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Coherence quantifies the statistical fluctuations in an optical field and has been extensively studied in the space,
time, and polarization degrees of freedom. In the context of space, coherence theory has been formulated between
two transverse positions as well as between two azimuthal positions, referred to as transverse spatial coherence and
angular coherence, respectively. In this paper, we formulate the theory of coherence for optical fields in the radial
degree of freedom and discuss the associated concepts of coherence radial width, radial quasi-homogeneity, and
radial stationarity with some physically realizable examples of radially partially coherent fields. Furthermore, we
propose an interferometric scheme for measuring radial coherence. ©2023Optica PublishingGroup

https://doi.org/10.1364/JOSAA.474724

1. INTRODUCTION

Optical coherence theory is a well-established research domain
aimed at understanding and characterizing the statistical fluc-
tuations in an optical field [1,2]. Optical fields having partial
coherence have found applications in several areas including
imaging through scattering media [3–5], optical coher-
ence tomography [6–8], and optical communication [8,9].
Coherence in a given degree of freedom, such as time, space,
or polarization, is defined through two-point cross-spectral
density [1,10]. In the context of space, coherence theory has
been formulated between two transverse positions [1,10], and it
is referred to as transverse spatial coherence. Several experimen-
tal schemes have been developed for measuring the transverse
spatial coherence of optical fields [10–15].

The electric field at a transverse point in Cartesian coor-
dinates (x , y ) can be written in the cylindrical coordinate
system as E (r , θ), where x = r cos θ and y = r sin θ .
Thus the cross-spectral density of a monochromatic field
in the cylindrical coordinate system can be written as
W(r1, θ1, r2, θ2)= 〈E ∗(r1, θ1)E (r2, θ2)〉e , where 〈. . .〉e
represents the ensemble average, and E (r1, θ1) and E (r2, θ2)

represent the electric fields at locations (r1, θ1) and (r2, θ2),
respectively, where the polar coordinates are defined with
respect to the center of the coordinate system. Recent work has
focused on different classes of fields based on their description in
cylindrical coordinates. This has included studies of fields whose
degree of coherence depends only on the azimuthal separation
[16], radial separation [17], or difference in the squares of radial
coordinates [18]. A representation of generic cross-spectral

densities in terms of the radial variable and orbital angular
momentum (OAM) was also proposed recently [19].

A measure of coherence that focuses on the angular degree
of freedom was proposed based on averaging over the radial
coordinate [20,21]. Efficient experimental measurement of
this angular coherence function has led to several important
applications, including measurement of the OAM spectrum
of light [21], measurement of the angular Schmidt spectrum
of OAM-entangled photons [22], and state tomography of
high-dimensional OAM states of photons [23]. Lately, there
have been increased efforts for utilizing the radial degree of free-
dom for applications in optical communication and quantum
information [24–27]. We explore in this paper the counter-
part in the radial degree of freedom of the angular measure in
[20,21], where now the averaging takes place over the azimuthal
variable. The paper is organized as follows. In Section 2, we
define the radial cross-spectral density and associated concepts
of coherence radial width, radial quasi-homogeneity, and radial
stationarity. In Section 3, we discuss these concepts with a few
physically realizable examples of radially partially coherent
fields. In Section 4, we propose an interferometric method for
measuring the degree of radial coherence. Section 5 contains the
conclusion.

2. RADIAL CROSS-SPECTRAL DENSITY

When the cross-spectral density is averaged over the radial
degree of freedom, one obtains the angle cross-spectral density
as W(θ1, θ2)=

∫
r dr W(r , θ1, r , θ2) [20,21]. As mentioned

earlier, efficient experimental measurements of this function
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have been implemented [21–23]. In an analogous manner, for
defining the cross-spectral density in the radial degree of free-
dom, we take θ1 = θ2 = θ and average W(r1, θ1, r2, θ2) over
the azimuthal degree of freedom to obtain

WR(r1, r2)≡
1

2π

∫ π

−π

W(r1, θ, r2, θ)dθ . (1)

