatial singular vectors (𝑼𝐵 and 

(∑ (𝑼𝑀)𝑖
𝑛𝑒
𝑖=1 ), respectively). As assumed in our theory, we can see that the singular vectors of SVD and 

GC SVD are almost identical for subspaces 1 and 6, i.e., for tissue and blood, but different for subspace 

15, i.e., for noise. The differences observed for the noise subspace are due to the fact that the matrices 

𝑩 and 𝑴 (on which SVD and GC SVD are computed) do not present the same noise realizations for 

each pixel. Subspace 9, which is a mix between blood and noise, presents a temporal singular vector 

that begins to be slightly more different between SVD and GC SVD but that remains correlated. This 

behavior is because the subspace can be seen as a transition between the blood subspace, which has 

some correlation between channels and hence between the matrices 𝑩 and 𝑴, and the noise subspace. 

Importantly, Figure A.2 supports the assumption that subspaces containing blood and tissue should be 

very similar between SVD and GC SVD. 

 

Figure A.1 – An example of the matrices 𝑪 and 𝑪 + 𝑪𝒙 from in vivo acquisitions with corresponding 

singular values in 𝑺𝐵 and 𝑺𝑀. 

   

 

   

   

   

   

   

   

   

   

   

 
      

 

   

   

   

   

   

   

   

   

   

 

     

      

    

   

   

   

   

 

 
  

 
 

  
  

 
 

  
 

  
 

 
 

 
 

 
 



 

Figure A.2 – Visualization of some subspaces obtained with SVD and GC SVD from in vivo data (the 

two top rows). Each subspace is denoted by the index 𝛼 of the corresponding singular value. Singular 

vectors corresponding to each subspace are also shown (two bottom rows) with 𝑼𝐵 and 𝑽𝐵 

corresponding to SVD and ∑ (𝑼𝑀)𝑖
𝑛𝑒
𝑖=1  and 𝑽𝑀 corresponding to GC SVD. 


