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Abstract

We investigate the convergence of numerical solution of Reflected Back-
ward Stochastic Differential Equations (RBSDEs) using the penalization
approach in a general non-Markovian framework. We prove the con-
vergence between the continuous penalized solution and the reflected
one, in full generality, at order 1/2 as a function of the penalty
parameter; the convergence order becomes 1 when the increasing pro-
cess of the RBSDE has a bounded density, which is a mild condition
in practice. The convergence is analyzed in a.s.-sense and Lp-sense
(p ≥ 2). To achieve these new results, we have developed a refined
analysis of the behavior of the process close to the barrier. Then
we propose an implicit scheme for computing the discrete solution
of the penalized equation and we derive that the global convergence
order is 3/8 as a function of time discretization under mild regu-
larity assumptions. This convergence rate is verified in the case of
American Put options and some numerical tests illustrate these results.
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1 Introduction

Context and model.

The Backward Stochastic Differential Equations, BSDEs in short, were first
introduced in the case of linear generator by Bismut in [1] as the adjoint
equations of some stochastic control problem and later in the general case by
Pardoux and Peng [2]. It was then widely studied in stochastic finance (see
[3]) in view of its natural formulation to model the problem of option pricing
and hedging. See [4], [5], [6] for a broad overview on BSDE and applications in
stochastic control. The Reflected BSDE is one of the most important branch
of BSDE, which was first introduced by El Karoui et al. [7] as follows: given
a terminal condition ξ, a generator f and a barrier (St)0≤t≤T , the RBSDE is
written as

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+KT −Kt −
∫ T

t

ZsdBs, ∀ 0 ≤ t ≤ T,

Yt ≥ St, 0 ≤ t ≤ T,∫ T

0

(Yt − St)dKt = 0

(1.1)

where the process (Kt)0≤t≤T is continuous and non-decreasing, K0 = 0. Here,
Y,K are scalar processes and Z is a d-dimensional process (written as a
row vector). The triple of processes {(Yt, Zt,Kt), 0 ≤ t ≤ T} is solution of
RBSDE with respect to the data (ξ, f, S) where the relative assumptions will
be clarified later.

The RBSDE topic was quickly developed since it provides a new frame-
work to study stochastic control problems and optimal stopping problems
involving one obstacle (the barrier). After the pioneer work [7], the Dynkin
game and its related doubly RBSDE is studied in [8]; the switching problem
is discussed in [9]; the starting and stopping problem is addressed in [10]. But
among all of its various applications, the pricing of American option – which
writes as an optimal stopping problem in the probabilistic language or as a
variational inequality in the PDE terminology – is considered as one of the
most fundamental applications. Similarly to the link between BSDE solutions
and European option prices, there also exists a relation between RBSDE and
American option: when the market is complete without market imperfection,
the relation is standard using a linear generator. But this relation can also be
extended in several cases with modified equation or even reformulated prob-
lem, accounting for imperfections, or for market incompleteness or for other
financial specificities. For example, when the market is complete, different set-
tings have been studied for the pricing problem: using a convex risk measure
in [11]; with asymmetric information in [12]; in the presence of 2 interest rates
(for borrowing and lending) and default in [13]. Moreover, when the market is
incomplete, the American option pricing turns out to be a problem of super-
hedging (see [14]) leading to the design of a special RBSDE. The equation,
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with superlinear and quadratic f is presented in [15], with an extra constraint
in [16], or with imperfect market and default in [17].

Besides, regarding the mathematical analysis of existence and uniqueness of
solutions, there are many theoretical results for RBSDE under either standard
or general assumptions. Here we refer to the hypotheses in [7] as the standard
ones, i.e. with Lipschitz generator f , continuous barrier S and under Lp (p ≥ 2)
integrability properties. First, under standard assumptions, the existence and
uniqueness are usually deduced either by the Picard’s fixed point argument
or by the penalization method which builds a monotone convergent sequence
of approximations. The Penalized BSDE (PBSDE in short) related to (1.1)
writes as, for the penalty parameter λ > 0,{

Y λt = ξ +
∫ T
t
f(s, Y λs , Z

λ
s )ds+ λ

∫ T
t

(Y λs − Ss)−ds−
∫ T
t
Zλs dBs,

Kλ
t = λ

∫ t
0
(Y λs − Ss)−ds.

(1.2)

The variational inequality is also studied in [18]. Second, under more general
assumptions, the well-posedness is widely studied, using the similar approaches
based on fixed point argument or penalization. The reader can find the well-
posedness of RBSDE via penalization, with càdlàg S in [19], with driving Lévy
process in [20], with Lp (p ∈ [1, 2)) integrability in [21]. The well-posedness via
fixed point argument of RBSDE, with superlinear and quadratic f is identified
in [15], the case with monotone f is addressed in [22], the model with resistance
is given in [23]. As we can see, the penalization method is usually applied as
a tool for solving some existence problem, and seldom for effective numerical
approximations. In this paper, we focus on the numerical solution of the one
barrier’s RBSDEs under standard assumptions, via the penalization method,
and our goal is to establish some convergence rate results.

State of the art on numerical methods.

Before we introduce our contributions to the penalization approach, let us
have a look at the existing results in the literature. Due to the important and
various applications of RBSDE, particularly in optimal stopping, it is essen-
tial to investigate effective numerical schemes. However, in comparison with
the numerous contributions to the theoretical aspects of RBSDE, there are
only a few available results about the numerical methods. Indeed, because
of the barrier and as a big difference with BSDE, the RBSDE can hardly
admit an explicit representation even in the case with linear generator. As a
consequence, designing an efficient numerical solution turns out to be quite
challenging.
Among all the available approaches, presumably the most usual one is the
Snell envelop, consisting in taking the maximum between the barrier and a
conditional expectation, the latter being the main difficulty regarding com-
putations. In the Markovian framework, Bally and Pagès [24, Theorem 4]
proposed a quantization tree algorithm for RBSDE with f not depending on
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z and proved the discrete approximation Ŷ converges to the continuous solu-
tion Y with a Lp error of order h1/2 + h−(1+1/d)N−1/d where N denotes the
size of quantization grid and h denotes the time step; Bouchard and Touzi [25,
Theorem 7.2] proposed a kernel regression algorithm and deduced a rate in Lp
of order h1/2 + h−(1+d/(4p))M−1/(2p) for RBSDE with f not depending on Z,
where M denotes the number of Monte-Carlo simulations. Ma and Zhang[26,
Theorem 4.2 and Corollary 3.4] provided a semi- explicit representation for
Z, using Malliavin calculus, and derived that, if the barrier S := φ(X) with
φ ∈ C2 and the forward process X is an uniformly elliptic diffusion, their
pseudo time-discretization (Y h, Zh,Kh) converges in L2 to the continuous
solution (Y, Z,K) is at rate h1/4. Bouchard and Chassagneux [27, Theorem
4.1] extended the previous result without uniform ellipticity condition, and
improved the rate to h1/2 (for Y only) if φ ∈ C2 with a Lipschitz second
derivative. Gobet and Lemor[28, Theorem 4] investigated empirical regression
algorithms for solving discretized RBSDEs.

The regularization approach is an alternative to Snell Envelop techniques.
Bally et al. [18] designed a new way to simulate the process K, more precisely,
K admits a semi-explicit density of the form αtκt where α is an unknown
process valued in [0, 1] and κ is a known function of (t, St). An empirical
regression method based on this principle is investigated in [28], and gives
good numerical results, but without theoretical guarantee.
Last, in another series of works, numerical methods based on penalization like
(1.2) have been developed. Mémin et.al[29] developed a discrete random walk
solution with penalization, they showed (Y λ, Zλ)→ (Y, Z) and (Y λ,h, Zλ,h)→
(Y h, Zh) at λ−1/4 in L2, the convergence rate with respect to the time step h
is lacking. Martinez et al. [30, Theorem 1 & 2] proposed a numerical random
walk scheme combining Picard iteration and penalization and they proved the
convergence (Ŷ λ,h,i, Ẑλ,h,i) → (Y, Z) in L2 without identifying convergence
order, where i denotes i-th Picard iteration. Nevertheless, the complexity of
random walk schemes is known to increase quite fast with the Brownian motion
dimension and with the number of time steps, and in many situations, we
may prefer to avoid random walk approximations. As an alternative, it is
reasonable to take into consideration the Monte-Carlo method (a.k.a. empirical
regression methods), which is one of the ingredients of this work. For BSDE
without reflection, see [31–33], for an account on empirical regression methods,
including error analyses. Last, Bernhart et al. [34, Theorem 3.1] presented a
discrete scheme for BSDE with constrained jump and proved the quadratic
convergence w.r.t. λ and h, but the global rate is unfortunately quite slow
(logarithmic rate).

Last, for the sake of having a complete state of the art, let us briefly discuss
the use of penalization approach to derive schemes for other equations. Let us
start with Reflected Forward SDEs (RSDEs in short). For RSDE in a convex
set, Menaldi [35, Remark 3.1] deduced that the penalized continuous solution
converges in L2 to the reflected one at rate λ−1/2+ε for any ε > 0. Liu [36]
showed the penalized discrete solution converges to the continuous reflected
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one at h1/4−ε if λ ∼ O(h−1/2). Petterson[37, Theorem 3.1] derived the rate
(h log 1

h )1/4 in L2 provided that λ ∼ O(1/h) and Slominski [38, Theorem
4.2] proved the same rate but uniformly in time. These results show that the
convergence order is more or less 1/4 w.r.t. the time step h for appropriate
choice of penalization parameter λ, this shows also the necessary entanglement
between h and λ; however, though inspiring, establishing error bounds for
backward equation is usually more difficult than for forward one, due to the
adaptedness condition. In this paper, we will show that, if the barrier is a
generalized Itô process under mild conditions, our backward discrete penalized
solution converges in L2 to the reflected continuous one at rate h3/8 if λ ∼
ch−3/8: this is strictly better than for forward equation.

Regarding PDEs with variational inequality (related to optimal stopping
problem), the penalty approach is also commonly used when it comes to design
numerical schemes. This is restricted to Markovian cases, as a difference with
our general setting. The discretization of PDE is both in space (with a mesh
size ∆x) and in time (with a time step h), but as a usual difference with
stochastic equations, the spatial mesh is deterministic. Zvan et.al.[39, Section
5.3] designed a θ-scheme using penalty method for identifying the early exer-
cise region in a stochastic volatility model for the forward component and
showed at each time step, the penalization term where the approximation is
smaller than the barrier is at O( 1

λ ), a.e.. Forsyth and Vetzal [40, Theorem
4.1] discussed the quadratic convergence of θ-schemes for pricing Put option
as h,∆x → 0 for a fixed λ and proved a similar result to [39] but with the
discretization constraint h = o(∆x). They also showed numerically that the
uniform discretization can not ensure the quadratic convergence near the exer-
cise boundary, hence advocating for a time step selector. d’Halluin et.al.[41,
Theorem 4.2] designed a iterative scheme for pricing American derivatives in
jump models and proved the global convergence of the iterative procedure as
the number of iteration goes to infinity at each time step for a fixed λ and
time discretization. Howison et.al [42, Theorem 4.3 & Section 6] showed in the
convex Markovian barrier , the penalized PDE converges to the exact solution
at 1/λ and presented a detailed error analysis about the convergence order
of the penalized approximation to the penalized PDE solution, which is at√
λ(h+ (∆x)2) in L2([0, T ]× R).

Our contributions.

