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Abstract: By selecting two electroactive species immobilized in a layered double hydroxide backbone
(LDH) host, one able to act as a positive electrode material and the other as a negative one, it was
possible to match their capacity to design an innovative energy storage device. Each electrode material
is based on electroactive species, riboflavin phosphate (RF) on one side and ferrocene carboxylate
(FCm) on the other, both interleaved into a layered double hydroxide (LDH) host structure to avoid
any possible molecule migration and instability. The intercalation of the electroactive guest molecules
is demonstrated by X-ray diffraction with the observation of an interlayer LDH spacing of about
2 nm in each case. When successfully hosted into LDH interlayer space, the electrochemical behavior
of each hybrid assembly was scrutinized separately in aqueous electrolyte to characterize the redox
reaction occurring upon cycling and found to be a rapid faradic type. Both electrode materials were
placed face to face to achieve a new aqueous battery (16C rate) that provides a first cycle-capacity of
about 7 mAh per gram of working electrode material LDH/FCm at 10 mV/s over a voltage window
of 2.2 V in 1M sodium acetate, thus validating the hybrid LDH host approach on both electrode
materials even if the cyclability of the assembly has not yet been met.

Keywords: layered double hydroxide; riboflavin; LDH-riboflavin; LDH-ferrocene battery-type device

1. Introduction

After years of research devoted to electrochemical storage systems and to prepare the
post-lithium technology, many efforts have been paid on the development of sustainable
and renewable-energy sources which are be cost-efficient and safe [1,2]. Indeed, there is
a great need to find new electrochemical, versatile and robust storage systems and, more
specifically, to regulate the fluctuations in the production and consumption of equipment
connected to electrical networks. As mentioned, such systems must rely on materials with
fast or even very fast charge transfer, and all the different parts composing storage systems
are scrutinized for optimization [3]. Recent trends focus on rechargeable batteries using
aqueous electrolyte to respond for instance to demands for stationary applications [2],
developing new batteries based on Na+ cation dissociation and diffusion in aqueous
electrolyte [4], Mg2+ [5] but also Al3+ [6].

Among the categories of materials that are able to meet these specifications, there
are electrochemically active inorganic frameworks and, as far as metal hydroxides are
concerned, most of the recent studies are on cobalt–nickel double hydroxides for zinc-ion
batteries (ZIB) in aqueous electrolyte [7,8]. Some alternatives use metal hydroxides as an
artificial solid electrolyte interface in ZIB as hydrotalcite [9] or NiCo [10] to avoid zinc
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dendrites, while others are combined in asymmetric devices [11,12], and some relative
oxides are also developed for supercapacitors (SC), such as aminophenol-modified zinc
oxide [13] or substituted hydroxide CexNi1-xO2 [14]. A little change of paradigm compared
to what is today studied in metal hydroxide concerning the cation composition and substi-
tution is here to focus on their ability to host electroactive organic species as pioneered on
anthraquinone-sulfonate (AQS) for sensors [15] but not as a possible energy-source so far.
In fact, organic molecules are also studied in electrochemical storage systems as redox flow
batteries (RFB) or supercapacitors (SC) [16]. Most electroactive molecules studied today are
derived from metals, which are often expensive and even toxic [17]. However, among the
most promising molecules are those derived from quinone [18,19], nitroxide radicals [20,21],
flavins [22,23] or ferrocene [24–26], while some of them are sustainable, exemplified by
biomass-derived energy-storage systems such as alizarin [1] or alloxazine [4]. In this work
we focus on the electroactivity of flavin derivatives, which have been widely studied in
the biological field as a sensor [27], where they participate in catalyzing a large number of
redox reaction [28]. For example, riboflavin (vitamin B2) acts as an electroactive precursor
for the biochemical synthesis of nucleotides. However, only a few studies have shown the
potential of these molecules for electrochemical energy storage devices [29], adsorbed on
the surface of materials such as graphite or singled-wall carbon nanotubes (SWCNT), or for
lithium-ion batteries [30]. In addition, they have been used to enhance the oxygen evolution
reaction (OER) combined with Ni-MOF [31] or in an organic flow desalination battery [32].

