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This tutorial provides an overview of the local description of polarization for nonparax-
ial light, for which all Cartesian components of the electric field are significant. The
polarization of light at each point is characterized by a three-component complex vector
in the case of full polarization and by a 3× 3 polarization matrix for partial polarization.
Standard concepts for paraxial polarization such as the degree of polarization, the Stokes
parameters, and the Poincaré sphere then have generalizations for nonparaxial light that
are not unique and/or not trivial. This work aims to clarify some of these discrepancies,
present some new concepts, and provide a framework that highlights the similarities and
differences with the description for the paraxial regimes. Particular emphasis is placed
on geometric interpretations. © 2023 Optica Publishing Group
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Geometric descriptions for the
polarization of nonparaxial light: a
tutorial
Miguel A. Alonso

1. INTRODUCTION

The polarization of electromagnetic waves refers to the local geometric behavior of
the oscillations of the electric (or sometimes the magnetic) field vector. The study
of optical polarization and the implementation of techniques for measuring it have
been largely restricted until fairly recently to light with a well-defined direction of
propagation. This restriction is valid in many common situations, such as when the
light source is distant and subtends a small range of angles at the point of observation
or when a collimated laser beam is considered. The transversality of the electric and
magnetic fields then means that their component in the main direction of propagation
is much smaller than those normal to this direction and, hence, has a negligible effect
on measurements. These longitudinal field components can therefore be ignored for
most practical purposes.

In recent years, however, there has been growing interest within areas such as nano-
optics [1], plasmonics [2], and microscopy [3,4], in the characterization of the
polarization of light in cases where all three Cartesian field components can be sig-
nificant. Early theoretical studies based on nonparaxial polarization includes the work
by Luneburg [5], Wolf [6], and Richards and Wolf [7] on propagation and focusing
through angular spectrum techniques. In situations involving nonparaxial fields, the
polarization can vary considerably within length scales of the order of the wavelength,
which explains why some of the first work on the subject was for electromagnetic
waves at low frequencies [8–10], and why measurements within the optical spectrum
were challenging until fairly recently. Optical measurements of nonparaxial polariza-
tion typically imply the interaction of the field with a known small probe, such as a
metallic nanoparticle, placed at the point where the polarization is to be measured
[11–14]. The field scattered by this particle is collected over a high numerical aperture
by a microscope objective that collimates it, so that standard polarimetric techniques
can be used to characterize the light distribution in the Fourier (or angular spectrum)
domain. The polarization of the nonparaxial field at the point can be inferred from
these measurements. These techniques have led to the experimental verification of
interesting local polarization effects such as transverse spin [15–19]. Further, by scan-
ning the probe, the spatial distribution of polarization can be detected, hence allowing
the observation [14] of extended topological features such as Möbius bands formed by
the directions of largest electric field component at all points over a loop that surrounds
a line of circular polarization (a c-line [20]), as predicted by Freund [21,22] and Dennis
[23]. Other extended topological features observed recently include knotted structures
[24–26] and Skyrmionic distributions [27–34].

Another application for which nonparaxial measures of polarization are of interest is
fluorescence microscopy, where the nanoparticles in question are not elastic scatterers
but fluorescent molecules that behave as sources. Therefore, rather than the particle
allowing the retrieval of local information about the field, the measured emitted field
reveals information about the particle [35–45]. In particular, the measured nonparaxial
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polarization of the field emitted by each fluorophore provides information about its
orientation and even whether it is static or “wobbling.” This information is encoded in
a 3 × 3 matrix, referred to in this context as the second moment matrix, that essentially
corresponds to the polarization matrix of the emitted field, but that is usually assumed
to be real due to the fact that fluorophores typically emit as linear dipoles. Some of
the techniques used in this context seek to recover simultaneously the information
of the 3 × 3 correlation matrix for several molecules whose positions are also being
estimated. Therefore, in order to resolve them the measurement is often performed not
in the Fourier plane but in the image plane, but after some appropriate filtering within
the Fourier plane is performed to encode information about the molecule’s orientation
(i.e., the polarization of the emitted light) in the shape of the molecules’ point spread
function [35–39,41,43–45].

The aim of the current work is to present a unified description of different theoretical
aspects of the polarization of nonparaxial light as extensions to the standard treatment
in the paraxial regime. Brosseau and Dogariu provided a first excellent extended review
on this topic [46]. The emphasis of the treatment on the present article is on geometric
interpretations. The goal is to summarize many recent results on this topic, supple-
mented by concepts that to the best of the author’s knowledge are introduced here, in
order to present a coherent description of the geometry of nonparaxial polarization.
The treatment in this article avoids as much as possible relying on group-theoretical
terminology, for the benefit of readers not familiar with this formalism. To contex-
tualize the presentation, standard concepts used in the paraxial regime, such as the
degree of polarization, the Stokes parameters and the Poincaré sphere, are summa-
rized in Section 2. Section 3 is devoted to nonparaxial full polarization, particularly
its representation in terms of two points over a unit sphere. The discussion of partial
polarization for nonparaxial light begins in Section 4, where the 3 × 3 polarization
matrix is presented, as well as its geometric interpretation in physical space. Section
5 presents a discussion of the several nonparaxial generalizations of the degree of
polarization and their physical and geometric interpretations. Section 6 focuses on the
generalization of the Stokes parameters for nonparaxial polarization, and the inequal-
ities that constrain them. A representation of partial polarization as a collection of
points inside a unit sphere is proposed in Section 7. Finally, some concluding remarks
and outlooks are presented in Section 8.2.

2. SUMMARY OF PARAXIAL POLARIZATION

Let us start by giving a brief summary of some aspects of the theory of polarization
for paraxial fields, in order to provide a context for its extension into the nonparaxial
regime in the remainder of the article. More complete summaries are provided in
appropriate textbooks [47,48]. Also discussed in this section is the convention of signs
and terminology that will be used. Please note that in this article we focus on the
classical theory. For a discussion on the paraxial quantum theory, see, for example,
the review by Goldberg et al. [49].

2.1. Monochromatic Beams, Full Polarization, and the Poincaré Sphere
Consider a paraxial monochromatic beam with temporal frequency ω propagating in
the positive z direction in an isotropic medium of refractive index n:

E⃗ = Re [E exp(iknz − iωt)] , (1)

where k is the wavenumber and E = (Ex, Ey, Ez)
T (with T denoting a transpose) is a

complex vector independent of time. When the field is a plane wave, E is constant,
whereas for structured beams this vector is a (slowly varying over the scale of the
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wavelength) function of the spatial coordinates that satisfies the paraxial wave equation.
In either case, given the transversality of the electric field, only the x and y components
of E can take significant values, and the z component can be ignored. The Jones vector
E2D = (Ex, Ey)

T is then defined as the two-vector in which the z component is dropped.
As at any given spatial location its two components are arbitrary complex numbers,
each with a real and an imaginary part, the Jones vector has four independent degrees
of freedom and, hence, requires the specification of four real parameters.

There are several ways to parametrize this vector, but the following one in terms of
the four parameters A,Φ, θ, ϕ highlights the link to the geometry of the electric field
oscillations:

E2D =

(︃
Ex
Ey

)︃
= A exp(iΦ)

(︃
cos φ

2 − sin φ
2

sin φ
2 cos φ

2

)︃ (︃
cos θ

2
i sin θ

2

)︃
= A exp(iΦ)

(︃
cos θ

2 cos φ
2 − i sin θ

2 sin φ
2

cos θ
2 sin φ

2 + i sin θ
2 cos φ

2

)︃
.

(2)

The form at the end of the first line of this equation simplifies the geometric interpreta-
tion, because each of the four parameters appears alone in a different factor. For a fixed
spatial position, consider the path traced over the transverse plane by the electric field,
corresponding to the parametric graph of Re[(Ex, Ey) exp(−iωt)] as a function of t. As
shown in Fig. 1(a), this path is an ellipse centered at the origin. The global amplitude A
provides the scale of the ellipse, and the global phase Φ has no influence on the global
shape but only on the time at which each value of the electric field takes place. The
shape and orientation of the oscillations, which is what we refer to as polarization, are

Figure 1

(a) Polarization ellipse traced by the electric field at a point for monochromatic paraxial
light. The major axis is at an angle ϕ/2 from the x direction, and the ellipticity is
characterized by θ/2, corresponding to the angle between the major axis and a corner
of a rectangle that contains the ellipse and is aligned with it. The sense in which the
electric field traces this ellipse is encoded in the sign of θ ∈ [−π/2, π/2]. The case
shown in the figure corresponds to counterclockwise rotation, which is referred to
here as left-handed. Note that, following the right-hand rule, left-handed circulation
corresponds to spin pointing in the positive z direction (out of the plane). The length
of the rectangle’s half diagonal (from the origin to the corner) corresponds to the
norm of the Jones vector, which equals A if the field is not normalized and unity if it
is normalized. (b) The Poincaré sphere as an abstract compact space for representing
polarization. Each possible orientation, ellipticity and handedness of the polarization
ellipse is represented by the position of a point over the sphere’s surface, where ϕ
equals longitude and θ latitude. The three Cartesian coordinates correspond to the
normalized Stokes parameters defined in Section 2.4. (c) Instantaneous distribution of
the electric field vector along the propagation axis for the same case as in (a) and (b),
corresponding to a left-handed helix.
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determined by the remaining two parameters, ϕ and θ. For ϕ = 0 and θ ∈ [−π/2, π/2],
the electric field traces an ellipse whose major semiaxes are aligned with the x direc-
tion and have magnitude A cos θ/2, whereas the minor semiaxes are in the y direction
and have magnitude A| sin θ/2|. The ellipticity is controlled by θ, so that the ellipse
goes from a line for θ = 0 to a circle for θ = ±π/2. The handedness of the circulation
of the electric field around this ellipse depends on the sign of θ. Different authors
adopt different conventions, but here we use the convention in which “left-handed”
oscillations correspond to θ>0, whereas “right-handed” oscillations correspond to
θ<0. The reason for this choice is that, if we fix time and consider the path traced by
the electric field as a function of propagation distance z following Eq. (1), this path
is a helix (with elliptic projection) with the corresponding handedness, as shown in
Fig. 1(c).

The factor including ϕ within the first line of Eq. (2) is simply a rotation matrix, and
therefore for ϕ ≠ 0 the ellipse is rotated by ϕ/2. As shown in Fig. 1(a), ϕ is one half of
the angle between the x direction and the major axis of the ellipse, and θ is a measure
of the ellipticity given by the angle (bisected by the major axis) between two corners
of a rectangle boxing the ellipse. Note that, from the point of view of polarization,
ϕ is periodic with period 2π, while θ is constrained to the interval [−π/2, π/2],
with ϕ becoming irrelevant for the extreme values of θ = ±π/2. This makes ϕ and θ
similar to the longitude and latitude spherical angles, respectively. Polarization can
then be represented as a coordinate over the surface of a unit sphere, known as the
Poincaré sphere, shown in Fig. 1(b), where the two poles correspond to the two
circular polarizations, with left-handed circular at the north pole and right-handed
circular at the south pole. Points along the equator correspond to linear polarizations
with different orientations, and the rest of the sphere’s surface corresponds to elliptical
shapes with different ellipticity, handedness, and orientation. The convention adopted
here of placing left-handed (rather than right-handed) polarization at the northern
hemisphere is perhaps not the most common. However, it is a direct consequence
of naming the handedness of the polarization according to the handedness of the
polarization helix in space (as described in Fig. 1(c)), and making the sign of the
vertical coordinate of the Poincaré sphere the same as that of the spin density of the
field along the positive z direction according to the right-hand rule.

This article focuses on the electric field, whose interaction with detectors is typically
dominant. Note, however, that for paraxial light, where there is a well-defined wave
vector pointing in the z direction, Maxwell’s equations dictate that the Jones vector
for the magnetic field (and, hence, the ellipse that this field traces) is identical to that
for the electric field except for a rotation by π/2 around the propagation axis, and for
a factor of the inverse of the speed of light.

2.2. 2 × 2 Polarization Matrix and Stokes Parameters
When the field is not purely monochromatic, the shape traced by the electric field is, in
general, not periodic and is much more complex than an ellipse. However, the details
of the oscillation are typically over a time scale that is inaccessible to detectors, and
what can be measured are averages over the detector’s integration time of quantities
that have a quadratic dependence on the field. If we make the assumption that the
fields are statistically stationary (namely that the measured averages are independent
of when the measurement is made), the field’s polarization at a given point is well
described by the 2 × 2 autocorrelation matrix of the field components, known as the
polarization (or coherency) matrix:

Γ2D = ⟨E2DE†

2D⟩ =

(︃
⟨E∗

xEx⟩ ⟨E∗
yEx⟩

⟨E∗
xEy⟩ ⟨E∗

yEy⟩

)︃
, (3)
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where † denotes a transpose conjugate and ⟨·⟩ denotes an average. Because this 2 × 2
matrix is explicitly Hermitian, it contains four degrees of freedom (e.g., the two
real diagonal elements and the real and imaginary parts of one of the off-diagonal
elements). One choice for these four parameters, associated with simple combinations
of measurable quantities, was proposed by Gabriel Stokes in 1852. Again, different
conventions exist, but here these Stokes parameters are defined as

S0 = Tr(Γ2D) = ⟨|E2D |
2⟩ = ⟨|Ex |

2⟩ + ⟨|Ey |
2⟩, (4)

S1 = ⟨|Ex |
2⟩ − ⟨|Ey |

2⟩, (5)

S2 = 2 Re⟨E∗
xEy⟩ = ⟨|Ep |

2⟩ − ⟨|Em |
2⟩, (6)

S3 = 2 Im⟨E∗
xEy⟩ = ⟨|El |

2⟩ − ⟨|Er |
2⟩, (7)

where Ep,m = (Ex ± Ey)/
√

2 are the field components in a Cartesian frame rotated by
π/4 with respect to the x, y axes, and Er,l = (Ex ± iEy)/

√
2 are the right/left circu-

lar components. The quantities ⟨|Ei |
2⟩, for i = x, y, p, m, r, l, are directly measurable

through the appropriate use of polarizers and quarter-wave plates prior to the detector
[47,48]. Written in terms of the Stokes parameters, the polarization matrix becomes

Γ2D =
1
2

(︃
S0 + S1 S2 − iS3
S2 + iS3 S0 − S1

)︃
. (8)

Surprisingly, the four Stokes parameters correspond to the coefficients of the decompo-
sition of the polarization matrix into a complete orthonormal basis of 2 × 2 Hermitian
matrices known as the Pauli matrices, proposed by Wolfgang Pauli in 1927 (three
quarters of a century after the Stokes parameters) for the quantum study of electrons
[50]. Note that each Pauli matrix can be recovered from Eq. (8) by setting the corre-
sponding parameter Sn to 2 (to remove the prefactor of 1/2) while setting the remaining
parameters to zero. The Pauli matrices were proposed in a different physical context to
that of polarization and, hence, a different labeling scheme is often used. Here we use
a labeling scheme and sign convention consistent with those for the Stokes parameters.
More details on the Pauli matrices can be found in Appendix A.

2.3. Ellipse of Inertia and Spin
As mentioned earlier, for monochromatic light the electric field vector at a given point
traces repeatedly over time an ellipse, following the equation Re[(Ex, Ey) exp(−iωt)].
Such a field is therefore said to be fully polarized. On the other hand, when light
is not strictly monochromatic (nor fully polarized), the electric field vector traces a
more complicated oscillation that, over a sufficiently long time, explores a region
within the plane of (real) field components, according to a probability density with
an elliptical cross section, as shown in Fig. 2(a). The orientation of this cross section,
the ellipse of inertia, is given by the eigenvectors of the real part of the matrix in
Eq. (8) (that is, with S3 being ignored), and its semiaxes correspond to the square
roots of the corresponding eigenvalues. (If the probability density is Gaussian, this
elliptical cross section corresponds to the contour at which the probability drops by
e−1/2 or, equivalently, it encloses a region which the field occupies 1 − e−1/2 ≈ 40% of
the time.) The area enclosed by the ellipse of inertia equals

π
√︁

det[Re(Γ2D)] =
π

2

√︂
S2

0 − S2
1 − S2

2. (9)

Although this ellipse describes the average shape traced by the field, it does not
distinguish whether the oscillation involves more rotations in the left-handed or
the right-handed sense. This is precisely the role of the parameter S3, which then
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Figure 2

(a) Path traced by the electric field (blue) over some time. The black ellipse denotes the
ellipse of inertia, which denotes a region where the field is constrained a significant
part of the time. Its semiaxes (green) are given by the square roots of the eigenvalues
of Re(Γ). (b) State of polarization is described by a point s⃗2D constrained inside the
unit Poincaré sphere. The distance P2D of this point from the origin corresponds to the
degree of polarization. (c) Interpretation of P2D as the coordinate (or distance from
the origin) of the center of mass of two point masses at ±1 of magnitudes Λ1,2.

complements this simple second-order statistical/geometrical description of the oscil-
lations. The matrix Γ2D is not only explicitly Hermitian but also nonnegative-definite
and, therefore, its determinant must be nonnegative, which straightforwardly gives the
condition S2

0 ≥ S2
1 + S2

2 + S2
3. This constraint, combined with the expression in Eq. (9)

implies that |S3 | is constrained to be at most equal to 2/π times the area enclosed by
the ellipse of inertia.