The function WR(r1, r2) is then called the radial cross-spectral
density (in analogy to the azimuthal cross-spectral density),
and it quantifies the correlation between fields at two separate
radial positions, r1 and r2. In situations in which the complete
cross-spectral density is separable in its radial and azimuthal
coordinates, so that W(r1, θ, r2, θ)=WR(r1, r2) f (θ), we can
write the radial cross-spectral density WR(r1, r2) as

WR(r1, r2)=
√

IR(r1)IR(r2)µR(r2, r1), (2)

where

µR(r1, r2)=
WR(r1, r2)
√

IR(r1)IR(r2)
(3)

is the complex degree of radial coherence, and its magnitude
|µR(r1, r2)| can be referred to as the degree of radial coherence.
IR(r )=WR(r , r )= 1

2π

∫ π
−π

W(r , θ, r , θ)dθ is the radial
intensity distribution. Figure 1 illustrates the concept of radial
cross-spectral density. The degree of coherence |µR(r1, r2)|
quantifies the correlation between fields at radial coordinates r1
and r2, and it lies between zero and one. If µR(r1, r2) depends
only on the difference 1r = r2 − r1 and the radial intensity
distribution IR(r ) varies slowly compared to the variations in
µR(1r ) as a function of 1r , then the field can be said to be
radially quasi-homogeneous. For a radially quasi-homogeneous
field, if IR(r ) is constant, the field can be referred to as radially
homogeneous, or using the terminology in [21,28–31], it can
also be referred to as radially stationary. Thus, for a radially
stationary field, we get

IR(r )= I0 and WR(r1, r2)= I0µR(r2 − r1)= I0µR(1r ),
(4)

where I0 is a constant. The width of |µR(1r )| as a function of
1r can be referred to as the coherence radial width σrad, which
can be seen as a measure of the radial length scale over which the
field has appreciable correlations. For a radially perfectly coher-
ent field,σrad is∞, and for a radially incoherent field,σrad is zero.

Fig. 1. Illustrating radial coherence. The cross-spectral density
W(r1, θ, r2, θ) is averaged over the azimuthal coordinate θ to obtain
the radial cross-spectral density WR (r1, r2).

Please note that the interpretation of |µR(r1, r2)| as a radial
degree of coherence is valid only for certain classes of fields;
counterexamples include fully coherent fields without rota-
tional symmetry about the chosen origin, for which |µR(r1, r2)|

can be considerably less than unity. For cases in which the cross-
spectral density is separable in polar coordinates, the radial part
is precisely the radial cross-spectral density. One example is that
of fields with definite OAM for which the nonzero elements of
the coherence–OAM matrix defined in [19] reduce to the radial
cross-spectral density.

3. EXAMPLES OF RADIALLY PARTIALLY
COHERENT FIELDS

We now consider the measures of radial coherence mentioned
earlier for a few representative examples of physically realizable
radially partially coherent fields.

A. Field in the Form of an Incoherent Mixture
of Laguerre–Gaussian Modes

We consider an incoherent mixture of Laguerre–Gaussian (LG)
LGl=0

p (r ) [32] modes as an example of a radially partially coher-
ent field that is fully independent of the azimuthal angle. The
mixture consists only of l = 0 mode, and the proportion of a
mode with index p isλp . The radial cross-spectral density in this
case can be written as

WR(r , r +1r )=
pmax∑
p=0

λp LG∗l=0
p (r )LGl=0

p (r +1r ), (5)

where LGl=0
p (r )= A

[√
2r
w

]
L |l |=0

p (2r 2/w2) exp[−r 2/w2
],

and w is the beam waist [32]. Since this cross-spectral den-
sity has no explicit dependence on azimuthal coordinates, it
remains unchanged after averaging over the azimuthal degree
of freedom, as defined in Eq. (1). The corresponding radial
intensity distribution IR(r ) and degree of coherence function
|µR(r , r +1r )| can be written as

IR(r )=
pmax∑
p=0

λp |LGl=0
p (r )|2 (6)

and

|µR(r , r +1r )|

=

∣∣∣∑pmax
p=0 λp LGl=0

p (r )LG∗l=0
p (r +1r )

∣∣∣√[∑pmax
p=0 λp |LGl=0

p (r )|2
] [∑pmax

p=0 λp |LGl=0
p (r +1r )|2

] .

