
HAL Id: hal-04020146
https://hal.science/hal-04020146

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lazy Parameter Tuning and Control: Choosing All
Parameters Randomly from a Power-Law Distribution

Denis Antipov, Maxim Buzdalov, Benjamin Doerr

To cite this version:
Denis Antipov, Maxim Buzdalov, Benjamin Doerr. Lazy Parameter Tuning and Control: Choosing
All Parameters Randomly from a Power-Law Distribution. Algorithmica, In press, �10.1007/s00453-
023-01098-z�. �hal-04020146�

https://hal.science/hal-04020146
https://hal.archives-ouvertes.fr

ar
X

iv
:2

10
4.

06
71

4v
4

 [
cs

.N
E

]
 2

4
Fe

b
20

23

Lazy Parameter Tuning and Control: Choosing All

Parameters Randomly From a Power-Law Distribution

Denis Antipov∗

ITMO University

St. Petersburg, Russia

Maxim Buzdalov
ITMO University

St. Petersburg, Russia

Benjamin Doerr

Laboratoire d’Informatique (LIX),

CNRS, École Polytechnique,
Institut Polytechnique de Paris

Palaiseau, France

February 27, 2023

Abstract

Most evolutionary algorithms have multiple parameters and their values dras-
tically affect the performance. Due to the often complicated interplay of the pa-
rameters, setting these values right for a particular problem (parameter tuning) is
a challenging task. This task becomes even more complicated when the optimal
parameter values change significantly during the run of the algorithm since then a
dynamic parameter choice (parameter control) is necessary.

In this work, we propose a lazy but effective solution, namely choosing all
parameter values (where this makes sense) in each iteration randomly from a suitably
scaled power-law distribution. To demonstrate the effectiveness of this approach, we
perform runtime analyses of the (1 + (λ, λ)) genetic algorithm with all three pa-
rameters chosen in this manner. We show that this algorithm on the one hand can
imitate simple hill-climbers like the (1 + 1) EA, giving the same asymptotic runtime
on problems like OneMax, LeadingOnes, or Minimum Spanning Tree. On the other
hand, this algorithm is also very efficient on jump functions, where the best static
parameters are very different from those necessary to optimize simple problems. We
prove a performance guarantee that is comparable to the best performance known for
static parameters. For the most interesting case that the jump size k is constant, we

∗Corresponding author

1

http://arxiv.org/abs/2104.06714v4

prove that our performance is asymptotically better than what can be obtained with
any static parameter choice. We complement our theoretical results with a rigorous
empirical study confirming what the asymptotic runtime results suggest.

1 Introduction

Evolutionary algorithms (EAs) are general-purpose randomized search heuristics. They
are adapted to the particular problem to be solved by choosing suitable values for their
parameters. This flexibility is a great strength on the one hand, but a true challenge
for the algorithm designer on the other. Missing the right parameter values can lead to
catastrophic performance losses.

Despite being a core topic of both theoretical and experimental research, general advice
on how to set the parameters of an EA are still rare. The difficulty stems from the fact
that different problems need different parameters, different instances of the same problem
may need different parameters, and even during the optimization process on one instance
the most profitable parameter values may change over time.

In an attempt to design a simple one-size-fits-all solution, Doerr, Le, Makhmara, and
Nguyen [DLMN17] proposed to use random parameter values chosen independently in
each iteration from a power-law distribution (note that random mutation rates were used
before [DDK18, DDK19], but with different distributions and for different reasons). Mostly
via mathematical means, this was shown to be highly effective for the choice of the mutation
rate of the (1 + 1) EA when optimizing the jump benchmark, which has the property that
the optimal mutation rate depends strongly on the problem instance. More precisely, for
a jump function with representation length n and jump size 2 ≤ k = o(

√
n), the standard

mutation rate p = 1/n gives an expected runtime of (1 + o(1))enk, where e ≈ 2.718 is
Euler’s number. The asymptotically optimal mutation rate p = k/n leads to a runtime of
(1 + o(1))nk(e/k)k. Deviating from the optimal rate by a small constant factor increases
the runtime by a factor exponential in k. When using the mutation rate α/n, where
α ∈ [1..n/2] is sampled independently in each iteration from a power-law distribution
with exponent β > 1, the runtime becomes Θ(kβ−0.5nk(e/k)k), where the constants hidden
by the asymptotic notation are independent of n and k. Consequently, apart from the
small polynomial factor Θ(kβ−0.5), this randomized mutation rate gives the performance
of the optimal mutation rate and in particular also achieves the super-exponential runtime
improvement by a factor of (e/k)Θ(k) over the standard rate 1/n.

The idea of choosing parameter values randomly according to a power-law distribu-
tion was quickly taken up by other works. In [FQW18, QGWF21],variants of the heavy-
tailed mutation operator were proposed and analyzed on TwoMax, Jump, MaxCut, and
several sub-modular problems. In [WQT18, DZ21, DQ22], power-law mutation in multi-
objective optimization was studied. In [COY21], the authors compared power-law muta-
tion and artificial immune systems. In [ABD22], heavy-tailed mutation was regarded for
the (1 + (λ, λ)) GA, however again only for a single parameter and this parameter being

2

the mutation rate. Very recently, the first analysis of a heavy-tailed choice of a parameter
of the selection operator was conducted [DELQ22].

While optimizing a single parameter is already non-trivial (and the latest work [ABD22]
showed that the heavy-tailed mutation rate can even give results better than any static
mutation rate, that is, it can inherit advantages of dynamic parameter choices), the really
difficult problem is finding good values for several parameters of an algorithm. Here the
often intricate interplay between the different parameters can be a true challenge (see,
e.g., [Doe16] for a theory-based determination of the optimal values of three parameters).

The only attempt to choose randomly more than one parameter was made in [AD20] for
the (1 + (λ, λ)) GA having a three-dimensional parameter space spanned by the parameters
population size λ, mutation rate p, and crossover bias c. For this algorithm, first proposed
in [DDE15], the product d = pcn of mutation rate, crossover bias, and representation
length describes the expected distance of an offspring from the parent. It was argued
heuristically in [AD20] that a reasonable parameter setting should have p = c, that is,
the same mutation rate and crossover bias. With this reduction of the parameter space to
two dimensions, the parameter choice in [AD20] was made as follows. Independently (and
independently in each iteration), both λ and d were chosen from a power-law distribution.
Mutation rate and crossover bias were both set to

√

d/n to ensure p = c and pcn = d.
When using unbounded power-law distributions with exponents βλ = 2+ ε and βd = 1+ ε′

with ε, ε′ > 0 any small constants, this randomized way of setting the parameters gave an
expected runtime of eO(k)(n

k
)(1+ε)k/2 on jump functions with jump size k ≥ 3. This is very

similar (slightly better for k < 1
ε
, slightly worse for k > 1

ε
) to the runtime of (n

k
)(k+1)/2eO(k)

obtainable with the optimal static parameters. This is a surprisingly good performance for
a parameter-less approach, in particular, when compared to the runtime of Θ(nk) of many
classic evolutionary algorithms. Note that both for the static and dynamic parameters
only upper bounds were proven1, hence we cannot make a rigorous conclusion on which
algorithm performs better on jump. The proofs of these upper bounds however suggest to
us that they are tight.

Our results: While the work [AD20] showed that in principle it can be profitable to
choose more than one parameter randomly from a power-law distribution, it relied on the
heuristic assumption that one should take the mutation rate equal to the crossover bias.
There is nothing wrong with using such heuristic insight, however, one has to question
if an algorithm user (different from the original developers of the (1 + (λ, λ)) GA) would
have easily found this relation p = c.