The molecular backbone of riboflavin (RF) presents a conjugated iso-alloxazine ring
which, by the donation or withdrawal of electrons, gives rise to various states, including
oxidized, reduced or radical semi-quinone. Therefore, the electrochemical process takes
place via a two-electron process or through the semi-quinone radical (Figure 1) in separate
one-electron processes [33,34]. Overall, the associated mid-point redox potential localized
at around −0.5 V vs. SCE makes this organic molecule of interest as a negative electrode.
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Figure 1. (a) Electrochemical transformation of riboflavin−5′−phospahate at pH neutral in aqueous
media; (b) ferrocene dicarboxylic.

Comparatively, ferrocene type molecules, once adsorbed on carbon nanotubes [35]
mixed with reduced graphene oxide (rGO) [36] or ferrocene-based coordination poly-
mer [37], present a redox activity with a potential of +0.5 V vs. SCE, thus making them
interesting as positive electrodes for an asymmetric design involving two redox active
molecules operated in complementary potential windows. These kinds of molecules have
been used as an electrochemical sensor of biomolecules [38] or metals [39]. Other arti-
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cles demonstrate the possibility of increasing the capacity of electricity storage using 3D
graphene-oxide/ferrocene redox-active composites for supercapacitor application [40].

The combination of the two materials to form an electrochemical system in an aqueous
medium is tempting, but they need to be trapped or contained in order to avoid the
migration/dissolution of the electroactive molecules. Other than surface adsorption, the
incorporation of electroactive molecules into a host structure is a means to stabilize, in the
first cycles, the electrode, but it is difficult to predict their response over time. Layered
double hydroxide (LDH) is a class of materials known to easily accommodate anions
of all kinds for a wide variety of applications [41]. They consist of edge-sharing metal
hydroxide octahedra of brucite-type structure in which a partial substitution of divalent
to trivalent cations produces an excess of a positive charge of layers that is compensated
by the presence of anions between the layers. Large cumbersome species have been
hosted into LDH interlayer spaces to provide stability and prevent their migration when
exposed to external stresses or dispersed in a polymer for red-emitting quantum dots, for
example [42]. In the same vein, we focus here with a common LDH, the hydrotalcite of
general composition Mg2Al(OH)6-A·nH2O hereafter labelled as Mg2Al-A, where A would
be the electroactive interleaved molecule. Ferrocene (FC) di- and mono-sulfonate and di
and mono-carboxylate molecules have in the past been hosted between LDH layers, and the
whole hybrid assembly was studied for glucose detection [43]. Other publications report
the intercalation of ferrocenesulfonate or ferrocenecarboxylate anions by coprecipitation in
Zn-Cr or Zn-Al LDH [44–46]. Moreover, neutral ferrocene and ferrocene methanol were
immobilized, respectively, by inclusion within cyclodextrin cavities grafted into LDH [47]
or by simple adsorption on the LDH particles [48]. In addition, hybrid LDH containing
organic electroactive molecules, such as anthraquinone mono and disulfonate [49], 2,2′-
azinobis 3-ethylbenzothiazoline-6-sulfonate (ABTS) [50] and nitroxide [49], have been
studied but no flavin-type molecules as of yet. The presence of the phosphonate group at
the end of the chain of the riboflavin molecule makes its incorporation into an LDH phase
possible. The association of two LDH matrices intercalated by electroactive molecules
cycling in an aqueous media has never been reported in the literature and seems to be an
interesting perspective in line with the current green chemistry principles.

The two series of hybrid materials, RF/LDH and FC/LDH, have been characterized
by X-ray diffraction and their electrochemical behavior evaluated by cyclic voltammetry.
In the following hybrid materials, Mg2Al LDH interleaved with riboflavin-5′- phosphate,
ferrocene mono- (FCm) or di-carboxylate (FCd) are named Mg2Al-RF, Mg2Al-FCm and
Mg2Al-FCd, respectively. Both electrode materials are form an innovative aqueous battery:
Mg2Al-RF//Mg2Al-FCm or –FCd.

