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Abstract: The present paper deals with both the modeling and the dynamic control of a solar hybrid
thermochemical reactor designed to produce syngas through the high-temperature steam gasification
of biomass. First, a model of the reactor based on the thermodynamic equilibrium is presented. The
Cantera toolbox is used. Then, a model-based predictive controller (MPC) is proposed with the aim
of maintaining the reactor’s temperature at its nominal value, thus preserving the reactor’s stability.
This is completed by adjusting the mirrors’ defocusing factor or burning a part of the biomass to
compensate for variations of direct normal irradiance (DNI) round the clock. This controller is
compared to a reference controller, which is defined as a combination of a rule-based controller and
an adaptive proportional–integral–derivative (PID) controller with optimized gains. The robustness
of the MPC controller to forecast errors is also studied by testing different DNI forecasts: perfect
forecasts, smart persistence forecasts and image-based forecasts. Because of a high optimization
time, the Cantera function is replaced with a 2D interpolation function. The results show that (1) the
developed MPC controller outperforms the reference controller, (2) the integration of image-based
DNI forecasts produces lower root mean squared error (RMSE) values, and (3) the optimization time
is significantly reduced thanks to the proposed interpolation function.

Keywords: solar hybrid thermochemical reactor; syngas production; concentrated solar energy;
direct normal irradiance; model-based predictive control

1. Introduction

The present paper explores both the modeling and dynamic control of a solar hybrid
thermochemical reactor dedicated to the high-temperature steam gasification of biomass. Solar
energy is concentrated with the help of tracking heliostats to heat up the solar reactor which
produces hydrogen through biomass gasification. Solar gasifiers have been experimentally
studied since the early 1980s, with the works of Gregg et al. [1] and Taylor et al. [2] about
packed-bed and fluidized-bed technologies. Interest in solar thermochemistry has grown with
climate change considerations [3], especially since the mid-2000s, leading to major innovative
design investigations, as reviewed in Puig-Arnavat et al. [4]. More recent works dealing with
the separation of oxidation and reduction zones for thermodynamic-cycle-based operation [5] or
the separation of gasification and combustion zones for hybrid solar–autothermal operation [6]
in double-loop fluidized beds are reported in the literature. A solar spouted-bed gasifier was
conceived by Bellouard et al. [7], and its hybrid solar–autothermal operation was investigated
successively by Boujjat et al. [8] and Curcio et al. [9]. Other experimental works have demon-
strated the feasibility of such hybrid operation [10,11], but the question of the dynamic control
of gasifiers is still open.
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Due to unavoidable variations of direct normal irradiance (DNI), which is the direct
irradiance received on a plane normal to the Sun [12]—DNI refers to photons that did not
interact with the atmosphere on their way to the observer—the design of concentrated solar
systems had to come with the development of control strategies. A great variety of control
algorithms have been investigated in the years 1980 to 2000, essentially for the thermal
regulation of solar collectors. This application implies controlling the mass flow rate of the
heat transfer fluid in order to regulate the fluid’s temperature at the collector’s outlet. For
instance, back in 1981, Maffezzoni and Parigi [13] have shown the advantage of dynamics
compensator-based systems over proportional–integral–derivative (PID) controllers for
the operation of a solar steam generator. Later advances are those of Camacho et al. [14],
who monitored an oil-heating distributed collector through a self-tuning PID controller,
and those of Rubio et al. [15], who implemented a fuzzy controller in the same plant. Non-
linear control has then been explored in the late 1990s on the basis of simplified non-linear
physical models [16] or black-box models [17]. Reviews of those early developments are
found in [18,19], pointing out the importance of non-linear, high-order, model-based control
methods over linearized PI- or PID-based methods when applicable.

Scientific research in the field of solar thermochemical processes, which brings an
additional complexity through complex chemical mechanisms, is still rather immature.
Multiple outcomes can be of interest, such as the reactor’s temperature, efficiency of the
energy conversion, and the syngas production rates and yields. Thanks to a feedforward–
feedback controller and a model linearized around a nominal operating point, optimized
energy efficiency and product quality through the day are achieved by Petrasch et al. [20].
The implementation of a model-based predictive controller (MPC) to manage a solar–
thermal reactor was investigated by Saade et al. [21], with the goal of maintaining constant
the CO/CO2 ratio. As an interesting result, the proposed controller is more efficient in
rejecting DNI disturbances than a multi-loop approach. In addition, an attempt to provide
image-based DNI forecasts, using sky images, is recorded in this work. However, the
proposed forecasting model is not able to outperform the persistence model. That same
year, Muroyama et al. [22] proposed a dynamic regulation of the reactor’s temperature
through the injection of oxygen and additional feedstock, aiming at triggering in situ
combustion under low DNI. A PI-based system was implemented, using a linearized model
of the gasifier. This kind of dynamic control was also considered in Boujjat et al. [23],
with the dynamic modeling of an extrapolated spouted-bed gasifier continuously kept at
1200 ◦C through day and night operation.

The PROMES-CNRS laboratory possesses a solar reactor prototype in Odeillo (France),
which is designed with the help of CEA-LITEN (Figure 1). In the framework of the Horizon
2020 project SFERA (Solar Facilities for the European Research Area) III, the dynamic
control of the upscaled reactor is approached. An MPC controller is developed with the
aim of maintaining the reactor’s temperature at its nominal value, thus ensuring its stability.
This is completed by adjusting the mirrors’ defocusing factor or by burning a part of the
biomass to compensate for DNI variations round the clock. The MPC controller is compared
to a reference controller, which is defined as a combination of a rule-based controller and
an adaptive PID controller with optimized gains.
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Figure 1. PROMES-CNRS’s solar reactor prototype (Odeillo, France).

2. Horizon 2020 Project SFERA III

The duration of SFERA III, which is funded under the Research Infrastructure Program,
is five years, starting from January 2019 and ending by December 2023. SFERA III is a
collaboration of 15 partners from nine EU countries aiming at reinforcing the sustainability
of the European advanced CSP (concentrating solar power) research infrastructure activities.
It addresses scientific challenges and integrated research activities in the field of CSP to
provide the research and development community with a new level of high-quality services.
The tasks are grouped into 13 work packages (WPs) categorized into three main activities:

• networking activities to improve the cooperation between the research infrastructures,
the scientific community, industries and other stakeholders;

• transnational access activities aiming at providing access to all European researchers
from both academia and industry to singular scientific and technological solar re-
search infrastructures;

• joint research activities to improve the infrastructure’s integrated services.