(7)

Figure 2(a) shows plots of numerically evaluated IR(r ) as a
function of r , and of |µR(r , r +1r )| as a function of1r . For
the plots, we take λp = 1/pmax, pmax = 20, and w= 0.4 mm.
We note that |µR(r , r +1r )| depends on both r and 1r .
This implies that the field is neither stationary nor quasi-
homogeneous and thus that the coherence radial width σrad

does depend on r . We also note that LG modes LGl=0
p (r ) are

self-similar under paraxial propagation, and therefore, the shape
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Fig. 2. Radial intensity distribution IR (r ) as a function of r and the degree of coherence |µR (r , r +1r )| as a function of1r for various radially
partially coherent fields: (a) incoherent mixture of LG modes, (b) GSM field, and (c) incoherent mixture of transverse plane-wave modes.

of an LG mode does not change upon propagation except for an
overall increase in beam size and the corresponding attenuation
in intensity. Therefore, the functional forms of the above radial
intensity and the degree of coherence functions do not change
upon propagation, but the beam size and the coherence radial
width do increase upon propagation. One can experimentally
generate such radially partially coherent fields by using the
method described in [33].

B. Radial Gaussian Schell Model Fields

Gaussian Schell model (GSM) fields are widely used mod-
els of quasi-homogeneous partially coherent fields [34–36].
Therefore, as a second example, we consider a GSM field in the
radial degree of freedom and write the cross-spectral density as

WR(r1, r2)= exp

[
−

r 2
1 + r 2

2

4σ 2
s

]
exp

[
−
(r2 − r1)

2

2σ 2
rad

]
. (8)

As for the previous example, the cross-spectral density is inde-
pendent of azimuthal coordinates, and therefore, it remains
unchanged after averaging over the azimuthal degree of freedom
in Eq. (1). The corresponding radial intensity distribution IR(r )
and the degree of coherence |µR(r , r +1r )| are given by

IR (r )= exp

[
−

r 2

2σ 2
s

]
and |µR (r , r +1r )| = exp

[
−
(1r )2

2σ 2
rad

]
,

(9)
where σs and σrad are the radial beam size and coherence radial
width, respectively. We note that the degree of coherence
|µR(r , r +1r )| depends only on separation1r . Therefore, in
situations in which σs � σrad, the above cross-spectral density
is radially quasi-homogeneous. However, except in the limit
σs →∞, the field is not radially stationary. Following the
method worked out in [35], we write the radial GSM field as an
incoherent mixture of radial Hermite Gaussian (HG) functions
HG p(r ) [17], withλp being the proportion:

WR(r , r +1r )=
pmax∑
p=0

λp HG∗p(r )HGp(r +1r ). (10)

Here HGp(r )= AHp [
√

2r
w
] exp[−r 2/w2

], A is a constant,
w is the beam waist, λp =

1[
(Q/2)2+1+Q

√
(Q/2)2+1

]p , and

Q = σrad/2.25σs . Figure 2(b) shows plots of numerically
evaluated IR(r ) as a function of r , and of |µR(r , r +1r )| as a
function of 1r . For these plots, we used pmax = 50, Q = 0.5,
andw= 0.3 mm. We note from the plots that the field is indeed
radially quasi-homogeneous. Note, however, that the radial
HG functions are not self-similar solutions of the paraxial
wave equation. As a result, the functional forms of the above
radial intensity distribution and the degree of coherence change
considerably upon propagation. Moreover, from the recent
theoretical study in [17] of an analogous radially partially coher-
ent field, we expect that both beam size and coherence radius
increase upon propagation. The above radial GSM field can also
be physically realized by using the method described in [33].

