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A B S T R A C T

Measurements of external contaminant exposures on individual wildlife are rare because of difficulties in using
contaminant monitors on free-ranging animals. Most wildlife contaminant exposure data are therefore simulated
with computer models. Rarely are empirical exposure data available to verify model simulations, or to test
fundamental assumptions inherent in exposure assessments. We used GPS-coupled contaminant monitors to
quantify external exposures to individual wolves (Canis lupus) living within the Belarus portion of Chernobyl's
30-km exclusion zone. The study provided data on animal location and contaminant exposure every 35 min for
6 months, resulting in ~6600 individual locations and 137Cs external exposure readings per wolf, representing
the most robust external exposure data published to date on free ranging animals. The data provided information
on variation in external exposure for each animal over time, as well as variation in external exposure among the
eight wolves across the landscape of Chernobyl. The exposure data were then used to test a fundamental as-
sumption in screening-level risk assessments, espoused in guidance documents of the U.S. Environmental
Protection Agency and U.S. Department of Energy, — Mean contaminant concentrations conservatively estimate
individual external exposures. We tested this assumption by comparing our empirical data to a series of simula-
tions using the ERICA modeling tool. We found that modeled simulations of mean external exposure
(10.5 mGy y−1), based on various measures of central tendency, under-predicted mean exposures measured on
five of the eight wolves wearing GPS-contaminant monitors (i.e., 12.3, 26.3, 28.0, 28.8 and 35.7 mGy y−1). If
under-prediction of exposure occurs for some animals, then arguably the use of averaged contaminant con-
centrations to predict external exposure is not as conservative as proposed by current risk assessment guidance.
Thus, a risk assessor's interpretation of simulated exposures in a screening-level risk analysis might be misguided
if contaminant concentrations are based on measures of central tendency. We offer three suggestions for risk
assessors to consider in order to reduce the probability of underestimating exposure in a screening-level risk
assessment.
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1. Introduction

Determining exposure to contaminants is one of the core compo-
nents of human and ecological risk analyses (NRC, 1983, 1994, 2009).
The quality of exposure information is critical to the value of risk as-
sessments. Indeed, an entire science has developed around assessing
contaminant exposures more accurately and efficiently (NRC, 2007,
2009). Collection of better exposure data provides more precise in-
formation regarding risk estimates and leads to improved public health
and ecosystem protection (NRC, 2012).

Exposure science addresses the contact of humans and other or-
ganisms with chemical, physical, or biological stressors over space and
time (USEPA, 2003, 2011), including external exposure (outside the
person or organism), internal exposure (inside the person or organism),
and dose (NRC, 2012). Differences in environmental exposures occur as
humans and other organisms spend varying amounts of time in nu-
merous microhabitats available to them, with each microhabitat's
contaminant level being part of a diverse landscape of contaminant
heterogeneity (Thomas, 1988; NRC, 2012).

Ideally, estimates of exposure use detailed information on con-
taminant emissions, locations of humans or other exposed organisms in
time and space, and an organism's physical activity level (as predictors
for inhalation rate, ingestion potential, or dermal interaction; NRC,
2012). However, few empirical data exist for exposures to individuals
because of technical difficulties in placing contaminant monitors on
free-ranging animals. While some advances have been made in personal
contaminant monitoring devices for humans (e.g., Iglesias et al., 2009;
Chen, 2011; Runkle et al., 2019), a lack of appropriate technology for
free-ranging ecological receptors has been one of the greatest limita-
tions in exposure science and ecological risk assessments (Sanchez
et al., 2010; NRC, 2012; Hinton et al., 2013; Stark et al., 2017).

Most contaminant exposure estimates to animals, therefore, are
derived from computer model simulations. Simulated, model exposure
estimates in ecological risk assessments are typically done in succes-
sively more rigorous steps, or tiers (Suter II et al., 2000). The first and
simplest tier is a scoping assessment with model simulations using
contaminant input values that intentionally maximize exposure, such as
the maximum contaminant concentration measured within an exposure
area (DOE, 2019). If the simulated maximized exposures are below
limits thought to be harmful, risk assessors can be confident that the
same harmful effect was not observed in animals exposed to lesser, real,
but unknown exposures. This ‘conservative’ approach is often used to
permit rapid elimination of specific contaminants-of-concern, or spe-
cies-of-concern from additional costly risk analyses. If exposure limits
are exceeded in the scoping assessment then a screening risk assessment
(Tier-2) is conducted using relatively simple and conservative input
assumptions (DOE, 2019). Should exposure limits still be exceeded,
then subsequent, more detailed calculations are conducted in a third
tier, with an attempt to model exposures more realistically by adding
site- or species-specific input from literature values or field data (DOE,
2019).

One of the conservative, fundamental assumptions in screening risk
assessments is that animals move randomly across areas of varying
exposure, spending equivalent amounts of time in each (USEPA, 1996).
Thus, for screening risk assessment purposes, the general paradigm is
that exposure over time is best represented by the averaged con-
taminant concentration in the exposure area (USEPA, 1996, 2003; DOE,
2019). For example, guidance documentation on screening soils for
contamination (USEPA, 1996) states that “an average concentration is
used in most assessments when the focus is on estimating long-term, chronic
exposures”. Likewise, the U.S. Department of Energy's latest ecological
risk assessment guidance (DOE, 2019) states that “In protecting popula-
tions, as opposed to protecting individuals, considerable averaging over space
and time could be allowed and still ensure adequate protection”; that
average values of contaminant concentrations should be conservative
for purpose of complying with dose rate criteria; and that “mean

concentrations are assumed in this technical standard to approximate those
concentrations to which a representative individual within a population
would be exposed”. However, empirically-obtained, inherent individual
variation in exposures is seldom known, and rarely have model simu-
lations of exposure been verified with field data (including the para-
digm of averaged contaminant concentration).