In this work, we show that such heuristic preparations are not necessary: One can
simply choose all three parameters of the (1 + (λ, λ)) GA from (scaled) power-law distri-
butions and obtain a runtime comparable to the ones seen before. More precisely, when
using the power-law exponents 2 + ε for the distribution of the population size and 1 + ε′

for the distributions of the parameters p and c and scaling the distributions for p and c

1A lower bound of (nk)
k/2eΘ(k) fitness evaluations on the runtime of the (1 + (λ, λ)) GA with static

parameters was shown in [ADK22], but this bound was proven for the initialization in the local optimum
of Jumpk and it does not include the runtime until the algorithm gets to the local optimum from a random
solution.

3

by dividing by
√
n (to obtain a constant distance of parent and offspring with constant

probability), we obtain the same eO(k)(n
k
)(1+ε)k/2 runtime guarantee as in [AD20]. From our

theoretical results one can see that the exact choice of ε′ does not affect the asymptotical
runtime neither on easy functions such as OneMax, nor on hard functions such as Jumpk.
Hence if an algorithm user would choose all exponents as 2+ε, which is a natural choice as
it leads to a constant expectation and a super-constant variance as usually desired from a
power-law distribution, the resulting runtimes would still be O(n logn) for OneMax and
eO(k)(n

k
)(1+ε)k/2 for jump functions with gap size k.

With this approach, the only remaining design choice is the scaling of the distributions.
It is clear that this cannot be completely avoided simply because of the different scales
of the parameters (mutation rates are in [0, 1], population sizes are positive integers).
However, we argue that here very simple heuristic arguments can be employed. For the
population size, being a positive integer, we simply use a power-law distribution on the non-
negative integers. For the mutation rate and the crossover bias, we definitely need some
scaling as both number have to be in [0, 1]. Recalling that (and this is visible right from the
algorithm definition) the expected distance of offspring from their parents in this algorithm
is d = pcn and recalling further the general recommendation that EAs should generate
offspring with constant Hamming distance from the parent with reasonable probability
(this is, for example, implicit both in the general recommendation to use a mutation rate
of 1/n and in the heavy-tailed mutation operator proposed in [DLMN17]), a scaling leading
to a constant expected value of d appears to be a good choice. We obtain this by taking
both p and c from power-law distributions on the positive integers scaled down by a factor
of
√
n. This appears again to be the most natural choice. We note that if an algorithm

user would miss this scaling and scale down both p and c by a factor of n (e.g., to obtain an
expected constant number of bits flipped in the mutation step), then our runtime estimates

would increase by a factor of n
βp+βc

2
−1, which is still not much compared to the roughly

nk/2 runtimes we have and the Θ(nk) runtimes of many simple evolutionary algorithms.
Our precise result is a mathematical runtime analysis of this heavy-tailed algorithm

for arbitrary parameters of the three heavy-tailed distributions (power-law exponent and
upper bound on the range of positive integers it can take, including the case of no bound)
on a set of “easy” problems (OneMax, LeadingOnes, the minimum spanning tree and
the partition problem) and on Jump function. We show that on easy problems the heavy-
tailed (1 + (λ, λ)) GA asymptotically is not worse than the (1 + 1) EA, and on Jump it
significantly outperforms the (1 + 1) EA for a wide range of the parameters of power-law
distributions. These results show that the absolutely best performance can be obtained by
guessing correctly suitable upper bounds on the ranges. Since guessing these parameters
wrong can lead to significant performance losses, whereas the gains from these optimal
parameter values are not so high, we would rather advertise our parameter-less “layman
recommendation” to use unrestricted ranges and power-law exponents slightly more than
two for the population size and slightly more than one for other parameters. These rec-
ommendations are supported by the empirical study shown in Section 4.

4

Our work also provides an example where a dynamic (here simply randomized)
parameter choice provably gives an asymptotic runtime improvement. This improve-
ment is significantly more pronounced than the o(

√
log n) factor speed-up observed

in [DD18, ABD22] for the optimization of OneMax via the (1 + (λ, λ)) GA.
We note that our situation is different, e.g., from the optimization of jump functions via

the (1 + 1) EA. Here the mutation rate k
n
is asymptotically optimal [DLMN17] for Jumpk.

Clearly, for the easy OneMax-type part of the optimization process, the mutation rate 1
n

would be superior, but the damage from using the larger rate k
n
only leads to a lower-order

increase of the runtime.
We prove that this is different for the optimization of the jump functions via the

(1 + (λ, λ)) GA. Since this effect is already visible for constant values of k, and in fact
strongest visible, to ease the presentation, we assume that k is constant. We note that
only for constant k the different variants of the (1 + (λ, λ)) GA had a polynomial runtime,
so clearly, k constant (and not too large) is the most interesting case.

For constant k, our result is eO(k)(n
k
)(1+ε)k/2. The best runtime that could be obtained

with a static mutation rate was eO(k)n(k+1)/2k−k/2. Hence by choosing ε sufficiently small,
our upper bound is asymptotically smaller than the best upper bound for static parame-
ters. Unfortunately, no lower bounds were proven in [ADK22] for static parameters. To
rigorously support our claim that dynamic parameter choices can asymptotically outper-
form static ones when optimizing jump functions via the (1 + (λ, λ)) GA, in Section 3.3
we prove such a lower bound. Since this is not the main topic of this work, we shall not
go as far as proving that the upper bound for static parameters is tight, but we content
ourselves with a simpler proof of a weaker lower bound, which however suffices to support
our claim of the superiority of dynamic parameter choices.

In summary, our results demonstrate that choosing all parameters of an algorithm
randomly according to a simple (scaled) power-law can be a good way to overcome the
problem of choosing appropriate fixed or dynamic parameter values. We are optimistic
that this approach will lead to a good performance also for other algorithms and other
optimization problems.

2 Preliminaries

In this section we collect definitions and tools which we use in the paper. To avoid mis-
reading of our results, we note that we use the following notation. By N we denote the
set of all positive integer numbers and by N0 we denote the set of all non-negative integer
numbers. We write [a..b] to denote an integer interval including its borders and [a, b] to
denote a real-valued interval including its borders. For any probability distribution L and
random variable X , we write X ∼ L to indicate that X follows the law L. We denote the
binomial law with parameters n ∈ N and p ∈ [0, 1] by Bin(n, p). We denote the geometric
distribution taking values in {1, 2, . . . } with success probability p ∈ [0, 1] by Geom(p).
We denote by TI and TF the number of iterations and the number of fitness evaluations
performed until some event holds (which is always specified in the text).

5

2.1 Objective Functions

In this paper we consider five benchmark functions and problems, namely OneMax,
LeadingOnes, the minimum spanning tree problem, the partition problem and Jumpk.
All of them are pseudo-Boolean functions, that is, they are defined on the set of bit strings
of length n and return a real number.

OneMax returns the number of one-bits in its argument, that is, OneMax(x) =
OM(x) =

∑n
i=1 xi. It is one of the most intensively studied benchmarks in evolutionary

computation. Many evolutionary algorithms can find the optimum of OneMax in time
O(n logn) [Müh92, JJW05, Wit06, AD21]. The (1 + (λ, λ)) GA with a fitness-dependent or
self-adjusting choice of the population size [DDE15, DD18] or with a heavy-tailed random
choice of the population size [ABD21] is capable of solving OneMax in linear time when
the other two parameters are chosen suitably depending on the population size.

LeadingOnes returns the number of the leading ones in a bit string. In more formal
words we maximize function

LeadingOnes(x) =
n
∑

i=1

i
∏

j=1

xj .

The runtime of the most classic EAs is at least quadratic on LeadingOnes. More precisely,
the runtime of the (1 + 1) EA is Θ(n2) [Rud97, DJW02], the runtime of the (µ+ 1) EA
is Θ(n2 + µn log(n)) [Wit06], the runtime of the (1 + λ) EA is Θ(n2 + λn) [JJW05] and
the runtime of the (µ+ λ) EA is Ω(n2 + λn

max{1,log(λ/n)}) [BLS14]. It was shown in [ADK19]

that the (1 + (λ, λ)) GA with standard parameters (λ ∈ [1..n
2
], p = λ

n
and c = 1

λ
) also has

a Θ(n2) runtime on LeadingOnes.
In the minimum spanning tree problem (MST for brevity) we are given an undi-

rected graph G = (V,E) with positive integer edge weights defined by a weight function
ω : E → N≥1. We assume that this graph does not have parallel edges or loops. The
aim is to find a connected subgraph of a minimum weight. By n we denote the number of
vertices, by m we denote the number of edges in G.