The work presented in this paper, which contributes to the WP 10 of the project, aims
at conciliating the hybrid solar–autothermal control strategy of a gasifier with the efficient
implementation of an MPC-based approach. Several strategies can be planned, such as
maximizing syngas production or optimizing operating conditions for enhanced reactor
stability. However, in this work and based on the developed reactor model (see Section 3),
the goal is to assess optimal conditions for the chemical reactions taking place in the reactor,
thus ensuring its stability. The proposed MPC controller acts on the oxygen flow rate and the
mirrors’ defocusing factor in order to maintain the reactor’s temperature at its nominal value,
despite a varying DNI. The control action aims at minimizing oxygen consumption while
taking advantage of concentrated solar energy as much as possible. The developed reactor
model is inspired by the work of Boujjat et al. [23], who computed the production of a solar
biomass gasifier over one year to assess its allothermal-autothermal hybridization. In addition,
for the first time, DNI forecasts—perfect forecasts, smart persistence forecasts or image-based
forecasts [24]—are part of the control framework, in order to achieve better smoothing of the
disturbances through the day, thus taking full advantage of a predictive approach.

3. Modeling of the Solar Reactor
3.1. Description of the Model

The gasifier is designed to be heated by both concentrated solar energy (allothermal
heating) and in situ combustion (autothermal heating) [7,8], enabling a continuous conver-
sion of biomass round the clock. For a biomass flow rate maintained constant at 1.465 t h−1,
the reactor parameters are set so that the nominal temperature of 1473 K is reached for a
DNI value equal to 800 W m−2, which corresponds to around 80% of the maximum DNI
obtained during a year. Two chemical mechanisms can therefore occur simultaneously.



Clean Technol. 2023, 5 332

• When no oxygen is injected—DNI is higher than 800 Wm−2—only the endothermic
gasification of biomass occurs, with an enthalpy change ∆Ho

r = 143 kJ mol−1. This
reaction is as follows:

CH1.66O0.69 + 0.31 H2O −−→ CO + 1.14 H2 (1)

• When oxygen is injected—DNI is lower than 800 W m−2—combustion occurs in the cav-
ity along with gasification, with an enthalpy change ∆Ho

r = −452 kJ mol−1. Combustion
of the biomass resource—the reaction is exothermic—can be described as follows:

CH1.66O0.69 + 1.07 O2 −−→ CO2 + 0.83 H2 (2)

These reactions actually involve numerous, complex sub-mechanisms [8]. In this work,
thermodynamic equilibrium calculations are therefore employed to deduce the reactor’s
chemical outcome and the related global reaction enthalpy (Qreaction). The open-source
software Cantera [25] version 2.5.1 is used in this work. These calculations are coupled
with unsteady thermal balances on the reactor walls (QSun, Qradloss and Qconloss):

Qreaction =
nr
∑

i=1
f in
i hi(Tamb)−

np

∑
i=1

f out
i hi(T)

QSun = D ·C · ηopt · Aaperture ·DNI
Qradloss = σ · Aaperture ·

(
T4 − T4

amb
)

Qconloss = (T − Tamb) R

(3)

where hi is the enthalpy of reactants and products, f in
i and f out

i are the flow rates of reactants
and products, respectively, nr and np are the number of reactants and products, respectively,
D is the defocusing factor—D ranges from 0 (all solar flux is cut) to 1 (no defocusing of the
solar field), Qreaction is the power gained from the chemical reaction—Qreaction is negative
(respectively positive) when the reaction is globally endothermal (respectively exothermal),
QSun is the power gained from the Sun, Qradloss is the power lost by radiation, Qconloss is
the power lost by conduction, m is the mass of the reactor walls, Cp,w is the specific heat of
the reactor walls, C is the concentration factor, ηopt is the optical efficiency, Aaperture is the
aperture’s area, σ is the Stefan–Boltzmann constant, Tamb is the ambient temperature, and
R is the globalized conduction thermal resistance.

The solar power input is proportional to DNI: it depends on the defocusing factor D,
the concentration factor C, the optical efficiency ηopt, and the cavity aperture area Aaperture.
This aperture is minimized so that the radiation losses are as low as possible. A global
conduction loss is modeled as well to account for heat transfer through the insulation.
Finally, the Qreaction term represents the power required to convert the cold reactants into a
syngas at the reactor’s temperature. It is computed via a heterogeneous thermodynamic
equilibrium between a pure solid carbon phase and a gaseous phase [26]. The solid phase is
modeled as graphite carbon, and it is supposed to be fully consumed at over-stoichiometric
H2O injection rates. However, it should be mentioned that incomplete conversion may
still occur at temperatures lower than 800 ◦C, whatever the quantity of injected steam [27].
The gas phase is modeled as a mixture of H2, CO, CO2, CH4, H2O, O2 and Ar, whose
properties are given by the NASA GRI-MECH 3.0 database [28]. The elemental chemical
composition of the mixture is determined by the wood input flow rate, its moisture fraction
(8.9% in weight), and its molecular composition (CH1.66O0.69, on a dry basis). The high
heating value (HHV) of the reference wood sample, measured by calorimetry, is also
provided to compute the corresponding standard enthalpy of formation, enabling the
calculation of the inlet flow enthalpy. The outlet flow enthalpy at the reactor’s temperature
is directly given by the Cantera function. All these heat transfers are applied to the reactor
wall and determine the impact of both DNI variations and chemical inputs on the reactor’s
temperature. Thus, the reactor’s temperature can be modeled through the following first-
order non-linear ordinary differential which represents the heat balance of the reactor:
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{
m ·Cp,w · dT

dt = Qre

(
f in
steam, f in

biomass, f in
oxygen, T

)
+ Qnet

Qnet = QSun −Qradloss −Qconloss
(4)

where Qnet results from the power gained from the Sun and the power lost due to radiation
and conduction.

Note that above a DNI value of 800 W m−2, a reduction of the input solar power is
necessary to maintain the reactor’s temperature at 1473 K. As a result, D is introduced.
Below this DNI value, oxygen is added to heat the reactor thanks to in situ combustion,
which directly alters the syngas composition by shifting the thermodynamic equilibrium.
Finally, when DNI is lower than 150 W m−2, the reactor’s aperture is closed to limit the
radiation loss.

3.2. Simulation of the Model

As shown in the previous section, the reactor’s temperature T is modeled by a non-
linear ordinary differential equation. DNI and the reactants’ flow rates (biomass, oxygen,
and steam) are the model inputs. In this section of the paper, the model is simulated by
solving this differential equation according to different scenarios, with varying DNI profiles
and reactants’ flow rates.