In this paper, since the PBSDE provides a natural continuous approach to the
RBSDE, we first concentrate on the rate of Y λ → Y and we show that this
convergence can hold at 1/λ a.s. or 1/

√
λ in Lp(Ω) depending on the behavior

of (ξ, S), see Theorem 3.5 and Theorem 3.2 for a precise statement. As far as
we know (see the previous state-of-the-art), this is the first time that the rate
of continuous PBSDE converging to RBSDE is investigated. Second, when f
does not depend on Z, we design an implicit discrete representation for Y λ,h

and show theoretically that the discretization error, Y λ,h − Y λ, converges to
0 at order h1/2 + λh3/4 in L2, see Theorem 4.1. Finally, we conclude that the
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global discretization error between Y λ,h and Y is at h3/8 if λ ∼ ch−3/8, which
is a significant improvement compared to [34]. The order h3/8 is faster than
h1/4 in [27] for another RBSDE scheme obtained when S = φ(X) with φ ∈ C2,
which is stronger than our mild Hölder-continuity condition (H2-ii); but our
rate is lower than h1/2 in [27] obtained under the even stronger assumption Φ
is C3. The numerical experiment based on Monte-Carlo empirical regression
is attached in the end and we show numerically the simulation of Y λ,h may
converge quicker to Y than the rate upper bound, at least in the example of
pricing one-dimensional Put option in the linear market.

Plan of the paper.

In Section 2, we define the model, state standing assumptions and exemplify
some applications. In Section 3, a priori estimates in Lp(Ω), p ≥ 2 and the rate
of (Y λt − St)− → 0 are given. The discretization error of Y λ,h − Y in L2(Ω) is
well investigated in Section 4. The numerical results are presented at the end
of Section 4.

2 Model, assumptions, examples

2.1 Notation

• For a vector x ∈ Rd, we simply denote its transpose by x> and its i-th
component by xi. Its Euclidean norm is denoted by |x|.

• Let (Ω,F ,P) be the probability space where a d-dimensional Brownian
motion (Bt)0≤t≤T is defined and (Ft)0≤t≤T is the canonical filtration of
(Bt)0≤t≤T where F0 contains all P−null sets of F . Denote the expectation
under P by E and the conditional expectation given Ft by Et .

• The following set of random variables and stochastic processes are useful
for our subsequent study. Let p ≥ 2 :

L∞ =

{
random variables ζ s.t. ess sup

ω∈Ω
|ζ(ω)| <∞

}
,

Lp = {random variables ζ s.t. E [|ζ|p] <∞} ,

S p =

{
stochastic processes φ = {φt, 0 ≤ t ≤ T} that are predictable

with E
[

sup
0≤t≤T

|φt|p
]
<∞

}
,

S p
cont. =

{
stochastic processes φ ∈ S p that are continuous

}
,

Hp =

{
stochastic processes φ = {φt, 0 ≤ t ≤ T} that are predictable
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with E

(∫ T

0

|φt|2dt

)p/2 <∞}.
The above random objects take values in an Euclidean space R or Rd whose
dimension is not indicated for the sake of simplicity, this will be clear in the
context.

• The set of (Ft)0≤t≤T stopping times larger than t and bounded by T is
defined by:

Tt,T = {τ ; τ is a stopping time s.t. t ≤ τ ≤ T} .

2.2 Reflected BSDE

We work on the model of RBSDE (1.1) and its penalized version (1.2).

2.3 Assumptions

In our paper, we always consider p ≥ 2.

(H1): General Assumptions of Equation (1.1).
(H1-i) The scalar random variable ξ is FT -measurable and ξ ∈ Lp;
(H1-ii) The generator f : Ω × [0, T ] × R × Rd → R is such that ∀(y, z) ∈
R× Rd, f(·, y, z) ∈ Hp;
(H1-iii) The generator f is CfLip-Lipschitz continuous with respect to (y, z)

uniformly in (ω, t), i.e. ∀y, y′ ∈ R, z, z′ ∈ Rd, a.s.

|f(t, y, z)− f(t, y′, z′)| ≤ CfLip (|y − y′|+ |z − z′|) ;

(H1-iv) The barrier S := {St, 0 ≤ t ≤ T} is a Ft-adapted scalar process s.t.
ST ≤ ξ a.s. and S ∈ S p

cont..

From [7, Theorem 5.2], for p = 2, under (H1), the equation (1.1) admits an
unique solution {(Yt, Zt,Kt), 0 ≤ t ≤ T} in the space S 2

cont. × H2 × S 2
cont..

The case when p > 2 is proved in Appendix A.4.1.

We now justify that, up to a simple change of variable, we can still assume
that the generator satisfies, in addition to (H1-iii), the monotone property
(Hm), the latter will be widely used in our work (especially for better con-
trolling the penalization term, see Theorem 3.4, Theorem 3.5 and Section
4).

(Hm) The generator f is non-increasing with respect to y i.e. ∀(ω, t, z) ∈
Ω× [0, T ]× Rd,

f(t, y1, z) ≤ f(t, y2, z), ∀y1 ≥ y2.

Indeed, under (H1), for each ν ∈ R, define

ξν := ξeνT , fν(t, y, z) : = eνtf(t, e−νty, e−νtz)− νy, Sνt := eνtSt.
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The assumption H1 is also fulfilled by (ξν , fν , Sν), then the solution of RBSDE
(Y ν , Zν ,Kν) associated with (ξν , fν , Sν) is also well and uniquely defined in
(S p

cont.,Hp,S
p
cont.) and it can be expressed as following,

(Y νt , Z
ν
t ,K

ν
t )0≤t≤T =

(
eνtYt, e

νtZt,

∫ t

0

eνsdKs

)
0≤t≤T

. (2.1)

We now justify that a proper choice of ν allows fν to fulfill (Hm).

Proposition 2.1. Assume (H1-iii) holds for f : for any ν ≥ CfLip, fν satisfies
(Hm).

Proof Let ν as above, then for all y1 ≥ y2 and (ω, t, z) ∈ Ω× [0, T ]× Rd,
fν(t, y1, z) = eνtf(t, e−νty1, e

−νtz)− νy1

≤ CfLip(y1 − y2) + eνtf(t, e−νty2, e
−νtz)− νy1

≤ ν(y1 − y2) + eνtf(t, e−νty2, e
−νtz)− νy1

= fν(t, y2, z).

�

Hence, for each f satisfying (H1-iii), one can always identify f by fν and
assume (Hm) for f without loss of generality.

(H2): Extra assumptions for the barrier S
(H2-i) The barrier S admits a generalized semi-martingale decomposition as

St = S0 +

∫ t

0

Usds+

∫ t

0

VsdBs +At

where U ∈ S p, V ∈ S p, A is continuous, non-decreasing and AT ∈ Lp, A0 =
0.
(H2-ii) The barrier S satisfies a 1/2-Hölder continuity condition:

C(2.2) = E
[

sup
0≤t<s≤T

(
Et [|Ss − St|]√

s− t

)p]
<∞. (2.2)

We know that, from [7, Proposition 4.2 and Remark 4.3], if (H2-i) is satisfied by
S, then K is absolutely continuous with respect to Lebesgue measure, namely,{

dKt ≤ κt1{Yt=St}dt,
κt := (f(t, St, Vt) + Ut)

−.
(2.3)

The process (κt)0≤t≤T is essential to derive the rate of Y λ → Y a.s. and in
Lp(Ω).
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Lemma 2.2. Assume the barrier S is of the form St = g(t,Xt), where
(Xt)0≤t≤T is an Itô process valued in Rd satisfying the following SDE:

dXt = µtdt+ σtdBt,

with predictable, bounded stochastic processes (µ, σ), and where g :
[0, T ]× Rd → R is 1

2 -Hölder continuous in t and locally Lipschitz continuous
in x:

|g(t, x)− g(t′, x′)| ≤ C
(
|t− t′|1/2 + |x− x′|

(
eC|x| + eC|x|

))
,

with some finite constant C. Then (H2-ii) is fulfilled by S.

Proof See Appendix A.1. �

Remark 2.3. The immediate application in finance is American option pric-
ing problem. If we set the barrier as the payoff of American Call (resp. Put)
Option and X is the asset log-price process (Itô process as in Lemma 2.2), i.e.

St = (eXt −Kstk)+(resp. St = (Kstk − eXt)+)

with Kstk represents the strike price, then it satisfies both (H2-i) and (H2-ii).
In fact, applying Itô-Tanaka formula on St:

dSt =1{eXt>Kstk}

(
µt +

1

2
|σt|2

)
eXtdt

+ 1{eXt>Kstk}σte
XtdBt +

1

2
dLK

stk

t (eX)

(resp. dSt =− 1{eXt≤Kstk}

(
µt +

1

2
|σt|2

)
eXtdt

− 1{eXt≤Kstk}σte
XtdBt +

1

2
dLK

stk

t (eX))

where La(eX) is the local time process of eX at level a.

Thanks to the boundedness of µ, σ and E
[

sup
0≤t≤T

ep|Xt|
]
<∞,∀p ≥ 2 as in

the proof of Lemma 2.2, we can easily deduce that the corresponding processes
(U, V ) ∈ S p.

3 Penalization

In this section, we present our main result about the rate of convergence
Y λ → Y with respect to the penalty parameter λ, where the order relies
critically on the convergence rate of penalization term, namely, (Y λt −St)− →
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0. Using several times the absolutely continuity as (2.3), we first introduce
a priori estimate for all general S p

cont. barrier and derive the first bound for

λ
∫ T

0
(Y λt − St)−dt in Lp which gives a order 1/2 for Y λ → Y in S p. Then

we focus on the uniform boundedness in t of (Y λt − St)− in L∞ and in S p
cont.

where we can derive Y λt → Yt at order 1 in λ.

3.1 The convergence rate in continuous case

We first investigate the convergence order between the PBDSE and the
RBSDE, this is based on the following a priori estimate.

Theorem 3.1. Under (H1), let (Y,Z,K) be the solution of (1.1) in S p
cont. ×

Hp × S p
cont. and (Y λ, Zλ) be the solution of (1.2) in S p

cont. × Hp. First, the
norm of (Y λ, Zλ,Kλ) in S p

cont. × Hp ×S p
cont. is bounded uniformly in λ, in

particular

sup
λ>0

E

[(
λ

∫ T

0

(Y λs − Ss)−ds

)p]
< +∞. (3.1)

Second, we have the following a priori estimate

E

 sup
0≤t≤T

|Yt − Y λt |p +

(∫ T

0

|Zt − Zλt |2dt

)p/2
+ sup

0≤t≤T
|Kt −Kλ

t |p


≤ CE

(∫ T

0

(Y λs − Ss)−dKs

)p/2 , (3.2)

where C is a constant depending only on ξ, f, S, T, p.

The proof is postponed to Appendix A.4. Whenever necessary, a priori
Lp-estimates on (Y, Z,K) are available in Proposition A.2.

Theorem 3.2. Under (H1), let (Y,Z,K) be the solution of (1.1) in S p
cont. ×

Hp×S p
cont. and (Y λ, Zλ) be the solution of (1.2) in S p

cont.×Hp. If the barrier
S satisfies (H2-i), i.e.

St = S0 +

∫ t

0

Usds+

∫ t

0

VsdBs +At,

and f(·, 0, 0) ∈ S p, then

E

 sup
0≤t≤T

(Yt − Y λt )p +

(∫ T

0

|Zt − Zλt |2dt

)p/2
+ sup

0≤t≤T
(Kt −Kλ

t )p

 ≤ C

λp/2
,

(3.3)
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where C is a constant depending on ξ, f, S, T, p.