This problem can be solved by minimizing the following fitness function defined on all
subgraphs G′ = (V,E ′) of the given graph G.

f(G′) = (Wtotal + 1)2cc(G′) + (Wtotal + 1)|E ′|+
∑

e∈E′

ω(e),

where cc(G′) is the number of connected components in G′ and Wtotal is the total weight of
the graph G, that is, the sum of all edge weights. This definition of the fitness guarantees
that any connected graph has a better (in this case, smaller) fitness than any unconnected
graph and any tree has a better fitness than any graph with cycles.

The natural representation for subgraphs used in [NW07] is via bit-strings of length
m, where each bit corresponds to some particular edge in graph G. An edge is present in
subgraph G′ if and only if its corresponding bit is equal to one. In [NW07] it was shown

6

that the (1 + 1) EA solves the MST problem with the mentioned representation and fitness
function in expected number of O(m2 log(Wtotal)) iterations.

In the partition problem we have a set of n objects with positive integer weights
w1, w2, . . . , wn and our aim is to split the objects into two sets (usually called bins) such
that the total weight of the heavier bin is minimal. Without loss of generality we assume
that the weights are sorted in a non-increasing order, that is, w1 ≥ w2 ≥ · · · ≥ wn. By w
we denote the total weight of all objects, that is, w =

∑n
i=1wi. By a (1+ δ) approximation

(for any δ > 0) we mean a solution in which the weight of the heavier bin is at most by a
factor of (1 + δ) greater than in an optimal solution.

Each partition into two bins can be represented by a bit string of length n, where each
bit corresponds to some particular object. The object is put into the first bin if and only
if the corresponding bit is equal to one. As fitness f(x) of an individual x we consider the
total weight of the objects in the heavier bin in the partition which corresponds to x.

In [Wit05] it was shown that the (1 + 1) EA finds a (4
3
+ ε) approximation for any

constant ε > 0 of any partition problem in linear time and that it finds a 4
3
approximation

in time O(n2).
The function Jumpk (where k is a positive integer parameter) is defined via OneMax

as follows.

Jumpk(x) =

{

OM(x) + k, if OM(x) ∈ [0..n− k] ∪ {n},
n−OM(x), if OM(x) ∈ [n− k + 1..n− 1].

A plot of Jumpk is shown in Figure 1. The main feature of Jumpk is a set of local optima
at distance k from the global optimum and a valley of extremely low fitness in between.
Most EAs optimizing Jumpk first reach the local optima and then have to perform a jump
to the global one, which turns out to be a challenging task for most classic algorithms. In
particular, for all values of µ and λ it was shown that (µ+ λ) EA and (µ, λ) EA have a
runtime of Ω(nk) fitness evaluations when they optimize Jumpk [DJW02, Doe22]. Using
a mutation rate of k

n
[DLMN17], choosing it from a power-law distribution [DLMN17], or

setting it dynamically with a stagnation detection mechanism [RW20, RW21b, RW21a,
DR22] reduces the runtime of the (1 + 1) EA by a kΘ(k) factor, however, for constant k
the runtime of the (1 + 1) EA remains Θ(nk). Many crossover-based algorithms have a
better runtime on Jumpk, see [JW02, FKK+16, DFK+16, DFK+18, RA19, WVHM18]
for results on algorithms different from the (1 + (λ, λ)) GA. Those beating the Õ(nk−1)
runtime shown in [DFK+18] may appear somewhat artificial and overfitted to the precise
definition of the jump function, see [Wit21]. Outside the world of genetic algorithms, the
estimation-of-distribution algorithm cGA and the ant-colony optimizer 2-MMASib were
shown to optimize jump functions with small k = O(logn) in time O(n logn) [HS18,
Doe21, BBD21]. Runtime analyses for artificial immune systems, hyperheuristics, and the
Metropolis algorithm exist [COY17, COY19, LOW19], but their runtime guarantees are
asymptotically weaker than O(nk) for constant k.

7

OneMax(x)n
0

n− k

k

n

n + k

Jumpk(x)

Figure 1: Plot of the Jumpk function. As a function of unitation, the function value of a
search point x depends only on the number of one-bits in x.

2.2 Power-Law Distributions

We say that an integer random variableX follows a power-law distribution with parameters
β and u if

Pr[X = i] =

{

Cβ,ui
−β , if i ∈ [1..u],

0, else.

Here Cβ,u = (
∑u

j=1 j
−β)−1 denotes the normalization coefficient. We write X ∼ pow(β, u)

and call u the bounding of X and β the power-law exponent.
The main feature of this distribution is that while having a decent probability to sample

X = Θ(1) (where the asymptotic notation is used for u → +∞), we also have a good
(inverse-polynomial instead of negative-exponential) probability to sample a super-constant
value. The following lemmas show the well-known properties of the power-law distributions.
Their proofs can be found, for example, in [AD20].

Lemma 1 (Lemma 1 in [AD20]). For all positive integers a and b such that b ≥ a and for
all β > 0, the sum

∑b
i=a i

−β is

• Θ((b+ 1)1−β − a1−β), if β < 1,

• Θ(log(b+1
a
)), if β = 1, and

• Θ(a1−β − (b+ 1)1−β), if β > 1,

where Θ notation is used for b→ +∞.

Lemma 2 (Lemma 2 in [AD20]). The normalization coefficient Cβ,u = (
∑u

j=1 j
−β)−1 of

the power-law distribution with parameters β and u is

8

• Θ(uβ−1), if β < 1,

• Θ(1
log(u)+1

), if β = 1, and

• Θ(1), if β > 1,

where Θ notation is used for u→ +∞.

Lemma 3 (Lemma 3 in [AD20]). The expected value of the random variable X ∼ pow(β, u)
is

• Θ(u), if β < 1,

• Θ(u
log(u)+1

), if β = 1,

• Θ(u2−β), if β ∈ (1, 2),

• Θ(log(u) + 1), if β = 2, and

• Θ(1), if β > 2,

where Θ notation is used for u→ +∞.

Lemma 4. If X ∼ pow(β, u), then E[X2] is

• Θ(u2), if β < 1,

• Θ(u2

log(u)+1
), if β = 1,

• Θ(u3−β), if β ∈ (1, 3),

• Θ(log(u) + 1), if β = 3, and

• Θ(1), if β > 3,

where Θ notation is used for u→ +∞.

Lemma 4 simply follows from Lemma 1.

2.3 The Heavy-Tailed (1 + (λ, λ)) GA

We now define the heavy-tailed (1 + (λ, λ)) GA. The main difference from the standard
(1 + (λ, λ)) GA is that at the start of each iteration the mutation rate p, the crossover bias c,
and the population size λ are randomly chosen as follows. We sample p ∼ n−1/2 pow(βp, up)
and c ∼ n−1/2 pow(βc, uc). The population size is chosen via λ ∼ pow(βλ, uλ). Here the
upper limits uλ, up and uc can be any positive integers, except we require up and uc to
be at most

√
n (so that we choose both p and c from interval (0, 1]). The power-law

exponents βλ, βp and βc can be any non-negative real numbers. We call these parameters
of the power-law distribution the hyperparameters of the heavy-tailed (1 + (λ, λ)) GA and

9

we give recommendations on how to choose these hyperparameters in Section 3.3. The
pseudocode of this algorithm is shown in Algorithm 1. We note that it is not necessary
to store the whole offspring population, since only the best individual has a chance to be
selected as a mutation or crossover winner. Hence also large values for λ are algorithmically
feasible.