2.4. Normalized Stokes Parameters, Degree of Polarization, and the Poincaré Sphere’s
Radial Coordinate

The Stokes parameter S0 describes the intensity of the field and not its polarization
(namely the shape of the elliptical profile just described and the dominance of one
handedness over the other). It is then useful for the purpose of characterizing polar-
ization to define the three normalized Stokes parameters sn = Sn/S0 for n = 1, 2, 3.
Given the relation S2

0 ≥ S2
1 + S2

2 + S2
3, the normalized Stokes vector s⃗2D = (s1, s2, s3)

is constrained to the interior and surface of a unit sphere (i.e., a unit 2-ball). It is
easy to show that, for a monochromatic field with Jones vector as given in Eq. (2),
this vector gives s⃗2D = (sin θ cos ϕ, sin θ sin ϕ, cos θ), so that this sphere is precisely
the Poincaré sphere mentioned earlier. For a general polarization matrix, the relation
|s⃗2D | ≤ 1 indicates that the whole interior of the sphere is inhabitable, as illustrated
in Fig. 2(b), and the sphere’s surface (a 2D manifold) separates the accessible and
inaccessible regions, and corresponds to fully polarized fields, for which indeed only
two parameters are needed. Partial polarization makes it necessary to introduce a third
parameter, the magnitude of s⃗2D, which is a measure of how polarized the field is at
the location in question. This radial coordinate in the Poincaré sphere [51] is referred
to as the degree of polarization, which can be written in the equivalent forms:

P2D = |s⃗2D | =

√︄∑︂
m

s2
m =

√︄
2 TrΓ2

2D

(TrΓ2D)2
− 1 =

√︄
1 − 4

det Γ2D

(TrΓ2D)2
. (10)

The equivalence of the last two forms to the first can be easily verified by substituting
into them the form of the polarization matrix in Eq. (8).
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Because the polarization matrix is Hermitian and nonnegative-definite, it has two
normalized eigenvectors ei with corresponding real, nonnegative eigenvalues Λi>0
such that Γ2D · ei = Λnei, for i = 1, 2. Without loss of generality, we can order these so
that Λ1 ≥ Λ2. Note that the polarization matrix can also be written in terms of these
quantities as

Γ2D = Λ1 e1e†1+Λ2 e2e†2=(Λ1 − Λ2) e1e†1+Λ2

(︃
1 0
0 1

)︃
, (11)

where in the last step we used the fact that the eigenvectors ei form an orthonormal
basis and, therefore, e1e†1 + e2e†2 equals the 2 × 2 identity. The first term in this expres-
sion, factorizable as an outer product of a vector with its complex conjugate, can be
interpreted as the “polarized part of the field” because alone it would have a degree
of polarization of unity. The second term, proportional to the identity matrix, can be
interpreted instead as the “unpolarized part of the field,” because on its own it would
have a degree of polarization of zero. It is easy to see that the degree of polarization
of the complete matrix can be written in terms of the two eigenvalues Λ1 ≥ Λ2 ≥ 0 of
the polarization matrix as

P2D =
Λ1 − Λ2

Λ1 + Λ2
. (12)

This means that the degree of polarization can be given a physical interpretation as the
fraction of the optical power that is fully polarized (the total power being proportional
to Λ1 + Λ2).

Equation (12) also allows a simple geometric picture [52] for the degree of polarization,
illustrated in Fig. 2(c): consider two point masses along a line, at unit distances from
the origin. Let the magnitude of the mass at +1 be Λ1 and that at −1 be Λ2. The
coordinate for the center of mass, that is, its distance to the origin, is then precisely
P2D. The conceptual value of this simple picture for the degree of polarization will
become apparent in the discussion of nonparaxial polarization.

2.5. Some Properties of the Poincaré Sphere as a Space for Polarization
Let us finish this review of 2D polarization by listing a few of the properties of the
Poincaré sphere as a suitable abstract space for the description of paraxial polarization,
as well as some considerations.

2.5a. Unitary Transformations
The fact that the inhabitable region in the abstract space s⃗2D = (s1, s2, s3) is a sphere
reveals the natural symmetries inherent to paraxial polarization. Lossless polarization
transformations performed by transparent birefringent or optically active materials,
for which a phase difference is applied to two orthogonal polarization components of
the field without the loss or gain of light, correspond to unitary transformations acting
on the Jones vector. As illustrated in Fig. 3, these transformations translate simply into
rigid rotations of s⃗2D, and hence preserve the degree of polarization and the shape of
the parameter space.

2.5b. Geometric Phase
The Poincaré sphere provides a beautiful geometric interpretation for the phenomenon
known as the Pancharatnam–Berry geometric phase [53–59], which is the accumula-
tion of an extra phase by a beam following a sequence of transformations of polarization
that correspond to a closed path over the Poincaré sphere. When each segment of this
path obeys what is referred to as parallel transport, the geometric phase equals one
half of the enclosed solid angle over the Poincaré sphere. In paraxial optical sys-
tems, parallel transport is guaranteed when the path is piecewise geodesic, such as



186 Vol. 15, No. 1 / March 2023 / Advances in Optics and Photonics Tutorial

Figure 3

Birefringence as a rotation of the Poincaré sphere. A unitary transformation on the
Jones vector corresponds to the effect of the beam passing through an optical element
consisting of one or a succession of transparent birefringent materials. These optical
elements have two orthogonal eigenpolarizations, which are the two states of full
polarization that emerge from the element unchanged except for a phase factor. A
general polarization state can be decomposed into these two eigenpolarizations, and
after traversing the element, one of them, referred to as the slow eigenpolarization,
is dephased by δ with respect to the other, so-called fast eigenpolarization. Over the
Poincaré sphere representation, this effect corresponds to a rigid rotation of s⃗2D (which
can be either on the surface or the interior of the sphere) by an angle δ around the axis
corresponding to the line joining the points representing the two eigenpolarizations
over the Poincaré sphere.

for changes of polarization enacted by polarizers, or by wave retarders in which
the input and output polarizations are at 90◦ from the eigenpolarizations over the
Poincaré sphere. Even when the transformations do not obey parallel transport, the
Poincaré sphere construction allows geometric interpretations for the resulting phases
[60–62].

2.5c. Meaning of the Latitude Angle for Partially Polarized Light
For fully polarized light, the angular variables θ and ϕ, which describe the orien-
tation and ellipticity of the polarization ellipse, correspond to spherical coordinates
(latitude and longitude, respectively) over the Poincaré sphere. On the other hand,
the normalized Stokes parameters, which are simple linear combinations of measure-
ment results (up to a normalization), correspond to the Cartesian coordinates in the
Poincaré space. For partially polarized light, corresponding to the interior of the
sphere, latitude and longitude are then supplemented by a radial coordinate, given
by the degree of polarization P2D. Note, however, that in this case one cannot talk
directly of a polarization ellipse. In fact, there are two ellipses that one could asso-
ciate with the field’s oscillation: (i) a more direct ellipse corresponding to the ellipse
of inertia shown in Fig. 2(a); and (ii) an ellipse that results from the mathematical
decomposition of the field into a fully polarized and a fully unpolarized parts, and
corresponds to the ellipse for the fully polarized part. Both ellipses share a major
axis direction at an angle ϕ/2 from the x direction, but they have different ellipticity.
The ratio between the minor and major semiaxes of the ellipse corresponding to the
fully polarized part is | tan θ/2|, whereas that for the ellipse of inertia depends also
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Figure 4

(a) Angle α between two linearly polarized fields. (b) Corresponding angle of 2α
between the two points representing them over the Poincaré sphere.

on the degree of polarization, and is given by tan ϑ/2, where ϑ is defined such that
cos ϑ = P2D cos θ.

2.5d. Relation Between Two Polarizations
Let us now consider how the relation between two polarizations translates into the
geometrical relation between their corresponding points in the Poincaré space. Con-
sider two fully polarized fields with Jones vectors E(I)

2D and E(II)
2D . The similarity of their

polarizations can be characterized by the angle α defined as

cos2 α =
|E(I)∗

2D · E(II)
2D |

2

|E(I)
2D |

2 |E(II)
2D |

2
. (13)

If the two fields are mutually proportional, the right-hand side of this equation is unity
and α can be chosen as zero. On the other hand, when the fields are orthogonal, the
right-hand side of the equation vanishes, so α can be chosen as π/2. Without loss
of generality, we can choose α to take values between these two extremes, because
global phases of the fields are irrelevant to their polarizations. If both fields happen
to be linearly polarized, α corresponds to the smallest angle between their directions
of oscillation, as shown in Fig. 4(a). This expression can be written in terms of the
polarization matrices of both fields, Γ(I)

2D and Γ(II)
2D , as

cos2 α =
Tr

[︂
Γ(I)

2DΓ(II)
2D

]︂
Tr

[︂
Γ(I)

2D

]︂
Tr

[︂
Γ(II)

2D

]︂ . (14)

By now writing each of the polarization matrices in terms of its Stokes parameters as
in Eq. (8) we arrive at the expression

cos2 α =

∑︁3
n=0 S(I)

n S(II)
n

2 S(I)
0 S(II)

0

=
1 + s⃗(I) · s⃗(II)

2
. (15)

By using the property cos2 α = (1 + cos 2α)/2 we can simplify this expression to

cos 2α = s⃗(I) · s⃗(II). (16)

In the case in which both fields are fully polarized and, therefore, s⃗(I) and s⃗(II) are unit
vectors, the right-hand side of this equation is simply the cosine of the angle between
them, which then equals 2α. That is, the angle in the Poincaré space between the
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Figure 5

(a) Distribution of polarization over a sample of points for a paraxial field composed
of a superposition of paraxial plane waves with randomly chosen polarizations and
phases. Here, green represents left-handed ellipses and red represents right-handed
ellipses. (b) Representation over the Poincaré sphere of each polarization ellipse shown
in (a). These points are statistically uniformly distributed over the sphere.

normalized Stokes vectors is twice the angle α characterizing the similarity between
two Jones vectors. In particular, for any pair of orthogonal states, α = π/2 and there-
fore the corresponding normalized Stokes vectors are antiparallel, corresponding to
antipodal points over the Poincaré sphere.

2.5e. Statistical Properties for Fully Polarized Superpositions of Waves with Randomly
Chosen Phases and Polarizations

Finally, we consider the statistics of the polarization state for a field composed of a
superposition of a large number of monochromatic paraxial plane waves traveling in
different directions and whose relative phases and polarizations are chosen randomly.
As we assume all waves are monochromatic and of the same frequency, and that
there are no temporal fluctuations, the superposition still yields a monochromatic,
fully polarized field. This field, however, varies spatially and corresponds to a speckle
pattern, where the intensity, phase and polarization change from point to point. An
example of a polarization distribution of one such field over the xy plane is shown in
Fig. 5(a). It is shown in Appendix B that for such a field, the statistical coverage of the
Poincaré sphere is uniform. That is, any two subsets of polarizations, corresponding
to two patches over the Poincaré sphere subtending equal solid angles, are equally
probable. This is illustrated in Fig. 5(b) where the points over the Poincaré sphere
corresponding to the ellipses shown in Fig. 5(a) are seen to be uniformly distributed.
This would not be the case if polarization were parametrized over some other abstract
space that is not a sphere.

3. NONPARAXIAL FULLY POLARIZED FIELDS

We now begin the discussion of fields that do not propagate in a preferential direction.
We start by considering in this section perfectly monochromatic, and hence fully
polarized, fields. As discussed in what follows, for such fields the oscillations of the
electric vector at a given point are restricted to a plane, but this plane is not constrained
to be perpendicular to the main propagation direction, and in most cases it changes
from point to point. One can then not assume a priori that a given component of the
field is zero or negligible, so all three components must be considered. The field at a
point can then be described by a three-component complex vector E = (Ex, Ey, Ez)

T.
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Figure 6

Normalized nonparaxial polarization ellipse, with major semiaxis a, minor semiaxis
b, and normalized spin density sss. These three vectors form a right-handed orthogonal
set. Note that reversing the sign of both a and b does not change the polarization
ellipse nor the normalized spin density.

This complex field is independent of time, but it is a function of position that is ruled by
the time-harmonic version of Maxwell’s equations. As mentioned in the introduction,
the spatial distribution of polarization can be topologically very rich, but this is not
the main subject of this work; here we focus on the description of polarization at each
point. This complex field E is then treated as a constant.

3.1. Polarization Ellipse and Spin Density
The real field as a function of time is calculated from the complex field E according to

E⃗(t) = Re[E exp(−iωt)]. (17)

It is easy to see that, as in the paraxial case, this field traces an ellipse, although now
the ellipse is not necessarily constrained to the xy plane. To see this, we can adopt the
notation [20,63] of writing the complex field as

E = A exp(iΦ)(a + ib), (18)

where A = |E| is the global amplitude, Φ is a global phase, and the dimensionless
vectors a and b are chosen to be purely real, mutually orthogonal (a · b = 0) with |a| ≥
|b|, and satisfying the normalization condition |a|2 + |b|2 = 1. This decomposition is
unique up to a global sign for a and b, except in the degenerate case in which both
vectors have the same magnitude. By substituting the form in Eq. (18) into Eq. (17),
we obtain

E⃗(t) = A [a cos(ωt − Φ) + b sin(ωt − Φ)]. (19)

This is the parametric equation for an ellipse whose major and minor axes are aligned
with a and b, respectively. This polarization ellipse can have an arbitrary orientation
in three dimensions, as shown in Fig. 6, and its plane of oscillation is not linked
necessarily to a main direction of propagation.

Determining A,Φ, a, and b from the complex field E is relatively simple. As mentioned
earlier, A is simply the norm of the complex field:

A = |E| =
√

E∗ · E ≥ 0. (20a)

Let us now define the scalar complex quadratic field [63] as E · E = A2 exp(2iΦ)(|a|2 −
|b|2), where we used Eq. (18) in the last step. As the factors A2 and (|a|2 − |b|2) are



190 Vol. 15, No. 1 / March 2023 / Advances in Optics and Photonics Tutorial

real and nonnegative, we can find the global phase to within an integer multiple of π
as

Φ =
1
2

Arg(E · E). (20b)

This expression becomes indeterminate when E · E = 0, namely when |a|2 = |b|2,
which corresponds to a circular polarization ellipse. The points where this is true
are referred to as c-points [20,63] and they are regarded as singularities of Φ. In
general, because the condition E · E = 0 constitutes two constraints (both the real and
imaginary parts must vanish), c-points in 3D space form curves, known as c-lines. For
any point that is not a c-point, the global phase Φ is well determined modulo π. With
this, we can define the normalized field f as

f = E
A

exp(−iΦ), (20c)

so that
a = Re(f), b = Im(f). (20d)

Note that the fact that Φ is only defined modulo π is consistent with a and b being
determined to within a global sign.

A quantity that will be used in what follows is the spin density, which for a fully
polarized field is defined as

SSS = Im(E∗ × E) = 2A2a × b. (21)

We also define the normalized spin density, which equals SSS divided by the intensity,

sss = Im(E∗ × E)
|E|2

= 2 a × b. (22)

These quantities represent vectors that point perpendicularly to the plane containing
the ellipse, following the right-hand rule. Their length is proportional to the area
enclosed by the polarization ellipse. The normalized spin density sss takes a maximum
value of unity when the ellipse is a circle, and vanishes when the ellipse is a line.
In the paraxial limit in which the ellipse is constrained to the xy plane, the x and y
components of these vectors vanish, and their z components equal the third Stokes
parameter and its normalized version, respectively, that is Sz = S3 and sz = s3.

3.2. Geometric Representations Using Two Points Over a Unit Sphere
The complex field vector has three complex components and, hence, involves six
degrees of freedom. However, two of these degrees of freedom can be made to
correspond to a global amplitude which determines the magnitude and not the shape
of the polarization ellipse, and a global phase which has no effect on the shape of the
ellipse. This means that the shape and orientation of the ellipse involves four degrees
of freedom. There are many ways of choosing these four quantities. For example,
one could specify the three components of the major axis vector a, which would fix
the magnitude of b and constrain it to a plane; the fourth degree of freedom would
then be the orientation of b within this plane. One could instead start by specifying
the three components of b, or of the normalized spin density sss and then provide an
orientation angle for one of the other two vectors. Azzam [64] proposed, for example,
a parametrization in terms of four angles: two indicating the plane containing the
ellipse, one determining the ellipticity, and one giving the orientation of the ellipse
within the plane.