C. Field in the Form of an Incoherent Mixture
of Transverse Plane-Wave Modes

It turns out that fields for which the cross-spectral density is
separable in polar coordinates are not the only ones for which
the definition of radial coherence is meaningful, as we show now
with a simple example. Consider a partially coherent field in the
form of an incoherent mixture of plane-wave modes and write
the cross-spectral density W(x1, y1, x2, y2) as

W(x1, y1, x2, y2)=

∫
λ(qx , q y )e i[qx (x2−x1)+q y (y2−y1)]dqx dq y ,

(11)
where λ(qx , q y ) is the mode density. Using the trans-
formations (x1, y1)= (r1 cos θ1, r1 sin θ1), (x2, y2)=
(r2 cos θ2, r2 sin θ2), and (qx , q y )= (qr cos qθ , qr sin qθ ),
where qr and qθ are radial and azimuthal components of the
transverse plane-wave modes (qx , q y ), respectively, we write
W(x1, y1, x2, y2) in the polar coordinates as
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W(r1, θ1, r2, θ2)=

∫
qrλ(qr cos qθ , qr sin qθ )e iqr cos qθ (r2 cos θ2−r1 cos θ1)

× e iqr sin qθ (r2 sin θ2−r1 sin θ1)dqr dqθ .
(12)

If the mode density is rotationally symmetric, that is, if
λ(qx , q y )≡ λ(qr ), this expression simplifies to

W(r1, θ1, r2, θ2)= 2π
∫

qrλ(qr )

× J0

[
qr

√
r 2

1 + r 2
2 − 2r1r2 cos(θ2 − θ1)

]
dqr . (13)

While this cross-spectral density is not separable in its radial and
azimuthal coordinates, it depends on θ1 and θ2 only through
their difference. Therefore, setting θ1 = θ2 = θ gives a result
that is unaffected by subsequent angular averaging:

WR(r1, r2)=
1

2π

∫
W(r1, θ, r2, θ)dθ =WR(r2 − r1)=WR(1r ).

(14)
The intensity and degree of coherence can therefore, be
written as

IR(r )=WR(r , r )= I0 and |µR(r , r +1r )| =
|WR(1r )|

I0
,

(15)
where WR(1r ) and λ(qr ) are related by the following Hankel
transformation:

WR(1r )= 2π
∫

qrλ(qr )J0(qr1r )dqr . (16)

That is, for this type of field, the coherence between any two
points depends only on their separation, and therefore, the
coherence for any two points with the same azimuthal variable
but different radii depends only on the difference of the radial
coordinates. Figure 2(c) shows the plots of numerically evalu-
ated IR(r ) as a function of r and |µR(r , r +1r )| as a function

of1r . For the plots, we have taken λ(qx , q y )= exp

[
−

q2
x+q2

y

2σ 2
q

]
,

where σq = 5 mm−1. We note that the cross-spectral density of
Eq. (11) does not depend on the propagation distance z [31].

Therefore, the above radial intensity distribution IR(r ) and
the degree of coherence function |µR(r , r +1r )| also remain
propagation invariant. The experimental generation of such
fields has already been demonstrated in [31].

Note that a similar mathematical result is found even
if λ(qx , q y ) is not rotationally symmetric, since setting
θ1 = θ2 = θ gives

W(r1, θ, r2, θ)=

∫
qrλ(qr cos qθ , qr sin qθ )e iqr cos qθ (r2−r1) cos θ

× e iqr sin qθ (r2−r1) sin θdqr dqθ ,
(17)

which after angular averaging yields

WR(1r )=
∫

qrλ(qr cos qθ , qr sin qθ )J0(qr1r )dqr dqθ .

(18)
While this radial coherence does depend only on radial sepa-
ration, this is to be understood only in the sense of an average,
and not of the coherence between each pair of points with given
radial separation and equal angle.

4. PROPOSED SCHEME FOR MEASURING
RADIAL CROSS-SPECTRAL DENSITY

Figure 3(a) shows the schematic of a proposed interferomet-
ric scheme for measuring the radial cross-spectral density
WR(r1, r2). This scheme is the radial analog of the wavefront-
inversion-based scheme for measuring the angular [21] and
transverse spatial coherence functions [15]. In our scheme, the
field in one arm is magnified m > 1 times before interfering, and
therefore, the electric field Eout(r , θ) at the output port of the
interferometer can be written as

Eout(r , θ)=
√

k1 E
( r

m
, θ
)

e iδ1 +
√

k2 E (r , θ)e iδ2 , (19)

where δ1 and δ2 are the phases acquired by the field in the
two interferometer arms, and k1 and k2 are the scaling fac-
tors. The intensity at the output port of the interferometer
I δout(r , θ)= 〈E