Concerning the scalings of the power-law distributions, we find it natural to choose
the integer parameter λ from a power-law distribution without any normalization. For
the scalings of the power-law determining the parameters p and c, we argued already in
the introduction that the scaling factor of n−1/2 is natural as it ensures that the Hamming
distance between parent and offspring, which is pcn for this algorithm, is one with constant
probability. We see that there is some risk that an algorithm user misses this argument
and, for example, chooses a scaling factor of n−1 for the mutation rate, which leads to
the Hamming distance between parent and mutation offspring being one with constant
probability. A completely different alternative would be to choose c ∼ 1

pow(βm,um)
, inspired

by the recommendation “c := 1/(pn)” made for static parameters in [DDE15]. Without
proof, we note that these and many similar strategies increase the runtime by at most a
factor of Θ(nc), c a constant independent of n and k, thus not changing the general n(0.5+ε)k

runtime guarantee proven in this work.
The following theoretical results exist for the (1 + (λ, λ)) GA. With optimal static

parameters the algorithm solves OneMax in approximately O(n
√

log(n)) fitness evalua-
tions [DDE15]. The runtime becomes slightly worse on the random satisfiability instances
due to a weaker fitness-distance correlation [BD17]. In [ADK19] it was shown that the run-
time of the (1 + (λ, λ)) GA on LeadingOnes is the same as the runtime of the most classic
algorithms, that is, Θ(n2), which means that it is not slower than most other EAs despite
the absence of a strong fitness-distance correlation. The analysis of the (1 + (λ, λ)) GA
with static parameters on Jumpk in [ADK22] showed that the (1 + (λ, λ)) GA (with un-
common parameters) can find the optimum in eO(k)(n

k
)(k+1)/2 fitness evaluations, which is

roughly a square root of the Θ(nk) runtime of many classic algorithms on this function.
Concerning dynamic parameter choices, a fitness-dependent parameter choice was

shown to give linear runtime on OneMax [DDE15], which is the best known runtime
for crossover-based algorithms on OneMax. In [DD18], it was shown that also the self-
adjusting approach of controlling the parameters with a simple one-fifth rule can lead to this
linear runtime. The adapted one-fifth rule with a logarithmic cap lets the (1 + (λ, λ)) GA
outperform the (1 + 1) EA on random satisfiability instances [BD17].

Choosing λ from a power-law distribution and taking p = λ
n

and c = 1
λ

lets the
(1 + (λ, λ)) GA optimize OneMax in linear time [ABD22]. Also, as it was mentioned in
the introduction, with randomly chosen parameters (but with some dependencies between
several of them) the (1 + (λ, λ)) GA can optimize Jumpk in time of eO(k)(n

k
)(1+ε)k/2 [AD20].

For the LeadingOnes it was shown in [ADK19] that the runtime of the (1 + (λ, λ)) GA
is Θ(n2) and that any dynamic choice of λ does not change this asymptotical runtime.

In our proofs we use the following language (also for the (1 + (λ, λ)) GA with static
parameters). When we analyse the (1 + (λ, λ)) GA on Jump and the algorithm has already

10

Algorithm 1: The heavy-tailed (1 + (λ, λ)) GA maximizing a pseudo-Boolean
function f : {0, 1}n → R.

1 x← random bit string of length n;
2 while not terminated do

3 Choose p ∼ n−1/2 pow(βp, up);

4 Choose c ∼ n−1/2 pow(βc, uc);
5 Choose λ ∼ pow(βλ, uλ);

Mutation phase:

6 Choose ℓ ∼ Bin(n, p);
7 for i ∈ [1..λ] do
8 x(i) ← a copy of x;

9 Flip ℓ bits in x(i) chosen uniformly at random;

10 end

11 x′ ← argmaxz∈{x(1),...,x(λ)} f(z);
Crossover phase:

12 for i ∈ [1..λ] do
13 Create y(i) by taking each bit from x′ with probability c and from x with

probability (1− c);

14 end

15 y ← argmaxz∈{y(1),...,y(λ)} f(z);

16 if f(y) ≥ f(x) then
17 x← y;
18 end

19 end

reached the local optimum, then we call the mutation phase successful if all k zero-bits of
x are flipped to ones in the mutation winner x′. We call the crossover phase successful if
the crossover winner has a greater fitness than x.

2.4 Useful Tools

An important tool in our analysis is Wald’s equation [Wal45] as it allows us to express the
expected number of fitness evaluations through the expected number of iterations and the
expected cost of one iteration.

Lemma 5 (Wald’s equation). Let (Xt)t∈N be a sequence of real-valued random variables
and let T be a positive integer random variable. Let also all following conditions be true.

1. All Xt have the same finite expectation.

2. For all t ∈ N we have E[Xt1{T≥t}] = E[Xt] Pr[T ≥ t].

3.
∑+∞

t=1 E[|Xt|1{T≥t}] <∞.

11

4. E[T] is finite.

Then we have

E

[

T
∑

t=1

Xt

]

= E[T]E[X1].

In our analysis of the heavy-tailed (1 + (λ, λ)) GA we use the following multiplicative
drift theorem.

Theorem 6 (Multiplicative Drift [DJW12]). Let S ⊂ R be a finite set of positive numbers
with minimum smin. Let {Xt}t∈N0 be a sequence of random variables over S ∪ {0}. Let T
be the first point in time t when Xt = 0, that is,

T = min{t ∈ N : Xt = 0},
which is a random variable. Suppose that there exists a constant δ > 0 such that for all
t ∈ N0 and all s ∈ S such that Pr[Xt = s] > 0 we have

E[Xt −Xt+1 | Xt = s] ≥ δs.

Then for all s0 ∈ S such that Pr[X0 = s0] > 0 we have

E[T | X0 = s0] ≤
1 + ln(s0/smin)

δ
.

We use the following well-known relation between the arithmetic and geometric means.

Lemma 7. For all positive a and b it holds that a+ b ≥ 2
√
ab.

3 Runtime Analysis

In this section we perform a runtime analysis of the heavy-tailed (1 + (λ, λ)) GA on the
easy problems OneMax, LeadingOnes, and Minimum Spanning Tree as well as the more
difficult Jump problem. We show that this algorithm can efficiently escape local optima
and that it is capable of solving Jump functions much faster than the known mutation-
based algorithms and most of the crossover-based EAs. At the same time it does not fail
on easy functions like OneMax, unlike the (1 + (λ, λ)) GA with those static parameters
which are optimal for Jump [ADK22].

From the results of this section we distill the recommendations to use βp and βc slightly
greater than one and to use βλ slightly greater than two. We also suggest to use almost
unbounded power-law distributions, taking uc = up =

√
n and uλ = 2n. These recommen-

dations are justified in Corollary 16.

3.1 Easy Problems

In this subsection we show that the heavy-tailed (1 + (λ, λ)) GA has a reasonably good
performance on the easy problems OneMax, LeadingOnes, minimum spanning tree,
and partition.

12

3.1.1 OneMax

The following result shows that the heavy-tailed (1 + (λ, λ)) GA just like the simple
(1 + 1) EA solves the OneMax problem in O(n log(n)) iterations.

Theorem 8. If βλ > 1, βp > 1, and βc > 1, then the heavy-tailed (1 + (λ, λ)) GA finds
the optimum of OneMax in O(n log(n)) iterations. The expected number of fitness eval-
uations is

• O(n log(n)), if βλ > 2,

• O(n log(n)(log(uλ) + 1)), if βλ = 2, and

• O(nu2−βλ

λ log(n)), if βλ ∈ (1, 2).

The central argument in the proof of Theorem 8 is the observation that the heavy-tailed
(1 + (λ, λ)) GA performs an iteration equivalent to one of the (1 + 1) EA with a constant
probability, which is shown in the following lemma.

Lemma 9. If βp, βc and βλ are all strictly greater than one, then with probability ρ = Θ(1)
the heavy-tailed (1 + (λ, λ)) GA chooses p = c = 1√

n
and λ = 1 and performs an iteration

of the (1 + 1) EA with mutation rate 1
n
.