The legitimacy of simulated model exposures can, therefore, be
challenged because directly measured, individual empirical exposure
data for comparison are absent (NRC, 2012). As stated in a recent vision
and strategy assessment of exposure science (NRC, 2012):

“The void in fine-scale exposure data on an individual or a species means
that considerable error may be introduced in assessing dose–response
relationships. Assessing the influence of that measurement error on do-
se–response functions is challenging because researchers typically lack
sufficient information on the “gold standard”— measured exposure in-
formation on the individual or in key microenvironments. As a result,
exposure assessment has been called the Achilles heel of environmental
epidemiology (Steenland and Savitz, 1997)”.

We recently developed a novel GPS-coupled contaminant monitor
that advances exposure science by providing individual-level exposure
assessments on free ranging wildlife (Hinton et al., 2015). The GPS-
contaminant monitors provide a “gold standard” for some contaminant
scenarios, and lessons learned from their use may be applicable to other
contaminant situations. The GPS-contaminant monitors allow re-
searchers to address concerns expressed by the Science Advisory Board
on Ecological Risk Assessments (USEPA SAB, 2007) which called for a
need to decrease the uncertainties in spatial-temporal variations of
exposure, and decrease the uncertainties in exposure models (Dale
et al., 2008).

Our GPS-contaminant monitors provided the rare opportunity to
question a fundamental assumption inherent to most screening-level
risk assessments— Mean contaminant concentrations conservatively esti-
mate external exposures (USEPA, 1996; DOE, 2019). We explored this by
comparing external exposures (measured with GPS- contaminant
monitors on free-ranging wolves, Canis lupus) to model simulations of
external exposure using site-specific data obtained from the Belarus
portion of Chernobyl's 30-km Exclusion Zone.

Herein we:

1. describe the calibration of our GPS-contaminant monitor for use on
individual free-ranging wolves;

2. use empirical individual-level data to explore spatial-temporal var-
iations of external exposure among wolves; and

3. use the empirical data to test the hypothesis: Mean contaminant
concentrations conservatively estimate individual external exposure.

2. Methods

2.1. Methods: study site

The catastrophic nuclear accident at Chernobyl occurred in April
1986. Radioactive contamination dispersed over most of the Northern
Hemisphere with the heaviest depositions occurring in what is now
northern Ukraine and southern Belarus. An exclusion zone encom-
passing portions of both countries nearest to the reactor site was formed
after the accident (Fig. 1). The exclusion zone barred human residence
shortly after the accident, and is still in effect today – 33 years later. In
1988, the Polessie State Radiation Ecology Reserve (PSRER) was es-
tablished, encompassing the Belarus portion of the exclusion zone
(Zapovednik, 2019). The PSRER (Fig. 1) is a relatively large (2720 km2)
ecological reserve established to control human access to the area, use
countermeasures to reduce transfer of contaminants off-site, and to
conduct radioecological studies (Perino et al., 2019). Our research took
place on the PSRER from November 2014 to May 2015.
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2.2. Methods: contaminant densities on the PSRER

Radionuclide-specific contaminant densities throughout the PSRER
are well documented (Izrael and Bogdevich, 2009). We summarized
cesium-137 (137Cs) soil contaminant densities (kBq m−2) as a function
of eight different contaminant zones in the PSRER (Fig. 1 and Supple-
mentary Table S-1), based on digitized, geo-rectified imagery data from
Izrael and Bogdevich (2009). Median values within each contaminant
zone were used to derive mean 137Cs contaminant densities for the
entire PSRER (Supplementary Table S-1). We also calculated area-
weighted mean 137Cs soil activity densities and derived a grand, area-
weighted mean of 1195 kBq m−2. Values for 2009 were decay corrected
to 2015, based on the 30-y half-life of 137Cs.

2.3. Methods: study species and capture methods

Natural rewilding of the PSRER has resulted in a unique region
where a rich diversity of species interact in a large wilderness area
(Perino et al., 2019), even though radioactive contamination remains
above thresholds for safe residency of humans. Deryabina et al. (2015)
found that densities of large mammals on the PSRER, such as elk (Alces
alces), red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild
boar (Sus scrofa), were similar to four uncontaminated National Parks in
Belarus, and wolf densities were several times greater. Additionally,
wildlife species appear to be distributed across the PSRER based on
species-specific habitat preferences, rather than the amount of radio-
active contamination (Deryabina et al., 2015; Webster et al., 2016).

Fig. 1. Human exclusion zones in Ukraine and Belarus relative to the Chernobyl nuclear power plant (yellow star; adapted from Bondar et al., 2014). Exclusion zones
are based on 137Cs deposition densities (Curies km−2) from Russian guidelines for human radiation safety. The insert shows the Polessie State Radiation Ecology
Reserve (PSRER) in Belarus with 137Cs soil contaminant densities in Scientific International units of kBq m−2. The considerable heterogeneity in soil 137Cs con-
tamination within the PSRER was captured from maps reported by Izrael and Bogdevich (2009) and are quantified in Supplementary Table S-1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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We selected wolves as a model species in which to measure in-
dividual contaminant exposures because of their large home range size,
use of diverse habitats, and the public's long-standing interest in the
species. Additionally, canids are considered representative organisms
that could serve as indicators of contaminant impacts (DOE, 2019). We
captured wolves using modified foothold traps (Minnesota Brand,
Minnesota Trapline Products, Inc., Pennock, MN, USA) set throughout
PSRER in areas with active wolf sign. We anesthetized captured wolves
with medetomidine at approximately 0.06 mg kg−1. Measurements of
animal morphology, estimation of age based on size and tooth-wear
(Gipson et al., 2000), internal 137Cs contaminant concentrations (using
a calibrated, field Cd-Zn-Te spectroscopy system operated from a por-
table computer), and attachment of GPS-contaminant monitors were
performed on each wolf prior to releasing them at their capture location
(see Supplementary Table S-2 and Supplementary Section S-1: Field mea-
surements of 137Cs concentrations in wolves). Animal capture and hand-
ling was carried out in accordance with University of Georgia Animal
Care and Use protocol A2015 05-004-Y2-A1.