2. Results
2.1. Intercalation of Electroactive Molecules in LDH Matrix

The XRD patterns of as-prepared hybrid samples present diffraction peaks which
can be interpreted by a series of a large number of (00l) diffraction lines and few (hk0)
diffraction peaks, which themselves can be indexed in the rhombohedral space group R3m,
typical for LDH-based systems (Figure 2). The comparison of the intensity of the peaks
between (00l) and (hk0) suggest that the diffraction feature is dominated by the stacking
along the perpendicular axis to the layers. The value of the basal spacing is calculated
by applying the Bragg relationship to the position of the diffraction peaks (00l). From a
basal spacing of about d = 0.8 nm present in Mg2Al-Cl, the value is larger for the hybrid
materials for accommodating the guest molecules, but their crystallinity decreases notice-
ably. The interlayer distance calculated for Mg2Al-FCm and LDH-FCd is in accordance
with the literature [49], with monolayer arrangement for FCd having two negative charges
tethered to the hydroxyl LDH layers, while a double layer or, most probably, some kind of
interpenetrated herring-bone arrangement for FCm. For the cumbersome guest RF whose
embedding into LDH has never been reported so far, the basal spacing of the new resulting
hybrid material is of 2.3 nm, corresponding to a monolayer arrangement. The XRD of the
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LDH-RF phase shows low crystallinity in comparison with LDH-FC phases, which is due
to the size of the molecule making it difficult to be accommodated.
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CHNS (Table 1) and TGA (Figure S1 in Supplementary Materials) analyses completed
by infrared spectra (Figure S2) give the exact composition of the synthesized materi-
als, which are as follows: LDH-RF: Mg2Al(OH)6(CO3

2−)0.185(RF)0.630·3.1H2O; LDH-FCm:
Mg2Al(OH)6(FCm)1.0·2.8H2O; and LDH-FCd: Mg2Al(OH)6(FCd)0.5·2.9H2O. The intercala-
tion of RF in LDH phase is not complete, according to elemental analyses, and the total
charge balance is ensured by the co-intercalation of carbonate anions, as evidenced by the
mass spectrum (peak at 44 g/mol in Figure S1).

Table 1. CHNS composition of LDH-RF, LDH-FCm and LDH-FCd.

Sample %Ntheo %Nexp ∆N(%) %Ctheo %Cexp ∆C(%) %Htheo %Hexp ∆H(%)

LDH-RF 4.52 2.73 1.74% 30.52 19.07 0.46% 4.52 4.37 0.63%
LDH-FCm / / / 20.60 20.44 0.15% 4.32 4.13 2.66%
LDH-FCd / / / 29.84 29.48 0.27% 4.02 4.18 1.92%

The scanning electron microscopy image (Figure S3) reveals, for both hybrid phases,
a similar shape in aggregates with a large distribution of size made of agglomerated and
rather ill-defined platelets.

2.2. Electrochemical Behavior of LDH-RF

By using the same proportion of the electroactive molecule RF in a composite electrode
made of a mixture of carbon black and PTFE (see experimental section) with and without
the molecules incorporated into the LDH host, it is possible to estimate the effect of such
confinement on the electrochemical behavior.

The cyclic voltammograms of the molecule RF on its own display on the first cycle a
pronounced reduction peak at −0.49 V vs. Ag/AgCl and an anodic re-oxidation around
−0.25 V (Figure 3a). Upon further cycling, these two peaks are progressively shifted to
more negative values and are stabilized at −0.65 V and −0.35 V vs. Ag/AgCl, respectively,
after a few hundred cycles. The reversible redox waves separate upon cycling, ∆E1 = 0.24
vs. ∆E100 = 0.30 V, underlining that the redox process is increasingly more difficult; this is
due to the fact that part of the riboflavin molecules are no longer involved in reversible
redox processes, thus causing a large decrease in capacity.
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Figure 3. CV experiments of (a) RF, (b) LDH−RF at 10 mV/s in 1 M sodium acetate, (c) LDH−RF at
1 mV/s in 1 M sodium acetate and (d) capacity and efficiency of LDH−RF@10 mV/s, depending on
the number of cycles.

When hosted in an LDH, and in comparison to the free RF, the cyclic voltammograms
of LDH-RF show a reversible redox wave shifted to more negative values, −0.7 V and
−0.4 V vs. Ag/AgCl during the first cycle, in reduction and re-oxidation, respectively.
Such shift of cathodic and anodic peaks when the electroactive molecules are hosted in a
material is often observed, for example in zirconium phosphate [34], and results from the
interactions between the electroactive molecules and the host matrix.