Proof. Since we choose p, c and λ independently, then by the definition of the power-law
distribution and by Lemma 2 we have

ρ = Pr

[

p =
1√
n

]

Pr

[

c =
1√
n

]

Pr[λ = 1]

= Cβp,up1
−βp · Cβc,uc1

−βc · Cβλ,uλ
1−βλ

= Θ(1) ·Θ(1) ·Θ(1) = Θ(1).

If we have λ = 1, then we have only one mutation offspring which is automatically
chosen as the mutation winner x′. Note that although we first choose ℓ ∼ Bin(n, p) and
then flip ℓ random bits in x, the distribution of x′ in the search space is the same as if
we flipped each bit independently with probability p (see Section 2.1 in [DDE15] for more
details).

In the crossover phase we create only one offspring y by applying the biased crossover
to x and x′. Each bit of this offspring is different from the bit in the same position in
x if and only if it was flipped in x′ (with probability p) and then taken from x′ in the
crossover phase (with probability c). Therefore, y is distributed in the search space as if
we generated it by applying the standard bit mutation with mutation rate pc to x. Hence,
we can consider such iteration of the heavy-tailed (1 + (λ, λ)) GA as an iteration of the
(1 + 1) EA which uses a standard bit mutation with mutation rate pc = 1

n
.

We are now in position to prove Theorem 8.

13

Proof of Theorem 8. By Lemma 9 with probability at least ρ, which is at least some con-
stant independent of the problem size n, the heavy-tailed (1 + (λ, λ)) GA performs an
iteration of the (1 + 1) EA. Hence, the probability P (i) to increase fitness in one iteration
if we have already reached fitness i is

P (i) ≥ ρ · n− i

en
.

Hence, we estimate the total runtime in terms of iterations as a sum of the expected
runtimes until we leave each fitness level.

E[TI] ≤
n−1
∑

i=0

1

P (i)
≤ 1

ρ

n−1
∑

i=0

ne

n− i
≤ en ln(n)

ρ
= O(n log(n)).

To compute the expected number of fitness evaluations until we find the optimum we use
Wald’s equation (Lemma 5). Since in each iteration of the heavy-tailed (1 + (λ, λ)) GA we
make 2λ fitness evaluations, we have

E[TF] = E[TI] · E[2λ].

By Lemma 3 we have

E[λ] =

Θ(1), if βλ > 2,

Θ(log(uλ) + 1), if βλ = 2,

Θ(u2−βλ

λ), if βλ ∈ (1, 2).

Therefore,

E[TF] =

O(n log(n)), if βλ > 2,

O(n log(n)(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ log(n)), if βλ ∈ (1, 2).

Theorem 8 shows that the heavy-tailed (1 + (λ, λ)) GA can fall back to a (1 + 1) EA
behavior and turn into a simple hill climber. Since we do not have a matching lower bound,
our analysis leaves open the question to what extent the heavy-tailed (1 + (λ, λ)) GA
benefits from iterations in which it samples parameter values different from the ones used
in the lemma above. On the one hand, in [ABD22] it was shown that if we choose only
one parameter λ from the power-law distribution and set the other parameters to their
optimal values in the (1 + (λ, λ)) GA (namely, p = λ

n
and c = 1

λ
[DDE15]), then we have

a linear runtime on OneMax. This indicates that there is a chance that the heavy-tailed
(1 + (λ, λ)) GA with an independent choice of three parameters can also have a o(n log(n))
runtime on this problem. On the other hand, the probability that we choose p and c
close to their optimal values is not high, hence we have to rely on making good progress

14

when using non-optimal parameters values. Our experiments presented in Section 4.1
suggest that such parameters do not yield the desired progress speed and that the heavy-
tailed (1 + (λ, λ)) GA has an Ω(n log(n)) runtime (see Figure 3). For this reason, we
rather believe that the heavy-tailed (1 + (λ, λ)) GA proposed in this work has an inferior
performance on OneMax than the one proposed in [ABD22]. Since our new algorithm
has a massively better performance on jump functions, we feel that losing a logarithmic
factor in the runtime on OneMax is not too critical.

Lemma 9 also allows us to transform any upper bound on the runtime of the (1 + 1) EA
which was obtained via the fitness level argument or via drift with the fitness into the same
asymptotical runtime for the heavy-tailed (1 + (λ, λ)) GA. We give three examples in the
following subsections.

3.1.2 LeadingOnes

For the LeadingOnes problem, we now show that arguments analogous to the ones
in [Rud97] can be used to prove an O(n2) runtime guarantee also for the heavy-tailed
(1 + (λ, λ)) GA.

Theorem 10. If βλ > 1, βp > 1, and βc > 1, then the expected runtime of the heavy-tailed
(1 + (λ, λ)) GA on LeadingOnes is O(n2) iterations. In terms of fitness evaluations the
expected runtime is

E[TF] =

O(n2), if βλ > 2,

O(n2(log(uλ) + 1)), if βλ = 2,

O(n2u2−βλ

λ), if βλ ∈ (1, 2).

Proof. The probability that the heavy-tailed (1 + (λ, λ)) GA improves the fitness in one
iteration is at least the probability that it performs an iteration of the (1 + 1) EA that
improves the fitness. By Lemma 9 the probability that the heavy-tailed (1 + (λ, λ)) GA
performs an iteration of the (1 + 1) EA is Θ(1). The probability that the (1 + 1) EA
increases the fitness in one iteration is at least the probability that it flips the first zero-
bit in the string and does not flip any other bit, which is 1

n
(1 − 1

n
)n−1 ≥ 1

en
. Hence, the

probability that the heavy-tailed (1 + (λ, λ)) GA increases the fitness in one iteration is
Ω(1

n
).
Therefore, the expected number of iterations before the heavy-tailed (1 + (λ, λ)) GA

improves the fitness is O(n) iterations. Since there will be no more than n improvements
in fitness before we reach the optimum, the expected total runtime of the heavy-tailed
(1 + (λ, λ)) GA on LeadingOnes is at most O(n2) iterations. Since by Lemma 3 with
βλ > 1 the expected cost of one iteration is

E[2λ] =

Θ(1), if βλ > 2,

Θ(log(uλ) + 1), if βλ = 2,

Θ(u2−βλ

λ), if βλ ∈ (1, 2),

15

by Wald’s equation (Lemma 5) the expected total runtime in terms of fitness evaluations
is

E[TF] = E[2λ]E[TI] =

O(n2), if βλ > 2,

O(n2(log(uλ) + 1)), if βλ = 2,

O(n2u2−βλ

λ), if βλ ∈ (1, 2).

3.1.3 Minimum Spanning Tree Problem

We proceed with the runtime on the minimum spanning tree problem. Reusing some of
the arguments from [NW07] and some more from the later work [DJW12], we show that
the expected runtime of the heavy-tailed (1 + (λ, λ)) GA admits the same upper bound
O(m2 log(Wtotal)) as the (1 + 1) EA.

Theorem 11. If βλ > 1, βp > 1, and βc > 1, then the expected runtime of the heavy-
tailed (1 + (λ, λ)) GA on minimum spanning tree problem is O(m2 log(Wtotal)) iterations.
In terms of fitness evaluations it is

E[TF] =

O(m2 log(Wtotal)), if βλ > 2,

O(m2 log(Wtotal)(log(uλ) + 1)), if βλ = 2,

O(m2u2−βλ

λ log(Wtotal)), if βλ ∈ (1, 2).