Proof Under (H2-i), taking into account the absolute continuity of K in (2.3), we
get the following inequality which is a consequence of Theorem 3.1, in particular the
bound (3.1):

E

[(∫ T

0
(Y λs − Ss)−ds

)p]
≤ C

λp
.

Then

E

(∫ T

0
(Y λs − Ss)−dKs

)p/2 ≤ E

( sup
0≤t≤T

κt

∫ T

0
(Y λs − Ss)−ds

)p/2
≤
√
C

λp

√√√√E

[
sup

0≤t≤T
κpt

]
.

Thanks to (2.3), we easily verify that κ is bounded in S p under (H2-i) and f(·, 0, 0) ∈
S p. Indeed, write κt ≤ |f(t, 0, 0)| + CfLip(|St| + |Vt|) + |Ut|. The proof of (3.3) is
complete. �

3.2 Advanced estimation for Y λ below the
semi-martingale barrier

In the previous subsection, we used the convergence of integral of penalization

term, namely,
∫ T

0
(Y λt − St)−dt→ 0 in Lp. In this subsection, we focus on the

uniform convergence in t i.e. sup
0≤t≤T

(Y λt − St)− → 0, a.s. and in Lp.

Theorem 3.3. Under (H1), let (Y λ, Zλ) be the solution of PBSDE (1.2) in
S p
cont. × Hp, if the barrier S satisfies (H2-ii), then there exists a constant C

which depends only on ξ, f, S, T, p such that

E
[

sup
0≤t≤T

∣∣ (Y λt − St)− ∣∣p]1/p

≤ C√
λ
.

Proof Let (Ỹ λ, Z̃λ) be the solution (in S p
cont. ×Hp) of the linear BSDE

Ỹ λt = ξ +

∫ T

t
f(s, Y λs , Z

λ
s )ds+ λ

∫ T

t
(Ss − Ỹ λs )ds−

∫ T

t
Z̃λs dBs

= Et

[
e−λ(T−t)ξ +

∫ T

t
e−λ(s−t)f(s, Y λs , Z

λ
s )ds+ λ

∫ T

t
e−λ(s−t)Ssds

]
.

(3.4)

By the classical comparison theorem as [3, Theorem 2.2], for 0 ≤ t ≤ T, Y λt ≥
Ỹ λt , a.s., it suffices to prove

E

[
sup

0≤t≤T

∣∣ (Ỹ λt − St)− ∣∣p
]1/p

≤ C√
λ
.
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B Step 1: We rewrite the formula of Ỹ λt − St with term e−λ(T−t)ST ,

Ỹ λt − St = Et

[
e−λ(T−t)(ξ − ST ) + e−λ(T−t)(ST − St) +

∫ T

t
e−λ(s−t)f(s, Y λs , Z

λ
s )ds

]

+ λEt

[∫ T

t
e−λ(s−t)(Ss − St)ds

]
.

Taking negative part on both side, and applying the Jensen inequality, it gives

(Ỹ λt − St)− ≤ Et
[
e−λ(T−t)(ξ − ST )−

]
+ Et

[
e−λ(T−t)|ST − St|

]
+ Et

[∫ T

t
e−λ(s−t)|f(s, Y λs , Z

λ
s )|ds

]
+ λEt

[∫ T

t
e−λ(s−t)|Ss − St|ds

]
,

since ξ ≥ ST , we have

(Ỹ λt − St)− ≤ Et
[
e−λ(T−t)|ST − St|

]
+ λEt

[∫ T

t
e−λ(s−t)|Ss − St|ds

]

+ Et

[∫ T

t
e−λ(s−t)|f(s, Y λs , Z

λ
s )|ds

]
. (3.5)

B Step 2: We take supremum on these conditional expectations in the right side of
(3.5), and consider the Lp-norm of each term, which follows

E

[
sup

0≤t≤T
Et
[
e−λ(T−t)|ST − St|

]p]1/p

= E

[
sup

0≤t≤T
Et
[
e−λ(T−t)√T − t |ST − St|√

T − t

]p]1/p

≤ E

[
sup

0≤t≤T

(
e−λ(T−t)√T − t

)p
× sup

0≤t≤T

(
Et [|ST − St|]√

T − t

)p]1/p

≤ 1√
λ

sup
x≥0

(
e−x
√
x
)
C

1/p
(2.2)

. (3.6)

Taking again the advantage of Hölder continuity of S in Assumption (H2-ii), we get

λE

[
sup

0≤t≤T
Et

[∫ T

t
e−λ(s−t)|Ss − St|ds

]p]1/p

= E

[
sup

0≤t≤T
Et

[∫ T

t
λe−λ(s−t)√s− t |Ss − St|√

s− t
ds

]p]1/p

≤ E

[
sup

0≤t<s≤T
Et
[
|Ss − St|√

s− t

]p(∫ T

t
λe−λ(s−t)√s− tds

)p]1/p

≤ C1/p
(2.2)

(∫+∞
0 e−x

√
xdx

)
√
λ

. (3.7)
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Moreover, by Cauchy-Schwarz inequality, we have

E

[
sup

0≤t≤T
Et

[∫ T

t
e−λ(s−t)|f(s, Y λs , Z

λ
s )|ds

]p]1/p

≤ E

 sup
0≤t≤T

√∫ T

t
e−2λ(s−t)ds× Et

√∫ T

t
|f(s, Y λs , Z

λ
s )|2ds

p1/p

≤ 1√
2λ

E

 sup
0≤t≤T

Et

√∫ T

0
|f(s, Y λs , Z

λ
s )|2ds

p1/p

. (3.8)

B Step 3: Set MT :=

√∫ T
0 |f(s, Y λs , Z

λ
s )|2ds. Under (H1-ii),(H1-iii) and combined

with λ-uniform a priori estimate for (Y λ, Zλ) in (A3), we claim that MT ∈ Lp
uniformly in λ. Indeed,

E
[
|MT |p

]
= E

(∫ T

0
|f(s, Y λs , Z

λ
s )|2ds

)p/2
≤ Cp,f,TE

 sup
0≤t≤T

|Y λt |p +

(∫ T

0
|Zλs |2ds

)p/2
+

(∫ T

0
|f(s, 0, 0)|2ds

)p/2 <∞,
for some constant Cp,f,T which does not depend on λ. Hence, Mt := Et [MT ] defines
a martingale in Lp and the right-hand side of (3.8) becomes

1√
2λ

E

[
sup

0≤t≤T
|Mt|p

]1/p

≤ 1√
2λ

(
p

p− 1

)
E
[
|MT |p

]1/p
in view of the Doob inequality. All in all, the right-hand side of (3.8) is of order
1/
√
λ. Finally, combine (3.5), (3.6), (3.7), (3.8), we have the desired result. �

Theorem 3.4. Suppose (H1),(H2-i) are fulfilled; in addition, suppose (Hm)
holds true, i.e. f(t, y, z) is non-increasing on y, assume

κ̄∞ := ess sup
(t,ω)∈[0,T ]×Ω

(f(t, St, Vt) + Ut)
− = ess sup

(t,ω)∈[0,T ]×Ω

κt(ω) <∞ (3.9)

then the penalization term is upper bounded as follows

(Y λt − St)− ≤
κ̄∞
λ
, ∀0 ≤ t ≤ T, a.s..

Proof The strategy of proof relies on comparison arguments between BSDEs but
the fact that S can not be decomposed as a standard BSDE, forbids us to apply
standard comparison results (where drivers are compared only along one solution,
see [3, Theorem 2.2]). Instead, we could invoke a comparison between RBSDEs but
it usually requires to compare the generator everywhere ([7, Theorem 4.1]) which is
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a too stringent requirement in our case. Hence, we proceed with a direct proof.
Write the dynamic of St − 1

λ κ̄∞ and the one of Y λt as follows:

St −
1

λ
κ̄∞ = ST −

1

λ
κ̄∞ −

∫ T

t
Usds−

∫ T

t
dAs −

∫ T

t
VsdBs,

Y λt = ξ +

∫ T

t
fλ(s, Y λs , Z

λ
s )ds−

∫ T

t
Zλs dBs,

where fλ(s, y, z) := f(s, y, z) + λ(y − Ss)−. Set ∆Yt = St − 1
λ κ̄∞ − Y

λ
t and ∆Zt =

Vt − Zλt : we have

∆Yt = ∆YT −
∫ T

t
(Us + fλ(s, Y λs , Z

λ
s ))ds−

∫ T

t
dAs −

∫ T

t
∆ZsdBs

= ∆YT −
∫ T

t
(Us + fλ(s, Ss −

1

λ
κ̄∞, Vs) + ∆yf

λ(s)∆Ys + ∆zf
λ(s) ·∆Zs)ds

−
∫ T

t
dAs −

∫ T

t
∆ZsdBs,

here ∆yf
λ(s) =

fλ(s,Y λs ,Z
λ
s )−fλ(s,Ss− 1

λ κ̄∞,Zλs )
∆Ys

1∆Ys 6=0 and similarly for ∆zf
λ(s)

(see e.g. [3, Proof of Theorem 2.5]). Because f is Lipschitz in y and z, the coeffi-

cients ∆yf
λ(s) and ∆zf

λ(s) are bounded. Thus, using ΓTt := exp(
∫ T
t (∆yf

λ(s) −
1
2 |∆zf

λ(s)|2)ds+
∫ T
t ∆zf

λ(s)dBs) and Itô formula, we easily get

∆Yt = Et

[
ΓTt ∆YT −

∫ T

t
Γst (Us + fλ(s, Ss −

1

λ
κ̄∞, Vs))ds−

∫ T

t
ΓstdAs

]
.

We claim that

Us + fλ(s, Ss −
1

λ
κ̄∞, Vs) ≥ 0,ds⊗ dP a.e. . (3.10)

Since ∆YT = ST − 1
λ κ̄∞ − ξ ≤ −

1
λ κ̄∞ ≤ 0 and A is non-decreasing, we get

∆Yt ≤ 0,

which implies the desired result.
To justify (3.10), we write

Us + fλ(s, Ss −
1

λ
κ̄∞, Vs) = Us + f(s, Ss −

1

λ
κ̄∞, Vs) + λ(Ss −

1

λ
κ̄∞ − Ss)−

≥ Us + f(s, Ss, Vs) + κ̄∞ ≥ 0,

where, in the last line, we used that f is non-increasing on y together with the
definition of κ̄∞. �

Theorem 3.5. Assume the same hypotheses hold as in Theorem 3.4, we have

0 ≤ Yt − Y λt ≤
κ̄∞
λ
, ∀0 ≤ t ≤ T,P− a.s.

where κ̄∞ is defined as in Theorem 3.4.
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Proof The left hand side of inequality is an immediate result from comparison
theorem (see [7, Section 6]). For the right hand side, our strategy is to apply again
a comparison result to Y and Y ′ := Y λ + κ̄∞

λ . Denote

Kλ
t = λ

∫ t

0
(Y λs − Ss)−ds.

Then (Y ′, Zλ,Kλ) can be considered as the solution of the following BSDE with
barrier S and increasing process Kλ,

Y ′t = ξ′ +
∫ T
t f(s, Y ′s − κ̄∞

λ , Zλs )ds+
∫ T
t dKλ

s −
∫ T
t Zλs dBs,

Y ′t ≥ St,∫ T
0 (Y ′t − St)dKλ

t ≥ 0

(3.11)

with ξ′ := ξ + κ̄∞
λ . The second and the third conditions of (3.11) hold thanks to

Theorem 3.4 where the third can’t be replaced by the equality, which means that
(3.11) is not a real RBSDE because the Skorokhod condition is not fulfilled by
(Y ′, S,Kλ).