∗
out(r , θ)Eout(r , θ)〉 can be written as

Fig. 3. (a) Schematic of the interferometer for measuring the radial cross-spectral density WR (r , r /m) of a source field. (b) Transverse cross section
of the interfering fields at the camera plane.
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I δout(r , θ)= k1 I (r /m, θ)+ k2 I (r , θ)+ 2
√

k1k2

× (Re[W(r , θ, r /m, θ)] cos δ

− Im[W(r , θ, r /m, θ)] sin δ), (20)

where δ = (δ2 − δ1), and Re[· · · ] and Im[· · · ] are the real and
imaginary parts, respectively. By recording the interferogram at
four different values of δ, namely, δ = 0, δ = π/2, δ = π , and
δ = 3π/2, one can measure the real and imaginary parts as

Re[W(r , θ, r /m, θ)] ∝ [I δ=0(r , θ)− I δ=π (r , θ)], (21)

Im[W(r , θ, r /m, θ)] ∝ [I δ=π/2(r , θ)− I δ=3π/2(r , θ)].
(22)

Finally, the radial cross-spectral density WR(r , r /m) can be
obtained by averaging W(r , θ, r /m, θ) over the azimuthal
coordinate θ . The degree of coherence function |µR(r , r /m)|
can be obtained by measuring the radial intensities IR(r )
and IR(r /m) of the two arms and then using the relation
|µR(r , r /m)| = |WR(r , r /m)|/

√
IR(r )IR(r /m). We note

that, in general, for measuring WR(r , r /m), one needs to make
the interferometric measurements at a range of values of m.
However, if the field is radially quasi-homogeneous or radially
stationary, one needs to make measurements at only one value
of m.

We note that the performance of the proposed interferomet-
ric scheme crucially depends on how accurately the interfering
beams coaxially overlap with each other and also on the relative
stability of the two interfering beams. These two factors are
usually a bit challenging to control in a Mach–Zehnder type
interferometer, which has two separate interferometric paths.
However, there have been several experimental demonstra-
tions in which good control over these two factors has been
demonstrated using Mach–Zehnder type interferometers
[15,21,22]. Therefore, our proposed setup seems practically
viable. Nonetheless, if a common-path interferometer is used
instead of a Mach–Zehnder interferometer, one can get better
control of these two factors.

Just as the OAM mode spectrum can be measured by measur-
ing the angular cross-spectral density [20,21], the measurement
of radial cross-spectral density can yield the radial mode spec-
trum in a situation in which the field is an incoherent mixture
of perfectly coherent radial modes. We can see it as follows. If
the radially partially coherent field is an incoherent mixture of
modes φn(r ) with radial mode spectrum λn , the corresponding
radial cross-spectral density WR(r1, r2) is given by

WR(r1, r2)=
∑

n

λnφ
∗

n (r1)φn(r2). (23)

Using the orthogonality relation
∫
φ∗n (r )φm(r )r dr = δn,m of

φn(r )modes, we obtainλn :

λn =

∫
∞

r1=0

∫
∞

r2=0
WR(r1, r2)φ

∗

n (r1)r1dr1φn(r2)r2dr2. (24)

Thus, by measuring the radial cross-spectral density WR(r1, r2),
one can efficiently measure the radial mode spectrumλn .

5. CONCLUSION

In conclusion, in this paper, we have studied a measure of radial
coherence that is analogous to angular cross-spectral density
[20,21]. For fields in which two-point cross-spectral density
is separable in polar coordinates around a specific origin, the
radial cross-spectral density defined here corresponds directly
to a measure of coherence between a pair of points with equal
angular coordinates. However, it was shown that polar sepa-
rability is not a prerequisite for this angularly averaged measure
to represent the true coherence of any pair of points with the
same angular coordinate, independently of this coordinate.
In addition, we have also proposed an interferometric scheme
for measuring the radial cross-spectral density function. Just as
spatially partially coherent fields are used for enhancing imaging
resolution in the presence of turbulence [3–5], we expect fields
with partial radial coherence to have important implications for
enhancing the imaging resolution of radial features in an object,
especially in the presence of turbulence.
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