2.4. Methods: GPS-contaminant monitor

The development, laboratory calibration, and field testing of GPS-
contaminant monitors has been previously described (Hinton et al.,
2015). Briefly, we merged two existing technologies: (1) tracking an
animal's movement via GPS collars using satellites, and (2) measuring
dose from external exposure to radiation with electronic dosimeters.
The combination of the two technologies existed prior to our work, but
only in situations where weight of the combined units and battery
longevity were not critical. For example, combined GPS-radiation
monitors have been used in unmanned helicopters (Okuyama et al.,
2005), mounted on cars (Kawano et al., 2012), and placed in back-
packs worn by humans (Whicker et al., 2008; Andoh et al., 2018). Our
contribution was to miniaturize the two technologies to fulfil the re-
strictive conditions of having a small GPS-electronic dosimeter on the
neck of an animal living under harsh environmental conditions. We
worked with Vectronic Aerospace Limited, a specialist in wildlife GPS
applications, and Mirion Technologies, an electronic dosimeter manu-
facturer. We used Mirion's SOR/R semiconductor, electronic dosimeters
in the contaminant monitors. The SOR/R dosimeters, made for harsh
conditions experience by field military personal, were dismantled and
the key components placed inside a protective GPS collar housing made
by Vectronic Aerospace Limited. Collars were configured with Globalstar
satellite communication capabilities to allow remote transfer of loca-
tion and dosimetry data. The combined GPS-coupled contaminant
monitors and associated collar weighed ~980 g, and were thus suitable
to be worn by medium to large sized mammals whose mass > ~25 kg.

The SOR/R dosimeters are designed to be worn by occupational
radiation workers to measure personal dose equivalence for regulatory
compliance. The SOR/R dosimeter operates under environmental con-
ditions that range from −20 to +50 °C. The SOR/R complies with
several dosimetry standards, including IEC 12835 and MIL-STD-8106. It
provides Hp(10) dose equivalent measurements in μSv, with an energy
response of < ± 20% in the range of 60 keV to 2 MeV (137Cs emits
gamma energy at 662 keV), and has a dose accuracy of ± 10%. The Hp
(10) dose equivalent represents dose at a 10 mm depth within a human
torso, based on a tissue-equivalent standard of 30 cm × 30 cm × 15 cm
(ICRU, 1993). The conversion of microsieverts (μSv; a radiation dose
unit specifically for humans) to micrograys (μGy; a fundamental ra-
diation dose unit of energy absorbed per mass of tissue, and suitable for
wildlife) is described in the Supplement Section S-2: Converting personal
dose equivalent readings in units of μSv to absorbed dose in the body of the
wolf (units of μGy).

The dosimeters continuously accumulate dose and send data to the
researcher at user defined intervals, via the same satellites that send the
GPS locations of the animal. Subtraction of dose between two time
intervals produces a mean dose (μGy) to which the animal was exposed

to while in the geographical area delineated by the GPS coordinates.
Verification of the dosimeter results by exposing the GPS-contaminant
monitors to a calibrated 137Cs source in a standards laboratory, and a
successful efficacy test with the GPS-contaminant monitors deployed on
wild pigs (Sus scrofa) were described (Hinton et al., 2015). Technically,
the GPS-contaminant monitors measure external radiation dose (i.e.
energy absorbed per kg tissue), but herein we use the terms exposure
and dose interchangeably.

2.4.1. Methods: static tests of GPS-contaminant monitors on the PSRER
For our work with wolves, static tests were conducted to determine

the inherent variance of the contaminant monitors' GPS and exposure
readings when recording repeatedly from a single, static location. Static
tests were conducted at three different locations on the PSRER. Three
GPS-contaminant monitors were placed within ~5 m of each other in an
open field on the PSRER and left for several days. GPS location and
exposure data were collected every 35 min. The experiment was re-
peated with the same three GPS-contaminant monitors in pine (Pinus
spp.) and birch forests (Betula spp.).

2.4.2. Methods: internal exposure from 137Cs, and bias correction of GPS-
contaminant monitor's measurement of external exposure

The GPS-contaminant monitor collar was designed to measure ex-
ternal dose as animals move through contaminated environments (i.e.
red arrows; Fig. 2). However, the dosimeter, worn on the neck of the
animal within the housing of the GPS unit, also registers some exposure
from the gamma rays emitted by 137Cs within the body of the animal
(Fig. 2, orange arrow, representing radioactivity acquired from in-
gesting contaminated food and water). The contribution from internal
contamination causes a bias in external dose that needs to be accounted
for. Correcting the bias requires knowledge of 137Cs concentrations in
each animal. Calibration of a Cd-Zn-Te spectroscopy method to measure
each wolf's internal 137Cs contamination, and Monte Carlo simulations
with a wolf voxel phantom to derive the bias correction factor (which
was animal-specific and ranged from 14 to 32%) are described in the
Supplementary Sections S-1: Field measurements of 137Cs concentrations in
wolves; and Section S-3: Bias Correction.