Nevertheless, following the arguments of [7, Theorem 4.1], we are going to estab-
lish a comparison theorem dedicated to our specific setting. Apply Itô formula on
|(Yt − Y ′t )+|2, we get, since ξ′ ≥ ξ,

E
[
|(Yt − Y ′t )+|2

]
+ E

[∫ T

t
1{Ys>Y ′

s}|Zs − Z
λ
s |2ds

]

≤ 2E

[∫ T

t
(Ys − Y ′s )+[f(s, Ys, Zs)− f(s, Y ′s −

κ̄∞
λ
,Zλs )]ds

]

+ 2E

[∫ T

t
(Ys − Y ′s )+(dKs − dKλ

s )

]
.

It still holds that∫ T

t
(Ys − Y λs −

κ̄∞
λ

)+(dKs − dKλ
s ) = −

∫ T

t
(Ys − Y λs −

κ̄∞
λ

)+dKλ
s ≤ 0

because on the set {s : Ys = Ss} whereK increases, Ys−Y λs − κ̄∞
λ = Ss−Y λs − κ̄∞

λ ≤ 0
thanks to Theorem 3.4. Moreover, since κ̄∞ ≥ 0 and f is non-increasing in y, we get,
∀(y, z) ∈ R× Rd,

f
(
t, y − κ̄∞

λ
, z
)
≥ f(t, y, z),dt⊗ dP, a.e. .

Hence,

E
[
|(Yt − Y ′t )+|2

]
+ E

[∫ T

t
1{Ys>Y ′

s}|Zs − Z
λ
s |2ds

]

≤ 2E

[∫ T

t
(Ys − Y ′s )+[f(s, Ys, Zs)− f(s, Y ′s , Z

λ
s )]ds

]

≤ (2CfLip + 2(CfLip)2)E

[∫ T

t
|(Ys − Y ′s )+|2ds

]
+ E

[∫ T

t
1{Ys>Y ′

s}|Zs − Z
λ
s |2ds

]
.

It is easy to conclude that |(Yt−Y ′t )+|2 = 0, 0 ≤ t ≤ T, a.s.. using Gronwall’s lemma.
�
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Remark 3.6. Theorems 3.4 and 3.5 are valid without assuming (Hm) up to
modifying the upper bounds in their statements. Namely, if κ̄∞ in (3.9) is
finite, then we have

(Y λt − St)− ≤
κ̄∞e

CfLipT

λ
, ∀0 ≤ t ≤ T, a.s., (3.12)

0 ≤ Yt − Y λt ≤
κ̄∞e

CfLipT

λ
, ∀0 ≤ t ≤ T, a.s.. (3.13)

Indeed, due to the change of variable in Proposition 2.1, we can always assume
the generator to be non-increasing in y. For ν = CfLip, with (Y ν , Zν ,Kν) as
defined in (2.1), the generator fν satisfies (Hm), then Theorems 3.4 and 3.5
yield

eνt(Y λt − St)− = (Y λ,νt − Sνt )− ≤ κ̄ν∞
λ
,

eνt(Yt − Y λt ) = Y νt − Y
ν,λ
t ≤ κ̄ν∞

λ
,

where after a few computations, we easily justify

κ̄ν∞ = ess sup
(t,ω)∈[0,T ]×Ω

eνt(f(t, St, Vt) + Ut)
− ≤ eνT κ̄∞.

Then we can conclude with (3.12) and (3.13).

Remark 3.7. Let us exemplify the above results in the case of the pricing
of an American put in finance with two interest rates (rt for lending, Rt for
borrowing), see [3, Example 1.1]. In this case, f(t, y, z) = −rty − zσ−1

t (µt +
σ2
t

2 − rt) + (Rt − rt)(y − zσ−1
t )− and St = (Kstk − eXt)+ where the log-asset

price X is defined in Lemma 2.2 with d = 1 and for non-zero volatility σt.
From Remark 2.3, a direct computation leads to κt = r+

t K
stk1{eXt≤Kstk}.

Obviously, if we assume r is upper bounded, then κ̄∞ < +∞ and therefore

0 ≤ Yt − Y λt ≤
Cκ̄∞
λ

for some constant C.
On the other hand, if rt ≤ 0 for any t then κ̄∞ = 0: combining (3.12) and
(3.13) gives Yt = Y λt ≥ St; thus we retrieve that the increasing process K is
zero, i.e. American and European put prices coincide when the interest rate
remains non-positive.

4 Error of implicit scheme

In this section, we aim at assessing the discretization error of the numerical
solution of PBSDE using the estimations from the previous section. When
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applying a time discretization to Y λ in (1.2), the difficulty lies in the fact that
the Lipschitz constant of the generator part fλ goes to infinity as λ→∞. To
overcome this, we use an implicit scheme Y λ,h defined in (4.1). In our analysis,
we first quantify the error of Y λ,h − Y λ w.r.t. the time step h and λ; and
second, we use the order 1-bound of Y − Y λ in Theorem 3.5 to get a global
convergence rate of Y λ,h → Y . Since we do not have a tight enough rate for
Z−Zλ (order 1

2 in Lp norm, see Theorem 3.2), we restrict our study to a case
where the generator f does not depend on z.

4.1 Main result

Consider the equidistant time discretization 0 = t0 < t1 < · · · < tN = T with
ti = i TN ,∀0 ≤ i ≤ N . Let h := T

N . For all 0 ≤ i ≤ N − 1, we propose the
piecewise implicit scheme for the discrete solution of Y λ as follows,

Y λ,hti = Eti
[
Y λ,hti+1

+ fλ(ti, Y
λ,h
ti )h

]
,

Y λ,ht = Y λ,hti ,∀t ∈ [ti, ti+1),
(4.1)

where fλ(t, y) := f(t, y) + λ(y − St)− and Eti [·] := E [·|Fti ] . The continuous
solution of (1.2) Y λ, at each ti, can be represented as,

Y λti = Eti
[
Y λti+1

+ fλ(ti, Y
λ
ti )h+ Ef,λi

]
,

where the perturbation is defined by

Ef,λi :=

∫ ti+1

ti

fλ(s, Y λs )ds− fλ(ti, Y
λ
ti )h. (4.2)

Before presenting the result of discretization error of PBSDE, let us denote D
the Malliavin derivative operator (see [43]) and define the following integral
space (see [3, p.58]):

D1,2 :=

{
random variables ζ that are Malliavin differentiable with

ζ ∈ L2,E

[
|ζ|2 +

∫ T

0

|Dθζ|2dθ

]
<∞

}
,

H1,2 :=

{
scalar predictable process φ = {φt, 0 ≤ t ≤ T} s.t.

for a.e. t ∈ [0, T ], φt ∈ D1,2,

t ∈ [0, T ] 7→ Dφt has a progressively measurable version

in L2([0, T ],Rd), and
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E

[∫ T

0

|φt|2dt+

∫ T

0

∫ T

0

|Dθφt|2dθdt

]
<∞

}
.

Theorem 4.1. Suppose (H1), (Hm) and (H2) are satisfied. In addition,
assume

• the terminal condition ξ satisfies ξ ∈ D1,2 and ess sup
(t,ω)∈[0,T ]×Ω

Et [|Dtξ|] <∞;

• the generator f satisfies:

a. f(t, y, z) = f(t, y);
b. f(·, 0) ∈ S 2;
c. ∀t ∈ [0, T ], f(t, ·) is differentiable with uniformly bounded and continuous

derivatives;
d. f(·, y) is 1

2 -Hölder continuous s.t.

E

 sup
0≤t<s≤T
y∈R

|f(s, y)− f(t, y)|2

s− t

 <∞;

e. ∀y ∈ R, f(·, y) ∈ H1,2 and ess sup
(t,ω)∈[0,T ]×Ω

Et

[
sup

(s,y)∈[t,T ]×R
|Dtf(s, y)|2

]
<∞;

f. y 7→ Dθf(t, y) is Lipschitz continuous uniformly on t, θ, ω;

• the barrier S satisfies:

a. ess sup
(t,ω)∈[0,T ]×Ω

|Vt| <∞;

b. S ∈ H1,2 and ess sup
(t,θ,ω)∈[0,T ]×[0,T ]×Ω

|DθSt| <∞;

• κ̄∞ defined by (3.9) is finite.

Then, we have

sup
0≤i≤N−1

E
[
(Y λ,hti − Y λti )

2
]

= O
(
h+ λ2h3/2

)
.

Remark 4.2. Notice that if A = 0 in (H2-i), then Vt = DtSt, so the
hypothesis of the boundedness of V on the barrier S can be removed.

Combining the above Theorem 4.1 with Theorem 3.5, we immediately
deduce a bound on the global error.
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Corollary 4.3. Under same hypotheses hold as Theorem 4.1, let λ = h−3/8,
we get the estimation of global error

sup
0≤i≤N−1

E
[
(Y h,λti − Yti)2

]1/2
= O

(
h3/8

)
.

Notice that this convergence is better than that in [26] (order 1/4) and
compared with [27], although this convergence holds at a slightly slower rate
(order 3/8 instead of 1/2): however, instead of assuming high regularity of
the Markovian barrier, we require milder regularity conditions for the barrier
and for generator, which allows for a wider scope of applications in option
pricing. The tightness of the upper bound in Corollary 4.3 is an open question:
numerical tests on American Put option in the following section shows that
the rate may be faster than h3/8 in some situations.

Corollary 4.4. Assume the same assumptions as Theorem 4.1 except κ̄∞ =
+∞, then

sup
0≤i≤N−1

E
[
(Y λ,hti − Y λti )

2
]

= O
(
λh+ λ5/2h2 + λ2h3/2

)
.

Letting λ = h−1/2, the global error is upper bounded as follows:

sup
0≤i≤N−1

E
[
(Y h,λti − Yti)2

]1/2
= O

(
h1/4

)
.

We retrieve the global rate from [26], but using this time a penalized
scheme.

4.2 Numerical experiments

In this section, we provide a numerical test built for American Put in a risk
neutral setting. Precisely, we lock the parameters of Put as following: the
underlying asset is under Black-Scholes model with the constant interest rate
r = 3% and volatility σ = 0.2, the strike price is fixed at K = 100, the
maturity T = 1. About the approximation approach, we apply Monte-Carlo
method with empirical regression as in [32, 44]. The number of trajectories
M = 104, the number of discretization times N = 103, the degree l = 7 of
global polynomials as basis functions.

In the first subsection, we focus on simulating the penalized price function
uλ(t, ·) given by uλ(t,Xt) = Y λ,ht and the behavior of penalization error with
increasing λ. We also give 2 different illustrations with constant initial process
value X0 = 100 and random one X0 ∼ U(50, 150).

In the second subsection, we show that, with fixed order of penalty
λ = O(h−3/8), changing only the time discretization step h, the error of MC
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simulation decreases in h more rapidly than the rate proved in Corollary 4.3.
The reference value is given by a 1000-steps Binomial tree.

4.2.1 Price function of American Put

In Figure 1a, the global simulation of uλ is very close to the reference value
for large λ. Theorems 3.5 and 3.4 are verified numerically in the following
sense: the RMSE at bottom-left shows effectively the tracking error decreases
as λ increases; at the top-right, the penalization term remains bounded (with
small oscillations around the exercise boundary), it explodes for small x but
this is due to the lack of samples in that region (see the sample distribution
at bottom-right).
In Figure 1b, we report the same quantities but with randomX0: in comparison
with Figure 1a, we observe that the penalization term behaves much better,
for a wide range of values of x, and we have noticed that the simulation scheme
is globally more robust.