3.2.1. Without Oxygen Injection

First, with a constant biomass flow rate f in
biomass of 1.465 t h−1 and starting from an initial

reactor’s temperature T of 1073 K, the model’s response to three DNI steps of different am-
plitudes is simulated (from 0 to 700 Wm−2, 800 Wm−2 and 900 Wm−2, respectively). As can
be seen in Figure 2, when DNI = 800 Wm−2, the steady-state temperature is equal to 1473 K,
which is the reactor’s nominal temperature. For DNI = 700 Wm−2, this nominal temperature is
not reached: oxygen should be injected to compensate for the lack of power. On the contrary,
when DNI = 900 Wm−2, the temperature exceeds this nominal temperature: in this case, the
concentration mirrors should be defocused to decrease the reactor’s temperature. The static
gain, the time constant τ (i.e., the time needed to reach 63% of the steady-state value), and the
rise time Tr (i.e., the time needed to rise from 10 to 90% of the total variation) all depend on
the amplitude of the DNI step. The estimated value of these three parameters can be found in
Table 1: with higher DNI values, the static gain increases, while τ and Tr decrease, rendering
the system faster. This means that not only does the solar reactor reach higher temperatures
with higher DNI values, but it also does so faster. This change in the system dynamics must be
taken into consideration for an accurate reactor’s temperature control.

Figure 2. Evolution of the reactor’s temperature in response to various DNI steps (the biomass flow
rate is set to f in

biomass = 1.465 th−1 and the initial temperature is 1073 K).
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Table 1. First-order dynamic model corresponding to the temperature curves shown in Figure 2.

DNI [Wm−2] Static Gain [-] τ [min] Tr [min]

700 0.3 31.5 69.3
800 0.5 26.3 58
900 0.6 23 50.6

The power balance corresponding to the steady state of the three considered DNI steps
is given in Figure 3. When DNI increases, the conduction loss remains approximatively the
same, while the radiation loss increases and the power of the chemical reaction decreases.
The effect of sudden DNI variations on the reactor’s temperature—with nominal design
values, i.e., T = 1473 K, DNI = 800 Wm−2, and f in

biomass = 1.465 th−1—is shown in Figure 4.
The first variation—a DNI drop of 200 Wm−2—causes the reactor’s temperature to drop by
13.13 K; the reactor’s nominal temperature is reached again after approximatively 90 min.
The second variation—a DNI rise of 200 Wm−2—increases the reactor’s temperature by
13.43 K. This simulation shows that sudden DNI variations have a strong effect on the
reactor’s temperature, which could be compensated depending on the reactor’s input, if
accurate DNI forecasts are provided to the controller. In addition, the long duration before
the reactor’s temperature reaches its nominal value after the DNI pulses can be minimized
by injecting oxygen, which can help increase the reactor’s temperature faster, as will be
shown in Section 3.2.2.

Finally, the evolution of the reactor’s temperature against different biomass flow rates
is shown in Figure 5. Here, DNI is set to 900 W m−2. It can be observed that as the biomass
flow rate increases, the temperature decreases and more syngas is produced. However, it
should be mentioned that the biomass flow rate cannot be a control input, since the model
used in this work does not take the inertia of the gasification reaction into consideration.

Figure 3. Power balance corresponding to the steady state of the DNI steps in Figure 2.

Figure 4. Reactor’s temperature in response to sudden DNI variations with nominal design values
(T = 1473 K, DNI = 800 W m−2 and f in

biomass = 1.465 t h−1).
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Figure 5. Evolution of the reactor’s temperature for various biomass flow rates when DNI is equal to
900 W m−2 and corresponding syngas production (dashed line: H2; solid line: H2 + CO).

3.2.2. With Oxygen Injection

The reactor’s temperature can be decreased by either increasing the biomass flow rate
or by varying the energy received from the Sun, using the defocusing factor D. However, in
case of DNI deficit (less than 800 W m−2), to increase the temperature without decreasing
the biomass flow rate, oxygen has to be injected to burn the biomass. Since the burnt
biomass is not used in the gasification process, less syngas is produced, as shown in
Figure 6. In addition, the results of the simulation presented in Figure 7 show that oxygen
injection can increase the reactor’s temperature rapidly. For DNI = 800 W m−2, the reactor
crossed the 1473 K level after only 4 min with f in

oxygen = 2 t h−1. As shown in Figure 4, this
input can correct the reactor’s temperature rapidly in case of sudden DNI deficit. As shown
in Figure 8, when DNI < 150 W m−2, the reactor’s aperture is closed, and its temperature
can be maintained by injecting 0.88 t h−1 of oxygen.

Figure 6. Syngas (H2 + CO) production for various oxygen flow rates and DNI levels.

Figure 7. Evolution of the reactor’s temperature for various oxygen flow rates and DNI levels
( f in

biomass = 1.465 t h−1 and the initial temperature is 1073 K).
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Figure 8. Evolution of the reactor’s temperature in case of a closed aperture and an oxygen flow rate
f in
oxygen = 0.88 t h−1 ( f in

biomass = 1.465 t h−1, and the initial temperature is 1073 K).

4. Control of the Solar Reactor

In this section, the reference controller, the MPC controller and the DNI forecast model
are presented. The following discretized reactor modelM is used:

T(k + 1) =M(D(k), f in
oxygen(k), T(k)) (3)

with t = k · Ts (Ts = 30 s is the sampling time). The biomass flow rate f in
biomass and the

steam flow rate f in
steam are fixed to their nominal design values of 1.465 t h−1 and 0.26 t h−1,

respectively. The goal is to maintain the reactor’s temperature at (1473± 15)K in order to
ensure its stability. The control variables are the oxygen flow rate f in

oxygen and the defocusing
factor D. In case of a DNI deficit (DNI 6 800 W m−2), oxygen can be injected to increase the
reactor’s temperature by burning biomass. In case of an excess of DNI (DNI > 800 W m−2),
the solar field can be defocused to compensate for this excess.

4.1. Reference (PID/RB) Controller

The reference controller is a combination of an adaptive PID controller with optimized
gains (Section 4.1.1) and a rule-based controller (Section 4.1.2) (Figure 9).

Figure 9. The reference controller, defined as a combination of an adaptive PID controller with
optimized gains (for the oxygen flow rate f in

oxygen) and a rule-based controller (for the defocusing
factor D).

4.1.1. Adaptive PID Controller for the Oxygen Flow Rate

The oxygen flow rate f in
oxygen is managed by an adaptive PID controller with optimized

gains. An optimized adaptive PID controller is implemented to perform a closed loop
control of the oxygen injection. It can be described as follows:

f in
oxygen(k) = Kp · e(k) + Ki ·

k

∑
i=1

e(i) + Kd ·
e(k)− e(k− 1)

Ts
with e(k) = Sp − T(k) (4)

where Sp is the temperature setpoint, and T is the reactor’s temperature, and [29]:
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• Kp is the proportional gain, helping the controller reach the setpoint faster, with the
risk of overshooting; a small value will result in an important steady-state error;

• Ki is the integral gain, helping to eliminate the steady-state error; a large value can
result in a longer settling time and higher oscillations;

• Kd is the derivative gain, generating a fast response and a stabilizing effect in dy-
namic regime.