2.5. Methods: ranges and core areas of wolves based on utilization
distributions (UD)

The area traversed by each wolf over the six-month period was
delineated from GPS locations as described in Hinton et al. (2015).
Briefly, we constructed animal-specific 50% and 99% utilization dis-
tributions (UD). Utilization distributions are spatial probability dis-
tributions based on the frequency in which animals use portions of the
landscape. The 99% UD contour (hereafter: range) is interpreted as the
maximum probable area traversed by the wolf during the tracking
period. Within the 99% UD we delineated 50% UD contour areas re-
presentative of intensive use and high fidelity (hereafter: core areas),
highlighting areas regularly used for resting, foraging, and shelter
within the observation period. We used dynamic Brownian bridge
movement models (Kranstauber et al., 2012; Byrne et al., 2014) to es-
timate UDs based on the trajectories of time-indexed GPS locations for
each individual. These were derived using functions available in the
move package (Kranstauber and Smolla, 2014) for the R statistical
software package (R Core Team, 2014).

2.6. Methods: testing fundamental assumptions in exposure assessments

External exposures from four model simulations were compared to
individual-based mean exposure data obtained from our GPS-con-
taminant monitors on free-ranging wolves. The ERICA Assessment Tool
(Brown et al., 2016) was used to generate computer model simulations
of external exposure. ERICA is a software system to assess radiological
risks to terrestrial, freshwater and marine biota. A data search via
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SCOPUS, as of 15 April 2019, for “ERICA Tool” resulted in 155
manuscripts that have used the simulation model in assessing wildlife
exposure to radioactive contamination. ERICA uses a stepped or tiered
approach of inputting progressively more site-specific data if early
screening-level calculations indicate the need for more detailed ana-
lyses to determine risks. Such a stepped or tiered approach is funda-
mental to human and environmental risk analyses (USEPA, 1997; Suter
II et al., 2000; DOE, 2019).

2.6.1. Model simulations 1Aa and 1Ab. [Using mean and median soil
contaminant concentrations across PSRER, and ERICA's generic mammal]

For terrestrial ecosystems, the primary input parameter for ERICA is
radionuclide contamination in soil, from which activity concentrations
in animals are derived using transfer factors. These allow external ex-
posure (from soil) and internal exposure (from radionuclides in the
organism) to be independently calculated. The default procedure in
ERICA requires soil contamination to be expressed in radioactivity per
mass, rather than radioactivity per area (Supplementary Table S-1). To
model external exposure to wolves based on PSRER soil contaminant
concentrations we used a soil bulk density of 1400 kg m−3 (Taira et al.,
2013) and soil contaminant depth of 0.1 m to convert radioactivity per
area to soil activity concentrations of 137Cs (Bq kg−1, dry weight). Mean
(16,690 Bq kg−1) and median (6960 Bq kg−1) soil activity concentra-
tions of 137Cs were used as input for the initial simulations (1Aa and
1Ab) with ERICA.

Dose conversion coefficients (DCCs; μGy h−1/Bq kg−1) are then
used in ERICA to convert soil activity concentrations (Bq kg−1) to an
animal's external dose rate (μGy h−1). The methods used to derive DCCs
values are well established and thoroughly described elsewhere
(Taranenko et al., 2004; Ulanovsky and Pröhl, 2012). Tables of DCCs
for representative shapes of various animals and plants are available
(Taranenko et al., 2004; ICRP, 2008), and are incorporated within the
software of ERICA (Brown et al., 2016).

To simplify initial risk assessment calculations, ERICA calculates
exposure to a suite of standardized “reference organisms” based on
concepts of the International Commission of Radiological Protection
(ICRP, 2009). A reference organism is a hypothetical entity with the
assumed basic biological characteristics of a particular type of common
animal, described to the general taxonomic level of Family (ICRP,
2009). The ERICA reference mammal is based on characteristics of a

medium-sized woodland deer (Cervidae; 245 kg mass; 130 cm length x
60 cm height x 60 cm width; ICRP, 2008), and was used for the initial
ERICA simulations of mean and median exposure levels. These rather
simple conservative screening-level simulations are likely the first a risk
assessor would take if interested in risks to PSRER wolves.

2.6.2. Model simulation 1B. [Using mean soil contaminant concentration
across PSRER and ERICA's generic wolf]

If an initial model simulation resulted in external exposures to
wolves that were of concern, an assessor would want to estimate ex-
posure more accurately. This was accomplished using ERICA's “new
organism” option and entering typical physical dimensions of a wolf
(50 kg mass; 80 cm length; 60 cm height and 45 cm width) based on
literature values (Mech, 1974; U. of Mich., 2008). Shape and size of an
organism alters the dose conversion coefficients (DCCs) used to calcu-
late external exposure from soil contamination (Ulanovsky and Pröhl,
2012). Using the dimensions of a generic wolf would likely yield more
realistic exposure estimates compared to those based on deer. ERICA
calculated new DCCs specific for the generic wolf based on inputs of
height, width, length and mass.

2.6.3. Model simulation 1C. [Using area-weighted mean soil contaminant
concentration across PSRER and ERICA's generic wolf]

If the level of risk was still of concern when exposure to a generic
wolf was simulated, an assessor would likely derive an area-weighted
mean contaminant concentration. This approach is attractive to asses-
sors because the areas with highest contaminant concentrations gen-
erally occupy a relatively small area of the total landscape, and thus
their contributions to the overall mean external exposure are assumed
to proportion accordingly. To test the assumption that exposure over
time can be best represented by the spatially averaged contaminant
concentration (USEPA, 1996), we simulated exposure with the ERICA
tool using the area-weighted mean 137Cs contaminant density of
1040 kBq m−2 (Supplementary Table S-1) converted to 7430 Bq kg−1

(dry mass soil), and the dimensions of a generic wolf.
Predicted exposures from all four model simulations (1Aa, 1Ab, 1B

and 1C) were compared to individual-based mean exposure data ob-
tained from our GPS-contaminant monitors on free-ranging wolves.