4.2.2 Discretization error

We take X0 = 100,M = 104, λ = h−3/8, in Figure 2; we monitor the simulation
error by MC regression, namely, we track

sup
0≤i≤N

1

M

M∑
m=1

(Ŷ
h,λ(h),m
ti − Y Bin,mti )2 (4.3)

as a function of h. The numerical result shows, in this example, our penalized
scheme converges to the reference value more rapidly than what we have proved
theoretically in Corollary 4.3; the error turns out to be roughly constant below
h = 0.01 due to the limit of capacity of other chosen simulation parameters
(e.g. M and l). On the one hand, these experiments show that our numerical
scheme is efficient and accurate. On the other hand, the convergence order
seems to be close to 1 in this specific case, which can not be explained by our
current analysis. Further improvement is left to future works.

4.3 Proof of Theorem 4.1

In this subsection, we focus on the error w.r.t. the time step h, while the
penalty parameter λ is fixed. To alleviate notations, we remove the notation λ
in the processes, i.e. we write Y,Z, Y h, Efi instead of Y λ, Zλ, Y λ,h, Ef,λi , it will
be clear in the context. Besides, it is essential to keep track of the impact of λ
on the different constants arising in the error analysis. For this, we will use a
C as a generic constant (changing from line to line), whose values do depend
on T, f, ξ, S and other universal parameters, but not on λ. W.l.o.g, we assume
in the following h ≤ 1.
B Step 1: For any 0 ≤ i ≤ N − 1, define the function

Vi : Ω×R→ R, y 7→ y − fλ(ti, y)h.
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(a) The 4 panels are as following: at t = 0.5, the price function
uλ(t, ·) at top-left, the penalization term λ[uλ(t, ·) − (K − ·)+]−

at top-right, the RMSE (compared with binomial reference) as a
function of λ at bottom-left, the distribution of MC samples of Xt
at t = 0.5 at bottom-right.

(b) The same parameters as in Figure 1a except the process X is
simulated by starting from X0 ∼ U(50, 100) independently from the
Brownian motion.

To avoid any confusion, we will keep writing fλ to insist on the dependence of
λ. Observed that Vi is a Fti-adapted stochastic mapping since the generator
fλ is random. Then one has

Vi(Y hti ) = Eti
[
Y hti+1

]
, Vi(Yti) = Eti

[
Yti+1

+ Efi
]
,

Y hti = V−1
i

(
Eti
[
Y hti+1

])
, Yti = V−1

i

(
Eti
[
Yti+1

+ Efi
])
. (4.4)

The invertibility of Vi (in the y-variable) is justified in the following lemma.
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Fig. 2: For 4 ≤ N ≤ 100, we report the estimation error (4.3). The solid blue
line represents the expected rate h3/8 and the dashed blue line is fitted by
polynomial regression based on the tracked errors, the later is at around h1.11.

Lemma 4.5. Suppose f fulfills (H1-iii) and (Hm), then Vi is invertible. In

addition, ∀h ≤ 1

2CfLip
, the function V−1

i is (1 + 2CfLiph)-Lipschitz continuous

uniformly in i, namely ∀0 ≤ i ≤ N − 1 and ∀w,w′ ∈ R,

|V−1
i (w)− V−1

i (w′)| ≤ (1 + 2CfLiph)|w − w′|.

Proof We first consider the simple case where f ≡ 0 and denote V0
i (y) = y − λ(y −

Sti)
−h. Then (V0

i )
−1

is well defined since V0
i is continuously increasing in y. Without

loss of generality, suppose y ≥ y′:

0 ≤ V0
i (y)− V0

i (y′) =


y − y′, if y, y′ ≥ Sti ,
(1 + λh)(y − y′), if y, y′ < Sti ,

y − (1 + λh)y′ + λhSti , if y ≥ Sti ≥ y′.

In the third case, y−(1+λh)y′+λhSti ≥ y−(1+λh)y′+λhy′ = y−y′. It follows that

V0
i (y)− V0

i (y′) ≥ y − y′, ∀y ≥ y′,

so (V0
i )−1 is 1-Lipschitz uniformly in λ.

Now let fλ(t, y) = f(t, y) + λ(y − Sti)− with CfLip-Lipschitz continuous f . Under

(Hm), Vi preserves the same monotonicity as V0
i , so V−1

i is also well defined. Observe
that the advertised result is equivalent to prove that for any y, y′ ∈ R,

(1 + 2CfLiph)|Vi(y)− Vi(y′)| ≥ |y − y′|.
We start by writing the decomposition of Vi:

|Vi(y)− Vi(y′)| =
∣∣∣y − f(ti, y)h− λ(y − Sti)

−h−
(
y′ − f(ti, y

′)h− λ(y′ − Sti)
−h
)∣∣∣

≥
∣∣∣V0
i (y)− V0

i (y′)
∣∣∣− ∣∣f(ti, y)− f(ti, y

′)
∣∣h
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≥ (1− CfLiph)|y − y′|.

Now it’s easy to show that, (1 + 2CfLiph)(1− CfLiph) ≥ 1, for all h ≤ 1

2CfLip
. �

B Step 2: Recall Gronwall lemma in discrete case: for any non-negative
sequences (ak)0≤k≤N , (bk)0≤k≤N and (ck)0≤k≤N satisfying, with γ ≥ 0,

ak−1 + ck−1 ≤ (1 + γh)ak + bk−1,

then one has

ak +

N−1∑
i=k

ci ≤ eγ(T−tk)

(
aN +

N−1∑
i=k

bi

)
.

From (4.4) and the previous lemma, the sequence
(
E
[
(Y hti − Yti)

2
])

0≤i≤N
satisfies

E
[
(Y hti − Yti)

2
]

= E
[(
V−1
i

(
Eti
[
Y hti+1

])
− V−1

i

(
Eti
[
Yti+1

+ Efi
]))2

]
≤ (1 + Ch)2E

[(
Eti
[
Y hti+1

− Yti+1

]
− Eti

[
Efi
])2
]

≤ (1 + Ch)2

{
(1 + h)E

[
|Y hti+1

− Yti+1
|2
]

+

(
1 +

1

h

)
E
[
Eti
[
Efi
]2]}

≤ (1 + Ch)E
[
(Y hti+1

− Yti+1
)2
]

+
C

h
E
[
Eti
[
Efi
]2]

where we have used Young inequality at the third line and h ≤ 1 ∧ 1

2CfLip
at

the last line. Gronwall lemma combined with Y htN = YtN = ξ gives,

E
[
(Y hti − Yti)

2
]
≤ C

N−1∑
j=i

1

h
E
[
Etj
[
Efj
]2]

.

Hence, for h small enough,

sup
0≤i≤N

E
[
(Y hti − Yti)

2
]
≤ C

N−1∑
j=0

1

h
E
[
Etj
[
Efj
]2]

. (4.5)

B Step 3: In this step, we prove the above upper bound is O(h+ λ2h3/2).
Globally, we will separate the sum into several parts and then investigate each
of them. The general integrals are easy to deal with. The term with (Ys−Ss)−
will give rise to a local time contribution which is the hardest to analyze. We
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first divide the perturbation Efi into Ii and IIi: from (4.2),

Efi =

∫ ti+1

ti

(f(s, Ys)− f(ti, Yti))ds+ λ

∫ ti+1

ti

(
(Ys − Ss)− − (Yti − Sti)−

)
ds

=: Ii + λIIi.

In the following calculus, we will deduce that,

N−1∑
i=0

1

h
E
[
Eti [Ii]

2
]
≤ O(h) (4.6)

and
N−1∑
i=0

1

h
E
[
Eti [IIi]

2
]
≤ O

(
h3/2

)
. (4.7)

With (4.6) and (4.7) at hand and in view of (4.5), we directly complete the
proof of Theorem 4.1.

B Step 4: Estimation for Ii. In fact, we have

Ii =

∫ ti+1

ti

[f(ti, Ys)− f(ti, Yti)]ds+

∫ ti+1

ti

[f(s, Ys)− f(ti, Ys)]ds.

For all s ∈ [ti, ti+1),

|f(ti, Ys)− f(ti, Yti)|

≤ CfLip

(∫ s

ti

|f(u, Yu)|du+ λ

∫ s

ti

(Yu − Su)−du+

∣∣∣∣∫ s

ti

ZudBu

∣∣∣∣)
≤ C

(
sup

ti≤s<ti+1

(
|f(s, 0)|+ |Ys|+ λ(Ys − Ss)−

)
h+ sup

ti≤s<ti+1

∣∣∣∣∫ s

ti

ZudBu

∣∣∣∣
)
.

Thanks to the bound of f(·, 0), the estimate (A3) and Theorem 3.4, we have

sup
λ>0

E

[
sup

0≤s≤T

(
|f(s, 0)|+ |Ys|+ λ(Ys − Ss)−

)2
+

∫ T

0

|Zs|2ds

]
<∞. (4.8)

Therefore, by Burkholder-Davis-Gundy (BDG in short) inequality, we obtain

N−1∑
i=0

1

h
E

[
Eti
[∫ ti+1

ti

|f(ti, Ys)− f(ti, Yti)|ds
]2
]
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≤ C
N−1∑
i=0

hE

[
sup

ti≤s<ti+1

|f(ti, Ys)− f(ti, Yti)|2
]

≤ C
N−1∑
i=0

h

(
h2 + E

[∫ ti+1

ti

|Zu|2du
])

≤ Ch

(
1 + E

[∫ T

0

|Zt|2dt

])
= O(h).

In addition, thanks to 1
2 -Hölder continuous in t of f , clearly

∑
i

1

h
E

[
Eti
[∫ ti+1

ti

|f(s, Ys)− f(ti, Ys)|ds
]2
]

= O(h).

We have proved (4.6).

B Step 5: Estimation for IIi. We apply Tanaka’s formula and denote L the
local time of Y −S at level 0, by taking the conditional expectation, it follows

Eti
[
(Ys − Ss)− − (Yti − Sti)−

]
= Eti

[∫ s

ti

1{Yu≤Su}(f(u, Yu) + Uu)du+ λ

∫ s

ti

(Yu − Su)−du

]
+ Eti

[
1

2
[Ls − Lti ] +

∫ s

ti

1Yu≤SudAu

]

where A is the non-decreasing process of S in (H2-i). Consider the integral on
small interval [ti, ti+1), we get:

Eti
[∫ ti+1

ti

[
(Ys − Ss)− − (Yti − Sti)−

]
ds

]
≤ hEti

[∫ ti+1

ti

1{Yu≤Su}|f(u, Yu) + Uu|du
]

+ λhEti
[∫ ti+1

ti

(Yu − Su)−du

]
+
h

2
Eti [∆Li] + hEti [∆Ai] ,

where ∆Li := Lti+1 − Lti , ∆Ai := Ati+1 −Ati . We denote, for 0 ≤ i ≤ N − 1,

Fi : =

∫ ti+1

ti

1{Yu≤Su}|f(u, Yu) + Uu|du, Ei :=

∫ ti+1

ti

(Yu − Su)−du.