The theoretical capacity of LDH-RF is 71.6 mAh/g based on 2e−/formula weight and
M = 533.4 g/mol. In the first cycle, the capacity is 7 mAh/g (Figure S4) for RF and 8 mAh/g
(Figure 3d) for LDH-RF only, which corresponds to 9.7% and 11.2% theoretical capacity,
respectively. During the cycling, the capacity decreases rapidly down to 3.7 mAh/g for the
RF sample with a poor columbic efficiency of around 40%, whilst the capacity for LDH-RF
increases up to 16 mAh/g (22.3% theoretical capacity) with a coulombic efficiency of 90%
after the 500th cycle.

The increase in capacity upon cycling can be explained by an interface between
electrolyte and LDH material becoming more active. Such an increase in redox activity is
most probably due to an easier access to the sites by an increase in the wettability of the
composite material, thus inducing an easier ingress of the electrolyte salt in the interface
vicinity. A de-agglomeration of particles, exposing more sites and creating more interface,
could also possibly explain the evolution of capacity, but as this would cause a loss of
electrical contact, this hypothesis is not considered. However, the potential separation
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between cathodic and anodic peak increases during cycling to reach a delta of 0.45 V
after the 500th cycle, making the redox process less reversible, mostly due to a shift in
the reduction step. In a full cell, this would result in a decrease in discharge voltage and
therefore a decrease in both voltaic and energy efficiency.

By decreasing the scan rate down to 1 mV/s, such potential separation decreases
significantly underlining that the redox reaction is kinetically limited. The redox reduction
wave is still centered at −0.5 V vs. Ag/AgCl after 25 cycles (Figure 3c). The associated
capacity value obtained in the first cycle is of 30.4 mAh/g (42.5 % theoretical capacity)
and 72.8 mAh/g (101% theoretical capacity) after the 500th cycle (Table S1). This last
value, close to the theoretical capacity, is a direct consequence of water electrolyte reactions
which occur below −0.9 V vs. Ag/AgCl. By combining these results to plot the capacity
evolution as a function of v −0.5 (where v is the scan rate in mV.s−1, Figure S5), it is
possible to characterize the electrochemical process knowing that the maximum surface
capacitive response is extrapolated when the scan rate tends to infinite, i.e., v −0.5→ 0. This
surface capacitive response is zero here, underlining that the electrochemical process is not
capacitive at all (Qsurface = 0) but is faradic in nature, as expected by its strong dependence
with respect to the scan rate.

Different electrolyte salts have been tested (Table 2, Figures S6 and S7), and the best
capacities obtained at the first cycle are the consequences of the electrolyte anion size and the
diffusion of electrolyte anion in the interlayer space (NO−3 < SO2−

4 < ClO−4 < CH3COO−).
Regardless of the nature of the salt, all the plots of Q = f(v −0.5) present a surface capacity
close to 0 mAh/g (Figure S6).

Table 2. Results of CV experiments of LDH−RF in different electrolytes at 10mV/s.

Electrolyte Eox
(V)

Ered
(V)

Qc1st cycle
(mAh/g)/
Qd1st cycle
(mAh/g) *

C.
Efficiency *

(%)

Qc50th cycle
(mAh/g)/

Qd50th cycle
(mAh/g) *

C.
Efficiency *

(%)

Qc500th cycle
(mAh/g)/

Qd500th cycle
(mAh/g) *

C.
Efficiency *

(%)

NaCH3COOH −0.37 −0.69 2.9/9.0 32 7.3/10.3 71 16/18 89
NaClO4 −0.41 −0.68 4.3/9.5 45 11.5/12.9 89 10.6/12.3 88
LiClO4 −0.33 −0.69 4.9/11.7 42 11.9/17.5 68 14.8/23.7 62
NaNO3 −0.44 −0.76 6.8/31.4 22 9.1/23.3 39 9.7/23.2 42
Na2SO4 −0.46 −0.69 5.8/13.2 44 6.2/17.2 36 6.6/20.3 33
Li2SO4 −0.41 −0.65 7.6/12.3 62 9.3/10.1 92 11.1/12.0 93

* Capacity and Columbic efficiency include all the possible parasitic reactions taking place during the cyclic
voltammetry tests.