Fig. 2. Camera trap photo (courtesy of N. Beresford, Centre for Ecology and Hydrology, UK) of a Polessie State Radiation Ecology Reserve wolf wearing a GPS-
contaminant monitor. The GPS-contaminant monitor was designed to collect real time external exposure data as the animal moves through contaminated en-
vironments (red arrows). A portion of the monitor's reading, however, comes from contamination within the body of the animal (orange arrow), and must be
subtracted to obtain the correct estimate of external exposure (see Supplementary section). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3. Results

3.1. Results: static test to determine variance among GPS-contaminant
monitors

Static tests to determine variance among three GPS-contaminant
monitors, positioned together at a single location, resulted in similar
exposure recordings (Supplementary Table S-3); differences were within
the manufacturer's reported 10% variance for repeated readings from a
single calibrated radiation source. Differences in mean exposures as a
function of location, however, were apparent, with exposure from
within the birch forest being four times less than the open field location
(Supplementary Table S-3). This difference highlights the potential im-
portance of accounting for spatial-temporal variation in environmental
contaminant levels. It is important to note that the three static locations
were several km apart, in areas with different contamination densities,
and thus the difference in mean exposure recorded among sites was a
combined function of geographic location and habitat-specific varia-
tion. The static tests also revealed GPS location error (mean ± SD) in
habitats with different over-story densities and potential interference
with the GPS signal (i.e., open field = 4.2 ± 8.0 m; pine
forest = 8.9 ± 11.4 m, and birch forest = 8.7 ± 9.0 m).

3.2. Results: trapping success

We successfully trapped and attached GPS-contaminant monitors on
nine PSRER wolves in November 2014 (Supplementary; Table S-2). The
oldest of our animals (#52) was found dead within five days of capture
and its data were excluded from all analyses. A second wolf (#55)
dispersed out of the PSRER area on 6 February 2015 (Byrne et al.,
2018). We lost contact with #55 due to GPS failure, but data were
acquired for 95 days, the majority of it while the wolf was still in the
PSRER. The remaining seven wolves wore their GPS-contaminant
monitors from mid-November 2014 until 1 May 2015, when the collars
released from the animals as scheduled. These wolves were tracked
from 165 to 180 days, depending on the date of capture. During this
period we received GPS locations and exposure readings from each
animal every 35 min, resulting in ~6600 individual locations and 137Cs
external exposure readings per wolf.

3.3. Results: range and core area utilization distributions (UD)

The mean ( ± SD) range (99% UD) for the eight wolves was
226 ± 104 km2. The largest range (wolf #54) covered 15% of the
PSRER's total area (Table 1). Mean ( ± SD) core areas (50% UDs) for
the 8 wolves were 8 ± 7 km2 and were on average ~3% of their re-
spective range.

Area-weighted mean contaminant densities within the range of each
wolf (Table 2) were calculated and compared to the 1040 kBq m−2

area-weighted grand mean for the entire PSRER (2720 km2, Supple-
mentary Table S-1). Five wolves had ranges that contained considerably
greater mean soil contamination densities than the overall mean for
PSRER, while three other wolves had ranges whose contaminant den-
sities were less than the grand mean.

3.4. Results: exposure among individuals

The GPS-contaminant monitors produced near real time, external
exposure data on individual wolves. The data reveal variation in ex-
ternal exposure for each animal over time; as well as variation in ex-
ternal exposure among the eight wolves across the landscape of PSRER.
Mean external exposures (corrected for contribution from internal ex-
posure; see Supplementary Section S-3: Bias Correction) for the six month
period varied among individuals by more than an order of magnitude
(Table 3). The lowest exposure, extrapolated for an entire year, was
2.6 mGy, whereas, the highest exposure was 35.7 mGy. Mean annual
external exposure ( ± SD) for all animals was 18.4 ± 13.1 mGy. A
measure of variation in mean external exposure for all animals across
the landscape, Coefficient of Variation (CV), was 71%.

External exposures varied considerably for some animals during the
six-month period (Fig. 3). For example, maximum external exposure for
wolf #54 (~33 μGy h−1) was 10 times its mean exposure (~3 μGy h−1;
Fig. 3). Maximum exposures for other wolves were two to three times
their mean values. Often, large variations in external exposure occurred
over a relatively short time period. For example, wolf #54 experienced
a ~30-fold range in external exposures over a 12-day period (Fig. 4).

Variations in external exposure over time, as measured by the CV,
ranged from 50 to 170% for individual wolves (Table 3). The mean
variation in external exposure over time among individual animals
(CV = 88%) was greater than the mean variation in exposure across
space for the eight wolves (CV = 71%). Considering contaminant
densities across the PSRER ranged well over two orders of magnitude
(from 40 to > 7500 kBq m−2; Supplementary Table S-1) and the com-
bined home ranges of all eight wolves covered 85% of PSRER's total
area (Table 1), it was surprising that the temporal component to var-
iation in external exposure among individual animals was greater than
the mean variation in exposure across space (CV = 88 vs 71%, re-
spectively). This empirically substantiates the often stated premise that
precise estimates of external exposure require information on both
contaminant heterogeneity and the time individuals spend in habitats
of varying contaminant intensities (Kapustka, 2005; Johnson et al.,
2007; ASTM, 2016).