An adaptive PID controller, where gains change with the measured DNI, is imple-
mented. This choice is motivated by the fact that the reactor’s functioning depends on the
DNI. Three intervals of DNI values are considered.

• DNI < 150 W m−2: The reactor’s aperture is closed (Aaperture = 0) to limit radiative
losses, which affects the thermal equilibrium of the system. The PID controller man-
ages the system by injecting a minimum of 0.88 th−1 of oxygen.

• 150 W m−2 6 DNI 6 800 W m−2: The reactor’s aperture is open, and the amount of
DNI received is not sufficient to maintain the reactor’s temperature without oxygen
injection. The PID controller determines the oxygen flow rate allowing to minimize
the error between the setpoint and the measured temperature.

• DNI > 800 W m−2: The excess of DNI forces the PID controller to recommend a
minimal oxygen flow rate allowing the reactor to cool down and play on defocusing if
the reactor’s temperature is higher than the setpoint.

For each interval of DNI values, the optimized PID gains are obtained as follows:

(Kp, Ki, Kd) = argmin
n

∑
k=1

(Sp − T(k))2 (5)

where Kp, Ki and Kd are the PID gains, Sp is the temperature setpoint, T is the reactor’s
temperature, and n is the number of time steps.

This tuning strategy, targeting a certain performance described by Equation (5), is con-
sidered to be the optimal approach to design a PID controller [30]. The optimized PID gains
are given in Table 2. Note that the gains are significantly lower when DNI > 800 W m−2,
which is explained by the necessity to inject less oxygen in this case, to allow the reactor to
cool down. In addition, in all cases, Ki is significantly lower than the other gains except
when DNI > 800 W m−2, where the PID gains should be low to inject oxygen with a mini-
mal flow rate, which permits the solar reactor to cool down if needed. This means that the
optimizer found that the optimal performance, based on the provided objective function,
does not need the integral effect.

Table 2. Optimized gains of the adaptive PID controller.

DNI < 150 Wm−2 150 Wm−2 6 DNI 6 800 Wm−2 DNI > 800 Wm−2

Kp 1.6 × 10−2 3.4 × 10−2 1.5 × 10−3

Ki 0 9.0 × 10−4 1.5 × 10−4

Kd 1.2 × 10−2 2.5 × 10−2 1.0 × 10−5

4.1.2. Rule-Based Controller for the Defocusing Factor

The defocusing factor D is governed by a rule-based (RB) controller, which is defined
as follows:

• if DNI(k) > 800 W m−2 and T(k) > 1473 K, D(k) = 800/DNI(k);
• if DNI(k) 6 800 Wm−2 and T(k) < 1473 K, D(k) = 1.

In the first case, solar energy utilization is maximized, while in the second case, there is an
excess of DNI and, provided the solar reactor is at its nominal temperature, defocusing is
used to supply a power equivalent to the one obtained when DNI = 800 Wm−2.
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4.2. MPC Controller

The proposed MPC controller can find the optimal sequence of inputs based on both
the model of the reactor (see Section 3) and the provided DNI forecasts (see Section 4.3).
Of course, this is a huge advantage for the problem at hand, since the solar reactor is very
sensitive to DNI variations (the MPC controller aims at compensating for such variations).
In addition, based on the required performance and constraints, the MPC controller can
find the optimal combination of multiple inputs simultaneously. The objective is still
to maintain the reactor’s temperature at 1473 K, thus preserving the reactor’s stability,
while taking advantage of the available solar energy and minimizing oxygen consumption.
The controller’s structure is depicted by Figure 10. Let n be the number of time steps in
the prediction horizon of the controller (which is less than 2.5 min). At each of those n
time steps, the optimization problem formulated below is solved to find the optimal inputs
D ∈ Rn and f in

oxygen ∈ Rn [31]:

(D ?, f in ?
oxygen) = argmin

n

∑
i=1

α
(
Sp − T(k + i)

)2
+ β

(
f in
oxygen(k + i)

)2 − γ
(

D(k + i)
)2

(6)

where T(k + 1) =M(D(k), f in
oxygen(k), T(k)), 0 6 D(k + i) 6 1 and 0 6 f in

oxygen(k + i) 6 2.
The goal here is to make a trade-off between following the temperature setpoint,

minimizing oxygen consumption, and maximizing the use of solar energy. This trade-off is
determined by the weights α, β, and γ. These weights are chosen so that the minimization
of the oxygen consumption (determined by β) and the maximization of the exploited solar
energy (determined by γ) do not degrade the temperature tracking performance severely.
Here, α = 5, β = 5 and γ = 10. The higher weight on the defocusing factor D ensures that
the reactor receives the highest possible solar energy while using as little oxygen as possible.
This performance comes at the cost of a higher temperature-tracking error. DNI forecasts
are needed to solve the optimization problem (see Section 4.3). The optimizer used is the
trust-region constrained algorithm, which is able to solve non-linear optimization problems
and is highly robust [32].

Figure 10. The MPC controller. The optimizer used is the trust-region constrained algorithm [32].

4.3. DNI Forecasting

Several forecasting approaches can be considered, depending on the required forecast
horizon. Statistical models, which are trained on a dataset of past DNI observations to learn
patterns, can be considered [33–36], as well as image-based models, where sky images are
processed to extract information related to the sky situation that will affect DNI [37–41].
In this work, DNI forecasts must be provided to the MPC controller for every time step
in its prediction horizon, which is very short (less than 2.5 min). For such short forecast
horizons, persistence models score very low forecast errors. However, they fail to predict
DNI ramps, which are very influential, as shown in Figure 4. Thus, a model scoring low
forecast errors and capable of forecasting most DNI ramps is needed. This eliminates
models based on past DNI observations only and justifies the integration of ground-based
sky images with high spatial–temporal resolution. Therefore, in this work, the proposed
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model relies on a hybridization between statistical and image-based models. The forecast
horizon H = h · Ts, with Ts = 30 s. To evaluate the robustness of the MPC controller to
forecast errors, perfect forecasts and smart persistence forecasts are also considered.

4.3.1. Database

The database (Odeillo) used in this study consists of sky images, provided by the
new-generation digital imaging system developed by PROMECA with the help of PROMES-
CNRS (Figure 11), and DNI measurements (Ts = 30 s) obtained using a pyrheliometer Kipp
& Zonen CH1 and a low-voltage high-precision industrial Modbus data acquisition module
Gantner A4. Sun tracking is made in open loop by a 2-axis robot Kipp & Zonen 2 GD.
There are no missing data (373 days): 128 clear-sky days (34.4%), 49 overcast days (13.1%),
and 196 days with mixed situations (52.5%) (Figure 12). Mixed situations are the most
difficult situations to handle because of the highly variable atmospheric conditions.