The goal of this section is to describe geometric representations in which the four
degrees of freedom of a nonparaxial polarization ellipse are given in a democratic
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Figure 7

(a) The two Hannay–Majorana points p1,2 are contained within the great circle corre-
sponding to the intersection of the sphere with the plane that contains both the ellipse’s
major axis and the normal to the ellipse. They correspond to the two directions in which
the projection of the polarization ellipse is a (right-handed) circle, as illustrated by
the fact that this ellipse coincides with the intersection of two cylinders whose axes
are the (yellow) lines joining the origin and each p1,2. Another interpretation for p1,2
results from scaling the polarization ellipse so that its major semiaxis is unity: p1,2 are
then the intersection with the sphere of normals to the plane of the ellipse that contain
the ellipse’s foci (orange dots). (b) Husimi distribution over the sphere, where the two
zeros (in blue, one hidden behind the sphere) correspond to p1,2.

way, inheriting some of the desirable properties that the Poincaré sphere representation
has for paraxial light. This suggests that points over the surface of a unit sphere are
a good option and, because in this case four degrees of freedom are involved, two
points will be required rather than just one. A set of constructions of this type are now
described, each having its own desirable properties. For all these representations, the
three coordinate axes of the ambient space where the sphere is defined are simply the
three Cartesian directions of physical space, instead of abstract quantities such as the
Stokes parameters for the Poincaré sphere.

3.2a. Hannay–Majorana Construction
Hannay [65] proposed a representation of nonparaxial polarization in terms of two
points over a unit sphere, based on Majorana’s construction for spin systems [66] and
its geometric description by Penrose [67]. The shape and orientation of the polarization
ellipse in three dimensions is fully characterized by the two points (or unit vectors)
p1,2, which correspond to the two directions in which this ellipse projects onto a circle,
as shown in Fig. 7(a), and in the sense for which circulation follows the right-hand rule.
Clearly the bisector of the two points is normal to the plane containing the ellipse and,
hence, is aligned with the spin density sss, and the line joining the two points is parallel
to the major axis of the ellipse and, hence, in the direction of a. The separation of the
two points encodes the ellipticity of the polarization: the points get closer together
until they coincide as the ellipse tends toward a circle, whereas on the other hand they
separate until they become antipodal as the ellipse tends to a line. Note that the two
points are indistinguishable in the sense that exchanging them has no effect on the
polarization ellipse. As explained in the caption of Fig. 7(a), the separation of the two
Hannay–Majorana points also has the property that the line segment joining them is
identical in direction and length to that joining the two foci of the ellipse, if the ellipse
is scaled so that its major semiaxis is unity.
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Figure 8

The two Poincarana points p1,2 are along the same great circle as the Hannay–Majorana
points p1,2. Their distance from the plane of the ellipse is precisely the magnitude of
sss. That is, sss is the midpoint between p1 and p2.

The interpretation of p1,2 as the two directions over which the ellipse projects onto a
circle following the right-hand rule has both experimental and mathematical conse-
quences. As mentioned in the introduction, one of the standard experimental techniques
for measuring the polarization at a point is to place a small scatterer (whose dimen-
sions are much smaller than the wavelength) at the point in question and observe the
scattered field distribution at the far field. In the Rayleigh approximation, the two
directions in which this scattered field is left-circular coincide with p1 and p2 (and
similarly the scattered field is right-circular in the directions −p1 and −p2). Mathemat-
ically, the two points can then be interpreted as the two zeros of a Husimi distribution
over the sphere of unit vectors u, in this case defined as

H(u) = |r̂∗(u) · E|2, (23)

where r̂(u) is a normalized right-circular 3D polarization vector for a plane wave
propagating in the direction of the unit vector u, which can be defined, for example, as

r̂(u) = c × u − i u × c × u
|c × u| , (24)

where c is some constant nonzero real vector whose choice has no influence
on the values of H. (Note that u × c × u = (u × c) × u = u × (c × u).) This Husimi
distribution is illustrated in Fig. 7(b).

3.2b. Poincarana Construction
A similar construction was proposed more recently [56], which was referred to as
the Poincarana representation because it incorporates aspects from both Hannay’s
Majorana-based construction as well as from the Poincaré sphere. The Poincarana
representation also characterizes polarization by using two points over the sphere.
These points, p1,2, are also along the great circle normal to the plane of the ellipse
and aligned with the major axis, and have the same bisector as the points p1,2 in the
Hannay–Majorana construction. The only difference is how the angular separation of
the two points encodes ellipticity. For the Poincarana construction, this separation is
chosen such that the midpoint, (p1 + p2)/2, corresponds exactly to the normalized spin
density sss, as shown in Fig. 8. This property of the Poincarana construction emerges
from the fact that it was defined to be directly connected to geometric phase [56].
Consider a continuous transformation of the polarization ellipse due to the evolution
of some parameter τ. The geometric phase corresponding to a smooth transformation
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Figure 9

Geometric relation between the Hannay–Majorana and Poincarana points over the
section of the sphere corresponding to the plane containing the ellipse’s major axis
and sss. The three rectangles (two in pale brown, one in pale blue) have the same aspect
ratio as each other and as the polarization ellipse. The horizontal black line through the
middle of the circle corresponds to the intersection with the plane of the polarization
ellipse (specifically with its major axis). The Hannay–Majorana points p1,2 are at the
intersections with the unit disk of the top side of the horizontal rectangle, whose long
side equals two. The separation between the two points equals the distance between
the foci of an ellipse inscribed in the rectangle. The Poincarana points p1,2 correspond
to the top corners of the two tilted rectangles inscribed in the circle, whose diagonals
are horizontal (i.e., aligned with a) and of length two. Note that the top long sides of
the three rectangles always intersect at a point (marked with a black dot), so that the
Poincarana points can be easily found from the Hannay–Majorana ones and vice versa.
This diagram shows that the Poincarana points p1,2 are always closer to each other
(and further away from the plane of the ellipse) than the Hannay–Majorana points p1,2.

of this type that is cyclic (i.e., where the final polarization state is identical to the initial
polarization state) can then be written as

ΦG = Im
(︃∮ E∗ · ∂τE

|E|2
dτ

)︃
. (25)

This evolution over a cycle corresponds to closed trajectories traced by the points
p1,2. Given the indistinguishability of the points, two scenarios are possible [56,65]:
either each point traces a closed loop, or one ends where the other began so that
together they trace one loop. The Poincarana construction is such that, in both cases,
the accumulated geometric phase corresponds directly to one half of the solid angle
enclosed by the two points, as shown in Ref. [56], similarly to what happens in the
paraxial case when using the Poincaré representation to describe geometric phase
under parallel transport. This geometric phase includes both transformations of the
polarization ellipse within one plane, as in the standard Pancharatnam phase, or due to
changes in the plane containing the polarization ellipse, as in the redirection geometric
phase [68,69].

3.2c. Relation between the Hannay–Majorana and the Poincarana Constructions
It turns out that a simple geometrical relation exists between the two points for the
Hannay–Majorana representation and those for the Poincarana representation. To
understand this relation, it is sufficient to look at the circular cross section of the
sphere that contains the points, as shown in Fig. 9 where the horizontal axis corre-
sponds to the direction of the major axis of the polarization ellipse and the vertical
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axis corresponds to the direction of the spin density. Consider the height of these pairs
of points within this plane. The angle between the vertical axis and each of the two
Hannay–Majorana points p1,2 is arccos(|b|/|a|) in order for the ellipse to project onto
a circle. The height of the two points on this plane is therefore the cosine of this angle,
namely |b|/|a|, and by using the relations |a|2 + |b|2 = 1 and |sss| = 2|a| |b| this height
can be written purely in terms of the normalized spin density as |sss|/(1 +

√︁
1 − |sss|2).

For the Poincarana points, on the other hand, the height is simply |sss|, and the half-
separation between the two points is then

√︁
1 − |sss|2. It is easy to see then that, if

one draws a straight line from one of the Poincarana points to the intersection of the
horizontal axis with the edge of the sphere that is most distant to this point, this line
will cross the vertical axis at a height |sss|/(1 +

√︁
1 − |sss|2), which is the height of the

Hannay–Majorana points, as illustrated in Fig. 9.

The Hannay–Majorana and Poincarana points coincide only in the two limiting sit-
uations: (i) for circular polarization in three dimensions (for which E · E = 0) in
which a case all points coincide, namely p1 = p2 = p1 = p2 = sss; and (ii) for linear
polarization in three dimensions (for which Im(E∗

xEy) = Im(E∗
yEz) = Im(E∗

z Ex) = 0),
where for each of the representations the two points are antipodal and define the
direction of oscillation of the field, namely p1 = −p2 = p1 = −p2 ∝ E. For all other
cases, the angle between the Poincarana points is always smaller than that between the
Hannay–Majorana points.

3.2d. Relation of the Hannay–Majorana and Poincarana Representations in the Paraxial Case
with the Poincaré Sphere

It is useful to consider the relation between the Hannay–Majorana and Poincarana
representations with the Poincaré representation in the limiting case of paraxial light
traveling in the positive z direction. In this case, the ellipse traced by the field is
contained within the xy plane, and the normalized spin density vector sss is constrained
to the z direction. Let us start by considering the Poincarana representation. The points
p1,2 are bisected by the z axis, and then have the same height as each other. Because
this height is, by definition, the normalized spin density, it coincides with the height
s3 of the point s⃗2D for the Poincaré sphere. Further, let the angles with respect to the
x axis of the projections of the Poincarana points p1,2 onto the xy plane be referred
to as ξ1,2 = arg({p1,2}x + i{p1,2}y). As the two points are bisected by the z axis, these
two angles differ (modulo 2π) by π. These angles correspond to the angle between
the x axis and the major semiaxes of the polarization ellipse. The corresponding angle
ϕ = arg(s1 + is2) for the Poincaré sphere is then given, modulo 2π, by ϕ = 2ξ1 = 2ξ2.
That is, the two Poincarana points result from rotating around the vertical axis (s3 for
Poincaré, z for Poincarana) the Poincaré point so that its angles with respect to the s1
axis, both clockwise and anti-clockwise, are halved.

The corresponding transformation from Poincaré to Hannay–Majorana is equivalent,
except that it also involves a change in height according to {p1,2}z = s3/(1 +

√︂
1 − s2

3).
It turns out that this extra change in height makes the mapping between the spheres
conformal, a property that is important in the definition of the Majorana representation
for any number of dimensions [66].

3.2e. A Third Two-Point Construction Motivated by Statistically Uncorrelated Light
Both two-point representations for nonparaxial polarization ellipses described earlier
obey the following simple rules:

• the two points are indistinguishable;
• their bisector is parallel to the spin density;
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• the line joining them is parallel to the major axis of the polarization ellipse;
• their separation uniquely and continuously encodes ellipticity such that circu-

lar polarization corresponds to the two points coinciding and linear polarization
corresponds to the two points being antipodal.

What distinguishes these representations is simply how ellipticity is encoded as point
separation or, equivalently, what the relation is between the magnitude of the centroid
of the two points and that of the normalized spin density: for the Hannay–Majorana
construction we have |p1 + p2 |/2 = |sss|/(1 +

√︁
1 − |sss|2), whereas for the Poincarana

representation we have the simpler relation |p1 + p2 |/2 = |sss|. These definitions convey
each construction with different desirable properties: interpretation in terms of circular
projection of the ellipse for Hannay–Majorana, connection with the geometric phase
for Poincarana.

Here we propose a third option that is motivated by a statistical argument. Consider the
superposition of a large number of monochromatic plane waves of the same temporal
frequency, whose propagation directions are uniformly distributed over the whole
sphere of directions, and where the polarization and phase of each plane wave is
chosen randomly [63]. Such field is the fully nonparaxial extension of that described
in Section 2.5e. It exists, for example, inside large optical cavities with Lambertian
reflectivity [70]. At any point in space this field is fully polarized, but the polarization
changes significantly from point to point within the scale of a wavelength. If we
sample the polarization over a large number of spatial points, the direction of the
spin density would be statistically uniformly distributed over the sphere. As shown in
Appendix C, the magnitude of the normalized spin density, |sss|, turns out to follow a
probability density that is constant over its allowed range of values |sss| ∈ [0, 1]. For such
a statistically isotropic monochromatic field, each point of a two-point representation
would be able to access the complete unit sphere with uniform probability distribution.
However, the statistical distribution of the angle between the two points would depend
on which representation we are using. Dennis [71] calculated this distribution for the
Hannay–Majorana representation.

Consider a generic two-point representation, where the two points over the sphere are˜︁p1,2. One could naïvely expect that the isotropy and lack of correlation inherent to
an onmidirectional plane-wave superposition with randomly chosen phases and polar-
izations would result in the positions of these two points being mutually completely
uncorrelated. That is, if we identify a large number of polarizations in this field in
which, say, ˜︁p1 is at a given location over the sphere, the probability of finding ˜︁p2 any-
where over the sphere would be uniform. However, such property would require a very
specific statistical distribution of the angle between the points that is neither that for
the Hannay–Majorana nor for the Poincarana constructions. Nevertheless, a two-point
representation that shows this property can be found that has a fairly simple expression.

Full decorrelation of the locations of the two points over the sphere implies a statisti-
cally uniform distribution of cos ν, where ν is the angle between the two points. This
follows from the fact that, if we change reference frames so that, say, ˜︁p1 is aligned
with the vertical axis, uniform coverage of the sphere by ˜︁p2 implies that the vertical
coordinate of this second point, which corresponds to cos ν, is uniformly distributed.
By using trigonometric properties, we can write this uniformly distributed quantity as
cos ν = 2 cos2(ν/2) − 1. However, the magnitude of the centroid of the two points is
given by |˜︁p1 +˜︁p2 |/2 = cos(ν/2). Therefore, for the location of the two points to be sta-
tistically uncorrelated, we must choose |˜︁p1 +˜︁p2 |/2 = |sss|1/2, so that cos ν = 2|sss| − 1 is
uniformly distributed in the interval [−1, 1] for a random omnidirectional plane-wave
superposition.
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Table 1. Functions C for Different Two-Point Representations of
Full Nonparaxial Polarization

Representation Points Pi C

Hannay–Majorana pi
|sss|

1+
√

1−|sss|2

Poincarana pi |sss |
Statistical ˜︁pi

√︁
|sss |

This statistically motivated construction then represents a nonparaxial polarization
ellipse in terms of the two indistinguishable points ˜︁p1,2 that are closer to each other
than the corresponding pairs of points for the Hannay–Majorana and Poincarana
constructions, except in the limits of circular and linear polarization. When applied
to a nonparaxial field, any statistical correlation between ˜︁p1 and ˜︁p2 when randomly
sampling the field would signal either a lack of omnidirectionality for the field, or a
correlation in the choice of the polarization states or phases of the constitutive plane
waves, or both.

3.2f. Expressions for the Two-Point Constructions in Terms of the Field
To facilitate their computation, let us give simple expressions for the two points of
any of the three two-point representations discussed so far. The coordinates of the two
points can be written as

P1,2 = C
sss
|sss| ±

√
1 − C2 a

|a| , (26)

where sss and a can be found by using Eqs. (20) and C is a function of the magnitude of
the spin density corresponding to the cosine of the angle between the points and their
bisector, which for the three cases discussed earlier is given by the values in Table 1.

It might be useful to present also the expressions for the coefficients C and
√

1 − C2

in Eq. (26) in terms of the lengths of the major and minor axes of the normalized
polarization ellipse, namely |a| and |b|. These are presented in Fig. 10, along with
some geometric relations for the three constructions.

3.2g. Orthogonality of Polarizations
In the paraxial regime, for any given polarization ellipse there is a unique orthogonal
polarization (given that a global phase and amplitude are ignored), and the orthog-
onality of two polarizations is obvious from their representations as points over the
Poincaré sphere, which must be antipodal. For nonparaxial polarization, on the other
hand, each polarization state has not one but a two-parameter set of orthogonal polar-
ization states, because for given E, the complex equality E∗ · E′ imposes only two
constraints on the four degrees of freedom of the polarization of E′. For any of these
three constructions, it is in general not easy to identify directly if two polarizations
are orthogonal given their pairs of points, with the exception of two cases. Suppose
that we have a given polarization state whose normalized complex field vector is
f = a + ib and whose normalized spin density is sss. The two simple orthogonal states,
with complex field vector f ′ = a′ + ib′ and normalized spin density sss′, are:

• the coplanar ellipse with the opposite spin density and whose major and minor axes
have the same magnitudes but their directions are exchanged, namely,

a′ =
|a|
|b|b, b′ =

|b|
|a| a, sss′ = −sss; (27a)
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Figure 10

Coefficients C (vertical coordinate) and
√

1 − C2 (horizontal coordinate) in terms
of the major and minor semiaxis lengths, a = |a| and b = |b|, respectively, of the
normalized polarization ellipse, for (a) the Hannay–Majorana, (b) the Poincarana, and
(c) the statistically motivated representations of nonparaxial full polarization. In all
cases the two points are indicated as the two black dots, the circle over which they lay
represents the cross section of the unit sphere that contains them, with the horizontal
blue line representing the direction of the ellipse’s major axis and the vertical red line
the direction of the spin density. The brown rectangles shown all have the same aspect
ratio as the polarization ellipse: those in (a) being slightly larger, having dimensions of
2 times 2b/a, whereas those in (b) and (c) have the same dimensions as the normalized
polarization ellipse, namely 2a times 2b. These rectangles are included to illustrate
the geometrical relation in each case between the points and the aspect ratio of the
ellipse.