Internal 137Cs concentrations of each wolf at the time of capture
were obtained from a field calibrated, portable spectroscopy system (see
Supplementary Section S-1: Field measurements of 137Cs concentrations in

Table 1
Ranges (99% UD) and core areas (50% UD) of eight wolves on the Polessie State
Radiation Ecology Reserve (PSRER).

Wolf Range size
(km2) (99%
UD)

Range size relative
to total PSRER area
(2720 km2; %)

Size (km2)
of core
area (50%
UD)

Core area
size relative
to range (%)

43 259 9 0.7 < 1
44 172 6 4.6 3
45 268 10 13.8 5
53 259 9 15.3 6
54 405 15 18.0 4
55 36a 0.01 1.4 4
56 213 8 3.6 2
57 200 7 4.5 2
Mean ± SD 226 ± 104 10 ± 5 8 ± 7 3 ± 2

a wolf #55 dispersed from the Polessie State Radiation Ecology Reserve
during our study, data are for 95 days.

Table 2
Area-weighted mean 137Cs soil radioactivity densities (kBq m−2) in each wolf's
range (99% UD) and core area (50% UD) relative to the area-weighted grand
mean (1040 kBq m−2) for all of the Polessie State Radiation Ecology Reserve.
Radioactivity levels were decay corrected to 2015.

Wolf Area-weighted mean
137Cs in soil
(kBq m−2) of wolf's
99% UD

Percent of 137Cs in
wolves 99% UD relative
to area-weighted grand
mean for all of PSRER

Area-weighted mean
137Cs in soil (kBq m−2)
of wolf's core area
(50% UD)

43 704 68% 789
44 3768 362% 3599
45 1316 126% 1312
53 391 38% 331
54 3404 327% 3078
55 4763 458% 4961
56 825 79% 1112
57 2116 203% 3343
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wolves). Among the eight wolves, internal 137Cs concentrations ranged
from 2.6 to 18.2 kBq kg−1, with a mean ( ± SD) of 9 ± 6 (Table 3).

3.5. Results: ERICA exposure simulations based on mean, median and area-
weighted contaminant densities

The robust exposure data acquired from individual wolves wearing
GPS-coupled contaminant monitors gave us the rare ability to compare
model simulations of external exposures (based on various metrics of
central tendency; e.g., mean, median, area-weighted mean) to empirical
data. Having well-characterized soil contaminant data from the PSRER
as a GIS layer was also critical to the model verification analyses. Our
most simplistic calculation to estimate external exposure with the
ERICA Tool (Simulation 1Aa; Section 2.6.1) used a mean soil activity
concentration of 137Cs from the entire 2720 km2 of PSRER, and ERICA's
generic mammal (deer) representing a wolf. The simulation resulted in
an extrapolated annual external exposure of 8.2 mGy (Table 4). Using
the median 137Cs soil activity concentration (Simulation 1Ab) lowered
the simulated external exposure to 3.4 mGy.

If an assessor spent additional time to determine and model more
precise physical dimensions of a “generic wolf”, rather than using
ERICA's default mammal (deer), a sized-based dose conversion coeffi-
cient (DCC) can be obtained from the ERICA Tool. This effort
(Simulation 1B; Section 2.6.2), when paired with mean soil

contamination densities, resulted in a slightly greater simulated annual
external exposure (10.5 mGy).

Soil 137Cs levels on the PSRER are highly heterogeneous. The area
with the highest soil contaminant densities (> 7500 kBq m−2) only
occurs on 2% of the PSRER's landscape (Supplementary Table S-1). The
probability of wolves being exposed to the highest contaminant
amounts can be assumed to be proportional to the frequency of that
contamination in the exposure area (EPA, 1992). Thus simulating ex-
posure based on an area-weighted mean soil contamination density is a
logical approach (Simulation 1C; Section 2.6.3). This was simulated
with ERICA in conjunction with the generic wolf DCCs, and resulted in
an annual exposure of 4.7 mGy (Table 4).

All the model simulations of external exposure were less than the
mean exposure measured on eight wolves wearing GPS-contaminant
monitors (18.4 mGy; Table 4). Our empirical data (albeit based on a
small sample size of eight animals) indicated that external exposure
over time was not well represented by the averaged contaminant con-
centration as advocated by important risk assessment guidance docu-
ments (USEPA, 1996; DOE, 2019). We reached the same conclusions
when total exposure was quantified (i.e., external dose from GPS-con-
taminant monitors + internal dose from 137Cs analyses within each
animal at time of capture) and compared to modeled simulations of
total exposure. Sixty percent of the wolves had total exposures larger
than those simulated with the ERICA model using averaged

Table 3
Mean, standard deviation and coefficient of variation in external exposures (μGy h−1) measured on individual wolves wearing GPS-contaminant monitors over a 6-
month period in Polessie State Radiation Ecology Reserve. Data are extrapolated to an annual exposure (mGy). Internal 137Cs activity concentrations are also shown
(kBq kg−1; see Supplementary Section S-1: Field measurements of 137Cs concentrations in wolves).