Figure 11. Left: The sky imager installed at the PROMES-CNRS laboratory in Odeillo (France). Right:
A high-dynamic-range (HDR) sky image, without correction of the distortion.

Figure 12. High-dynamic-range (HDR) sky images and associated sky situations: clear sky, overcast
and mixed. Days with mixed situations can be partially clear sky or partially overcast.
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The sky imager is a continuously operating digital imaging system designed to capture
sky images with a fisheye lens (the field of view is 180◦). Its main hardware/software
features are high-end color CMOS (complementary metal oxide semiconductor) 1.5 MP
sensor and high dynamic range (HDR) imaging. HDR images, obtained every 30 s, are key
for the efficient detection of clouds, in particular in the circumsolar area, where pixel values
are saturated in low dynamic range (LDR) images, even though it contains important
information for very short-term DNI forecasting.

4.3.2. Smart Persistence Forecasts

DNI can be split into two quantities: the clear-sky DNI—DNICS in the sequel—and
the clear-sky index Kc. DNICS is the solar power received at the ground level per unit of
area, at a specific location, when there is no cloud between the Sun and the observer. The
clear-sky index is derived from the attenuation of DNI caused by sun-blocking clouds. So:

DNI(k) = Kc(k) ·DNICS(k)⇐⇒ Kc(k) =
DNI(k)

DNICS(k)
(7)

The smart persistence model assumes that the clear-sky index Kc remains constant
over the forecast horizon, i.e., between time k and time k + h:

D̂NI(k + h) = Kc(k) · D̂NICS(k + h) =
DNI(k)

DNICS(k)
· D̂NICS(k + h) (8)

The smart persistence model thus needs clear-sky DNI forecasts. In this work, the
model developed by Ineichen and Perez [42] is used with TLI forecast using the method
proposed by Nou et al. [43]:

D̂NICS(k + h) = b · I0(k + h) · e−0.09m(k+h)·(TLI(k)−1) (9)

where b is a function of the altitude of the considered site, I0 is the extraterrestrial solar
irradiance, m is the relative optical air mass and TLI is the Linke turbidity coefficient.

4.3.3. Image-Based Forecasts

The proposed image-based model, inspired by the forecast model developed by
Karout et al. [24], is a hybridization between the persistence model and an LSTM model.
Its global architecture is shown in Figure 13. It processes HDR images and DNI mea-
surements to forecast sudden DNI variations (DNI ramps), and it can be described as
follows.

1. An HDR image is processed to detect clouds using a segmentation model and estimate
their motion with the aim of localizing the part of the image that will interact with the
Sun at time k + h. This region is called the region of interest (ROI) in the sequel.

2. The cloud fraction (CF) in the ROI (CFROIh ) is calculated. CFROIh is defined as the
ratio of the number of cloud pixels to the number of clear-sky pixels in the ROI.

3. The model decides if a ramp will occur by analyzing the variation of CFROIh between
two consecutive time steps. If this variation is greater than 3% of the maximum value
of CFROIH , then a ramp is expected. This value is chosen to avoid ramp detection due
to noise in the CFROIH signal. This approach also determines the ramp’s direction,
since an increase in CFROIH indicates a possible decrease in DNI and vice versa.

4. The absolute value of the ramp magnitude RM is forecast using a long short-term
memory (LSTM) network (see Table 3 for the optimal LSTM architecture, according to
the forecast horizon H, which is determined using an optimization framework [44]).

5. The DNI forecast at time k + h is obtained by a persistence (if no ramp is expected) or
a persistence to which the ramp magnitude RM is added (if a ramp is expected):

D̂NI(k + h) = DNI(k) + δ(k) · R̂M(k) (10)
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where DNI is the measured DNI, R̂M is the forecast ramp magnitude and δ is calcu-
lated as follows:

δ(k) =


1, if ∆CFROIH (k) < −7.65

−1, if ∆CFROIH (k) > 7.65

0, else

(11)

with ∆CFROIH (k) = CFROIH (k)−CFROIH (k− 1).

Figure 13. Global architecture of the proposed forecast model, showing two main blocks: image
processing and DNI forecasting. CFROIH is the cloud fraction in the ROI. The interested reader is
referred to [24] for details about the image processing block.

Table 3. Optimal LSTM architecture for each forecast horizon H.

H [min] Time Support (Observations)
LSTM Layers (Units) Fully Connected Layers (Units)

1st 2nd 3rd 4th 1st 2nd 3rd

0.5 8 179 229 204 104 20 5 5
1 8 254 204 219 229 20 5 ∅

1.5 8 229 54 204 179 5 20 20
2 8 254 104 79 229 5 20 20

2.5 8 154 179 104 4 5 5 ∅

4.3.4. Performance Criteria

Four performance criteria are used here to evaluate the models:

• The root mean squared error (RMSE) is calculated as follows:

RMSE =

√√√√ 1
nobs

nobs

∑
k=1

(
DNI(k)− D̂NI(k)

)2
(12)

where nobs is the number of observations, DNI is the measured DNI and D̂NI is the
predicted DNI.

• The skill factor (SF) is employed to evaluate the models’ performance versus the smart
persistence model (a positive skill factor means that the proposed model outperforms
the smart persistence model). It is defined as follows:

SF = 100 ·
(

1− RMSEM

RMSESPM

)
(13)

where RMSEM and RMSESPM are the nRMSE of the evaluated model and the smart
persistence model, respectively.

• The mean average error (MAE) is calculated as follows:

MAE =
1

nobs

nobs

∑
k=1

(
DNI(k)− D̂NI(k)

)
(14)

where nobs is the number of observations, DNI is the measured DNI and D̂NI is the
forecast DNI.
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• Finally, a criteria called ramp detection index (RDI) is used [45]. It is designed to
evaluate the ability of the model to predict ramps, which have an important impact
on CSP plants: predicting them can thus be helpful in the control process. First, the
ramp magnitude (RM) is calculated as:

RM(k) =
|DNI(k)−DNI(k + h)|

D̂NICS(k)
(15)

where D̂NICS is the estimated clear-sky DNI.
Usually, high-magnitude DNI ramps are defined by RM(k) > 0.5 and moderate DNI
ramps are defined by 0.3 < RM(k) < 0.5. A ramp detection (also called a hit) is
achieved if the two following conditions are satisfied:

RM(k) > 0.15 (16)

sign(DNI(k)− D̂NI(k + h)) = sign(DNI(k)−DNI(k + h)) (17)

where D̂NI and DNI are the forecast and measured DNI, respectively.
The chosen RM value represents ramps with high occurrence probability, thus increas-
ing the challenge of scoring a high RDI by increasing the number of considered ramps
in the RDI calculation. The ramp is not detected (a miss) if Equation (16) is met while
Equation (17) is not. Finally, the ramp detection index is calculated as follows:

RDI =
Nhit

Nhit + Nmiss
(18)

where Nhit and Nmiss are the numbers of hits and misses, respectively.