Figure 11

For a given polarization represented by the two blue dots, two orthogonal polarizations
are those for which (i) the coplanar counter-rotating ellipse for which the two points
(green) are at the same angle around the same bisecting line as the original polarization
but are in the opposite hemisphere and rotated around the bisector by π/2, and (ii)
the linear polarization represented by two antipodal points (orange) at the ends of the
bisector of the original polarization.

• the lineal polarization oriented perpendicularly to the plane of the polarization
ellipse, so that

a′ =
sss
|sss| , b′ = 0, sss′ = 0. (27b)

The two-point coordinates of these polarizations are illustrated in Fig. 11. Any other
orthogonal polarization can be constructed as a complex linear combination of these



198 Vol. 15, No. 1 / March 2023 / Advances in Optics and Photonics Tutorial

two. For these other states, the coordinates of the points will depend on the specifics
of the chosen two-point representation. Of course, the two special cases just described
become degenerate if the initial polarization is either circular (the two points coincide)
or linear (the two points are antipodal).

3.2h. Topology of Two-Point Constructions and Polarization Möbius Strips
Any of the two-point constructions described in this section can be used for visualizing
topological properties of a cyclic polarization evolution. For example, consider the
variation of polarization along a closed contour in a monochromatic field [56]. The
polarization at each stage is represented by two points over the sphere, so that for
the complete loop, these points trace closed curves over the sphere. As the separation
between the two points is parallel to the direction of the polarization ellipse’s major
axis, the two points exchange roles when completing the loop if and only if the major
axis describes a Möbius strip over the loop [14,21–23]. That is, for a loop over which
the field’s major axis describes a Möbius strip, there is a single closed curve over the
sphere, where each point traces a segment of this curve. In contrast, if the field’s major
axis does not describe a Möbius strip, each point traces a separate closed curve, so
there are two closed curves over the sphere.

3.2i. Unitary Transformations
One of the key properties of the Poincaré sphere representation is that any linear unitary
transformation of the Jones vector corresponds simply to a rigid rotation of the point
over the sphere. This is important because linear unitary transformations correspond to
the physical effect of light passing through transparent materials that cause a retardation
of one specific polarization component with respect to the orthogonal one. The fact
that such physical components correspond to unitary transformations (independent of
the polarization of the incident field) relies on the paraxial approximation, in which
the field is known to propagate in a given direction.

In the nonparaxial regime, knowledge of the local polarization is largely indepen-
dent of the range of propagation directions that compose the field, and therefore the
effect of a transparent optical element cannot generally be associated with a unitary
transformation acting on the three-component complex vector. Therefore, the fact that
general linear unitary transformations of the complex field do not correspond to simple
geometric transformations of the two-point representations poses no problems to their
physical usefulness. The only unitary transformations with direct physical relevance
in the nonparaxial regime are rigid rotations (associated, for example, with changes
of coordinate reference frame) and inversions (resulting, for example, from reflection
by a perfect flat mirror). As the coordinate axes for the two-point representations are
precisely the directions of the physical space, invariance to these transformations is
guaranteed.

4. NONPARAXIAL PARTIALLY POLARIZED LIGHT

In this section we introduce the basic elements for the description of fields that are not
purely monochromatic but that are statistically stationary and, hence, can be regarded
as partially polarized.
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4.1. 3 × 3 Polarization Matrix, Ellipsoid of Inertia, and Spin Density
For a nonparaxial, partially polarized field, polarization at a given point is described
by the 3 × 3 polarization matrix:

Γ = ⟨EE†⟩ =
⎛⎜⎝
⟨E∗

xEx⟩ ⟨E∗
yEx⟩ ⟨E∗

z Ex⟩

⟨E∗
xEy⟩ ⟨E∗

yEy⟩ ⟨E∗
z Ey⟩

⟨E∗
xEz⟩ ⟨E∗

yEz⟩ ⟨E∗
z Ez⟩

⎞⎟⎠ . (28)

For simplicity of notation, we do not use the subscript 3D to label either this matrix nor
the measures of polarization that follow. This matrix is Hermitian and nonnegative-
definite, and therefore it contains nine degrees of freedom. Like in the paraxial case,
however, one of these degrees of freedom can be associated with the total intensity and,
hence, can be removed through normalization, leaving eight real parameters needed
to fully determine the state of polarization.

4.2. Ellipsoid of Inertia and Spin Density
Dennis [72] proposed an intuitive geometric interpretation for this 3 × 3 polarization
matrix, which generalizes that shown in Fig. 2(a) for paraxial light. The oscillations of
the electric field vector follow a volumetric probability density with ellipsoidal cross
section, and to second order, this ellipsoidal shape is characterized by the ellipsoid of
inertia, whose semiaxes are aligned with the eigenvectors of Re(Γ) and have lengths
equal to the square roots of the corresponding eigenvalues. Recall that its paraxial
analog, the ellipse of inertia, is supplemented with the (scalar) spin density S3, given
by the imaginary part of the off-diagonal matrix elements, whose value is constrained
by the area of the ellipse. Similarly, for nonparaxial fields the ellipsoid of inertia is
supplemented with the spin density vector, which for partially polarized light includes
an average: SSS = 2Im(Γyz, Γzx, Γxy) = Im⟨E∗ × E⟩. This averaged spin density quantifies
both the preferential axis and sense of rotation of the time-dependent electric field
vector. This description is illustrated in Fig. 12.

It is easy to show that, given the Hermiticity of the polarization matrix, its determinant
can be written as the difference of two contributions, where only one of them depends
on the imaginary parts of the matrix components, encoded in the vector SSS:

det(Γ) = det[Re(Γ)] − 1
4

SSS · Re(Γ) ·SSS. (29)

The nonnegative-definiteness of the polarization matrix implies that this determinant
must be equal to or greater than zero, and this fact imposes the following restriction
for the spin vector:

SSS · Re(Γ) ·SSS ≤ 4 det[Re(Γ)], (30)

where the equality holds only if at least one of the eigenvalues of the polarization
matrix vanishes. This inequality restricts the spin vector to the interior of a dual
ellipsoid [72], whose semiaxes are aligned with those of the first ellipsoid, but where
the length of each semiaxis of the dual ellipsoid equals 2/π times the area subtended
by the projection of the first ellipsoid in the direction of the corresponding semiaxis,
as shown in Fig. 12.

5. MEASURES OF POLARIZATION AND THEIR GEOMETRIC
INTERPRETATIONS

Several measures have been proposed that seek to generalize the concept of degree of
polarization as defined in Eq. (10) to the nonparaxial regime, based on its different
interpretations. Many reviews of this topic and comparisons between these measures
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Figure 12

Path traced by the electric field (blue) over several optical cycles. The green ellipsoid
is the ellipsoid of inertia, which characterizes the average shape described by the
oscillations of the electric field. Its semiaxes are given by the square roots of the
eigenvalues of Re(Γ) and are aligned with the corresponding eigenvectors (the direction
of the green lines). The vector SSS (red arrow) describes the direction around which the
field spins on average and the amount of this spin. This vector is constrained to the
interior of a dual ellipsoid (red), whose semiaxes are equal to 2/π times the areas of the
corresponding projections of the green ellipsoid in the directions of the eigenvectors.
Note that different elements of this figure have different units (field for the blue curve,
the green ellipsoid and its projections, field squared for SSS and the red ellipsoid) and,
hence, an arbitrary scaling between them was used in the figure.

exist in the literature [46,73–77]. Most of these measures were defined to be invariant
under general unitary transformations of the electric field, following the example of
the paraxial definition. A consequence of this invariance is that it is possible to express
these measures exclusively in terms of the three eigenvalues Λ1 ≥ Λ2 ≥ Λ3 ≥ 0 of the
polarization matrix, independently from the eigenvectors. Sheppard [78–80] found that
these eigenvalues and eigenvectors can be calculated analytically from the elements
of the matrix through fairly simple expressions.

5.1. Two Most Common Definitions and their Companions
The first measure of degree of polarization discussed here was proposed by Samson
[8] and later by others [81–83]. This measure can be written in the equivalent forms

PI =

√︄
3 TrΓ2

2 (TrΓ)2
−

1
2

=

√︂
λ2

1 + λ
2
2 + λ

2
3 − λ1λ2 − λ2λ3 − λ3λ1

=

√︃
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

2
,

(31)

where λi = Λi/
∑︁3

j=1Λj are the normalized eigenvalues. The measure PI is monotoni-
cally linked to measures used commonly in quantum physics and linear algebra, such
as the purity [84], the Schmidt index [85], and the trace distance of the polarization
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matrix to the identity matrix [86]. According to this measure, a field is fully polarized
if and only if two eigenvalues vanish, and fully unpolarized only if all three eigenvalues
are equal.

An alternative measure [8,87–90] is based on the interpretation of the degree of
polarization as the fraction of the optical power that is fully polarized. To understand
this measure, it is convenient to write the polarization matrix in terms of its three
orthonormal eigenvectors in a fashion similar to that in Eq. (11) [8]:

Γ = Λ1 e1e†1+Λ2 e2e†2+Λ3 e3e†3

= (Λ1 − Λ2) e1e†1+(Λ2 − Λ3) (e1e1 † +e2e†2) + Λ3
⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠ ,
(32)

where the eigenvectors ei have now three components. Note that in the last step a
fraction of each of the first two terms in the first line was transferred to the terms
to its right, so that the last term is proportional to the 3 × 3 identity composed as
e1e†1 + e2e†2 + e3e†3. As in Eq. (11), the first term is fully factorizable and, therefore, on
its own would correspond to a fully polarized field, while the last is proportional to
the (3 × 3) identity and alone would correspond to a fully unpolarized field. However,
there is an extra term proportional to Λ2 − Λ3 that is neither fully polarized nor fully
unpolarized. That is, in general a 3 × 3 polarization matrix cannot be expressed as
the sum of two parts that are respectively fully polarized and fully unpolarized. The
degree of polarization in question is then the ratio of the power of the fully polarized
part to the total, namely

PII =
Λ1 − Λ2

Λ1 + Λ2 + Λ3
= λ1 − λ2. (33)

It is tempting to interpret the second term on the right-hand side of Eq. (32) as
a “2D-unpolarized” component, because, if the eigenpolarizations e1 and e2 were
contained in the same plane, there would be a reference frame in which this term
would be proportional to the matrix Diag(1, 1, 0), giving a contribution similar to
that of unpolarized light in the paraxial sense. In general, however, the polarization
ellipses for e1 and e2 are not contained in the same plane, a case referred to by Gil
and collaborators as polarimetric nonregularity [91–96] which has consequences, e.g.,
on the distribution of spin amongst the first and second terms. Note that interpreting
PII as a degree of polarization would imply that for a field to be fully polarized two
eigenvalues must vanish, but (unlike for PI) a completely unpolarized field would be
one for which the two largest eigenvalues are equal, regardless of the third. One could
say that PII = 0 can be interpreted as meaning that the field has no fully polarized
component, rather than it being fully unpolarized.

The measures PI and PII (and those related univocally to each of them) have been
used to characterize with a single quantity the level of polarization of the matrix.
However, the polarization matrix has three eigenvalues whose sum gives the total
intensity (which is not relevant to polarization). In other words, only two normalized
eigenvalues λi are independent because λ1 + λ2 + λ3 = 1. Therefore, the full charac-
terization of polarization from the eigenvalue point of view requires the specification
of two numbers, and so each of the two measures above can be supplemented with a
second measure. For example, Barakat [81] proposed a second measure to supplement
PI, referred to here as QI and given by

QI =

√︄
1 − 27

det Γ
(TrΓ)3

=
√︁

1 − 27λ1λ2λ3. (34)
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Note that
√︂

1 − Q2
I has been referred to as a degree of isotropy [97]. It has been

shown that for fields with Gaussian statistics, PI and QI are related to the Shannon and
Renyi entropies [98]. Similarly, measures that supplement PII have been proposed that
similarly are linear combinations of the normalized eigenvalues, such as [87]

QII = λ1 + λ2 − 2λ3= 1 − 3λ3. (35)

The pair PII, QII is referred to by San José and Gil [91] as the indices of polarimetric
purity, where PI can be interpreted as the relative portion of fully polarized light, and
QII as the portion that is not fully depolarized.

5.2. Wobbling Fluorophores and Rotational Constraint
A definition that is mathematically similar to PII was proposed within the context of
fluorescence microscopy to quantify the amount of vibration (often called wobble) of
a fluorophore [40]. This measure, referred to as the rotational constraint, results from
a slightly different decomposition of the matrix into three parts, according to

Γ =
(︃
Λ1 −

Λ2 + Λ3

2

)︃
e1e†1+

Λ2 − Λ3

2
(e2e†2−e3e†3) +

Λ2 + Λ3

2
⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠ . (36)

Note that the second term cannot be interpreted on its own as a valid polarization matrix
because it is not nonnegative-definite. The motivation for this type of separation comes
from its physical context: we consider light emitted by a linear dipole that wobbles
at a time scale much larger than the optical period. The resulting light has essentially
no spin, so that the three eigenvectors can be chosen as real and point in orthogonal
directions. The eigenvector e1 corresponds then to the main direction of the dipole,
and if, say, the wobbling were within an isotropic cone (a common assumption in this
context), the two smaller eigenvalues would coincide. The second term in Eq. (36)
therefore accounts for possible rotational asymmetry of the wobbling around the main
direction e1. Like PII, the rotational constraint used to quantify wobble is defined as
the ratio of the factorizable part to the total:

γ = λ1 −
λ2 + λ3

2
. (37)

Note that, if it were to be considered as a measure of polarization, γ would agree with
PI in defining what states correspond to full and null polarization.

For the common assumption of symmetric wobble [99], where λ2 = λ3, the three mea-
sures actually coincide, namely PI = PII = γ, and they have a geometric interpretation.
As mentioned earlier, the spin density SSS vanishes for (static or wobbling) linear dipole
emitters, so Γ is fully represented graphically by the ellipsoid of inertia, whose semi-
axes are the square roots of the eigenvalues. Let us consider the dimensionless version
of this ellipsoid normalized by the intensity, whose semiaxes are the square roots of the
normalized eigenvalues λi. As shown in Fig. 13, this normalized ellipsoid is inscribed
in a box that is itself inscribed in a unit sphere. The assumption of symmetric wobble
means that this ellipsoid is a prolate spheroid, and therefore it has two focal points.
The distance from the center to the foci is given by √

γ.

5.3. Barycentric Interpretation
To provide an interpretation to these quantities, we use a simple geometric construction
[52] similar to that described at the end of Section 2 for paraxial polarization. Consider
three point masses within a plane, at equal distances from each other and at a unit
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distance from the origin. That is, these three masses are at the corners of an equilateral
triangle inscribed in the unit circle, as shown in Fig. 14. Let the magnitudes of each
of these masses be one of the eigenvalues Λi (or their normalized versions λi). The
point q corresponding to the center of mass of the three masses is necessarily inside
the equilateral triangle, and given the chosen ordering of the eigenvalues, it is further
constrained to one-sixth of this triangle, as shown in Fig. 14. The measures discussed
so far are associated with coordinates for this center of mass. For example, it is easy
to show that PI and QI are simply related to the polar coordinates of q: the first is
directly the radial coordinate or distance to the origin, PI = |q|, whereas the second
depends on the angular coordinate, QI = |q|2(3 − 2|q| sin 3α), where α ∈ [π/6, π/2]
is the angle between the q1 axis and q. On the other hand, it is easy to see that
the indices of polarimetric purity are given by PII = q1

√
3/2 and QII = q2/2, that

is, they are simply scaled versions of the Cartesian coordinates of q, from which it
follows from Pythagoras’ theorem that P2

I = 3P2
II/4 + Q2

II/4. The rotational constraint
γ [40] also corresponds to a Cartesian coordinate along a rotated coordinate axis
aligned with the line joining the origin and the point mass Λ1; its corresponding
second measure, which would be the complementary Cartesian coordinate, would be
proportional to λ2 − λ3, which characterizes the rotational asymmetry of the wobble.
This barycentric construction illustrates why many authors have chosen to represent
the space of nonparaxial polarization in terms of equilateral triangles or segments of
them [74,100–103]. Other authors have used spheres [74,85], because triangles can
be mapped onto octants of the sphere.

5.4. Other Measures Inspired by Measurements
We conclude this section by noting that other measures of polarization have been
proposed that are inspired by thought experiments. We briefly describe two of these.