Wolf Mean ± SD external dose rate
(μGy h−1)

% Coeff. of Var. # of 35 min
readings

Days on
wolf

Extrapolated mGy y−1 Wolf's internal 137Cs activity concentration
(kBq kg−1)

53 0.3 ± 0.5 170 6233 165 2.6 3.1 ± 0.1
43 0.5 ± 0.7 140 6640 168 4.3 2.8 ± 0.1
56 0.9 ± 0.8 90 6667 167 7.9 2.6 ± 0.3
45 1.4 ± 1.1 80 6687 175 12.3 10.9 ± 0.4
54 3.0 ± 2.1 70 6658 176 26.3 14.3 ± 0.5
57 3.2 ± 1.6 50 6848 176 28.0 6.7 ± 0.3
44 3.3 ± 1.8 50 6865 180 28.8 18.2 ± 0.3
55 4.1 ± 2.0 50 3653 95 35.7 13.8 ± 0.5
Mean ± SD

(CV %)
2.1 ± 1.5
(71%)

88 ± 45 18.4 ± 13.1
(71%)

9.0 ± 6.1
(68%)

Fig. 3. Boxplots of external exposure (μGy h−1) over
a six-month interval measured on eight Chernobyl
wolves using GPS-contaminant monitors. Symbol “X”
represent mean levels, 1st and 3rd quantiles are re-
presented by the top and bottom of the box, and the
horizontal line within the box is the median value;
open circles represent outliers.
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contaminant concentrations (see Supplement Section S-4: Total Dose
Calculations for details).

If simplistic simulations of exposure using mean contaminant den-
sities tend to under-predict actual exposures measured with GPS-con-
taminant monitors, then what level of additional data are predictive of
field exposures? We explored this question using range (99% UD) and
core area (50% UD) data derived for each wolf (Table 1). Area-
weighted contamination densities in the wolf's range correlated well to
external exposures measured with its GPS-contaminant monitor
(r2 = 0.89, Supplementary Fig. S-1-A). Interestingly, r2 values were
higher when external exposures were correlated to the area-weighted
contaminant densities in the wolves much smaller core areas
(r2 = 0.99, Supplementary Fig. S-1-B). Thus, even though core areas for
PSRER wolves represented < 6% of their ranges (Table 1), the amount
of time they spent in core areas, coupled with the corresponding con-
taminant amounts, resulted in the core areas contributing as much to
the animals' external exposure as the contamination in their much
larger 99% UD ranges. The strength of these two correlations (Supple-
mentary Figs. S-1-A&B) support empirically the importance of ac-
counting for temporal and spatial variability of contaminant densities
and animal habitat preferences when simulating exposure to biota.

The reverse was true for predicting the wolves' internal 137Cs con-
centrations acquired from ingestion of contaminated food and water.
Correlations of 137Cs body burdens (Bq kg−1; Table 3) were strongest
when matched to soil contamination densities over their entire range
(r2 = 0.76; Supplementary Fig. S-2-A) compared to contamination in
their core areas (r2 = 0.57; Supplementary Fig. S-2-B). The lowered
correlation is logical because wolves use their entire home range for
foraging, and their internal contamination would reflect the

contamination of prey living throughout those large areas, rather than
the levels of contamination in prey only from the smaller core areas.

4. Discussion

Herein, we provided a rare glimpse of external exposures experi-
enced by individual free-ranging wildlife. The large areas over which
wolves range, well-documented contaminant densities on the PSRER,
and empirical data derived from GPS-coupled contaminant monitors
made it possible for us to test guidance provided by both the U.S. EPA
(1996) and U.S. Department of Energy (DOE, 2019) on fundamental
assumptions inherent to most screening-level assessments — Mean
contaminant concentrations conservatively estimate individual external ex-
posures. We explored this hypothesis with a series of simulations using
the ERICA modeling tool and 137Cs soil contamination data obtained
from the Belarus portion of Chernobyl's 30-km zone.

The uniqueness of this data set is a result of technological ad-
vancements from a recently developed scientific tool. The tool, a GPS-
coupled contaminant monitor, proved to be sufficiently robust to
withstand the harsh environmental conditions experienced by free
ranging wolves as they roamed freely through Chernobyl's con-
taminated landscape. Signals sent from animal collars to celestial sa-
tellites to researchers' personal computers e every 35 min e tracked
animal locations and monitored their external exposures. Although
based only on a sample size of eight animals, the six months of data
generated from those animals represent the most robust external ex-
posure data published to date on free ranging animals.

We assumed calibrated electronic dosimeters within our GPS-con-
taminant monitors represented a state-of-the-art for measuring external
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Fig. 4. Variation in external exposure over a 12-day period (20 April–2 May) for wolf #54 captured within the Polessie State Radiation Ecology Reserve. Exposure
data were transmitted consecutively, at 35 min intervals, from a GPS-contaminant monitor worn around the neck of the animal.

Table 4
External exposure based on model simulations compared to external exposures measured on free-ranging wolves in Polessie State Radiation Ecology Reserve using
GPS-coupled contaminant monitors.

Model simulation # (see Methods 2.6) Key parameters used in ERICA simulation of external exposure External exposure (mGy y−1)

Simulation 1-Aa Mean soil contaminant density across PSRER and ERICA's generic mammal (deer) 8.2
Simulation 1-Ab Median soil contaminant density across PSRER and ERICA's generic mammal (deer) 3.4
Simulation 1-B Mean soil contaminant density across PSRER and ERICA's generic wolf 10.5
Simulation 1-C Area-weighted mean contaminant density across PSRER and ERICA's generic wolf 4.7
Empirical Data Mean external exposure measured on individual wolves using GPS-contaminant monitors 18.4 ± 13.1
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radiation dose to free-ranging animals. This assumption, and the use of
GPS-coupled dosimeters, has been supported by others (Tagami et al.,
2016; Stark et al., 2017; Beaugelin-Seiller et al., 2018). A somewhat
analogous assumption is made each day by the thousands of nuclear
workers that routinely wear similar dosimeters to determine the occu-
pational dose rates to which they are exposed.