Proof. In [NW07] it was shown that starting with a random subgraph of G, the (1 + 1) EA
finds a spanning tree graph in O(m log(n)) iterations. We now briefly adjust these argu-
ments to the heavy-tailed (1 + (λ, λ)) GA. If G′ is disconnected, then the probability to
reduce the number of connected components is at most the probability that the heavy-tailed
(1 + (λ, λ)) GA performs an iteration of the (1 + 1) EA multiplied by the probability that
an iteration of the (1 + 1) EA adds an edge which connects two connected components
(and does not add or remove other edges from the subgraph G′). The latter probability is

at least cc(G′)−1
m

(1− 1
m
)m−1 ≥ cc(G′)−1

em
, since there are at least cc(G′)−1 edges which we can

add to connect a pair of connected components. Therefore, by the fitness level argument
we have that the expected number of iterations before the heavy-tailed (1 + (λ, λ)) GA
finds a connected graph is O(m log(n)).

If the algorithm has found a connected graph, with probability Ω(|E
′|−(n−1)

m
) the heavy-

tailed (1 + (λ, λ)) GA performs an iteration of the (1 + 1) EA that removes an edge par-
ticipating in a cycle (since there are at least (|E ′| − (n − 1)) such edges). Therefore, in
O(m log(m)) iterations the heavy-tailed (1 + (λ, λ)) GA finds a spanning tree (probably
not the minimum one). Note that O(m log(m)) = O(m log(n)), since we do not have loops

and parallel edges and thus m ≤ n(n−1)
2

.
Once the heavy-tailed (1 + (λ, λ)) GA has obtained a spanning tree, it cannot accept

any subgraph that is not a spanning tree. Therefore, we can use the multiplicative drift

16

argument from [DJW12]. Namely, we define a potential function Φ(G′) that is equal to the
weight of the current tree minus the weight of the minimum spanning tree. In [DJW12] it
was shown that for every iteration t of (1 + 1) EA, we have

E[Φ(G′
t)− Φ(G′

t+1) | Φ(G′
t) = W] ≥ W

em2
,

where G′
t denotes the current graph in the start of iteration t. By Lemma 9 and since

the weight of the current graph cannot decrease in one iteration, for the heavy-tailed
(1 + (λ, λ)) GA we have

E[Φ(G′
t)− Φ(G′

t+1) | Φ(G′
t) = W] ≥ ρW

em2

for some ρ, which is a constant independent of m and W . Since the edge weights are
integers, we have Φ(G′

t) ≥ 1 =: smin for all t such that G′
t is not an optimal solution.

We also have Φ(G′
0) ≤ Wtotal by the definition of Wtotal. Therefore, by the multiplicative

drift theorem (Theorem 6) we have that the expected runtime until we find the optimum
starting from a spanning tree is at most

1 + ln(Wtotal)

ρ/(em2)
= O(m2 log(Wtotal)).

Together with the runtime to find a spanning tree, we obtain a total expected runtime
of

E[TI] = O(m log(n)) +O(m log(n)) +O(m2 log(Wtotal)) = O(m2 log(Wtotal))

iterations. By Lemma 3 and by Wald’s equation (Lemma 5) the expected number of fitness
evaluations is therefore

E[TF] = E[2λ]E[TI] =

O(m2 log(Wtotal)), if βλ > 2,

O(m2 log(Wtotal)(log(uλ) + 1)), if βλ = 2,

O(m2u2−βλ

λ log(Wtotal)), if βλ ∈ (1, 2).

3.1.4 Approximations for the Partition Problem

We finally regard the partition problem. We use similar arguments as in [Wit05]
(slightly modified to exploit multiplicative drift analysis) to show that the heavy-tailed
(1 + (λ, λ)) GA also finds a (4

3
+ ε) approximation in linear time. For 4

3
approximations

we improve the O(n2) runtime result of [Wit05] and show that both the (1 + 1) EA and
the heavy-tailed (1 + (λ, λ)) GA succeed in O(n log(w)) fitness evaluations.

17

The heavier bin: wi1 ≥ · · · ≥ wij−1
≥ wr ≥ wij+1

≥ . . . wik

≤ ℓ

> ℓ

Light objects

Critical object

Figure 2: Illustration of the definition of the critical object.

Theorem 12. If βλ > 2, βp > 1, and βc > 1, then the heavy-tailed (1 + (λ, λ)) GA finds
a (4

3
+ ε) approximation to the partition problem in an expected number of O(n) iterations.

The expected number of fitness evaluations is

E[TF] =

O(n), if βλ > 2,

O(n(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ), if βλ ∈ (1, 2).

The heavy-tailed (1 + (λ, λ)) GA and the (1 + 1) EA also find a 4
3
approximation in an

expected number of O(n log(w)) iterations. The expected number of fitness evaluations for
the heavy-tailed (1 + (λ, λ)) GA is

E[TF] =

O(n log(w)), if βλ > 2,

O(n log(w)(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ log(w)), if βλ ∈ (1, 2).

Proof. We first recall the definition of a critical object from [Wit05]. Let ℓ ≥ w
2
be the

fitness of the optimal solution. Let i1 < i2 < · · · < ik be the indices of the objects in the
heavier bin. Then we call the object r in the heavier bin the critical one if it is the object
with the smallest index such that

∑

j:ij≤r

wij > ℓ.

In other words, the critical object is the object in the heavier bin such that the total weight
of all previous (non-lighter) objects in that bin is not greater than ℓ, but the total weight
of all previous objects together with the weight of this object is greater than ℓ. We call
the weight of the critical object the critical weight. We also call the objects in the heavier
bin which have index at least r the light objects. This notation is illustrated in Figure 2.

We now show that at some moment the critical weight becomes at most w
3
and does

not exceed this value in the future. For this we consider two cases.
Case 1: w2 >

w
3
. Note that in this case we also have w1 >

w
3
, since w1 ≥ w2 and the

weight of all other objects is w−w1−w2 <
w
3
. If the two heaviest objects are in the same

bin, then the weight of this (heavier) bin is at least 2w
3
. In any partition in which these two

18

objects are separated the weight of the heavier bin is at most max{w−w1, w−w2} < 2w
3
,

therefore if the algorithm generates such a partition it would replace a partition in which
the two heaviest objects are in the same bin. For the same reason, once we have a partition
with the two heaviest objects in different bins, we cannot accept a partition in which they
are in the same bin.

The probability of separating the two heaviest objects into two different bins is at
least the probability that the heavy-tailed (1 + (λ, λ)) GA performs an iteration of the
(1 + 1) EA (which by Lemma 9 is Θ(1)) multiplied by the probability that in this iteration
we move one of these two objects into a different bin and do not move the second object.
This is at least

Θ(1) · 2
n

(

1− 1

n

)

= Θ

(

1

n

)

.

Consequently, in an expected number of O(n) iterations the two heaviest objects will be
separated into different bins.

Note that the weight of the heaviest object cannot be greater than the weight of the
heavier bin (even in the optimal solution), hence we have w2 ≤ w1 ≤ ℓ. Therefore, when
the two heaviest objects are separated into different bins neither of them can be the critical
one. Hence, the critical weight is now at most w3 <

w
3
.

Case 2: w2 ≤ w
3
. Since the heaviest object can never be the critical one, the critical

weight is at most w2 ≤ w
3
.

Once the critical weight is at most w
3
, we define a potential function

Φ(xt) = max{f(xt)− ℓ− w
6
, 0},

where xt is the current individual of the heavy-tailed (1 + (λ, λ)) GA at the beginning of
iteration t. Note that this potential function does not increase due to the elitist selection
of the (1 + (λ, λ)) GA.

We now show that as long as Φ(xt) > 0, any iteration which moves any light object
to the lighter bin and does not move other objects reduces the fitness (and the potential).
Recall that the weight of each light object is at most w

3
. Then the weight of the bin which

was heavier before the move is reduced by the weight of the moved object. The weight of
the other bin becomes at most

w − f(xt) +
w

3
< ℓ− w

6
+

w

3
≤ ℓ+

w

6
.

Therefore, the weight of both bins becomes smaller than the weight of the bin which was
heavier before the move, hence such a partition is accepted by the algorithm.

Now we estimate the expected decrease of the potential in one iteration. Recall that
by Lemma 9 the probability that the heavy-tailed (1 + (λ, λ)) GA performs an iteration
of the (1 + 1) EA is at least some ρ = Θ(1). The probability that in such an iteration we
move only one particular object is 1

n
(1− 1

n
)n−1 ≥ 1

en
. Hence we have two options.