5.4a. Measured Inspired by Interferometry
A measure of polarization was defined [101] that is physically inspired by the maxi-
mization of visibility in interferometric setups. Mathematically, this measure relies on

Figure 13

Interpretation of the rotational mobility γ in the case of symmetric wobble (Λ2 = Λ3)
as the square root of the distance from the center to the foci of the normalized ellipsoid
of inertia (green), which in this case is a prolate spheroid. Here, normalization implies
that the ellipsoid must be inscribed in a box that is itself inscribed in a unit sphere. It
is assumed in this context that sss = 0.
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Figure 14

Geometric interpretation of the measures of polarization PI, PII, QII, γ, and the angle
α in terms of the center of mass (blue dot) of three point masses (purple dots)
whose magnitudes are Λi, the eigenvalues of Γ. Note that PII and QII are proportional
to the coordinates q1 and q2, respectively, and that the proportionality factors can
be accounted for geometrically by looking at the distance from the origin of the
intersections of the lines of constant q1 and q2 with a radial line at 30◦ from the
q1 axis. The measure QI is given by P2

I (3 − 2PI sin 3α). The rotational mobility γ is
directly the projection onto this radial line. The equilateral triangle corresponds also
to the inhabitable region for the Stokes–Gell-Mann subvector s1.

the concept of “distance” between two matrices. There are several definitions of this
type of distance, but a simple and intuitive one is the Hilbert–Schmidt distance, given
by the square root of one half of the trace of the square of the difference of the two
matrices:

DHS(Γ, Γ′) =

√︃
Tr[(Γ − Γ′)2]

2
. (38)

The degree of polarization is then defined as the maximum distance between the
polarization matrix and any meaningful transformation of it:

PHS = max
g

DHS(Γ, RgΓR†
g), (39)

where Rg are matrices that define meaningful transformations. In particular, the authors
consider all possible unitary transformations, which allow a simplification of the result.
Incidentally, the resulting measure coincides with PI when λ1 = λ2, for which they
both take the value λ1 − λ3 (which happens to be twice the value of γ and half the
value of QII, and for which PII vanishes).

5.4b. Measure Based on Averaged Projections through Rayleigh Scattering
A different measure of polarization was proposed based on the idea of Rayleigh scat-
tering [104]. Suppose that a small scatterer is placed at the point where polarization
is to be measured and the far-field scattered by the particle (in the Rayleigh regime) is
collected and polarimetrically characterized. For each scattering direction, the meas-
ured field is paraxial with respect to that direction, so P2D can be used to characterize
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the degree of polarization in the corresponding direction. These directional degrees of
polarization can then be averaged over all directions, weighted by their corresponding
radiant intensity. It turns out that the directional integrals can be evaluated in closed
form if one uses instead the square root of the directional average of the square of
the product of the 2D degree of polarization and the radiant intensity. The resulting
measure then takes the form

PRS =

√︄
11TrΓ2 − 4(TrΓ)2 + Tr(ΓΓ∗)

TrΓ2 + 6(TrΓ)2 + Tr(ΓΓ∗)
. (40)

Unlike all other measures discussed in this section, PRS cannot be expressed purely
in terms of the eigenvalues λi, because it is not invariant to unitary transformations.
As mentioned already, though, this lack of invariance to general unitary transforma-
tions should not be seen as problematic, because such invariance does not carry the
same physical importance for nonparaxial fields as it does for paraxial beams, because
general unitary transformations cannot be associated with the action of simple opti-
cal elements. Let us stress that this is not a current technological limitation, but a
fundamental one, because the field, in general, does not have a well-defined direction
of propagation: a given local polarization matrix can be achieved through extremely
different combinations of (traveling and/or evanescent) plane waves, and it is hard to
envision a device that would cause the same local unitary transformation indepen-
dently of the more global behavior of the field. Despite this qualitative difference, PRS
has been shown [73] to take very similar numerical values as PI, because the following
inequality is always satisfied:

PI ≤ PRS ≤

√︃
6
5

PI = 1.095 PI, (41)

so these two measures never differ by more than 10%.

6. STOKES–GELL-MANN PARAMETERS

The natural extension of the Pauli matrices to the 3 × 3 case are the Gell-Mann
matrices, which were defined within the context of particle physics [105]. These eight
matrices, supplemented by the 3 × 3 identity, constitute a complete orthonormal basis
(under the trace of the product) for 3 × 3 Hermitian matrices. They have been used
in the context of optical polarization to decompose the polarization matrix, therefore
providing a generalization for the concept of the Stokes parameters into the nonparaxial
regime, where nine parameters are needed [8,9,47,48,106–108]. (The corresponding
generalization of Mueller’s calculus for describing polarization transformations then
requires 9 × 9 Mueller matrices [109,110]). The goal of this section is to not only
review these parameters but also to propose an intuitive convention for them within
this context. The numbering scheme and sign conventions used here for the Gell-Mann
matrices and the resulting parameters are then different to those in other publications,
in order to stress the connections with the paraxial case.

6.1. Definition of the Parameters
Rather than writing here each Gell-Mann matrix separately, we directly write the 3 × 3
polarization matrix Γ as a linear combination of these matrices:

Γ = 1
2

⎛⎜⎜⎝
2
3S0 + S11 +

S12√
3

S23 − iS33 S22 + iS32

S23 + iS33
2
3S0 − S11 +

S12√
3

S21 − iS31

S22 − iS32 S21 + iS31
2
3S0 − 2 S12√

3

⎞⎟⎟⎠ , (42)



206 Vol. 15, No. 1 / March 2023 / Advances in Optics and Photonics Tutorial

where the parameters S0 and Smn are the nine nonparaxial analogs of the Stokes
parameters, referred to here as the Stokes–Gell-Mann parameters. To extract the Gell-
Mann matrix associated with each parameter, we simply set this parameter to two and
the others to zero in the previous expression. The explicit form for these matrices as
well as some of their properties are given in Appendix E. It is worth noting a difference
between the Pauli and the Gell-Mann matrices: although the Pauli matrices have the
same norm (defined as the square root of the trace of their square) as the 2 × 2 identity
matrix used to complete the set, namely

√
2, the same is not true for the Gell-Mann

matrices (with norm
√

2) and the 3 × 3 identity (with norm
√

3). There are therefore
different possible conventions for the normalization factors of S0 with respect to the
others; the reason for the choice used here will become apparent in what follows.

Interpretations to the Stokes–Gell-Mann parameters have been given, e.g., by Carozzi
et al. [106] and Setälä et al. [83]. We now describe them in terms of the different
subsets. First, as in the paraxial case, the parameter S0 equals the local intensity,

S0 = TrΓ = ⟨|E|2⟩; (43)

the parameters S1m characterize discrepancies amongst the diagonal terms of the
polarization matrix,

S11 = ⟨|Ex |
2⟩ − ⟨|Ey |

2⟩, (44a)

S12 =
⟨|Ex |

2⟩ + ⟨|Ey |
2⟩ − 2⟨|Ez |

2⟩
√

3
; (44b)

the parameters S2m characterize the real parts of the correlations between the different
Cartesian components,

S21 = 2 Re⟨E∗
yEz⟩, (45a)

S22 = 2 Re⟨E∗
z Ex⟩, (45b)

S23 = 2 Re⟨E∗
xEy⟩; (45c)

and the parameters S3m characterize the imaginary parts of the correlations between
the different Cartesian components,

S31 = 2 Im⟨E∗
yEz⟩, (46a)

S32 = 2 Im⟨E∗
z Ex⟩, (46b)

S33 = 2 Im⟨E∗
xEy⟩. (46c)

Let us make a few observations about these definitions.

• Let us start with the two elements S1m. In the paraxial treatment where the matrix
is 2 × 2, there is a natural choice for the measure of discrepancy between the two
diagonal elements, corresponding to their difference, the only marginally “non-
democratic” choice being that of which diagonal element is subtracted from which
in the definition of S1. For 3 × 3 matrices, on the other hand, there is no natural
choice of two parameters that treats the three diagonal elements equally: we can see
that the third diagonal element in Eq. (42) has a different form than the other two.
The form for the diagonal elements can be made to look more natural by grouping
the two Stokes–Gell-Mann parameters S1m in a two-vector S1 = (S11, S12); the three
diagonal elements of Eq. (42) can then be written concisely as S0/3 − um · S1/

√
3

where um = (sin θm, cos θm) with θm = −m 2π/3 for m = 1, 2, 3. Note that we could
have chosen any other set of three unit vectors um that are equally spaced angularly,
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so that their sum vanishes and the trace of the matrix is S0. The choice that is
implicit in the definition of the Gell-Mann matrices is the alignment of the vector
u3, corresponding to the matrix element Γzz, with one of the axes within the plane of
S1. From the point of view of optical fields, this arbitrary choice can be justified by
the fact that the z axis is often associated with the main direction of propagation and
is, hence, perhaps special. In other words, this choice lets S11 take the same form as
the paraxial Stokes parameter S1.

• The three Stokes–Gell-Mann parameters S2m are a measure of the misalignment
between the chosen Cartesian coordinate axes and the natural axes of the ellipsoid of
inertia. It is convenient to group these elements in a three-vector S2 = (S21, S22, S23),
even though it must be stressed that this is a vector in an abstract space, not in the
physical 3D space.

• The last three Stokes–Gell-Mann parameters, S3m, can also be grouped in a vector as
S3 = (S31, S32, S33). However, note that this is precisely the local spin density vector
of the field shown in Fig. 12, namely S3 = Im⟨E∗ × E⟩ = SSS. Therefore (unlike S1
and S2), S3 is truly a (pseudo)vector in the physical coordinate system.

• Note that, if only the x and y components of the field are significant, the Stokes–Gell-
Mann parameters S0, S11, S23, S33 reduce to the standard Stokes parameters for
paraxial fields, whereas the parameter S12 becomes redundant with S0 and the
remaining ones vanish.

• If we choose a reference frame in which S2 = 0 and |Ex |
2 ≥ |Ey |

2 ≥ |Ez |
2, the quan-

tities S11/S0 and
√

3 S12/S0 coincide with what Gil [111–114] has referred to as the
the degree of linear polarization and the degree of directionality, respectively.

6.2. Normalized Parameters and Eight-Dimensional Polarization Space
As in the paraxial case, we define a normalized set of parameters as snm =

(
√

3/2)Snm/S0, which are then independent of the intensity. The reason for the extra
numerical factor will become apparent in what follows. These eight normalized param-
eters can be used to define a polarization vector in an eight-dimensional abstract
space:

s⃗ = (s11, s12, s21, s22, s23, s31, s32, s33). (47)

It can be shown that the Euclidean magnitude of the eight-component vector s⃗
corresponds precisely to the measure of degree of polarization in Eq. (31):

PI =

√︄∑︂
nm

s2
nm = |s⃗|. (48)

Because PI is constrained to the interval [0, 1], s⃗ is constrained to the interior and
hypersurface of a unit hypersphere in eight dimensions (a 7-ball). Full polarization then
corresponds to the hypersurface of this 8D hypervolume, namely to a 7D manifold. This
suggest that the local description of a fully polarized field requires the specification of
seven parameters. This is not the case, however, as it was established in Section 3 that
only four parameters are required to describe full polarization. Therefore, not all points
inside the unit 7-ball are inhabitable, so several constraints limit the true accessible
hypervolume [46,75,107,115,116] which is inscribed in the 7-ball. The inequalities
that shape the inhabitable region are described later in this section.

Before determining the shape of the space, however, let us illustrate another difference
with the paraxial case by extending the discussion in Section 2.5d to the nonparaxial
regime. Let us consider two fully polarized fields given by the complex three-vectors
E(I) and E(II). We again use the angle α to characterize their similarity through the
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definition in Eq. (13):

cos2 α =
|E(I)∗ · E(II) |2

|E(I) |2 |E(II) |2
=

Tr
[︁
Γ(I)Γ(II)]︁

Tr
[︁
Γ(I)

]︁
Tr

[︁
Γ(II)

]︁ . (49)

Again, if both fields are linearly polarized, α represents the smallest angle between
their directions of oscillation. By writing the polarization matrices in terms of the
normalized Stokes–Gell-Mann parameters and simplifying, we get the relation

cos2 α =
1 + 2s⃗(I) · s⃗(II)

3
. (50)

A few observations can be made from this result. First, unlike for the paraxial case,
the relation between α and the angle between the normalized Stokes–Gell-Mann
vectors is not linear. Second, whereas α = 0 indeed corresponds to parallel normalized
Stokes–Gell-Mann vectors, orthogonal polarizations (α = π/2) do not correspond to
antiparallel normalized Stokes–Gell-Mann vectors, but to s⃗(I) · s⃗(II) = −1/2. Because
for fully polarized fields the norm of the normalized Stokes–Gell-Mann vectors is unity,
two orthogonal polarization states have Stokes–Gell-Mann vectors that are at 120◦ from
each other. The fact that orthogonal polarizations do not correspond to antiparallel
(or antipodal) normalized vectors is consistent with the fact that each polarization has
not a unique orthogonal polarization state but a two-parameter continuum of them.
Further, even for partially polarized fields the inequality 1 ≥ s⃗(I) · s⃗(II) ≥ −1/2 holds,
showing that indeed not all regions of the hypersphere’s interior are inhabitable. In
particular, if a normalized Stokes–Gell-Mann vector s⃗ with unit magnitude represents
a physical fully polarized state, a large segment of the hypersphere’s interior and
surface surrounding its antipode −s⃗ does not correspond to physical states.

6.3. Some Inequalities Constraining the Normalized Stokes–Gell-Mann Parameters
For paraxial light all three standard normalized Stokes parameters play very similar
roles, but this is not true for the normalized Stokes–Gell-Mann parameters. It is
convenient to separate these into the three normalized Stokes–Gell-Mann subvectors
s1 = (s11, s12), s2 = (s21, s22, s23), and s3 = (s31, s32, s33), the latter being proportional to
the normalized spin density, s3 =

√
3sss/2.

Let us start by considering the diagonal elements of Eq. (42), which limit the values
of the subvector s1. As the polarization matrix is nonnegative-definite, these elements
must be equal to or greater than zero, leading to the three inequalities

um · s1 ≤
1
2

, m = 1, 2, 3, (51)

where, as before, um = (sin θm, cos θm) with θm = −m 2π/3. These inequalities imply
that the subvector s1 = (s11, s12) is constrained to an equilateral triangle inscribed
within the unit disk [115]. This restriction to a triangle should no longer be surprising:
if the other two Stokes–Gell-Mann subvectors vanished (s2 = s3 = 0), the polarization
matrix would be diagonal so that its three diagonal elements would correspond to
the eigenvalues Λi. The center-of-mass interpretation would then give directly s1 =

q, but with the diagonal elements (or eigenvalues) not necessarily being ordered
from largest to smallest, so that the whole equilateral triangle in Fig. 14 would be
inhabitable.

We now consider inequalities that apply to each non-diagonal element of the matrix.
From the Cauchy–Bunyakowsky–Schwarz inequality it follows directly that correlation
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Figure 15

(a) Inhabitable hypervolumes (hypercones) over the subspaces s11, s12, s2m, s3m for
m = 1, 2, 3: for a given coordinate (s11, s12), each magnitude

√︂
s2

2m + s2
3m must be equal

to or smaller than the height Hm of the corresponding cone at that point. (b) Inhabitable
region for the complex quantity Ξ within the unit complex disk.

matrices satisfy |Γij |
2 ≤ ΓiiΓjj for i, j = x, y, z, the equality holding only when Ei and Ej

are fully correlated. The resulting three inequalities can be written concisely as

(vm · s1)
2 + s2

2m + s2
3m ≤

(1 + um · s1)
2

3
, (52)

where vm = (cos θm,− sin θm). Each of these relations implies a restriction in a 4D
subspace (s11, s12, s2m, s3m) to the interior of a section of a hypercone, as represented
in Fig. 15(a). These three hypervolumes inhabit different subspaces, but they intersect
at the plane (s11, s12) where they all have a cross section corresponding to the equi-
lateral triangle. That is, these three inequalities restrict (s11, s12) to the same region as
those in (51), but provide stronger limitations involving also other Stokes–Gell-Mann
parameters. It is easy to see that the sum of the three inequalities in (52) gives, after
some rearrangement,

∑︁
mn s2

mn ≤ 1, so that these restrictions are sufficient to constrain
s⃗ to a region that is fully inside the unit 7-ball. The constraints in (52) can also be
written as

|s2m + is3m | ≤ Hm(s1), Hm(s1) =
√︁
(1 + um · s1)2/3 − (vm · s1)2, (53)

where the three functions Hm(s1) are the heights of each of the cones at each point
(s11, s12), as shown in Fig. 15(a).

The three constraints in relations (52) or (53) already limit significantly the hyper-
volume inhabitable by s⃗ to 9

√
3π3/1120, which is about 10.6% of the unit 7-ball’s

interior of π4/24. These inequalities can be supplemented with a fourth (non-tight)
inequality that restricts the phases of the off-diagonal elements. By using a result found
in Appendix E, we find

27[Im(Ξ)]2 ≤ [1 − Re(Ξ)]2[1 + 8 Re(Ξ)], (54)

where the complex quantity Ξ is defined as

Ξ =
ΓyxΓzyΓxz

ΓxxΓyyΓzz
=

3∏︂
m=1

(s2m + is3m)

Hm(s1)
. (55)

This range of possible values for Ξ is shown in Fig. 15(b). Note that Re(Ξ) ∈ [−1/8, 1],
Im(Ξ) ∈ [−1/4, 1/4]. Let us define hm =

√︂
s2

2m + s2
3m (namely, the heights in Fig. 15(a))
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Figure 16

Inhabitable region for the Stokes–Gell-Mann subvector s2, according to relation (58).

and ϕm = arg(s2m + is3m). We can then rewrite Ξ as

Ξ =
h1h2h3

H1H2H3
exp[i(ϕ1 + ϕ2 + ϕ3)]. (56)

The inequality in (54) can then be expressed as a constraint on the phases of the
off-diagonal matrix elements:

cos(ϕ1 + ϕ2 + ϕ3) ≥ Max
[︃
−1,

3|Ξ|2/3 − 1
2|Ξ|

]︃
. (57)

That is, the value of ϕ1 + ϕ2 + ϕ3 is constrained only for 1/8< |Ξ| ≤ 1.