4.3.5. Forecasting Results

The LSTM neural networks (see Table 3) are trained and validated using 17 days of
mixed situations (representing 20,400 observations) with various DNI profiles: 12 days
(70% of the dataset) are used for training and 5 days (30% of the dataset) are used for
validation. In addition, 7 days with clear-sky, overcast, and mixed situations (see Figure 12)
are used to test the model. The loss function is the mean average error (MAE), which
proved to be a better choice than other possible loss functions for this application. The
image-based model performs well on the validation dataset, which means that it did not
overfit. The image-based model outperforms the smart persistence model on all days in the
test dataset for each forecast horizon (Figure 14). As expected, RMSE and MAE increase
as the forecast horizon increases, since forecasting becomes more and more difficult. In
addition, SF is positive for all forecast horizons. Regarding the ability to detect ramps, RDI
is comprised between 55% and 65%. This result is made possible by integrating sky images
in the model.

Figure 14. Image-based model results: RMSE, SF, MAE, and RDI as a function of the forecast horizon
H (test phase).

5. Control Results

In this section, the performance criteria and the control results obtained when per-
forming a 7-day simulation are presented. A comparative study is conducted to shed light,
on the one hand, on the differences between the developed controllers and, on the other
hand, on how the DNI forecast uncertainties impact the MPC controller performance, by
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testing three different types of forecasts: perfect forecasts, smart persistence forecasts and
the proposed image-based forecasts. Then, a case study is presented to go in depth into the
behavior of the developed controllers.

5.1. Performance Criteria

The controllers’ performance is evaluated by calculating the root mean squared error
(RMSE), the amount of oxygen injected in the reactor (mO2), and the average temperature
variation (ATV), which estimates the magnitude of temperature variation inside the reactor
(except for DNI < 150 W m−2, since in this case, the reactor is closed and there is no power
loss; thus, the temperature can be easily maintained by injecting 0.88 t h−1 of oxygen):

RMSE =

√
1
n

n

∑
k=1

(
Sp − T(k)

)2 (19)

mO2 =
n

∑
k=1

f in
oxygen(k) · Ts (20)

ATV =
1
n

n

∑
k=1
|T(k)− T(k− 1)| (21)

since a stable reactor requires minimal temperature variations, lower ATV is recommended.
Based on the performed simulation, a comparative study is carried out to highlight the
superior performance of the MPC controller and its robustness to forecast uncertainties.
Then, a case study is presented to highlight the different behaviors of the developed
controllers. The computer used for the simulation is equipped with 32 GB of rapid access
memory (RAM), an Intel Xeon E-2146G @3.50GHz as the central processing unit (CPU),
and a NVIDIA Quadro P620 18 GB as the graphical processing unit (GPU).

5.2. Comparative Study

The controllers are tested on seven days from the test dataset. These days are charac-
terized by important DNI variations in the three considered intervals (DNI < 150 W m−2,
150 W m−2 6 DNI 6 800 W m−2 and DNI > 800 W m−2). Of course, cases with important
DNI variations are more challenging in terms of DNI forecasting or controlling the reac-
tor’s temperature. It should be mentioned that night-time periods are not included, since
they are identical to the case DNI < 150 W m−2 where injecting 0.88 t h−1 is sufficient to
maintain the reactor’s temperature perfectly. The control inputs are initialized as follows:

• D(k + i) = 1 ∀i ∈ J1; nK. This initialization is chosen so that the optimal input found
is near 1, which means solar energy is used at its best;

• f in
oxygen(k + i) = 0.5 ∀i ∈ J1; nK. This initialization is chosen so that the optimizer con-

verges fast to the optimal solution, which is around 0.5 t h−1. Other initialization values
resulted in an increase in computation time and some performance degradation.

The comparative study results are shown in Table 4. Starting with perfect forecasts
(MPCPF), the RMSE value for all prediction horizons is less than 0.5 K, with an oxygen
consumption ranging from 31,945.55 to 31,988.02 kg. The optimal prediction horizon is
1 min for which the lowest fobj = −48, 657.01 is scored. The MPC controller with smart
persistence forecasts (MPCSF) scores an RMSE ranging from 1.71 K to 1.92 K, with the lowest
fobj = 48, 620.45 obtained for a prediction horizon of 1.5 min. The MPC controller with
image-based forecasts (MPCIF) shows amelioration over the same controller with smart
persistence forecasts (MPCSF) for all prediction horizons: lower RMSE values (around
6%) are observed for an increase of less than 0.1% in oxygen consumption in some cases.
The optimal prediction horizon is 2 min for MPCIF ( fobj = 36, 446.05). As expected, the
MPC controller proves to be better than the reference (PID/RB) controller, scoring lower
RMSE and ATV values at the cost of an increase of less than 0.5% in oxygen consumption.
The mean optimization time per time step (τopt) is presented in Table 4 as well. The time
needed to solve the optimization problem is less than the sampling time (30 s), but the
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time needed is still very long, especially for the highest prediction horizons. As a result,
the MPC controller is not computationally tractable and the reactor model (the Cantera
function) should be replaced (see Section 6).

Table 4. MPC evaluation, for the three types of DNI forecasts (7-day simulation). RMSE is the
root mean squared error. mO2 is the amount of oxygen injected in the reactor. ATV is the average
temperature variation. fobj is the objective function value. τopt is the mean optimization time per time
step. Reference performance (PID/RB controller): RMSE = 4.88 K, mO2 = 31,933 kg and ATV = 2.27 K.