19

• If there is at least one light object with weight at least Φ(xt), then moving it we
decrease the potential to zero, since the wight of the heavier bin becomes not greater
than ℓ + w

6
and the weight of the lighter bin also cannot become greater than ℓ+ w

6

as it was shown earlier. Hence, we have

E[Φ(xt)− Φ(xt+1) | Φ(xt) = s] ≥ sρ

en
.

• Otherwise, the move of any light object decreases the potential by the weight of the
moved object, since the heavy bin will remain the heavier one after such a move.
The total weight of the light objects is at least f(xt)− ℓ ≥ Φ(xt). Let L be the set
of indices of the light objects. Then we have

E[Φ(xt)− Φ(xt+1) | Φ(xt) = s] ≥ ρ
∑

i∈L

wi

en
≥ sρ

en
.

Now we are in position to use the multiplicative drift theorem (Theorem 6). Note that
the maximum value of potential function is w

2
and its minimum positive value is 1

6
(since

f(xt) and ℓ are integer values and w
6
is divided by 1

6
). Therefore, denoting TI as the smallest

t such that Φ(xt) = 0, we have

E[TI] ≤
1 + ln(3w)

ρ/(en)
= Θ(n log(w)).

When Φ(xt) = 0, we have

f(xt) ≤ ℓ+ w
6
≤ ℓ+ ℓ

3
= 4

3
ℓ,

which means that xt is a
4
3
approximation of the optimal solution.

To show that we obtain a (4
3
+ε) approximation in expected linear time for all constants

ε > 0, we use a modified potential function Φε, which is defined by

Φε(xt) =

{

0, if Φ(xt) ≤ εw
2
,

Φ(xt), otherwise.

For this potential function the drift is at least as large as for Φ, but its smallest non-zero
value is εw

2
. Hence, by the multiplicative drift theorem (Theorem 6) the expectation of the

first time TI(ε) when Φε turns to zero is at most

E[TI(ε)] ≤
1 + ln

(

w
6
/ εw

2

)

ρ/(en)
= O(n).

When Φ(xt) = 0, we have

f(xt) ≤ ℓ+
w

6
+

εw

2
≤ ℓ +

ℓ

3
+ εℓ =

(

4

3
+ ε

)

ℓ,

20

therefore xt is a (4
3
+ ε) approximation.

By Lemma 3 and by Wald’s equation (Lemma 5) we also have the following estimates
on the runtimes TF and TF (ε) in terms of fitness evaluations.

E[TF] = E[2λ] · E[TI] =

O(n log(w)), if βλ > 2,

O(n log(w)(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ log(w)), if βλ ∈ (1, 2),

E[TF (ε)] = E[2λ] · E[TI(ε)] =

O(n), if βλ > 2,

O(n(log(uλ) + 1)), if βλ = 2,

O(nu2−βλ

λ), if βλ ∈ (1, 2).

3.2 Jump Functions

In this subsection we show that the heavy-tailed (1 + (λ, λ)) GA performs well on jump
functions, hence there is no need for the informal argumentation [AD20] to choose mutation
rate p and crossover bias c identical. The main result is the following theorem, which
estimates the expected runtime until we leave the local optimum of Jumpk.

Theorem 13. Let k ∈ [2..n
4
], up ≥

√
2k, and uc ≥

√
2k. Assume that we use the heavy-

tailed (1 + (λ, λ)) GA (Algorithm 1) to optimize Jumpk, starting already in the local opti-
mum. Then the expected number of fitness evaluations until the optimum is found is shown

in Table 1, where ppc denotes the probability that both p and c are in [
√

k
n
,
√

2k
n
]. Table 2

shows estimates for ppc.

The proof of Theorem 13 follows from similar arguments as in [AD20, Theorem 6], the
main differences being highlighted in the following two lemmas.

Lemma 14. Let k ≤ n
4
. If up ≥

√
2k and uc ≥

√
2k, then the probability ppc = Pr[p ∈

[
√

k
n
,
√

2k
n
] ∧ c ∈ [

√

k
n
,
√

2k
n
]] is as shown in Table 2.

Proof. Since we choose p and c independently, we have

ppc = Pr

[

p ∈
[
√

k

n
,

√

2k

n

]]

· Pr
[

c ∈
[
√

k

n
,

√

2k

n

]]

.

By the definition of the power-law distribution and by Lemmas 1 and 2, we have

Pr

[

p ∈
[
√

k

n
,

√

2k

n

]]

= Cβp,up

⌊
√
2k⌋
∑

i=⌈
√
k⌉

i−βp

21

Table 1: Influence of the hyperparameters βλ, uλ on the expected number E[TF] of fitness
evaluations the heavy-tailed (1 + (λ, λ)) GA starting in the local optimum takes to optimize
Jumpk. Since all runtime bounds are of type E[TF] = F (βλ, uλ)/ppc, where ppc = Pr[p ∈
[
√

k
n
,
√

2k
n
] ∧ c ∈ [

√

k
n
,
√

2k
n
]] and F (βλ, uλ) is some function of βλ and uλ, to ease reading

we only state F (βλ, uλ) = E[TF]ppc and show the influence of the hyperparameters on ppc
in Table 2. Asymptotical notation is used for n → +∞. The highlighted cell shows the
result for the hyperparameters suggested in Corollary 16.

E[TF]ppc

if uλ <
(

n
k

)k/2
if uλ ≥

(

n
k

)k/2

βλ ∈ [0, 1)

eO(k) 1
uλ

(

n
k

)k
uλe

O(k)

βλ = 1 uλe
O(k)

1+ln

(

uλ(n
k)

k/2
)

βλ ∈ (1, 2) eO(k)u2−βλ

λ

(

n
k

)(βλ−1)k/2

βλ = 2 eO(k) ln(uλ)+1
uλ

(

n
k

)k
eO(k) ln(uλ)

(

n
k

)k/2

βλ ∈ (2, 3) eO(k) 1

u
3−βλ
λ

(

n
k

)k
eO(k)

(

n
k

)(βλ−1)k/2

βλ = 3 eO(k) 1
ln(uλ+1)

(

n
k

)k
eO(k)

(

n
k

)k
/ ln
(

(

n
k

)k
)

βλ > 3 eO(k)
(

n
k

)k

=

Θ

(

(√
k

up

)1−βp
)

, if 0 ≤ βp < 1

Θ
(

1
log(up)

)

, if βp = 1

Θ
(

k
1−βp

2

)

, if βp > 1.

We can estimate Pr[c ∈ [
√

k
n
,
√

2k
n
]] in the same manner, which gives us the final estimate

of ppc shown in Table 2.

Now we proceed with an estimate of the probability to find the optimum in one iteration
after choosing p and c.

Lemma 15. Let k ∈ [2..n
4
]. Let λ, p and c be already chosen in an iteration of the

heavy-tailed (1 + (λ, λ)) GA and let p, c ∈ [
√

k
n
,
√

2k
n
]. If the current individual x of the

heavy-tailed (1 + (λ, λ)) GA is in the local optimum of Jumpk, then the probability that the
algorithm generates the global optimum in one iteration is at least e−Θ(k)min{1, (k

n
)kλ2}.

Proof. The probability Ppc(λ) that we find the optimum in one iteration is the probability
that we have a successful mutation phase and a successful crossover phase in the same
iteration. If we denote the probability of a successful mutation phase by pM and the

22

Table 2: Influence of the hyperparameters βp and βc on ppc = Pr[p ∈ [
√

k
n
,
√

2k
n
] ∧ c ∈

[
√

k
n
,
√

2k
n
]] when both up and uc are at least

√
2k. Asymptotical notation is used for

n → +∞. The highlighted cell shows the result for the hyperparameters suggested in
Corollary 16.