6.4. Rigorous Relations for the Inhabitable Region
It turns out that the three constraints in relations (53) plus that in (57) are sufficient to
reduce from eight to four the number of free parameters in the limit of full polarization,
because fully polarized fields must be at the four boundaries. Surprisingly, however,
away from this limit these inequalities are not sufficiently strong to provide the true
shape of the accessible hypervolume for s⃗. The rigorous inequalities result from making
sure that the three eigenvalues of Γ are nonnegative. Note that, although Λi ≥ 0 for
i = 1, 2, 3 implies that det(Γ) ≥ 0, the converse is not necessarily true. Therefore,
the inequality in relation (30), which results from enforcing det(Γ) ≥ 0, is in itself
not sufficient. Nevertheless, the physical interpretation for relation (30) in Section
3 provides a useful hint: the eigenvalues of Re(Γ) must also be nonnegative so that
the ellipsoid of inertia is well defined. If the diagonal elements of the matrix are
guaranteed to be nonnegative by constraining s1 to the triangle in Fig. 14, then the
eigenvalues of Re(Γ) are nonnegative as long as the following inequality is satisfied:

3∑︂
m=1

s2
2m

H2
m(s1)

− 2
3∏︂

m=1

s2m

Hm(s1)
≤ 1. (58)

This relation constrains s2 to the surface and interior of shape shown in Fig. 16,
described by Bloore as an over-inflated Tetrapack [115]. Note that all cross sections
of this shape in which one of the parameters s2m is fixed correspond to ellipses in the
remaining two parameters. This volume is inscribed in a box defined by |s2m | ≤ Hm(s1)

implied by the inequalities in relation (53).

An ordered way to determine the true boundaries of the space of the normalized
Stokes–Gell-Mann parameters is as follows.
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• The subvector s1 is constrained to the triangle in Fig. 14 following relation (51).
• The subvector s2 is constrained to the 3D shape described in relation (58) and

shown in Fig. 16, whose dimensions are fixed by s1 through the functions Hm(s1)

[that correspond to the heights of the three cones in Fig. 15(a) at the corresponding
point].

• The subvector s3 is constrained to the normalized version of the dual ellipsoid in
Fig. 12 following the inequality in relation (30) with SSS = 2S0s3/

√
3, whose shape is

determined by both s1 and s2 through the construction of Re(Γ) following Eq. (42).

These three constraints imply that s⃗ is restricted to a 8D hypervolume much smaller
than π4/24, the interior of the unit hypersphere. By using the volume of the ellipsoid
inhabitable by s3 (which depends on s1 and s2), integrating it in s2 over the volume
in Fig. 16 (which depends on s1), and integrating the result in s1 over the surface
of the triangle in Fig. 14, a closed form result of 567π3/163840 is found, which
constitutes only 2.64% of the interior of the unit hypersphere. This analytic result was
corroborated by numerical Monte Carlo integration.

Note that none of the constraints described in this section impose a restriction on the
normalized Stokes–Gell-Mann vector s⃗ within the inner region |s⃗| ≤ 1/2. A simple
proof of this fact follows from using the formula found by Sheppard [74,78] for the
eigenvalues λi in terms of the measures PI = |s⃗|, which can be written as

λi =
1
3

[︃
1 + 2PI cos

(︃
ψ +

2πi
3

)︃]︃
, (59)

where sinψ = (
√

3/2)PII/PI, with PII as defined in Eq. (33). It is clear that for PI =

|s⃗| ≤ 1/2 all eigenvalues are nonnegative. Therefore, the restrictions found here enforce
constraints only in the region of the 8D space for which 1/2< |s⃗| ≤ 1, i.e., for states
with considerable polarization. Even for the approximate inequalities in relations (51)
and (52) it is clear from their geometric interpretation in Figs. 15(a) that a sphere
of radius 1/2 centered at the origin fits completely within all the restricted volumes.
Although less evident, this is also true for the inequality in relation (57), as shown
in Appendix F. That is, a part of the 2.64% of the interior of the 8D hypersphere
inhabitable by physical polarization states corresponds to the 1/28 ≈ 0.4% occupied
by the central hypersphere of radius 1/2 that represents significantly unpolarized light.

6.5. Limit of Full Polarization
Let us finish this section by discussing the limit of full polarization, corresponding
to completely deterministic fields. The fact that fully polarized fields involve only
four degrees of freedom could naïvely be interpreted as the result of imposing four
constraints to the eight parameters: the vector s⃗ must lie at the hypersurface |s⃗| = 1,
and each of the three subvectors sn must lie at the boundary of its inhabitable regions.
It turns out, however, that the three constraints for the subvectors are sufficient to
guarantee |s⃗| ≤ 1. That is, these three constraints define a region in the 8D space that
does not cross the unit hypersphere but simply touches it; this contact region defines
the four-parameter subspace of full polarization. This limit can be better understood
in the following way: let s1 be at any point within its allowed triangular area (not
necessarily the edges), and let s2 be at any point over the surface of its allowed volume
shown in Fig. 16; it is then clear that |s⃗|2 = |s1 |

2 + |s2 |
2 + |s3 |

2 achieves its maximum
value of unity when |s3 |

2 is maximal given its constraints, so it is not enough for s3
to be at the surface of the dual ellipsoid, but it must be at one of its two vertices,
corresponding to the intersection of the dual ellipsoid with its major axis. All other
points over the surface of the dual ellipsoid constitute boundaries between physical
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and unphysical states but do not correspond to full polarization. The four degrees of
freedom that parametrize states of full polarization can then be thought of as the two
coordinates s1 and the position of s2 over the surface of its allowed region; s3 is then
fully determined to within a sign, each choice corresponding to a sense of circulation
of the same geometric ellipse.

7. REPRESENTATION OF 3D PARTIAL POLARIZATION AS A COLLECTION OF
VECTORS/POINTS

The inequalities just described illustrate the similarities and the important differences
between the characterizations of partial polarization in the paraxial and nonparaxial
regimes. For the paraxial case, the state of polarization can be fully represented by a
single point within a spherical region of an abstract three-dimensional space, where
the surface of the region corresponds to states of full polarization. Further, physically
meaningful transformations of the state of polarization that preserve the amount of light
correspond to simple rotations of the Poincaré sphere. For the nonparaxial case, on the
other hand, the normalized Stokes–Gell-Mann parameters provide a description that
is considerably more challenging to visualize: the state of polarization is represented
as a single point in an abstract eight-dimensional space with a complex irregular
shape, and where only a subset of the edges of the region correspond to states of
full polarization. In addition, the physically meaningful unitary transformations for
nonparaxial light are rotations and inversions of the coordinate system (instead of all
complex unitary transformations), and although these transformations correspond to
linear transformations of the 8D vector s⃗, these are not particularly intuitive.

The goal in this section is to propose a complete representation of partial polarization
in a 3D space in order to facilitate visualization. Further, by making the three axes in
this space correspond to the physical Cartesian coordinates, the effect of rotations and
inversions of the coordinate system becomes trivial. Note that the interpretation [72]
in terms of the ellipsoid of inertia supplemented by the spin density vector fits within
this category, as discussed in Section 4.1. However, the idea here is to use instead
a collection of vectors or points that allow an interpretation that is independent of
the coordinate system, similarly to the two-point representations for full polarization.
Because partial polarization corresponds to eight parameters, at least three points or
vectors are required, with at least one constraint. There are probably several ways to
choose one such representation, but the construction proposed in what follows aims
to minimize the number of points (three, with one constraint), to avoid discontinuous
jumps for the coordinates of these points under small perturbations of the field, and to
make the position of the points unique (other than perhaps for a sign ambiguity).

Note that the normalized spin density sss can be chosen as the coordinates of one of
the three points of the proposed description, because it fully encodes the imaginary
part of the polarization matrix and its components are associated with the spatial
coordinate axes, as desired. Further, this vector is by construction constrained to a unit
ball, its magnitude taking the maximum value of unity only for fully polarized circular
polarization.

7.1. Vectors for Representing the Ellipsoid of Inertia
The remaining two points or vectors must represent the real part of the polarization
matrix, Re(Γ), whose normalized version depends on five degrees of freedom. This
matrix is fully characterized by its eigenvalues Λ̄n and eigenvectors ēn, defined by
Re(Γ)ēn = Λ̄nēn with Λ̄1 ≥ Λ̄2 ≥ Λ̄3. Note that the eigenvalues Λ̄n are, in general, not
the same as Λn, the eigenvalues of Γ. However, because the imaginary components
of the polarization matrix are all within its nondiagonal elements, the traces of Γ and
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Re(Γ) are the same and, therefore, Λ̄1 + Λ̄2 + Λ̄3 = Λ1 + Λ2 + Λ3. We then use the
normalized eigenvalues λ̄n = Λ̄n/(Λ1 + Λ2 + Λ3), whose sum is unity. The eigenvec-
tors ēn are chosen to be real and of unit magnitude, so they are uniquely defined up
to a global sign. (Strictly speaking they are then not vectors but directors, as they
specify a direction but not a sense.) They are mutually orthogonal and correspond to
the directions of the semiaxes of the ellipsoid of inertia illustrated in Fig. 12, where
the lengths of the corresponding semiaxes are Λ̄1/2

n .

It is natural to chose the coordinates of the two remaining points as proportional to
two of the eigenvectors. This choice would already include a restriction because these
vectors are orthogonal. The lengths of the two vectors must encode the normalized
eigenvalues. Note that the choice of the eigenvectors becomes non-unique in cases
of degeneracy, namely when λ̄1 = λ̄2 (in which a case the choice of ē1 and ē2 is not
unique) or when λ̄2 = λ̄3 (in which a case the choice of ē2 and ē3 is not unique). These
possible ambiguities can be avoided by choosing the length of each of the vectors to
vanish when degeneracy would cause its direction not to be well defined, and their
directions to also remain well defined in case of degeneracy. The two vectors are then
chosen as

t = (λ̄1 − λ̄2)ē1, (60a)

τττ = 2(λ̄2 − λ̄3)ē3. (60b)

Note that the direction of ē2 is not used because this eigenvector becomes undefined for
both types of degenerate situations. To understand the connection of this construction
with the ellipsoid of inertia, let us consider the different types of ellipsoid, as shown
in Fig. 17: (a) for a general non-degenerate ellipsoid (λ̄1>λ̄2>λ̄3), t points in the
direction of the major axis and τττ in the direction of the minor axis; (b) for a prolate
spheroid (λ̄1>λ̄2 = λ̄3), τττ vanishes and t points in the direction of the axis of rotational
symmetry, and in the limit of a very elongated ellipsoid |t| tends to unity; (c) for an
oblate spheroid (λ̄1 = λ̄2>λ̄3), t vanishes and τττ points in the direction of the axis of
rotational symmetry, and in the limit of a very flat ellipsoid |τ | tends to unity; (d) for
a sphere (λ̄1 = λ̄2 = λ̄3), both vectors vanish.

7.2. Inequalities for the Three Vectors
A complete description of the state of polarization is then given by the two orthogonal
vectors t and τττ (each of which is uniquely defined up to a sign) and the spin density
vector s. None of these vectors can be larger than unity in magnitude, and their lengths
are, in fact, significantly more restricted: for the two vectors that characterize the real
part of the polarization matrix we have

0 ≤ |t| ≤ 1, (61a)

0 ≤ |τττ | ≤ 1 − |t|. (61b)

Note that |t| = λ̄1 − λ̄2 and |τττ | + |t| = λ̄1 + λ̄2 − 2λ̄3 coincide, respectively, with the
degree of linear polarization and the degree of directionality defined by Gil [111–114],
both of which are smaller than or equal to unity. An inequality for s follows from that
in relation (30), and can be written as

3∑︂
n=1

λ̄n (s · ēn)
2 ≤ 4λ̄1λ̄2λ̄3. (61c)

Further, it is easy to verify from Eqs. (60) that the following relation holds:

|t|2 + |τττ |2

4
+

|t| |τττ |
2
= λ̄2

1 + λ̄
2
2 + λ̄

2
3 − λ̄1λ̄2 − λ̄2λ̄3 − λ̄3λ̄1 = |s1 |

2 + |s2 |
2. (62)
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Figure 17

Vectors t (blue) and τττ (orange) for four different shapes of the ellipsoid of inertia
(green): (a) a generic ellipsoid, (b) a prolate spheroid (for which τττ vanishes), (c) an
oblate spheroid (for which t vanishes), and (d) a sphere (for which both vectors vanish).
The ellipsoids of inertia in this figure are normalized, so their size is compared to that
of the unit sphere (white).

The final part of this expression follows from the fact that, if the spin density vanishes,
this expression coincides with the square of the degree of polarization in Eq. (31) with
λi = λ̄i, namely the squared norm of s⃗ following Eq. (48). Since the contribution of
spin to the square of this degree of polarization is additive, we can write the following
general expression for this degree of polarization in terms of the three vectors:

PI =

√︃
|t|2 + |τττ |2

4
+

|t| |τττ |
2
+ |s3 |2 =

√︃
(|t| + |τττ |)2 + 3(|sss|2 + |t|2)

4
≤ 1, (63)

where in the second step we used the fact that s3 =
√

3sss/2. (The second form is equiv-
alent to the expression in terms of the degrees of linear polarization and directionality
given by Gil [112,113].) In the special case in which |sss| vanishes and λ̄2 = λ̄3, PI = |t|,
whereas if |sss| vanishes and λ̄1 = λ̄2, PI = |τττ |/2.

We now show that the following simple relationship between t and sss also holds:

|sss ± t| ≤ 1, (64)

with the equality holding only in the limit of full polarization, in which sss and t
are perpendicular. To prove this inequality, we take the extreme values of sss from
relation (61c), parametrized as an ellipsoid, add this vector to t, and take the norm
squared. This norm squared is maximized over the ellipsoid, giving the expression
λ̄1[(1 − λ̄3)

2 − 4λ̄2λ̄3]/(λ̄1 − λ̄3), which takes a maximum value of unity when λ̄3 = 0.
In this limit, sss = ±2

√︁
λ̄1λ̄2 ē3, which indeed maximizes relation (61c) and, hence,

guarantees full polarization. The corresponding fully polarized field is proportional to√︁
λ̄1 ē1 ± i

√︁
λ̄2 ē2. Further, in this limit τττ becomes superfluous because its direction is

that of sss and its magnitude reduces to 2λ̄2 which is also equal to 1 − |t|. Note that this
is consistent with relation (63) (where in this case both PI and |sss|2 + |t|2 equal unity).
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7.3. Construction in Terms of Two Indistinguishable Points and a Director
The state of polarization can then be fully described by the vector sss and two directors
(defined to within a global sign), t and τττ, all restricted to a unit ball. However, given
relation (64), the vectorsss and the director t can be combined into two indistinguishable
points with coordinates given by

p1 = sss + t, p2 = sss − t, (65)

which as shown earlier are also constrained to the unit ball. Therefore, we propose here
a representation in terms of the two unambiguous and indistinguishable points p1 and
p2, and the (sign-ambiguous) director τττ (constrained to be normal to the line joining
p1 and p2). This representation is simpler to visualize and has a more direct connection
to the shape of the polarization path than the Stokes–Gell-Mann parameters, while
containing the same information. Further, in the limit of full polarization p1 and p2
are both at the surface of the unit sphere and coincide with the Poincarana points,
and as mentioned earlier τττ becomes superfluous because it is required to point in
the direction of the bisector of p1 and p2 and to have a magnitude equal to one
minus half the separation between p1 and p2. This representation then reduces to the
Poincarana two-point construction in the limit of full polarization, and generalizes
it for partially polarized nonparaxial fields. Note, however, that p1 and p2 cannot be
prescribed fully independently inside the sphere. For example, there are no physical
states of polarization in which one of these points is at the surface and the other is
not, independently of τττ. The three quantities are restricted by the inequalities in (61).
This construction is illustrated in Fig. 18 for a generic partially polarized case and for
a case of full polarization.

Note that Eq. (63) can now be written as

PI =

√︄
1
4

(︃
|p2 − p1 |

2
+ |τττ |

)︃2

+
3
4
|p1 |

2 + |p2 |
2

2
. (66)

The second term inside the square root is reminiscent of the interpretation of degree
of polarization in the paraxial case, which is given by the distance from the origin of
the point(s) defining polarization. However, in this case there is also a contribution
involving the separation of the points.