Controller Performance
Criterion

Prediction Horizon of the MPC Controller [min]

0.5 1 1.5 2 2.5

MPCPF

RMSE [K] 0.451 0.073 0.075 0.078 0.078
mO2 [kg] 31,945.55 31,968.33 31,964.17 31,988.02 31,959.63
ATV [K] 0.018 0.031 0.032 0.034 0.036

fobj −42,139.13 −48,657.01 −48,653.24 −48,549.71 −48,559.12
τopt [s] 1.5 5.0 10.0 15.0 30.0

MPCSF

RMSE [K] 1.92 1.79 1.71 1.72 1.71
mO2 [kg] 32,080.55 32,074.03 32,089.23 32,075.459 32,090
ATV [K] 1.50 1.47 1.542 1.58 1.47

fobj 74,260.74 56,858.36 48,620.45 49,702.90 48,638.47
τopt [s] 1.0 4.6 9.7 14.5 29.0

MPCIF

RMSE [K] 1.88 1.72 1.64 1.60 1.61
mO2 [kg] 32,142 32,058.87 32,063.25 32,091.25 32,143.56
ATV [K] 3.0 1.45 1.46 1.54 1.47

fobj 68,903 49,334.44 40,786.92 36,446.05 37,996.54
τopt [s] 1.5 5.0 10.0 15.0 30.0

5.3. Case Study

The main purpose of this case study is to gain some insight into the controllers’
behavior. Three days in the test dataset are considered because DNI is highly variable,
with clear-sky, overcast, and mixed situations. Night-time periods are not included, since
they are identical to the case where DNI < 150 W m−2: injecting 0.88 t h−1 of oxygen is
sufficient to perfectly maintain the reactor’s temperature. Figures 15–18 display several
plots against time: the reactor’s temperature T, the defocusing factor D, the oxygen flow
rate f in

oxygen, and the measured DNI, from top to bottom. As can be seen, the reference
(PID/RB) controller (Figure 15) is able to maintain the reactor’s temperature at its nominal
value but is very sensitive to DNI variations. This controller is able to operate for the
three intervals of DNI values (DNI < 150 W m−2, 150 W m−2 6 DNI 6 800 W m−2 and
DNI > 800 W m−2), thanks to its adaptive nature. When the reactor’s aperture is closed, the
reactor’s temperature is maintained perfectly, as shown from 100 min to 150 min. In case
of an excess of DNI, from 150 min to 200 min for example, the mirror’s controller adjusts
the defocusing factor D to maintain the reactor’s temperature by eliminating this excess.
Needless to say, in this case, the injection of oxygen is minimal. Finally, the controller
provides acceptable performance when DNI varies between 150 W m−2 and 800 W m−2.
Although the controller is able to correctly manage the solar reactor, variations of its
temperature are important: RMSE is 4.61 K over the simulation period. Regarding the MPC
controller, perfect DNI forecasts are first provided (MPCPF) to showcase the MPC optimal
performance (Figure 16). The controller is able to maintain the reactor’s temperature,
scoring a low RMSE of 0.073 K while injecting 12,920.11 kg of oxygen (mO2= 12,938 kg
for the reference controller). The controller tends to tilt the concentration mirrors only in
case of an excess of DNI, which aims to maximize the amount of solar energy received
by the reactor, thus reducing the consumption of oxygen. In case of smart persistence
DNI forecasts (MPCSF), the controller is able to maintain the reactor’s temperature, scoring
an RMSE of 1.66 K (vs. 0.073 K for the MPC controller with perfect DNI forecasts and
4.61 K for the reference controller); however, some fluctuations can be observed due to
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inaccurate forecasts (Figure 17). Oxygen consumption is 12,956 kg (vs. 12,920.11 kg for
the MPC controller with perfect DNI forecasts and 12,938 kg for the reference controller).
The controller is able to function properly in the closed-reactor scenario and around it
(DNI < 150 W m−2) by injecting the right amount of oxygen (0.88 t h−1). The excess of DNI
is compensated by defocusing the concentration mirrors. The controller tends to defocalize
the mirrors to compensate for strong DNI variations as well, thus wasting solar energy to
maintain the reactor’s temperature accurately. Finally, the results provided by the MPC
controller with image-based DNI forecasts (MPCIF) are shown in Figure 18. The controller
is able to maintain the reactor’s temperature, scoring an RMSE of 1.52 K (vs. 0.073 K for the
MPC controller with perfect DNI forecasts and 4.61 K for the reference controller); however,
some fluctuations can be observed due to DNI ramps not detected using the sky images.
Oxygen consumption is 12,969 kg (vs. 12,920.11 kg for the MPC controller with perfect DNI
forecasts and 12,938 kg for the reference controller). Again, the controller is able to function
properly in the closed-reactor scenario (DNI < 150 W m−2) by injecting the right amount of
oxygen (0.88 t h−1), the excess of DNI being compensated by defocusing the concentration
mirrors. It should be noted that whatever the controller, oxygen consumption is more or
less the same.

Figure 15. Case study results: reference (PID/RB) controller.

Figure 16. Case study results: MPC controller with perfect DNI forecasts (MPCPF). The prediction
horizon of the controller is 1 min.
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Figure 17. Case study results: MPC controller with smart persistence DNI forecasts (MPCSF). The pre-
diction horizon of the controller is 1.5 min.

Figure 18. Case study results: MPC controller with image-based DNI forecasts (MPCIF). The predic-
tion horizon of the controller is 2 min.

6. Computationally-Tractable MPC Controller

The high optimization time is due to the Cantera function, which takes on average
0.05 s to calculate Qreaction for one time step (see Table 4). As a result, for the optimization
problem to be solved quickly at each time step, the model used by the MPC controller
should be computationally tractable and Qreaction calculated faster. That is why replacing
the Cantera function with a 2D interpolation function is proposed here; then, the robustness
of the MPC controller to the model simplification is evaluated. Let us note that such a
simplification impacts on the optimal prediction horizon of the MPC controller.



Clean Technol. 2023, 5 347

6.1. Model Simplification

The reaction power Qreaction is calculated for a given temperature and reactant flow
rates (biomass, steam, and oxygen) using the Cantera toolbox. Since the biomass and
steam flow rates are fixed to their nominal values, the toolbox could be replaced with a
function that takes the current reactor’s temperature and the oxygen flow rate as input
and computes Qreaction. After analyzing the influence of the reactor’s temperature and the
oxygen flow rate on Qreaction (Figure 19), it can be observed that:

• for a given reactor’s temperature, Qreaction is mainly a linear function of the oxygen
flow rate (0 th−1 6 f in

oxygen 6 1.8 th−1);
• for a given oxygen flow rate, Qreaction is a linear function of the reactor’s temperature

(1453 K 6 T 6 1493 K).

The chosen neighborhood is around the nominal performance (1453 K 6 T 6 1493 K)
while respecting the oxygen flow rate constraint (0 th−1 6 f in

oxygen 6 1.8 th−1). This approach
is tested on 545,232 combinations (not included in the interpolation database), and the
resulting mean absolute error (MAE) between the output of the 2D interpolation function
and the Cantera function is 2.14 kW, which induces an error of 0.01 K on temperature
variations. This low MAE and this fast execution time justify the replacement of the
Cantera function with an interpolation function to solve the optimization problem. Let us
note that the original modelM is still used to perform the simulation when applying the
optimal inputs, i.e., the defocusing factor D and the oxygen flow rate f in

oxygen (Figure 20).

Figure 19. Power resulting from the gasification reaction as a function of oxygen flow rate variations
(left) and reactor’s temperature variations (right).