26 Improved convergence rate for Reflected BSDEs by penalization method

All in all, we get

N−1∑
i=0

1

h
E
[
Eti [IIi]

2
]
≤ 4

N−1∑
i=0

1

h

{
h2E

[
Eti [Fi]

2
]

+ λ2h2E
[
Eti [Ei]

2
]

+
h2

4
E
[
Eti [∆Li]

2
]

+ h2E
[
Eti [∆Ai]

2
]}

. (4.9)

For the first term of right hand side, by Jensen’s inequality and Cauchy-
Schwarz inequality, it follows

N−1∑
i=0

1

h
h2E

[
Eti [Fi]

2
]
≤ Ch2

N−1∑
i=0

E
[∫ ti+1

ti

1{Yu≤Su}[|f(u, 0)|2 + |Yu|2 + |Uu|2]du

]

≤ Ch2(‖f(·, 0)‖2H2 + ‖Y ‖2H2 + ‖U‖2H2) ≤ Ch2 (4.10)

using again (4.8). For the second sum in (4.9), we use again the bound in
Theorem 3.4:

E
[
Eti [Ei]

2
]
≤ h2E

( sup
u∈[ti,ti+1]

(Yu − Su)−

)2
 ≤ h2 κ̄

2
∞
λ2

,

which implies

N−1∑
i=0

1

h
λ2h2E

[
Eti [Ei]

2
]

= O(h2). (4.11)

Now we deal with the third term and the fourth in sum (4.9), applying
Lemma B.3:

N−1∑
i=0

1

h
h2E

[
Eti [∆Li]

2
]

+

N−1∑
i=0

1

h
h2E

[
Eti [∆Ai]

2
]

≤
√

6hE
[
L2
T

]1/2 E [ sup
0≤i≤N−1

Eti [∆Li]
2

]1/2

+
√

6hE
[
A2
T

]1/2 E [ sup
0≤i≤N−1

Eti [∆Ai]
2

]1/2

. (4.12)

An easy computation leads to E
[
L2
T +A2

T

]
<∞ thanks to f(, 0), U, V, S ∈ S 2

and Theorem 3.1. Thus it remains to estimate E
[

sup
0≤i≤N−1

Eti [|∆Li|]2
]1/2

+
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E
[

sup
0≤i≤N−1

Eti [|∆Ai|]2
]1/2

. Denote ∆(Yi − Si) := Yti+1
− Sti+1

− (Yti − Sti).

From Itô-Tanaka formula, we have, ∀0 ≤ i ≤ N − 1,

1

2
Eti [∆Li] = Eti

[
∆(Yi − Si)−

]
− Eti

[∫ ti+1

ti

1Yu≤Su [f(u, Yu) + Uu]du

]
− λEti

[∫ ti+1

ti

(Yu − Su)−du

]
− Eti

[∫ ti+1

ti

1Yu≤SudAu

]
≤ Eti [|∆(Yi − Si)|]− Eti

[∫ ti+1

ti

1Yu≤Su [f(u, Yu) + Uu]du

]
,

∆(Yi − Si) = −
∫ ti+1

ti

(f(s, Ys) + Us)ds− λ
∫ ti+1

ti

(Ys − Ss)−ds

−∆Ai +

∫ ti+1

ti

(Zs − Vs)dBs.

So, using Theorem 3.4, we deduce

Eti [∆Li] ≤ C
{
hEti

[
sup

0≤t≤T
(|f(t, 0)|+ |Yt|+ |Ut|)

]
+ h+ Eti [∆Ai]

+ Eti
[∣∣∣∣∫ ti+1

ti

(Zs − Vs)dBs
∣∣∣∣]}.

Thanks to the assumptions f(·, 0), U, ξ, S ∈ S 2, the random variable ζ :=
sup

0≤t≤T
(|f(t, 0)|+ |Yt|+ |Ut|) belongs to L2 and {Eti [ζ] , 0 ≤ i ≤ N − 1} is a

L2-martingale, so

E
[

sup
0≤i≤N−1

Eti [∆Li]
2

]
≤ C

{
h2 + h2E

[
sup

0≤i≤N−1
Eti [ζ]

2

]
+ E

[
sup

0≤i≤N−1
Eti [∆Ai]

2

]

+ E

[
sup

0≤i≤N−1
Eti
[∣∣∣∣∫ ti+1

ti

(Zs − Vs)dBs
∣∣∣∣]2
]}

. (4.13)

We handle the terms at the right-hand side of (4.13) separately. First, applying
Doob’s inequality and Jensen’s inequality,

E
[

sup
0≤i≤N−1

Eti [ζ]
2

]
≤ 4 sup

0≤i≤N−1
E
[
Eti [ζ]

2
]
≤4E

[
ζ2
]
<∞. (4.14)
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Second, denote ∆Si := Sti+1
−Sti , then ∆Ai = ∆Si−

∫ ti+1

ti
Usds−

∫ ti+1

ti
VsdBs.

With (H2-ii), we get similarly,

E
[

sup
0≤i≤N−1

Eti [∆Ai]
2

]
≤ 2

(
E
[

sup
0≤i≤N−1

Eti [|∆Si|]2
]

+ h2E

[
sup

0≤i≤N−1
Eti
[

sup
0≤t≤T

|Ut|
]2
])

≤ C(h+ h2 ‖U‖S 2). (4.15)

Third, introduce the following notation of regularized PBSDE solution:
For any fixed λ > 0, assume (Y λ,ε, Zλ,ε) be the solution of (1.2) with respect
to (ξ, fλ,ε, S) and

fλ,ε(t, y, z) = f(t, y) + λδε(y − St) (4.16)

where ε > 0, δε : R → R+ s.t. δε(x) = (x−ε)2
4ε for x ∈ [−ε, ε] and δε(x) = x−

for |x| > ε.
In the following context, we use (Y ε, Zε) to denote (Y λ,ε, Zλ,ε) for the fixed
λ. Notice that the bound of Zε in Proposition B.4 holds uniformly in t, ω, λ, ε,
thus applying BDG inequality we obtain

E

[
sup

0≤i≤N−1
Eti
[∣∣∣∣∫ ti+1

ti

(Zs − Vs)dBs
∣∣∣∣]2
]

= lim
ε→0

E

[
sup

0≤i≤N−1
Eti
[∣∣∣∣∫ ti+1

ti

(Zεs − Vs)dBs
∣∣∣∣]2
]

≤ C lim
ε→0

E

 sup
0≤i≤N−1

Eti

[(∫ ti+1

ti

|Zεs − Vs|2ds
)1/2

]2
 ≤ Ch. (4.17)

So, with (4.13), (4.14), (4.15), (4.17), we get,

E
[

sup
0≤i≤N−1

Eti [∆Li]
2

]
+ E

[
sup

0≤i≤N−1
Eti [∆Ai]

2

]
≤ Ch.

Back to (4.12), we finally have

N−1∑
i=0

1

h
h2E

[
Eti [∆Li]

2
]

+

N−1∑
i=0

1

h
h2E

[
Eti [∆Ai]

2
]
≤ Ch3/2. (4.18)

All in all, combining with (4.10), (4.11), (4.18), we prove successfully (4.7).
Wrapping up our arguments, the proof of Theorem 4.1 is finished. �
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Proof of Corollary 4.4.

Using the estimation E
[

sup
0≤t≤T

|(Y λt − St)−|2
]

= O( 1
λ ) in Theorem 3.3, the

estimation of Ii in (4.6) becomes

N−1∑
i=0

1

h
E
[
Eti [Ii]

2
]

= O(λh).

Regarding (4.7) we obtain

N−1∑
i=0

1

h
E
[
Eti [IIi]

2
]
≤ O

(√
λh2 + h3/2

)
because the estimation in (4.11) becomes

N−1∑
i=0

1

h
λ2h2E

[
Eti [Ei]

2
]

= O(
√
λh2);

and (4.18) turns to

N−1∑
i=0

1

h
h2E

[
Eti [∆Li]

2
]

+

N−1∑
i=0

1

h
h2E

[
Eti [∆Ai]

2
]

= O
(√

λh2 + h3/2
)
.
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Appendix A Appendix

A.1 Proof of Lemma 2.2

Let us denote by C any finite positive constant occurring in the proof: it will
depend only on T , the bounds on µ, σ and the regularity constant of g. For
any 0 ≤ t < s ≤ T ,

Et [|Ss − St|] ≤ C
(
|s− t| 12 + Et

[
(eC|Xs| + eC|Xt|)|Xs −Xt|

])
.

Since µ and σ are bounded, it is standard to show that

Et
[

sup
t≤r≤T

eC|Xr|
]
≤ CeC|Xt|,
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with a possible increase of C. Besides,

(
Et
[
|Xt −Xs|2

]) 1
2 ≤ C|t− s| 12

for some new constant C. Therefore, using Cauchy-Schwarz inequality gives

sup
0≤t<s≤T

Et [|Ss − St|]√
s− t

≤ C sup
0≤t≤T

eC|Xt|.

Taking the power p and the expectation gives the advertised result. �

A.2 A priori estimates for general BSDEs

In this subsection, we will give some result of a priori estimate for general
BSDEs.

Proposition A.1 ([5, Proposition 5.2, p.358, with p ≥ 2]). Suppose (Y,Z) ∈
S 2
cont. ×H2 satisfying the scalar equation

Yt = ξ +

∫ T

t

dFs −
∫ T

t

ZsdBs

where ξ ∈ L2, F ∈ S 2
cont. and F is a scalar process with a.s. bounded variation.

Let p ≥ 2, we assume there exist stochastic processes (D,R,N,Υ) satisfying

dDt + YtdFt ≤ dRt + |Yt|dNt + |Yt|2dΥt +
η

2
|Zt|2dt, (A1)

where

• D,R,N are progressively measurable, increasing, continuous processes with
D0 = R0 = N0 = 0;

• Υ is a progressively measurable process with bounded variation and Υ0 = 0;
• η < 1.

If E
[

sup
0≤t≤T

|YteΥt |p
]
<∞, then one has the a priori estimate,

E
[

sup
0≤t≤T

|eΥtYt|p
]

+ E

(∫ T

0

e2ΥsdDs

)p/2+ E

(∫ T

0

e2Υs |Zs|2ds

)p/2

≤ Cp,ηE

|eΥT YT |p +

(∫ T

0

e2ΥsdRs

)p/2
+

(∫ T

0

eΥsdNs

)p ,
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for some constant Cp,η depending only on p, η.

A.3 A priori Lp-estimates for RBSDE

In this subsection, we present some estimation results for Reflected BSDEs.

Proposition A.2 (A priori estimate for p ≥ 2). Let p ≥ 2 and let
{(Yt, Zt,Kt), 0 ≤ t ≤ T} be a solution in S p

cont. ×Hp ×S p
cont. of the RBSDE

w.r.t. (ξ, f, S). If (H1) is fulfilled, then there exists a constant C (depending
only on T, f, p) such that

E

 sup
0≤t≤T

|Yt|p +

(∫ T

0

|Zt|2dt

)p/2
+Kp

T


≤ CE

[
|ξ|p +

(∫ T

0

|f(t, 0, 0)|dt

)p
+ sup

0≤t≤T
(S+
t )p

]
.

Proof The proof will be done in several steps.
Step 1: Apply Proposition A.1 on (1.1) using obvious notations, we get

YtdFt = Ytf(t, Yt, Zt)dt+ YtdKt

≤ StdKt + |Yt|
(
|f(t, 0, 0)|+ CfLip|Yt|+ CfLip|Zt|

)
dt

≤ (St)
+dKt + |Yt||f(t, 0, 0)|dt+ (CfLip + (CfLip)2)|Yt|2dt+

1

4
|Zt|2dt,

so (A1) holds with

D = 0, dRt = (St)
+dKt, dNt = |f(t, 0, 0)|dt, dΥt = (CfLip+

1

2
(CfLip)2)dt, η =

1

2
.