The best capacities are obtained with sodium nitrate, but they are associated with a
poor coulombic efficiency. This could imply that the measured capacity is perhaps not
only attributed to LDH-RF but associated with a parasitic reaction that would also provide
capacity in reduction (e.g., reaction involving H2O/H2 and NO−3 /NO−2 ). For the cycling
tests at 10 mV/s, capacities increase for sodium acetate, sodium perchlorate and lithium
sulfate and give the better efficiency around 90% after 500th cycle.

Moreover, the layers composed by Mg2+ and Al3+ cations remain stable since they
are electrochemically inactive in the operating conditions (potential range and electrolyte).
Consequently, the redox process generated in the interlayer space destabilizes the LDH-
organic molecule assembly, leading to the de-intercalation of the organic molecules and to
the ingress of the electrolyte anions to equilibrate the total charge of the hybrid framework.
Post-mortem XRD analyses (Figures 4 and S8) show that the electroactive anions have
left the interlayer space whilst the MgAl-LDH matrix is partly preserved upon cycling.
On the first cycle, LDH-FCm is stable, and the molecule remains in the interlayer space.
After the 5th cycle, most of the electroactive anions have moved out of the interlayer space
and have been replaced by the electrolyte salt anion. In addition, SEM images of LDH-RF
and LDH-FCm (Figures S9 and S10) show the conservation of the electrode structure. By
combining these results with EDX mapping (Figure S11) it is possible to observe FCm
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molecules coming out of the LDH structure. Indeed, the iron element on the pristine paste
is located at the same places as those for Mg and Al in the LDH structure. During the
cycling and, in particular, after the 50th cycle, there is no more correlation between iron
element and the two others (Mg, Al), even if the structure of the LDH phase is preserved
(concomitant presence of Mg and Al and evidenced by XRD analyses). Moreover, the
results collected at 1 mV/s and reported in Table S1 underline the possibility of reaching
80% theoretical capacity with sodium nitrate. Sodium acetate and lithium perchlorate
provide both the best capacity values during cycling with 73.3 and 97.8 mAh/g after the
25th cycle, respectively.
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Figure 4. XRD of LDH−FCm electrode after 1st, 5th, 10th and 50th cycles in sodium acetate at
10 mV/s.

2.3. Electrochemical Behavior of LDH-FCm and LDH-FCd

Theoretical capacities for LDH-FCm and LDH-FCd are 58.6 and 26.7 mAh/g, respec-
tively, by assuming a transfer of 1 and 0.5 e− per formula weight determined before by
CHNS analysis. Different salts are tested for the two hybrid materials, sodium acetate,
sodium and lithium perchlorate, sodium and lithium sulfate (Figure 5). LDH-FCd samples
provide a poor capacity during cycling at 10 mV/s (Table 2 and Figure 5a) regardless of
the nature of the salt. Figure 5a shows no redox reaction for sodium acetate and the two
sulfate-based electrolytes whilst a low current density is observed for the two perchlorate
electrolytes. This absence of response seems to be correlated with the impossibility of
accessing the redox centers inside the hybrid host. The most probable explanation is that
FCd, attached by its two carboxylate functions and playing the role of pillar, prevents the
access of the electrolyte anion into the interlayer space. Indeed, by reducing the scan rate
down to 1 mV/s (Table S2), the capacity increases up to 53% theoretical capacity for sodium
sulfate, which underlines the kinetic limitation of the redox reaction for the interleaved
guest molecules.

In contrast with this result, the LDH-FCm system presents a good capacity in the first
cycle at 10 mV/s with 33%, 69% and up to 98% theoretical capacity for sodium acetate,
lithium sulfate and lithium perchlorate, respectively (Table 3 and Figure 5b). It shows that
the diffusion of the electrolyte is better than for the hybrid LDH-FCd. Using lithium sulfate
salt provides a pronounced reversible redox peak. By decreasing the scan rate down to
1 mV/s (Table S3) the theoretical capacity is reached in the first cycle for all the electrolytes,
but it is not stable upon cycling and it fades rapidly.
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Figure 5. First CV experiments of (a) LDH−FCd and (b) LDH−FCm at 10 mV/s in different electrolyte.

Table 3. Results of CV experiments of LDH−FCm and LDH−FCd in different electrolytes at 10 mV/s.