7.4. Simple Examples
Let us illustrate this construction with some simple special cases.

7.4a. Regular Polarization Matrix
Consider the type of polarization referred to by Gil and collaborators as polarimet-
rically regular [91–96]. These are the matrices for which the eigenvectors e1 and e2
correspond to coplanar ellipses, so that e3 must be linear and orthogonal to the plane
containing these ellipses. Let us, for convenience, choose the reference frame in which
e3 is aligned with the z direction, whereas the x direction is aligned with the major
axis of the polarization ellipse for e1. The polarization matrix can then be written as

Γ = ⎛⎜⎝
(Λ1 − Λ2)a2 + Λ2 −i(Λ1 − Λ2)ab 0

i(Λ1 − Λ2)ab (Λ1 − Λ2)b2 + Λ2 0
0 0 Λ3

⎞⎟⎠ , (67)

where a and b are the major and minor axis lengths of the polarization ellipses,
respectively, for e1 and e2, namely e1 = (a, ib, 0)T and e2 = (ib, a, 0)T. Because the real
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Figure 18

(a), (b) Two representations of a partially polarized state. (a) Normalized ellipsoid of
inertia (green) and normalized spin density sss (red) as well as the two perpendicu-
lar directors t (blue) and τττ (orange). (b) Same state represented in terms of the two
indistinguishable points p1 and p2 (black) and the director τττ (orange), which is per-
pendicular to the line joining p1 and p2. All three are inside the unit sphere. Note that,
to distinguish it from p1 and p2, τ is represented by a line from the origin, and recall
that it is sign-ambiguous. (c), (d) Same as for (a), (b) but for a state corresponding to
full polarization, for which the ellipsoid of inertia is actually the polarization ellipse.
In this case p1 and p2 are on the surface of the unit sphere and coincide with the
Poincarana points. The Cartesian axes were omitted for clarity.

part of all non-diagonal elements vanishes, it is easy to see that the normalized real-
part eigenvalues λ̄i correspond simply to normalized versions of the three diagonal
elements. With this we can easily calculate

t = (λ1 − λ2)(a2 − b2) x̂, τττ = 2[(λ1 − λ2)b2 + λ2 − λ3] ẑ, sss = 2(λ1 − λ2)ab ẑ.
(68)

A first thing to note from these expressions is that τττ is parallel to sss. That is, for
a polarimetrically regular matrix, τττ is parallel to the spin density and, therefore,
any difference in the directions of τ and the spin density is a sign of polarimetric
nonregularity. From these expressions we can also find the coordinates of the points
p1,2, which are given by

p1,2 = PII [2ab ẑ ± (a2 − b2) x̂], (69)

where PII = λ1 − λ2 was defined in Eq. (33). Given the normalization condition a2 +

b2 = 1, it is easy to see that |p1,2 | = PII.

7.4b. Incoherent Mixture of a Fully Polarized and a Fully Unpolarized Fields
As mentioned in Section 5, a polarization matrix can only be separated into two parts
that are respectively fully polarized and fully unpolarized if λ2 = λ3, and in this case
PI = PII = QII = γ. This case is explicitly regular and, therefore, is a special case of
the previous example. By choosing the same coordinate axes as in the previous case,
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we obtain
p1,2 = PI [2ab ẑ ± (a2 − b2) x̂], τττ = PI 2b2 ẑ. (70)

That is, all vectors are proportional to this degree of polarization.

7.4c. Full Polarization
The case of a fully polarized field corresponds then simply to PI = 1. In this case the
points p1,2 are over the surface of the unit sphere and correspond to the two Poincarana
points, and τ bisects them and has a length equal to twice the square of the length of the
minor semiaxis of the normalized polarization ellipse (2b2). The midpoint between
the Poincarana points corresponds to the normalized spin density, whose length is
twice the product of the lengths of the semiaxes of the normalized polarization ellipse
(2ab). Therefore, for a fully polarized field, τ is equal to s only for circular or linear
polarizations, and it is shorter otherwise.

8. CONCLUDING REMARKS AND OUTLOOK

This tutorial aimed to summarize different theoretical descriptions of the local polar-
ization of general nonparaxial fields. The emphasis was on highlighting geometrical
aspects. As has been noted already in many of the references cited here, although the
extension from two to three relevant field components still allows using several of
the same concepts, many qualitatively new aspects arise that are more than a simple
increase in degrees of freedom. For example, the standard degree of polarization in the
paraxial regime can be understood in at least two ways: as the fraction of light that is
fully polarized or as the magnitude of the normalized Stokes vector. These lead to two
different measures of degree of polarization in the nonparaxial regime. Similarly, for
nonparaxial light the region occupied by the Stokes parameters becomes not only of
considerably higher dimensionality but also acquires a more complex shape, which is
not fully enclosed by the subset of points corresponding to full polarization. It should
be mentioned that other representations of polarization of nonparaxial light have been
given that were not discussed here, such as the use of multipolar decompositions [117].
The author apologizes in advance to those authors whose work was not described or
might not have been properly cited.

It is the author’s hope that some of the ideas presented here can help motivate both
theoretical and experimental efforts. Some of these are listed in what follows.

8.1. Topological Field Distributions
This article has focused on the local description of polarization, and ventured into
nonlocal aspects only very briefly in the discussions about geometric phases and
Möbius strips. However, as mentioned in the introduction, the spatial distribution of
polarization and the topological properties it can present given the physical restrictions
imposed by Maxwell’s equations is a very active and interesting field of research. This
extended topology relies on the local topology of the space that polarization (or
a specific aspect of it) inhabits. Perhaps the simplest nontrivial example of extended
topological features are the Möbius strips [14,21–23], since one needs only consider the
polarization of points along a given closed curve, and not all aspects of this polarization
but only the direction of the major axis of the ellipse. If this direction reverses sign
while going around a closed loop in space, one has a polarization Möbius strip.

By adding one more variable and looking at the polarization distribution over a plane
in space, one can see topological features such as the so-called baby Skyrmions,
which are states for which a given parameter defined over a sphere is fully spanned.
In polarization optics, these correspond to field distributions for which points over
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a plane in space are mapped onto a complete sphere that represents some aspect of
polarization, either in the paraxial or nonparaxial regimes. In the paraxial case the
spherical space in question can be simply the Poincaré sphere [27–29], whereas in
the nonparaxial case it can be the direction of the spin density for evanescent [31]
or traveling [32] fields, the direction of the polarization ellipse’s major axis [32], or
even the direction of the electric field at an instant [30]. Similar topological textures of
nonparaxial polarization have been observed recently in the velocity field of monotonic
acoustic waves [118,119].

Field distributions over volumes have also been considered that span a complete
compact parameter volume linked to polarization. One recent example is that of
a full Skyrmionic field that spans a 3-sphere of polarization and phase, following
a Hopf fibration structure [33]. Another is a paraxial partially polarized field that
covers completely the surface and interior of the Poincaré sphere [120] according to a
simple two-to-one mapping, although this case is not Skyrmionic because the spanned
polarization space is a 2-ball, which is not a closed (i.e., periodic) space but one with
boundaries.

The extended topological features just described rely on the local geometry/topology of
the space of polarization. Understanding the full geometry of nonparaxial polarization
can reveal interesting (open or closed) subspaces that can be spanned by a field
distribution over physical spaces of different dimensions. By including in the analysis
other variables, such as time or frequency, the dimensionality of the space can grow,
allowing a field to span more of polarization’s degrees of freedom. For example, recent
work regards a simple spatiotemporal light distribution where the complete 4D space
of nonparaxial full polarization is covered [34].

8.2. Higher Dimensions
As discussed earlier, the description of the polarization of a paraxial field, where only
two components are important, requires three parameters in general, but only two
in the limit of full polarization. For nonparaxial fields, where three components are
involved, the number of parameters is eight in the general case and four in the limit of
full polarization. It is interesting to think of the generalization of these ideas for vector
fields with N components. Such fields would require, in general, the specification
of N2 − 1 normalized Stokes parameters, where the subtraction of one results from
normalization. In the case of full polarization (pure states) only 2N − 2 parameters are
needed, where the subtraction of two results from normalization and extraction of a
global phase. The normalized Stokes parameter vector s⃗ (where the normalization is
proportional to the scalar S0, which is the local intensity) can still be subdivided into
three parts.

• An (N − 1)-subvector s1 that characterizes differences between the diagonal elements
of the matrix. This subvector is constrained to a regular (N − 1)-simplex whose N
corners are all at a unit distance from the origin and at equal distances

√︁
2N/(N − 1)

from each other.
• An [N(N − 1)/2]-subvector s2 composed of the real parts of the off-diagonal

elements, restricted to some curved convex region.
• An [N(N − 1)/2]-subvector s3 composed of the imaginary parts of the off-diagonal

elements, and that is related to the generalization of the concept of spin density, and
is restricted to a hyper-ellipsoid.

The shape of the inhabitable regions for these components results from ensuring
that all eigenvalues of the polarization matrix are nonnegative. For fully polarized
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(factorizable) matrices, the state can be represented by N − 1 points over the surface
of a unit sphere, e.g., following Majorana’s prescription [66]. Generalizations of the
Poincarana prescription might also exist, in which the distribution of the points is
changed to facilitate the connection to geometric phases. Similarly, generalizations of
the many-point/vector representation in the physical space might also exist.

Generalizations to the different measures of polarization to higher dimensions have
been discussed by several authors [81,91,121,122]. The barycentric interpretation for
the measures of degree of polarization is also easily generalized by using N point
masses whose magnitudes are the eigenvalues Λi, and which are located at a unit
distance from the origin and each equidistant to all other masses. This distribution
must be placed in a space of dimension N − 2 [52]. In particular, the generalizations
of PI, PII, and γ are given by

PND,I =

√︄
N

N − 1
Tr(Γ2

ND)

(TrΓND)2
−

1
N − 1

, (71)

PND,II = λ2 − λ1, (72)

γND = λ1 −
1
N

N∑︂
i=2

λi. (73)

Note that the interpretations given to these parameters for N = 3 also hold for other N:
PND,I corresponds to the radial coordinate of the center of mass in this multidimensional
space, PND,II is a scaled version of the Cartesian coordinate of q in the direction joining
the masses Λ1 and Λ2, and γND is the Cartesian coordinate in the direction joining
the origin and the mass Λ1. These three measures coincide if all eigenvalues but the
largest one are equal to each other (a condition automatically satisfied for N = 2, that
is, for paraxial light). Figure 19 shows this barycentric construction for N = 4, for
which the embedding space is 3D and the four masses are the corners of a regular
tetrahedron. This barycentric picture using the corners of a tetrahedron has been used
for the description of entanglement [52] as well as for the decomposition of Mueller
matrices in the paraxial regime [123].

From the point of view of optical polarization this discussion of higher dimensionality
might seem only of academic interest. However, there are situations in classical optics
where a treatment that is mathematically analogous to that polarization for N ≥ 4 com-
ponents is relevant. Perhaps the simplest example is the use of modal decompositions
to express optical fields, in which N corresponds to the number of linearly indepen-
dent modes used. Like polarization components, modes provide different channels
that can be exploited by the degrees of freedom of light, and the analog of full or par-
tial polarization would be the coherence between these modes. In particular, paraxial
optical beams can be expressed in terms of, say, Laguerre–Gaussian modes, which
constitute a complete and orthonormal basis. This analogy between modal decom-
positions and polarization has led to the use of the Poincaré sphere construction to
describe beam shape, first for fields involving only two modes [124] (which are then
analogous to paraxial polarization), and then for more complicated fields [125–131].
In this analogy, the axis s3 corresponds not to spin but to orbital angular momentum.
Owing to the curvature of the parameter space, geometric phases can be observed
under cyclic transformations of the beams, and they can be measured through several
methods [132–135]. Further, beams composed of coherent superpositions of N modes
can be fully described in terms of N − 1 points over a unit sphere by using the Majorana
construction [136] because they are analogous to a fully polarized state.

Mode superpositions that are partially coherent and their analogy with partial polar-
ization in N dimensions have also been studied within the context of waveguides
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Figure 19

Geometric interpretation of the measures of polarization P4D,I , P4D,II , and γ4D in
terms of the center of mass q (blue dot) of four point masses (purple dots) whose
magnitudes are Λi, the eigenvalues of Γ4D and whose positions are the corners of a
regular tetrahedron inscribed in a unit sphere: P4D,I is the distance of q to the origin;
γ4D is the distance from the origin to the intersection of the line from the origin to the
mass Λ1 with a plane containing q and normal to this line; P4D,II is the distance from
the origin to the intersection of the line from the origin to the mass Λ1 with a plane
containing q and normal to the line segment joining the masses Λ1 and Λ2.

supporting N propagating modes. In particular, analogs of Stokes parameters can be
used to characterize these modes [137–139], allowing generalizations of the Poincaré
sphere [140] and the use of the definition PND,I to characterize the overall level of
coherence amongst the modes [141].

As pointed out in this article and elsewhere [72], the role of unitary transformations
is not as important for the description of nonparaxial polarization as it is for paraxial
light, because these transformations (other than rotations and inversions) do not corre-
spond to the actions of optical elements. Note, however, that this is not necessarily the
case for the higher-dimensional generalizations based on spatial modes mentioned in
the previous two paragraphs. In theory, general unitary transformations may be phys-
ically realizable, e.g., through appropriate sequences of spatial light modulators, so
incorporating some sort of invariance to the relevant quantities is therefore desirable.
In particular, for superpositions of Laguerre–Gaussian beams that can be represented
as a collection of points on a sphere following Majorana’s construction [136], a spe-
cific subset of all possible unitary transformations, corresponding to passage through
specific combinations of cylindrical lenses, amounts to a rigid rotation of all points
over the sphere. That is, the properties of the representation in terms of what quantities
are invariant must be dictated by the physical context.

The examples of N>3 just discussed correspond to generalizations that use optical
degrees of freedom other than polarization. However, there are at least three situations
that deal exclusively with optical polarization where the effective number of field
components is also larger than three.
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• One is the case of entangled photons. For example, a mixed state corresponding to
a pair of paraxial photons (N = 4), the density matrix involves 42 − 1 = 15 degrees
of freedom, and this number goes up to 62 − 1 = 35 if we look at the nonparaxial
situation (N = 6).

• A second case is that of bichromatic (or multichromatic) fields [142–145] resulting,
for example, from nonlinear harmonic generation. In their fully polarized form,
these fields are composed of two frequencies, one being twice (or some other
rational multiple of) the other. The electric field no longer traces an ellipse but a
closed Lissajous figure over one temporal cycle. Such figures have been shown to be
able to form knots [146]. The polarization at a point (excluding a global phase and
intensity) involves 10 degrees of freedom, and it would be interesting to investigate
which representation of such state best captures the geometry and properties of
the polarization curves. Clearly, the situation becomes more complex when more
frequencies are involved.

• Finally, another case corresponding to N = 6 that deserves a closer treatment is that
of nonparaxial electromagnetic polarization, where both the electric and magnetic
fields are considered. As mentioned in the introduction, the polarization properties
of each of these fields are essentially redundant in the paraxial regime, but not in the
nonparaxial regime where the path traced by one of these fields does not restrict the
path traced by the other at the local level. (The restrictions imposed by Maxwell’s
equations arrive at the nonlocal level, given that they involve spatial derivatives.)
The two fields can be made to have the same units through multiplication by the
appropriate universal constants. Both fields might then have different average ampli-
tudes, and the relative phase between their oscillations is physically relevant, so it
makes sense to consider the joint polarization as a six-component vector, rather
than two separate three-component fields with their own normalizations and global
phases. An appropriate representation must present desirable properties under the
relevant transformations.

8.3. Novel Measurement Techniques
Many techniques have been proposed for imaging polarimetry, which allow the effi-
cient measurement of 2D polarization over large arrays of points. These techniques
are based on a variety of strategies such as the use of rotating wave plates, micro-
polarizers arrays, or division of amplitude elements [147]. Other techniques proposed
more recently are based on the use of spatially varying birefringent elements [148]
such as materials with stress-induced birefringence or metasurfaces, either for point
spread function engineering (for sparse objects) [149] or for polarization component
separation [150]. The generalization of these techniques for measuring simultaneously
the 3D polarization at many points is a challenging problem for several reasons. First,
the amount of information to be gathered at each point is more than twice as large. Sec-
ond, capturing the polarization components that are aligned with the direction between
the point of observation and the detector requires the use of large numerical aperture
systems. Finally, the spatial scale of variation of polarization is typically much smaller,
on the order of the wavelength, so the requirements for appropriate resolution and sam-
pling density are much more stringent. As was mentioned in the introduction, current
techniques rely on scanning a Rayleigh scatterer and capturing and characterizing the
scattered field over a large range of directions [11–19]. This allows measuring polariza-
tion of only one point at a time, and in order to obtain a polarization map one must scan
the scatterer. Parallelizing this type of technique or developing new ones that permit
measuring 3D polarization at many points simultaneously is an important challenge.

One specific possible technological application of the geometric descriptions proposed
here is in fluorescence microscopy. As discussed in Section 5.2, fluorophores typically
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have a dipolar emission pattern, and their orientation provides useful morphological
information about the tissue or structure that is hosting them. Further, they often wobble
at time scales that are much smaller than the detection time. This wobble is often
assumed to be isotropic around a central direction, but this is not necessarily the case.
The full characterization of this wobble provides also useful morphologic information.
Techniques that allow characterizing simultaneously the position, orientation and
wobble of multiple fluorophores are therefore a current thrust of research in microscopy
[35–45]. The performance of a given technique is often evaluated in terms of the lower
bounds for the accuracy in the estimation of these parameters in the presence of Poisson
noise, according to what is known as a Cramer–Rao bound [151,152]. As mentioned
in this article, the wobbling properties of a fluorophore translate into the polarization
properties of the light it emits and, therefore, a meaningful measure of estimation
must take into account the intrinsic geometric/topologic properties of the polarization
matrix. The geometric representations for partial polarization might then provide self-
consistent criteria for the definition of functions of merit for the estimation accuracy
of the 3D orientation and wobble of a fluorophore. Further, many of the microscopy
techniques just mentioned rely on using masks placed at the pupil of a microscope
that encode the desired information into the shape of the point spread function of the
fluorophores [37,38,41,43,44]. The definition of meaningful functions of merit can
then open the path for the design of masks that are optimal for this purpose.