Figure 20. The computationally tractable MPC controller. The orignial reactor modelM is replaced
with the simplified model to solve the optimization problem. The original modelM is still used to
perform the simulation.
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6.2. MPC Controller with Simplified Reactor Model vs. MPC Controller with Original Reactor Model

Table 5 deals with evaluating the robustness of the controller to possible uncertainties
resulting from model simplification. The MPC controller with a simplified reactor model is
compared to the same controller with the original reactor model (see Table 4) for the three types
of DNI forecasts (perfect forecasts, smart persistence forecasts and image-based forecasts). The
results show that the MPC controller with the simplified reactor model is robust to possible
uncertainties resulting from model simplification as long as the controller is able to maintain
the reactor’s temperature while minimizing oxygen consumption: for MPCPF and a prediction
horizon of 2.5 min, switching from the original model to the simplified model decreases the
mean optimization time per time step τopt from 30 s to 0.5 s, for an increase of RMSE from 0.08 K
to 0.11 K. For MPCSF and a prediction horizon of 1.5 min, switching from the original model
to the simplified model decreases τopt from 9.7 s to 0.3 s for an increase of RMSE from 1.71 K to
1.74 K. Regarding the MPC controller with image-based forecasts (MPCIF), it still manages to
score lower RMSE and uses less oxygen than with smart persistence forecasts, which highlights
the importance of accurate DNI forecasts (and, as a result, the use of sky images), even when the
simplified reactor model is used (RMSE is 1.63 K for a prediction horizon of 2.5 min). In terms
of computational complexity, using the simplified reactor model reduces the mean optimization
time per time step drastically (up to 58 times for a prediction horizon of 2.5 min).

Table 5. MPC evaluation: simplified reactor model vs. original reactor modelM for the three types
of DNI forecasts (7-day simulation). RMSE is the root mean squared error. mO2 is the amount of
oxygen injected in the reactor. ATV is the average temperature variation. fobj is the objective function
value. τopt is the mean optimization time per time step.

Controller Performance
Criterion

Prediction Horizon of the MPC Controller (min)

0.5 1 1.5 2 2.5

MPCPF with
simplified reactor

model

RMSE (K) 0.49 0.10 0.10 0.11 0.11
mO2 (kg) 31,956 31,961 31,965 31,972 31,979
ATV (K) 0.04 0 .05 0.05 0.05 0.05

fobj −40,831.19 −48,508.93 −48,500.45 −48,493.56 −48,487.42
τopt (s) 0.1 0.2 0.3 0.4 0.5

MPCPF with
original reactor

modelM

RMSE (K) 0.451 0.073 0.075 0.078 0.078
mO2 (kg) 31,945.55 31,968.33 31,964.17 31,988.02 31,959.63
ATV (K) 0.018 0.031 0.032 0.034 0.036

fobj −42,139.13 −48,657.01 −48,653.24 −48,549.71 −48,559.12
τopt (s) 1.5 5 10 15 30

MPCSF with
simplified reactor

model

RMSE (K) 2.01 1.97 1.74 1.73 1.74
mO2 (kg) 32,043 32,093 32,137 32,152 32,106
ATV (K) 1.60 1.50 1.50 1.49 1.50

fobj 85,065.71 80,101 51,807 51,350 51,652.50
τopt (s) 0.1 0.2 0.3 0.4 0.5

MPCSF with
original reactor

modelM

RMSE (K) 1.92 1.79 1.71 1.72 1.71
mO2 (kg) 32,080.55 32,074.03 32,089.23 32,075.459 32,090
ATV (K) 1.50 1.47 1.542 1.58 1.47

fobj 74,260.74 56,858.36 48,620.45 49,702.90 48,638.47
τopt (s) 1 4.6 9.7 14.5 29

MPCIF with
simplified reactor

model

RMSE (K) 1.97 1.89 1.64 1.62 1.63
mO2 (kg) 32,102 32,081 32,114 32,126 32,146
ATV (K) 3.10 1.47 1.47 1.47 1.47

fobj 80,943 69,440 41,032.92 38,072 40,028
τopt (s) 0.1 0.2 0.3 0.4 0.5

MPCIF with
original reactor

modelM

RMSE (K) 1.88 1.72 1.64 1.60 1.61
mO2 (kg) 32,142 32,058.87 32,063.25 32,091.25 32,143.56
ATV (K) 3.00 1.45 1.46 1.47 1.47

fobj 68,903 49,334.44 40,786.92 36,446.05 37,996.54
τopt (s) 1.5 5 10 15 30
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6.3. MPC Controller with Simplified Reactor Model vs. Reference Controller

The MPC controller with a simplified reactor model—the optimal prediction hori-
zon is 1 min for MPCPF and 2 min for MPCSF and MPCIF—can be compared to the ref-
erence (PID/RB) controller: even when the simplified reactor model is used, the MPC
controller still manages to outperform the reference controller by scoring lower RMSE—
RMSE (PID/RB) is 4.88 K whereas RMSE (MPCSF) is 1.73 K and RMSE (MPCIF) is 1.62 K—
and ATV—ATV (PID/RB) is 2.27 K whereas ATV (MPCSF) is 1.49 K and ATV (MPCIF) is
1.47 K—values at the cost of an increase of less than 0.01% in oxygen consumption.

7. Conclusions

This paper deals with the modeling and dynamic control of a solar hybrid ther-
mochemical reactor that uses concentrated solar energy to produce syngas through the
high-temperature steam gasification of biomass. A model-based predictive controller is
proposed and compared to a reference controller which consists of an adaptive PID con-
troller (for the oxygen flow rate) with optimized gains and a rule-based controller (for
the defocusing factor). The ultimate goal of these controllers is to maintain the reactor’s
temperature at its nominal value despite DNI variations, thus ensuring the reactor’s stabil-
ity. Different DNI forecasts are provided to the MPC controller: perfect forecasts, smart
persistence forecasts, and image-based forecasts, where the model processes HDR sky
images to forecast DNI by anticipating possible DNI variations (DNI ramps). The MPC
controller, which is able to find a trade-off between maintaining the reactor’s temperature
and minimizing oxygen consumption while exploiting the available solar energy, manages
to outperform the reference controller by scoring lower RMSE and ATV values at the cost of
an increase in oxygen consumption of less than 0.5% with all DNI forecasts. In addition, the
integration of image-based forecasts results in better performance, and replacing the Can-
tera function with a 2D interpolation function allows a significant reduction in optimization
time at the cost of a slight performance degradation. More sophisticated control strategies
could be now developed, for example a strategy focusing on maximizing the production of
syngas, while ensuring the reactor’s stability. Different control inputs could be used: for
example, the biomass flow rate can compensate for DNI variations. For implementing these
strategies, the reactor model should account for the kinetics of the biomass gasification
reaction as well.
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