Electrolyte Eox (V) Ered
(V)

Qc1st
Cycle

Qd1st
Cycle

Efficiency
(%)

Qc100th
Cycle

Qd100th
Cycle

Efficiency
(%)

LDH-FCd

NaCH3COOH 0.58 0.33 2.7 0.9 33 0.8 0.6 75
NaClO4 0.67 0.36 2.3 1.3 57 1.1 1.0 91
LiClO4 0.61 0.36 2.9 1.9 66 1.0 1.0 100
Na2SO4 0.63 0.48 1.1 0.1 9 0.1 0.1 100
Li2SO4 0.67 0.36 1.0 0.4 40 0.6 0.5 83

LDH-FCm

NaCH3COOH 0.57 0.25 19.1 14.7 60 3.2 2.3 71
NaClO4 0.72 0.11 44.1 26.3 60 11.2 10.6 94
LiClO4 0.81 0.12 57.2 37.3 65 6.5 5.9 91
Na2SO4 0.74 0.10 41.0 11.0 27 1.1 0.1 9
Li2SO4 0.70 0.13 40.5 22.1 41 0.7 0.4 57

2.4. Test in Aqueous Battery

A full LDH-FCm//LDH-RF cell was assembled using LDH-RF at the negative elec-
trode and LDH-FCm at the positive electrode. Care was taken to equilibrate the charge in
both electrodes, i.e., a loading in mAh at the negative electrode equivalent to that of the
positive electrode and, therefore, an optimization of the quantities of electrode materials. To
scrutinize the electrochemical performance, the redox reactions are recorded using different
electrolyte salts using linear cyclic voltammetry at 10 mV/s (equivalent to a 16–18C rate
of charge or discharge). Figure 6a compares the first cycle of the two materials taken
separately and that of their assembly within the same device. Figure 6a clearly indicates
the possibility of combining both of them in an aqueous battery design.

Using different electrolyte salts, the potential of the working electrode LDH-FCm is
imposed by the electrochemical test using CV mode, paying special attention to possible
overlap (Figure S9a). Indeed, a first oxidation at the positive electrode is imposed between
the open circuit potential up to 1.0 V vs. Ag/AgCl and, simultaneously, the potential at
the negative counter-electrode goes down to −1.5 V vs. Ag/AgCl, resulting in the acetate
salt in a complete cell voltage ∆E = 1.0 − (−1.5) = 2.5 V on charge. However, when the
reaction is reverse to the reduction of the positive electrode, a cell polarity inversion occurs
when the WE is below 0.2 V vs. Ag/AgCl, since the potential of the negative electrode
rises steeply above −0.5 V vs. Ag/AgCl, which is deleterious for the complete cell. To
avoid such deterioration, the CV return scan (discharge) is prevented from reaching 0.2 V
vs. Ag/AgCl in a new experiment so that the potential sweeps of the WE occur between
1.0 V down to 0.2 V vs. Ag/AgCl (Figure S9b).



Molecules 2023, 28, 1006 9 of 14

In order to obtain a better understanding of the separate mechanisms involved at each
electrode material, it is interesting to follow their potential evolution operating during the
cycling of the full device (Figure 6b,c). In this set-up, a voltage for the complete cell of
2.2 V and 1.9 for sodium acetate and lithium perchlorate, respectively, are obtained during
charge (Figure 6d).

The discharge capacity obtained on the first discharge is around 7 mAh/g in sodium
acetate and (Figure 6e) and less than 2 mAh/g in lithium perchlorate (Figure 6f). In addition,
different scan rates have been tested for this system. A charge that is close to 20–25 mAh/g
(Figure 6g) during charge is obtained and 2 mV/s on the first discharge for the two aqueous
electrolytes, but they rapidly fade upon cycling.
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Figure 6. CV of (a) LDH−RF and LDH−FCm in 1 M sodium acetate sulfonate, lithium sulfate
and lithium perchlorate at 10 mV/s; (b) complete cell d of LDH−FCm//LDH−RF in 1 M lithium
perchlorate at 10 mV/s, (c) complete cell of LDH−FCm//LDH−RF in 1 M sodium acetate at 10 mV/s,
(d) comparison of Ecell depending on the aqueous electrolyte salt, (e) capacity depending on cycle
number for LDH−FCm//LDH−RF in 1 M sodium acetate at 10 mV/s, (f) capacity depending on
cycle number for LDH−FCm//LDH−RF in 1 M lithium perchlorate at 10 mV/s (g) 1st cycle charge
capacity as a function of the scan rate for the complete cell LDH−FCm//LDH−RF, the electrolyte
salt is indicated.