APPENDIX A: PAULI MATRICES

Here we give a brief summary of the Hermitian form of the Pauli matrices, following a
numbering and sign convention consistent with the treatment of paraxial polarization
presented here. These three matrices are given by

σ1 =

(︃
1 0
0 −1

)︃
, σ2 =

(︃
0 1
1 0

)︃
, σ3 =

(︃
0 −i
i 0

)︃
. (A1)

They constitute a complete basis for 2 × 2 Hermitian matrices when complemented
with the identity

σ0 =

(︃
1 0
0 1

)︃
. (A2)

This basis is orthogonal under trace, because

Tr(σmσn) = 2δmn, (A3)

where δmn is the Kronecker delta. This means that any Hermitian matrix can be
decomposed as a linear superposition of these matrices as

Γ2D =
1
2

3∑︂
m=0

Smσm, (A4)

where the coefficients of the expansion, namely the Stokes parameters, are given by

Sm = Tr(σmΓ2D). (A5)

Other important properties of the Pauli matrices (for m = 1, 2, 3) are the fact that they
are traceless,

Tr(σm) = 0, (A6)

that their square is the identity,
σ2

m = σ0, (A7)
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and that they satisfy the cyclic relations

σ1σ2 = −σ2σ1 = −iσ3, (A8a)

σ2σ3 = −σ3σ2 = −iσ1, (A8b)
σ3σ1 = −σ1σ3 = −iσ2. (A8c)

In fact, these three properties yield the orthogonality relation in Eq. (A3).

APPENDIX B: POLARIZATION STATISTICS FOR A SUPERPOSITION OF
PARAXIAL PLANE WAVES WITH RANDOMLY CHOSEN POLARIZATIONS
AND PHASES

Consider the superposition of many plane waves traveling (approximately) in the z
direction, whose relative phases and polarizations are chosen randomly. (Whether
they all have the same amplitude or not in the end is irrelevant, as subsets of them
can be considered as individual elements.) Given their statistical independence, the
probability density for the real or imaginary part of a given Cartesian component is the
convolution of the probability densities for each, such that the central limit theorem
can be applied and in the end we find a Gaussian probability density:

P(Ax, Bx, Ay, By) = exp[−π(A2
x + B2

x + A2
y + B2

y)], (B1)

where we used the notation (Ex, Ey) = (Ax + iBx, Ay + iBy), with the field being
normalized in dimensionless units so that the average intensity is 2/π,

⟨I⟩ =
∫

exp[−π(A2
x + B2

x + A2
y + B2

y)](A
2
x + B2

x + A2
y + B2

y) d4E =
2
π

, (B2)

with the shorthand d4E = dAxdBxdAydBy.

Probability densities of different measurable quantities can be evaluated by taking the
appropriate marginal projections:

Pq(q) =
∫

P(Ax, Bx, Ay, By) δ[q − Q(Ax, Bx, Ay, By)] d4E, (B3)

where δ is the Dirac distribution and Q is the function of the electric field associated
with the quantity in question. For example, for the intensity we have

PI(I) =
∫

exp[−π(A2
x + B2

x + A2
y + B2

y)] δ[I − (A2
x + B2

x + A2
y + B2

y)] d4E

= π2I exp(−πI).
(B4)

Similarly, for the normalized Stokes parameter s1 we obtain

Ps1(s1) =

∫
exp[−π(A2

x + B2
x + A2

y + B2
y)] δ

(︄
s1 −

A2
x + B2

x − A2
y − B2

y

A2
x + B2

x + A2
y + B2

y

)︄
d4E

= π2
∫

exp[−π(I2
x + I2

y )] δ

(︄
s1 −

I2
x − I2

y

I2
x + I2

y

)︄
dIxdIy,

(B5)

where Ii = A2
i + B2

i . By now using the change of variables I ′ = Ix + Iy,∆ = Ix − Iy with
Jacobian 1/2 this can be written as

Ps1(s1) =
π2

2

∫ ∞

0

∫ I′

−I′
exp(−πI ′) δ

(︃
s1 −
∆

I ′

)︃
d∆dI ′

=
π2

2

∫ ∞

0
I ′ exp(−πI ′) dI ′ =

1
2

.
(B6)
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That is, the probability of finding any value for s1 ∈ [−1, 1] is the same. It is easy to
see that the same probabilities apply to s2 and s3 because they can be calculated by a
change of basis of the electric field components that leaves the form of the underlying
probability density (which depends only on intensity) invariant. This result is then just
a way to express that the probability distribution of polarizations over the surface of
the Poincaré sphere is constant. Please note that, although we are using probability
densities, the quantities are being calculated assuming that the field is fully polarized.

Finally, let us also derive a result that is perhaps unsurprising: there is no correlation
between intensity and polarization, as can be seen from the joint probability

PI,s1(I, s1) =

∫
exp[−π(A2

x + B2
x + A2

y + B2
y)] δ

(︄
s1 −

A2
x + B2

x − A2
y − B2

y

A2
x + B2

x + A2
y + B2

y

)︄
× δ[I − (A2

x + B2
x + A2

y + B2
y)] d4E

=
π2

2

∫ ∞

0

∫ I′

−I′
exp(−πI ′) δ(I = I ′)δ

(︃
s1 −
∆

I ′

)︃
δ

(︃
s1 −
∆

I ′

)︃
d∆dI ′

=
π2

2
I exp(−πI) = PI(I)Ps1(s1).

(B7)

The same is true for the other two normalized Stokes parameters.

APPENDIX C: POLARIZATION STATISTICS FOR A SUPERPOSITION OF
NONPARAXIAL PLANE WAVES WITH RANDOMLY CHOSEN POLARIZATIONS
AND PHASES

This appendix gives a generalization of the results in Appendix B to the nonparaxial
regime, and hence uses similar notation. After writing this derivation, the author found
out that Dennis [71] had derived a similar result in unpublished work.

Consider superpositions of large numbers of plane waves propagating in directions that
are uniformly distributed over the sphere of directions, and with polarization distribu-
tions that are uncorrelated to their propagation direction (except for the transversality
condition). In the end, for each real or imaginary part of each of the three Cartesian
components we end up with a superposition of statistically independent contributions
so that the central limit theorem can be used, leading to a probability density

P(Ax, Bx, Ay, By, Az, Bz) = exp[−π(A2
x + B2

x + A2
y + B2

y + A2
z + B2

z )], (C1)

where, as in Appendix B, the Cartesian components of the electric field are separated
in real and imaginary parts as Ei = Ai + iBi, in this case for i = x, y, z. The probability
density for the intensity is now found to be

PI(I) =
π3

2
I2 exp(−πI), (C2)

with average intensity ⟨I⟩ = 3/π. The marginals for the different parameters can be
harder to calculate. In particular, we are interested in the marginal for the magnitude
of the normalized spin density:

|s⃗| =
2
√︁
(AxBy − AyBx)2 + (AyBz − AzBy)2 + (AzBx − AxBz)2

A2
x + B2

x + A2
y + B2

y + A2
z + B2

z
. (C3)

To facilitate the computation, we note that, for any realization, there exists always
a unit vector ŝ such that ŝ · E⃗ = ŝ · (Ax + iBx, Ay + iBy, Az + iBz) = 0. That is, for any
realization the field oscillates tracing an ellipse that is contained within a plane, and ŝ



Tutorial Vol. 15, No. 1 / March 2023 / Advances in Optics and Photonics 225

is the normal to that plane. The superposition over all possible field realizations can
then be separated into the sum over all ŝ of the sum of all the cases where the field
is normal to ŝ. (There are, of course, degenerate cases of linear polarization that are
normal to multiple ŝ, but this is a subset of size zero.) For each subset corresponding
to a given ŝ, the distribution of the field components is still an isotropic Gaussian
on the remaining four free parameters, corresponding to the real and imaginary parts
of the Cartesian components in a reference frame for which ŝ is the direction of one
axis. For this subset, the normalized spin density points in the direction of ŝ and is
mathematically analogous to the magnitude of the normalized Stokes parameter s3 for
paraxial light. As was shown in Appendix B, this parameter has constant probability.
As the same is true for all reference frames, we arrive at the conclusion that

P |s⃗ |(|s⃗|) = 1. (C4)

By using similar arguments, we can also show that there is no correlation between
polarization and intensity.

APPENDIX D: GELL-MANN MATRICES

Similarly to what was done in Appendix A for the Pauli matrices, a very short summary
of the definition and properties of the Gell-Mann matrices is given here. We use a
sign and numbering convention consistent with the article. The eight 3 × 3 Gell-Mann
matrices are

Θ11 =
⎛⎜⎝
1 0 0
0 −1 0
0 0 0

⎞⎟⎠ , Θ12 =
⎛⎜⎜⎝
1/
√

3 0 0
0 1/

√
3 0

0 0 −2/
√

3

⎞⎟⎟⎠ ,

Θ21 =
⎛⎜⎝
0 0 0
0 0 1
0 1 0

⎞⎟⎠ , Θ22 =
⎛⎜⎝
0 0 1
0 0 0
1 0 0

⎞⎟⎠ , Θ23 =
⎛⎜⎝
0 1 0
1 0 0
0 0 0

⎞⎟⎠ ,

Θ31 =
⎛⎜⎝
0 0 0
0 0 −i
0 i 0

⎞⎟⎠ , Θ32 =
⎛⎜⎝

0 0 i
0 0 0
−i 0 0

⎞⎟⎠ , Θ33 =
⎛⎜⎝
0 −i 0
i 0 0
0 0 0

⎞⎟⎠ .

(D1)

These matrices share many of the desirable properties of the Pauli matrices, but not
others, the limitations not being a consequence of their choice but inherent to the space
of 3 × 3 Hermitian matrices.

Like the Pauli matrices, the Gell-Mann matrices are traceless:

Tr(Θmn) = 0, (D2)

but unlike the Pauli matrices, the square of the Gell-Mann matrices do not give a
matrix proportional to the identity but a nonnegative diagonal matrix with trace equal
to two,

Θ
2
11 = Θ

2
23 = Θ

2
33 =

⎛⎜⎝
1 0 0
0 1 0
0 0 0

⎞⎟⎠ , (D3a)

Θ
2
21 = Θ

2
31 =

⎛⎜⎝
0 0 0
0 1 0
0 0 1

⎞⎟⎠ , (D3b)

Θ
2
22 = Θ

2
32 =

⎛⎜⎝
1 0 0
0 0 0
0 0 1

⎞⎟⎠ , (D3c)
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Θ
2
11 =

⎛⎜⎝
1/3 0 0
0 1/3 0
0 0 4/3

⎞⎟⎠ . (D3d)

Unfortunately, there is also no simple generic form for the product of two different
Gell-Mann matrices, but it is easy (if tedious) to show that all these products give
matrices whose trace vanishes:

Tr(ΘmnΘm′n′) = 2δmm′δnn′. (D4)

(It turns out that the commutator of two Gell-Mann matrices does give a result propor-
tional to another Gell-Mann matrix, but this property is not needed for the purposes
of this tutorial.) The Gell-Mann matrices then constitute a complete orthogonal basis
for 3 × 3 Hermitian matrices when supplemented with a 3 × 3 identity matrix,

Θ0 =
⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠ . (D5)

This matrix has trace 3, leading to a slight asymmetry in the expansion of an arbitrary
Hermitian matrix Γ:

Γ = 1
3

S0Θ0 +
1
2

∑︂
m,n

SmnΘmn, (D6)

where the coefficients of the expansion, namely the Stokes–Gell-Mann parameters,
are given by

S0 = Tr(Θ0Γ) = Tr(Γ), Smn = Tr(ΘmnΓ). (D7)

APPENDIX E: AN INEQUALITY RESTRICTING THE PHASES OF THE
CORRELATIONS OF THREE FUNCTIONS

Let us consider the relation between the correlations of three functions f , g, h. In partic-
ular, we seek to determine the range of complex values that the following normalized
product of correlations can take:

Ξ =
⟨f ∗g⟩⟨g∗h⟩⟨h∗f ⟩
⟨|f |2⟩⟨|g|2⟩⟨|h|2⟩

. (E1)

To simplify the problem, consider that these functions are expanded in terms of a
discrete orthonormal basis set. Without loss of generality, we can choose the basis
so that only three basis elements are required, for example by using a Gram–Schmidt
procedure such that the first element is a normalized version of f , the second ele-
ment is a normalized version of the part of g that is orthonormal to the first
element, and the last element is a normalized version of the part of h that is
orthogonal to the first two elements. The expansion coefficients for the normal-
ized versions of f , g, h can then be written as (1, 0, 0), (cos θ1, sin θ1, 0) exp(iγ1), and
[cos θ2, sin θ2 cos ϕ exp(iη), sin θ2 sin ϕ exp(iξ)] exp(iγ2), respectively. Note that, with-
out loss of generality, the phases of the elements were chosen so that the first coefficient
for f is real and the two coefficients for g are in phase. The expression for the product
of correlations then reduces to

Ξ = cos θ1 cos θ2[cos θ1 cos θ2 + sin θ1 sin θ2 cos ϕ exp(iη)]. (E2)

By substituting θ1,2 = θ ± α and using trigonometric identities, Ξ can be simplified to

Ξ =
1
4
(cos 2θ + cos 2α)[(cos 2θ + cos 2α) + (cos 2α − cos 2θ) cos ϕ exp(iη)]

=
1
4
(c1 + c2)[(c1 + c2) + (c2 − c1)c3 exp(iη)],

(E3)
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where c1 = cos 2θ, c2 = cos 2α, and c3 = cos ϕ are all within the range [−1, 1]. As the
three parameters cn and the phase ϕ vary, Ξ spans a region over the complex plane;
the goal of this appendix is to determine the edge of this region. It is straightforward
to see that the edge is reached for extremal values of c3 given the linear dependence
of Ξ on this parameter. Without loss of generality we then chose c3 = 1 given that the
two factors multiplying it can account for sign changes. The real and imaginary parts
of Ξ can then be written as

ΞR =
1
4
(c1 + c2)[(c1 + c2) + (c2 − c1) cos(η)], (E4)

ΞI =
1
4
(c2

2 − c2
1) sin(η). (E5)

We now eliminate η by solving for it in terms of ΞR and substituting the solution into
the expression for ΞI, which gives after some simplification

ΞI = ±
1
2
√︁
[2ΞR − c1(c1 + c2)][c2(c1 + c2) − 2ΞR]. (E6)

The final step is to find the values of c1 and c2 that maximize the value of ΞI for fixed
ΞR. By taking derivatives with respect to both c1 and c2 and setting them to zero, we
see that the only solutions correspond to c1 = −c2, which is indeed stationary but is
clearly not the bound we are looking for as it makes Ξ = 0, and c1 = c2 =

√
ΞR, which

also does not correspond to the solution we are seeking because it makes ΞI = 0. The
solutions must then correspond to points along the edge of the square region occupied
by (c1, c2). We therefore set c2 = 1 and find the value of c1 that maximizes Ξ2

I , with
corresponds to c1 = (4ΞR − 1)/3. The resulting expression for the region inhabitable
by Ξ is that given in Eq. (54). Note that the same boundary would have been found by
setting instead c2 = −1, or by setting c1 = ±1 and maximizing for c2.

APPENDIX F: PROOF THAT RELATION (57) DOES NOT CAUSE RESTRICTIONS
FOR |S⃗ | ≤ 1/2

We now show that the inequality in (57) only causes restrictions for |s⃗|>1/2. The key
for this proof is to note that the inequality causes restrictions in the phase of Ξ only
for |Ξ| ≥ 1/8. Recall from Eq. (56) that

|Ξ| =
3
√

3h1h2h3

1 − 3s2
1 + 2s3

1 sin 3α
. (F1)

It is easy to see also that P2
I = |s⃗|2 = s2

1 + h2
1 + h2

2 + h2
3. We now seek for the values of

these parameters that maximize |Ξ| for fixed PI = 1/2 to show that for these values |Ξ|
remains at or below 1/8. Note that h1h2h3 is maximized for fixed h2

1 + h2
2 + h2

3 when all
hm are equal. Let us then choose hm = h, and set the numerator of the right-hand side of
Eq. (F1) to 3

√
3h3. We can then set P2

S = s2
1 + 3h2 = 1/4, solve for h and substitute the

result in Eq. (F1), which is then a function of only s1 and α. The resulting expression
for |Ξ| is maximized for s1 = 0, for which it gives precisely |Ξ| = 1/8. Therefore, for
any state for which |s⃗| ≤ 1/2, |Ξ| ≤ 1/8.
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