For the rest of proof, let us denote by C any generic constant which value may change
from line to line, but it depends only on T, f, p. Therefore, from Proposition A.1, we
get the intermediate a priori estimate for Y and Z, with p ≥ 2, and for any ε > 0,

E

[
sup

0≤t≤T
|Yt|p

]
+ E

(∫ T

0
|Zt|2dt

)p/2
≤ CE

|ξ|p +

(∫ T

0
|f(t, 0, 0)|dt

)p
+

(∫ T

0
(St)

+dKt

)p/2
≤ CE

[
|ξ|p +

(∫ T

0
|f(t, 0, 0)|dt

)p]
+
C2

4ε
E

[
sup

0≤t≤T
|S+
t |
p

]
+ εE

[
|KT |p

]
. (A2)

Step 2: We now estimate KT , simply by rewriting the formulae,

KT = Y0 − ξ −
∫ T

0
f(t, Yt, Zt)dt+

∫ T

0
ZtdBt

≤
∫ T

0
|f(t, 0, 0)|dt+ C sup

0≤t≤T
|Yt|+ C

∫ T

0
|Zt|dt+

∣∣∣∣∣
∫ T

0
ZtdBt

∣∣∣∣∣ .



32 Improved convergence rate for Reflected BSDEs by penalization method

Then we take the power p and the expectation on both sides then get

E
[
|KT |p

]
≤ CE

[
sup

0≤t≤T
|Yt|p

]
+ CE

(∫ T

0
|Zt|2dt

)p/2+ CE

[(∫ T

0
|f(t, 0, 0)|dt

)p]
,

where we use Burkholder-Davis-Gundy(BDG in short) inequality at the last step.
Combining with (A2) and the above, and taking ε small enough, we get the desired
result. �

A.4 Proof of Theorem 3.1

In this part, we present the proof of Theorem 3.1, which gives an important
estimate result.

A.4.1 Existence, uniqueness for (Y, Z,K) and a priori
estimates for (Y λ, Zλ,Kλ)

We follow a standard routine to prove the existence of penalized BSDE with
increasing penalty parameter λ. The case of p = 2 is given in [7, Section 6] and
the case of 1 ≤ p < 2 is stated in [21]. Here we extend their results to p ≥ 2.

B Step 0: Define fλ(t, y, z) := f(t, y, z) + λ(y − St)−. The existence and
uniqueness of (Y λ, Zλ) in Lp is obvious thanks to the Lipschitz generator fλ.
The difficult part is related to prove λ-uniform bounds. We could try to use
estimates from [45]: on the one hand, fλ satisfies the monotonicity condition
[45, Assumption (H3)]

(y − y′)(fλ(t, y, z)− fλ(t, y′, z)) ≤ CfLip(y − y
′)2

uniformly in λ, but on the other hand, the condition [45, Assumption (A)]
writes as

Sign(y)fλ(t, y, z) ≤ |fλ(t, 0, 0)|+ CfLip|y|+ CfLip|z|

where |fλ(t, 0, 0)| does strongly depend on the penalty parameter λ. So
although the monotonicity condition is satisfied, we can not get an uniform
upper bound in λ for PBSDE using the argument of [45].

Instead, we establish a simple proof as in Proposition A.2 using Proposition
A.1.
B Step 1: Given (Y λ, Zλ,Kλ) the solution of (1.2), since

Y λt dK
λ
t ≤ StdKλ

t

(Kλ increases only when Y λt < St) we can use again the argument in Propo-
sition A.2 by replacing the process K by Kλ. Note that all generic constants
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C do not depend in λ. Then we get the desired a priori estimate

E

 sup
0≤t≤T

|Y λt |p +

(∫ T

0

|Zλs |2ds

)p/2
+ |Kλ

T |p
 ≤ c, (A3)

where c depends only on f, S, ξ, T, p.
From the comparison theorem for standard BSDE (see [3, Theorem 2.2]),

we have Y λt ≤ Y λ
′

t , 0 ≤ t ≤ T, a.s. for any 0 < λ ≤ λ′; so there exists a process
Y s.t. Y λt → Yt, as λ→∞, 0 ≤ t ≤ T, a.s.. By Fatou’s lemma and estimation
(A3), we easily get

E
[

sup
0≤t≤T

|Yt|p
]
≤ C

using again the convention of generic constant C independent on λ. Then,

from the dominated convergence theorem, we have E
[∫ T

0
|Y λt − Yt|pdt

]
→ 0

as λ→ +∞.
B Step 2: Let us justify that (Y λ, Zλ,Kλ) is a Cauchy sequence in S p

cont. ×
Hp ×S p

cont.. We apply again Proposition A.1 on Y λ
′ − Y λ. In fact, define

∆Y λt := Y λ
′
− Y λ,∆Zλt := Zλ

′

t − Zλt ,∆ft
:= f(t, Y λ

′

t , Zλ
′

t )− f(t, Y λt , Z
λ
t ),∆Kλ

t = Kλ′

t −Kλ
t ,

then, we have

∆Y λt (∆ftdt+ d∆Kλ
t ) ≤

(
CfLip + (CfLip)

2
)
|∆Y λt |2dt+

1

4
|∆Zλt |2dt

+ (Y λt − St)−dKλ′

t + (Y λ
′

t − St)−dKλ
t . (A4)

Let η = 1/2 and

D = 0, dRt = (Y λt − St)−dKλ′

t + (Y λ
′

t − St)−dKλ
t , N = 0,

dΥt =
(
CfLip + (CfLip)

2
)
dt.

Then we deduce the a priori estimate for (∆Y λt ,∆Z
λ
t ):

E
[

sup
0≤t≤T

|∆Y λt |p
]

+ E

(∫ T

0

|∆Zλt |2dt

)p/2
≤ CE

(∫ T

0

(Y λt − St)−dKλ′

t + (Y λ
′

t − St)−dKλ
t

)p/2
≤ C

√
E
[
|Kλ

T |p
]√

E
[

sup
0≤t≤T

|(Y λ′
t − St)−|p

]
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+ C
√

E
[
|Kλ′

T |p
]√

E
[

sup
0≤t≤T

|(Y λt − St)−|p
]
. (A5)

Assume for a while that the following limit holds, its proof is postponed
afterwards.

Lemma A.3. Under the assumptions of Theorem 3.1, we have, for p ≥ 2,

lim
λ→∞

E
[

sup
0≤t≤T

|(Y λt − St)−|p
]

= 0.

Then, from (A5), we get, as λ, λ′ →∞, the following convergence:

E
[

sup
0≤t≤T

|∆Y λt |p
]

+ E

(∫ T

0

|∆Zλt |2dt

)p/2→ 0.

Moreover, set

∆Kλ
t = ∆Y λ0 −∆Y λt −

∫ t

0

∆fsds+

∫ t

0

∆Zλs dBs,

we have the following estimation for ∆Kλ,

E
[

sup
0≤t≤T

|∆Kλ
t |p
]
≤ C

E
[

sup
0≤t≤T

|∆Y λt |p
]

+ E

(∫ T

0

|∆Zλt |2dt

)p/2 .

(A6)

So we deduce that (Y λ, Zλ,Kλ)λ is a Cauchy sequence in S p
cont.×Hp×S p

cont.,
denote by (Y, Z,K) its limit (for Y , it coincides with the previous monotone
limit).
B Step 3: it remains to verify (Y,Z,K) is the solution to (1.1), this can be

done by applying exactly the same arguments as [7, p.722]. We are done with
the first result (3.1) of Theorem 3.1.

A.4.2 Proof of the bound (3.2) on penalization error

We use again Proposition A.1 as for Inequality (A4). Before, we analyzed the
difference Y λ

′ − Y λ; now we handle Y − Y λ, the decomposition of which is
really similar just doing as if λ′ = +∞ in the algebra of equations. Replacing
(Y λ

′
, Zλ

′
,Kλ′

) by (Y,Z,K) in the formulas (A4) of (∆Y λ,∆Zλ,∆Kλ), we get

∆Y λt (∆ftdt+ d∆Kλ
t ) ≤

(
CfLip + (CfLip)

2
)
|∆Y λt |2dt
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+
1

4
|∆Zλt |2dt+ (Y λt − St)−dKt.

Then, applying Proposition A.1 with η = 1/2 and D = 0,dRt = (Y λt −
St)
−dKt, N = 0,dΥt =

(
CfLip + (CfLip)

2
)
dt, we get

E
[

sup
0≤t≤T

|∆Y λt |p
]
+E

(∫ T

0

|∆Zλt |2dt

)p/2 ≤ CE
(∫ T

0

(Y λt − St)−dKt

)p/2
for some constant C independent on λ. We obtain a similar estimate on ∆Kλ

by considering the analogous of (A6). The proof of (3.2) is complete. �

A.4.3 Proof of Lemma A.3

We extend the proof of [7, Lemma 6.1] when p = 2 to the case p ≥ 2. As in

the proof of Theorem 3.3, let (Ỹ λ, Z̃λ) be the solution (in S p
cont. ×Hp) of the

linear BSDE (3.4) which has the explicit representation

Ỹ λt = Et

[
e−λ(T−t)ξ +

∫ T

t

e−λ(s−t)f(s, Y λs , Z
λ
s )ds+ λ

∫ T

t

e−λ(s−t)Ssds

]
.

B Step 1: We first prove that, as λ → ∞, Ỹ λτ → ξ1{τ=T} + Sτ1{τ<T} in
Lp, for any τ ∈ T0,T . In fact, we consider the following convergences, which
hold in both a.s. and in Lp,

lim
λ→+∞

e−λ(T−τ)ξ = ξ1{τ=T}, (A7)

lim
λ→+∞

λ

∫ T

τ

e−λ(t−τ)Stdt = Sτ1{τ<T}. (A8)

The first identity (A7) is trivial since ξ ∈ Lp. To prove (A8), write

Sτ = (1− e−λ(T−τ))Sτ + e−λ(T−τ)Sτ = Sτλ

∫ T

τ

e−λ(t−τ)dt+ e−λ(T−τ)Sτ ,

λ

∫ T

τ

e−λ(t−τ)Stdt− Sτ1{τ<T} = λ

∫ T

τ

e−λ(t−τ)(St − Sτ )dt+ e−λ(T−τ)Sτ1{τ<T}.

Obviously, lim
λ→+∞

e−λ(T−τ)Sτ1{τ<T} → 0 holds a.s.; since S ∈ S p
cont., from the

dominated convergence theorem, this convergence holds also in Lp. Moreover,
on {τ < T}, we have

λ

∫ T

τ

e−λ(t−τ)|St − Sτ |dt ≤
∫ ∞

0

e−s
∣∣ST∧(τ+s/λ) − Sτ

∣∣ds.
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Therefore, thanks to the continuity of S, letting λ → +∞, the right-hand
converges to 0 a.s.; thus, from the dominated convergence theorem, with S ∈
S p
cont., we get

lim
λ→+∞

λ

∫ T

τ

e−λ(t−τ)|St − Sτ |dt = 0, in Lp.

We have proved (A7)-(A8). Hence, Jensen inequality ensures that the con-

ditional expectation of e−λ(T−τ)ξ + λ
∫ T
τ
e−λ(t−τ)Stdt given Fτ converges to

ξ1{τ=T} + Sτ1{τ<T} in Lp.