3. Materials and Methods
3.1. Reagents and Chemicals

For LDH-organic molecule synthesis, aluminum chloride hexahydrate (AlCl3·6H2O,
99%, Merck, Saint-Quentin-Fallavier, France) and magnesium chloride (MgCl2·6H2O, 98%,
Merck, Saint-Quentin-Fallavier, France), sodium Hydroxide (NaOH, 98%, Acros, Geel,
Belgium), ribloflavin-5′-phosphate (C17H20N4NaO9P, 98%, Merck, Saint-Quentin-Fallavier,
France), ferrocene-carboxylic acid (C11H10FeO2, 97%, Merck, Saint-Quentin-Fallavier,
France) and ferrocene-dicarboxylic acid (C12H10FeO4, 96%, Merck, Saint-Quentin-Fallavier,
France) were used.

For electrode preparation, carbon black (SG, >99%, Superior Graphite Co., Sundsvall,
Sweden) and polytetrafluoroethylene (PTFE, 60 wt% in water, Merck, Saint-Quentin-
Fallavier, France) were used.

For electrochemical experiments sodium acetate (CH3COONa, ≥99%, Merck, Saint-
Quentin-Fallavier, France), sodium nitrate (NaNO3, 99%, Merck, Saint-Quentin-Fallavier,
France), sodium perchlorate (NaClO4, 99%, Merck), lithium perchlorate (LiClO4, 99%,
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Merck, Saint-Quentin-Fallavier, France), sodium sulfate (Na2SO4, 98%, Merck, Saint-
Quentin-Fallavier, France) and lithium sulfate (Li2SO4, 99%, Merck, Saint-Quentin-Fallavier,
France) were used. Deionized water was employed for all experiments.

3.2. Analysis

X-ray diffraction analyses were performed using a theta−theta PANalytical X’Pert Pro
diffractometer equipped with a Cu anticathode (λKα1 = 1.540598 Å, λKα2 = 1.544426 Å)
and an X’Celeretor detector. For the phase identification and refinement of the unit cell
parameters of the series of samples, the X-ray patterns were recorded in the Bragg–Brentano
geometry in the range of 2–80◦/2θ with a step size of 0.325◦/min three times.

Scanning electron microscopy (SEM) images and energy-dispersive X-ray spectroscopy
(EDX) were recorded using a JSM-7500F field-emission scanning electron microscope
operating at an acceleration voltage of 3 kV and at magnifications of ×1 K, ×20 K and
×50 K. Samples to be imaged were mounted on conductive carbon adhesive tabs and
coated with a gold thin layer.

Fourier transform infrared (FT-IR) spectra were recorded in transmission mode using
the KBr pellet technique (2% weight) with a Nicolet 5700 spectrometer from Thermo
Scientific over the wavenumber domain of 400 to 4000 cm−1 with a scan number of 128 at a
resolution of 4 cm−1.

Thermogravimetric analyses (TGA) and mass spectroscopy (MS) were performed
using a SETSYS Evolution de Setaram 92 coupled with a Balzers mass analyzer under air
flow 20 mL.min−1 in the temperature range of 25−1000 ◦C with a linear temperature ramp
of 5 ◦C min−1.

Cyclic voltammetry (CV) curves were performed using a Biologic VMP3 with a three
electrodes setup with LDH/SG/PTFE as a working electrode, Ag/AgCl (KCl sat) as a
reference and platinum as a counter electrode. The aqueous electrolyte salt was sodium
acetate, sodium perchlorate, sodium nitrate, sodium sulfate lithium perchlorate and lithium
sulfate in a potential range between 0 to 0.9 V vs. Ag/AgCl for LDH-FC and −1 to 0 V for
LDH-FCm. Complete cells were performed using LDH-FCm as a working electrode by
imposing a potential range between 0.2 and 1.0 V vs. Ag/AgCl facing LDH-RF electrode
material. Ag/AgCl (KCl sat) was placed between in order to follow the potential evolution
of the two electrodes.