We found that modeled simulations of mean external exposure,
based on various measures of central tendency, under-predicted mean
exposures measured on wolves wearing GPS-contaminant monitors.
Even the most conservatively chosen measure of central tendency (i.e.
the grand mean soil contamination concentration for the entire PSRER;
16,690 Bq kg−1) resulted in an under-prediction of modeled external
exposures (10.5 mGy y−1) compared to mean exposures on five of the
eight wolves measured with GPS-contaminant monitors (i.e., 12.3,
26.3, 28.0, 28.8 and 35.7 mGy y−1; Table 4). Simulated external ex-
posures based on grand mean soil contamination are conservative be-
cause the small land areas with highest contaminant concentrations are
not appropriately weighted to offset their potential over-contribution to
the mean.

Our findings were facilitated by the relative ease in which our GPS-
contaminant monitors sensor external gamma radiation within diverse
landscapes. Our conclusions, although based on research from radio-
active contamination, may also be pertinent to other contaminants that
are dispersed atmospherically and deposit via wet and dry depositional
processes, as was 137Cs from the Chernobyl fallout (Clark and Smith,
1988). Candidate pollutants, known to be heterogeneously distributed
spatially and temporally in terrestrial environments, whose screening-
level risk assessments might be biased by measures of central tendency,
include heavy metals (e.g., Taylor et al., 2015; Zheng et al., 2016),
pesticides (e.g., Dubus et al., 2003; Daly et al., 2007); polycyclic aro-
matic compounds (e.g., Xing et al., 2016; Tian et al., 2017), and nu-
merous types of organic pollutants (e.g., Pan et al., 2013).

It is important to stress that the fundamental physics for calculating
external dose are well-founded (ICRU, 1993; Taranenko et al., 2004;
ICRP, 2008; Ulanovsky and Pröhl, 2012) and are not being questioned
by our research. Likewise, methodologies used within the ERICA tool
for simulating external exposures are appropriate, and the ERICA tool
has performed well in international model comparison exercises
(Beresford et al., 2010).

Instead, it is the large heterogeneity of contaminant densities within
an animal's environment and the animal's allocation of time to pre-
ferred habitats that likely cause measures of central tendency to under-
predict the real external exposure experienced by at least some mem-
bers of the Chernobyl wolf population. Habitat quality is a key factor
that influences the amount of time wildlife spend in various portions of
a landscape (Johnson et al., 2007), and it is known that co-located high
quality habitat and high contamination increases exposure to many
types of pollutants (ASTM, 2016). The strong correlations we observed
between external dose rate measured with GPS-contaminant monitors
on individual wolves versus weighted mean 137Cs densities in the soil of
the wolves' range and core areas support the importance of accounting
for temporal and spatial variability of contaminant densities and animal
habitat preferences when simulating exposure to biota.

The fundamental principle behind a conservative risk assessment is
that the exposure simulated by a model is assured to be greater than
what an animal is likely to experience in the field. The under-predic-
tions of model simulated exposure documented herein are not in
agreement with the conservatism sought in screening-level risk assess-
ments. If under-prediction of exposure occurred for ~60% of the ani-
mals in this study, then arguably the use of averaged contaminant
densities to predict external exposure is not as conservative as implied
by standard risk assessment guidance (USEPA, 1996; DOE, 2019). Our
empirical data indicate that a risk assessor's interpretation of simulated
exposures in an initial, purposely conservative, screening-level analysis
might be misguided if contaminant concentrations are based on mea-
sures of central tendency, and could result in inappropriate

management decisions.
If additional studies confirm that current screening-level risk as-

sessment guidance is not as conservative as our research suggests, what
can risk assessors do to reduce the probability of underestimating ex-
posure in a screening-level assessment? We offer three suggestions:

(1) Acknowledge a larger uncertainty in the results of risk assessments
that are based on measures of central tendency. Most risk assess-
ments use some form of a Hazard Quotient (HQ) that ratios the
calculated risk to a benchmark value thought to be protective (e.g.,
USEPA, 1997; DOE, 2019). If the HQ is < 1.0 then risk assessors
generally declare the risk acceptable and dismiss that contaminant
from further consideration. We recommend that risk assessors be
more cautious when risk assessment findings, based on measures of
central tendency, have HQ values that approach 1.0, but are still
considered “acceptable”. For example, if an HQ of 0.8 is obtained,
additional caution and more detailed, site-specific analyses may be
prudent if the data were derived from averaged contaminant con-
centrations.

(2) Apply larger uncertainty factors to data derived from measures of
central tendency. Many risk assessments use uncertainty factors
(UFs) in the HQ calculation to incorporate uncertainty associated
with predicting wildlife responses to contaminant exposure (Duke
and Taggart, 2009). A wide variety of UFs of various magnitudes
are used, most often when extrapolation is required. For example
UFs are used when extrapolating from one species to another, from
laboratory data to field applications, or from individual effects to
population responses (Forbes and Calow, 2002). An uncertainty
factor to introduce additional conservatism into screening-level
assessments derived from measures of central tendency might be
appropriate for the risk community to consider.

(3) Use a probabilistic approach that captures the variance in measures
of central tendency. Chemical risk assessments of wildlife species
are moving away from deterministic approaches. The advantage of
a probabilistic approach in exposure assessments is that reasonable
bounds can be placed on model parameters and a risk range can be
communicated to risk managers (Smith et al., 2007). A probabilistic
approach may not reduce overall uncertainty, but it will enhance
transparent representation of the variability and uncertainty that
exists in the risk assessment process (Smith et al., 2007), including
what now appears to be the added uncertainty when using mea-
sures of central tendency.
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