To complete our proof, we only have to justify that∫ T
τ
e−λ(t−τ)f(t, Y λt , Z

λ
t )dt converges to 0 in Lp. Indeed, from the Hölder

inequality,

E

[∣∣∣∣∣
∫ T

τ

e−λ(t−τ)f(t, Y λt , Z
λ
t )dt

∣∣∣∣∣
p]
≤
(

1

qλ

)p/q
E

[∫ T

0

|f(t, Y λt , Z
λ
t )|pdt

]

with 1
p + 1

q = 1. The expectation on the right-hand side is bounded uniformly

in λ, because of the uniform bounds (A3) and the assumptions on f ; thus the
expectation on the left-hand goes to 0 as announced.
B Step 2: From [46, p. 220], we pass from ”Yτ ≥ Sτ , a.s. for any stopping

time τ” to ”Yt ≥ St, for all times t ∈ [0, T ], a.s.” .
Notice that from the comparison theorem [3, Theorem 4.1], we have Yt ≥
Y λt ≥ Ỹ λt , 0 ≤ t ≤ T, a.s., so (Y λt − St)− ↓ 0 a.s.; Dini’s theorem yields the
convergence uniformly in t, and owing to the dominated convergence theorem,
we obtain the statement of Lemma A.3. �

Appendix B Proof of Section 4

We first introduce some results from [3, Proposition 5.3] and we restrict to the
case where f does not depend on z.

Lemma B.1. Assume ξ ∈ D1,2, f is continuously differentiable in y, with
uniformly bounded and continuous derivatives and such that

• for each y ∈ R, f(·, y) is in H1,2;

•
∫ T

0
E
[∫ T

0
|Dθf(t, Yt)|2dt

]
dθ <∞ and there exists a constant C s.t. for any

θ ∈ [0, T ] a.e., for any t ∈ [0, T ] and any (y1, y2) ∈ R2,

|Dθf(t, ω, y1)−Dθf(t, ω, y2)| ≤ C|y1 − y2|.
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Then for ∀1 ≤ i ≤ d, a version of the Malliavin derivatives
{
(
Di
θYt, D

i
θZt
)
}0≤θ,t≤T satisfies the following linear BSDE,


Di
θYt = Di

θξ +
∫ T
t

[∂yf(u, Yu)Di
θYu +Di

θf(u, Yu)]du

−
∫ T
t
Di
θZudBu, 0 ≤ θ ≤ t ≤ T ;

Di
θYt = 0, Di

θZt = 0, 0 ≤ t < θ ≤ T.
(B1)

Moreover, {DtYt}0≤t≤T defined by (B1) gives a version of {Zt}0≤t≤T .

From [3, Proposition 2.2], (B1) has closed form.

Lemma B.2. Let (β, γ) be bounded (R,Rd)-valued predictable processes, φ be
an element of H2, and ξ be an element of L2. Then the linear BSDE

−dYt = [φt + Ytβt + Ztγt]dt− ZtdBt, YT = ξ,

has a unique solution (Y,Z) in H2×H2 and Yt is given by the following formula

Yt = E

[
ξΓtT +

∫ T

t

Γtsφsds|Ft

]
, a.s.,

where Γts is the adjoint process defined for s ≥ t by the linear FSDE

dΓts = Γts[βsds+ γ>s dBs], Γtt = 1.

Lemma B.3. Given an adapted and non-decreasing process L starting from
L0 = 0, for some time discretization 0 = t0 < t1 < · · · < tN = T , define
∆Li := Lti+1

− Lti ,∀0 ≤ i ≤ N − 1. Assume that LT is square integrable.
Then we have

N−1∑
i=0

E
[
Eti [∆Li]2

]
≤
√

6E
[
L2
T

]1/2 E [ sup
0≤i≤N−1

Eti [∆Li]2
]1/2

.

Proof Because L is non-decreasing, the square integrability of LT easily propagates
to each Lti . By Cauchy-Schwarz inequality, the above left hand side satisfies

N−1∑
i=0

E
[
Eti [∆Li]2

]
≤ E

[(
sup

0≤i≤N−1
Eti [∆Li]

)(
N−1∑
i=0

Eti [∆Li]

)]

≤ E

[
sup

0≤i≤N−1
Eti [∆Li]2

]1/2

E

(N−1∑
i=0

Eti [∆Li]

)21/2

.
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From Jensen’s inequality and Young’s inequality, and using that L is non-decreasing,
we get

E

(N−1∑
i=0

Eti [∆Li]

)2 = E

[
N−1∑
i=0

Eti [∆Li]2
]

+ 2E

N−1∑
i=0

N−1∑
j=i+1

Eti [∆Li]Etj
[
∆Lj

]

≤ E

[
N−1∑
i=0

(∆Li)2

]
+ 2

N−1∑
i=0

N−1∑
j=i+1

E
[
Eti [∆Li] ∆Lj

]

≤ E

(N−1∑
i=0

∆Li

)2+ 2E

[
N−1∑
i=0

Eti [∆Li] (LT − Lti+1)

]

≤ E
[
L2
T

]
+ 2E

[
LT

(
N−1∑
i=0

Eti [∆Li]

)]

≤ 3E
[
L2
T

]
+

1

2
E

(N−1∑
i=0

Eti [∆Li]

)2
from where we get the desired result. �

Proposition B.4. Under (H1) and (H2), let (Y λt , Z
λ
t ) be solution of PBSDE

(1.2) and (Y λ,ε, Zλ,ε) be the solution of BSDE with fλ,ε as defined in (4.16).
First, we have

lim
ε→0

E

[
sup

0≤t≤T
|Y λt − Y

λ,ε
t |2 +

∫ T

0

|Zλt − Z
λ,ε
t |2dt

]
= 0. (B2)

Second, for any fixed λ > 0 and for all 0 ≤ i ≤ N − 1, denote Mλ
i :=∫ ti+1

ti
(Zλs − Vs)dBs and Mλ,ε

i :=
∫ ti+1

ti
(Zλ,εs − Vs)dBs, then we have

E
[

sup
0≤i≤N−1

Eti
[∣∣Mλ

i

∣∣]2] = lim
ε→0

E
[

sup
0≤i≤N−1

Eti
[∣∣∣Mλ,ε

i

∣∣∣]2] . (B3)

Moreover, suppose the same assumptions as Theorem 4.1, then there exists a
constant C which depends only on ξ, f, T s.t.

sup
λ>0

, sup
ε>0

ess sup
(t,ω)∈[0,T ]×Ω

|Zλ,εt | ≤ C. (B4)

Proof Since λ is fixed, we simplify the notations (Y λ, Zλ), (Y λ,ε, Zλ,ε), Mλ,Mλ,ε

into (Y,Z), (Y ε, Zε), M,Mε.
Proof of (B2). The existence and uniqueness of (Y ε, Zε) ∈ (S 2

cont.,H2) come
from the Lipschitz continuity of fλ,ε since the regularization does not change the
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bound of derivatives (δε is 1-Lipschitz continuous). The proof of (B2) is straightfor-
ward from a priori estimate (see [3, Proposition 2.1]), combined with the easy bound
sup
x∈R
|δε(x)− x−| ≤ ε

4 : it gives

∥∥Y − Y ε∥∥2

S 2 +
∥∥Z − Zε∥∥2

H2 ≤ CλE

[∫ T

0
λ2|(Yt − St)− − δε(Yt − St)|2dt

]
≤ λ2Cλε

2

with changing constants Cλ depending on λ and T, f, S, ξ.
Proof of (B3). We have∣∣∣∣∣E
[

sup
0≤i≤N−1

Eti [|Mi|]2 − sup
0≤i≤N−1

Eti
[
|Mε

i |
]2]∣∣∣∣∣

≤ E

[
sup

0≤i≤N−1

∣∣∣Eti [|Mi|]2 − Eti
[∣∣Mε

i

∣∣]2∣∣∣]

≤ E
[

sup
0≤i≤N−1

{Eti
[∣∣Mi −Mε

i

∣∣]Eti [|Mi|+
∣∣Mε

i

∣∣]}]

≤ E

[
sup

0≤i≤N−1
Eti
[∣∣∣∣∫ ti+1

ti

(Zs − Zεs )dBs

∣∣∣∣]2
]1/2

E

[
sup

0≤i≤N−1
Eti
[
|Mi|+ |Mε

i |
]2]1/2

.

(B5)

To the first factor in (B5), apply BDG’s inequality and Doob’s inequality, it gives

E

[
sup

0≤i≤N−1
Eti
[∣∣∣∣∫ ti+1

ti

(Zs − Zεs )dBs

∣∣∣∣]2
]

≤ CE

 sup
0≤i≤N−1

Eti

[(∫ ti+1

ti

|Zs − Zεs |2ds
)1/2

]2


≤ CE

 sup
0≤i≤N−1

Eti

(∫ T

0
|Zs − Zεs |2ds

)1/2
2


≤ CE

[∫ T

0
|Zs − Zεs |2ds

]
→ 0 as ε→ 0.

We now handle the second factor in (B5), by showing that it is uniformly bounded
in ε. We only need to consider the term Mε

i . Proceeding with similar arguments as
before, combined with (B4) and (A3), we get

lim sup
ε→0

E

[
sup

0≤i≤N−1
Eti
[∣∣Mε

i

∣∣]2] ≤ C lim sup
ε→0

E

[∫ T

0
|Zεs − Vs|2ds

]
< +∞

from where we deduce (B3).
Proof of (B4). Apply Lemma B.1 and Lemma B.2 to (Y ε, Zε), so we can solve Zεt
in an explicit form. Observe that the formula is similar for each coordinate i, thus
we can suppose d = 1. We have

∂yf
λ,ε(u, Y εu ) = ∂yf(u, Y εu ) + λδε

′(Y εu − Su),
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Dθf
λ,ε(u, y) = Dθf(u, y) + λDθδε(y − Su) = Dθf(u, y)− λδε′(y − Su)DθSu.

Let βu := ∂yf
λ,ε(u, Y εu ), φθu := Dθf

λ,ε(u, Y εu ) and let

Γts = exp

{∫ s

t
[∂yf(u, Y εu ) + λδε

′(Y εu − Su)]du

}
,

then

Zεt = DtY
ε
t = Et

[
ΓtTDtξ +

∫ T

t
Γtsφ

t
sds

]
.

Under the assumption ess sup
(t,ω)

|∂yf(t, Yt)| < ∞, since ∀x ∈ R, δε′(x) ≤ 0, Γts is

bounded uniformly in λ, t, s, ω. In the following, without dedicated explanation, the
generic constant C can vary from line to line and it does not depend on λ. Moreover,

as for
∫ T
t Γtsφsds, we first write

0 ≤
∫ T

t
−λδε′(Y εs − Ss)e

∫ s
t
λδε

′(Y εu−Su)duds = 1− e
∫ T
t
λδε

′(Y εu−Su)du ≤ 1,

then we get,∣∣∣∣Et
[∫ T

t
Γtsφ

t
sds

] ∣∣∣∣
≤ Et

[∫ T

t
|Dtf(s, Y εs )− λδε′(Y εs − Ss)DtSs|e

∫ s
t

[∂yf(u,Y εu )+λδε
′(Y εu−Su)duds

]

≤ C

(
Et

[
sup

(s,y)∈[t,T ]×R
|Dtf(s, y)|

]
+ Et

[
sup

s∈[t,T ]
|DtSs|

])
.

In addition, we have∣∣∣∣Et [ΓtTDtξ] ∣∣∣∣ ≤ Et
[
e
∫ T
t
∂yf(u,Y εu )du|Dtξ|

]
≤ CEt [|Dtξ|] .

As a consequence, Zεt is dominated by some bounded terms independent on λ, thus

sup
λ>0

sup
ε>0

ess sup
(t,ω)∈[0,T ]×Ω

|Zεt | <∞.

�
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