3.3. Material Synthesis

A layered double hydroxide of the type MgAl was prepared using a coprecipitation
method similar to that described by Miyata. A total of 100 mL of deionized and decar-
bonated water was used and the preparation was carried out in a 250 mL reactor under a
nitrogen atmosphere. Organic molecules (OM) were dissolved in this media and the pH
was adjusted to 9.5 with 0.1 NaOH solution, following the ratio nOM = 4nAl. A total of
25 mL of the aqueous metal chlorides solution (0.333 mol/L in MgCl2 and 0.167 mol/L in
AlCl3) was added dropwise to the reactor at 25 ◦C and under magnetic stirring. The pH of
the reaction mixture was kept constant at 9.5 by adding a 1 mol/L NaOH solution. After
the total addition of the metal salts, the reaction mixture was aged at room temperature for
24 h. The precipitate was then washed three times with water and centrifuged. The solid
was dried in oven during 24 h at 40 ◦C.

3.4. Electrode Preparation

In order to evaluate the electrochemical performance of the composite, the powder
was shaped using a typical self-supporting electrode process. To do so, the active material,
an electronically conductive additive (carbon black, Superior Graphite Co., >99%) and a
polymer binder (PTFE, 10% wt. in solution in water) were mixed in 15 mL of ethanol so
as to obtain 60, 30 and 10% mass of each component, respectively. The total mass loading
of the electrode composite material was between 5 to 10 mg/cm2. The mixture was then
stirred and heated to 60–70 ◦C to partially evaporate the solvent and obtain a homogeneous
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paste. The paste was then cold rolled into a sheet of approximately 150 µm thickness, before
being dried in an oven at 60 ◦C overnight. Electrodes with a diameter of 10 mm were then
cut from the paste and pressed into a stainless steel grid current collector (316 L, 0.160 mm,
Saulas) for 1 min at 5 tons.

4. Conclusions

In summary, the intercalation of a novel vitamin B-derived molecule (riboflavin phos-
phate, RF) within a MgAl-LDH phase was achieved. Its intercalation was proven by means
of XRD, IR, CHNS and TGA-MS analysis and demonstrates an increase of interlayer space
to 2 nm on each case. Moreover, LDH-organic molecule compounds have been tested
separately and provided a capacity around 9.0 mAh/g for LDH-RF and 19 mAh/g for
LDH-Fcm in a 1 M sodium acetate solution at 10 mV/s. Capacity values and their evolu-
tions depend on electrolyte salt used. No changes of LDH structure were observed during
cycling even though organic molecules intercalated were expulsed out of the interlayer
space and replaced by electrolyte anions. In addition, the electrochemical potential for
its use as a negative electrode in an aqueous battery system which assembles two LDH
material-based electrodes (LDH-RF//LDH-FCm) was tested by cyclic voltammetry. A
charge capacity of 20–25 mAh/g was reached at 2 mV/s in sodium acetate and lithium per-
chlorate. At a faster cycling rate of 10 mV/s, the capacity decreases down to 6–10 mAh/g
over a potential range of 2.2 V and 1.9 V, respectively. Despite the rapid fading in capacity
after the first few cycles due to the exchange between the electroactive interleaved species
and the anions from the electrolyte salt, this new organic–inorganic system operating in an
aqueous electrolyte seems promising and future works should focus on the retention of RF
within the LDH interlayer space to further advance this proof of concept.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28031006/s1; Figure S1: (a) TGA of LDH-RF, LDH-
FCm and LDH-FCd, (b) MS of LDH-FCm, (c) MS of LDH-FCd, (d) MS of LDH-FCd; Figure S2: Infrared
spectrum of (a) RF and LDH-RF and (b) FCm, LDH-FCm, FCd, LDH-FCd; Figure S3: SEM images
of (a) LDH-RF, (b) LDH-FCm and (c) LDH-FCd; Figure S4: Capacity of RF in sodium acetate
1 M at 10 mV/s; Figure S5: Evolution of capacity depending on scan rate and electrolytes; Figure
S6: CV experiments of LDH-RF at 10 mV/s in a 1 M solution of (a) NaClO4, (b) LiClO4, (c) NaNO3,
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