0 ≤ βp < 1 βp = 1 βp > 1

βc < 1 Θ

(

k(1−(βp+βc)/2)

u
1−βp
p u1−βc

c

)

Θ
(

k(1−βc)/2

u1−βc
c log(up)

)

Θ
(

k(1−(βp+βc)/2)

u1−βc
c

)

βc = 1 Θ

(

k(1−βp)/2

u
1−βp
p log(uc)

)

Θ
(

1
log(up) log(uc)

)

Θ
(

k(1−βp)/2

log(uc)

)

βc > 1 Θ

(

k(1−(βp+βc)/2)

u
1−βp
p

)

Θ
(

k(1−βc)/2

log(up)

)

Θ
(

k(1−(βp+βc)/2)
)

probability of a successful crossover phase by pC , then we have Ppc(λ) = pMpC . Then with
qℓ being some constant which denotes the probability that the number ℓ of bits we flip in
the mutation phase is in [pn, 2pn], by Lemmas 3.1 and 3.2 in [ADK22] we have

Ppc(λ) = pMpC =
qℓ
2
min

{

1, λ
(p

2

)k
}

· 1
2
min

{

1, λck(1− c)2pn−k
}

≥ qℓ
4
min

1, λ

(

1

2

√

k

n

)k

min

1, λ

√

k

n

k(

1−
√

2k

n

)2
√
2kn

=
qℓ
4
min

{

1, λ2−k

√

k

n

k}

min

{

1, λe−Θ(k)

√

k

n

k}

If λ ≥
√

n
k

k
, then we have

Ppc(λ) ≥
qℓ
4
2−ke−Θ(k) = e−Θ(k).

Otherwise, if λ <
√

n
k

k
, then both minima are equal to their second argument. Thus, we

have

Ppc(λ) ≥
qℓ
4
λ22−ke−Θ(k)

(

k

n

)k

= e−Θ(k)

(

k

n

)k

λ2.

Bringing the two cases together, we finally obtain

Ppc(λ) ≥ e−Θ(k)min

{

1,

(

k

n

)k

λ2

}

.

23

Now we are in position to prove Theorem 13.

Proof of Theorem 13. Let the current individual x of the heavy-tailed (1 + (λ, λ)) GA be
already in the local optimum. Let P be the probability of event F when the algorithm
finds optimum in one iteration. By the law of total probability this probability is at least

P ≥ p(F |pc) · ppc,

where p(F |pc) denotes Pr[F | p, c ∈ [
√

k
n
,
√

2k
n
]] and ppc denotes Pr[p, c ∈ [

√

k
n
,
√

2k
n
]].

The number TI of iterations until we jump to the optimum follows a geometric distri-
bution Geom(P) with success probability P . Therefore,

E[TI] =
1

P
≤ 1

p(F |pc)ppc
.

Since in each iteration the heavy-tailed (1 + (λ, λ)) GA performs 2λ fitness evaluations
(with λ chosen from the power-law distribution), by Wald’s equation (Lemma 5) the ex-
pected number E[TF] of fitness evaluations the algorithm makes before it finds the optimum
is

E[TF] = E[TI]E[2λ] ≤ 2E[λ]

p(F |pc) · ppc
.

In the remainder we show how E[λ], p(F |pc) and ppc depend on the hyperparameters of
the algorithm.

First we note that ppc was estimated in Lemma 14. Also, by Lemma 3 the expected
value of λ is

E[λ] =

Θ(uλ), if βλ < 1,

Θ(uλ

log(uλ)+1
), if βλ = 1,

Θ(u2−βλ

λ), if βλ ∈ (1, 2),

Θ(log(uλ) + 1), if βλ = 2,

Θ(1), if βλ > 2.

Finally, we compute the conditional probability of F via the law of total probability.

p(F |pc) =

uλ
∑

i=1

Pr[λ = i]Ppc(i),

where Ppc(i) is as defined in Lemma 15, in which it was shown that Ppc(i) ≥
e−Θ(k)min{1, (k

n
)ki2}. We consider two cases depending on the value of uλ.

Case 1: when uλ ≤ (n
k
)k/2. In this case we have Ppc(i) ≥ e−Θ(k)(k

n
)ki2, hence

p(F |pc) ≥
uλ
∑

i=1

Cβλ,uλ
i−βλe−Θ(k)

(

k

n

)k

i2

24

= e−Θ(k)

(

k

n

)k

Cβλ,uλ

uλ
∑

i=1

i2−βλ

= e−Θ(k)

(

k

n

)k

E[λ2].

By Lemma 4 we estimate E[λ2] and obtain

p(F |pc) ≥

e−Θ(k)
(

k
n

)k
u2
λ, if βλ < 1,

e−Θ(k)
(

k
n

)k u2
λ

ln(uλ)+1
, if βλ = 1,

e−Θ(k)
(

k
n

)k
u3−βλ

λ , if βλ ∈ (1, 3),

e−Θ(k)
(

k
n

)k
(ln(uλ) + 1), if βλ = 3,

e−Θ(k)
(

k
n

)k
, if βλ > 3.

Case 2: when uλ > (n
k
)k/2. In this case we have Ppc(i) ≥ e−Θ(k)(k

n
)ki2, when i ≤ (n

k
)k/2

and we have Ppc(i) ≥ e−Θ(k), when i > (n
k
)k/2. Therefore, we have

p(F |s) ≥
⌊(n

k)
k/2⌋

∑

i=1

Cβλ,uλ
i−βλ

(

k

n

)k

i2e−Θ(k)

+

uλ
∑

i=⌊(n
k)

k/2⌋+1

Cβλ,uλ
i−βλe−Θ(k)

= Cβλ,uλ
e−Θ(k)

(

k

n

)k ⌊(n
k)

k/2⌋
∑

i=1

i2−βλ +

uλ
∑

i=⌊(n
k)

k/2⌋+1

i−βλ

.

Estimating the sums via Lemma 1, we obtain

p(F |pc) ≥

e−Θ(k), if βλ < 1,

e−Θ(k)
(

1 + ln
(

uλ

(

k
n

)k/2
))

1
ln(u)+1

, if βλ = 1,

e−Θ(k)
(

k
n

)(β−1)k/2
, if βλ ∈ (1, 3),

e−Θ(k)
(

k
n

)k
ln
(

(

n
k

)k
)

, if βλ = 3,

e−Θ(k)
(

k
n

)k
, if βλ > 3,

Gathering the estimates for the two cases and the estimates of E[λ] and ppc together,
we obtain the runtimes listed in Table 1.

3.3 Recommended Hyperparameters

In this subsection we subsume the results of our runtime analysis to show most preferable
parameters of the power-law distributions for the practical use. We point out the runtime

25

with such parameters on OneMax and Jumpk in Corollary 16. We then also prove a lower
bound on the runtime of the (1 + (λ, λ)) GA with static parameters to show that when k is
constant (that is, the most interesting case, since only then we have a polynomial runtime),
then the performance of the heavy-tailed (1 + (λ, λ)) GA is asymptotically better than the
best performance we can obtain with the static parameters.

Corollary 16. Let βλ = 2 + ελ and βp = 1 + εp and βc = 1 + εc, where ελ, εp, εc > 0
are some constants. Let also uλ be at least 2n and up = uc =

√
n. Then the expected

runtime of the heavy-tailed (1 + (λ, λ)) GA is O(n log(n)) fitness evaluations on OneMax

and eO(k)(n
k
)(1+ελ)k/2 fitness evaluations on Jumpk, k ∈ [2..n

4
].

This corollary follows from Theorems 8 and 13. We only note that for the runtime on
Jumpk the same arguments as in Theorem 8 show us that the runtime until we reach the
local optimum is at most O(n log(n)), which is small compared to the runtime until we
reach the global optimum. Also we note that when βp and βc are both greater than one

and up = uc =
√
n ≥

√
2k, by Lemma 14 we have ppc = Θ(k− εp+εc

2), which is implicitly
hidden in the eO(k) factor of the runtime on Jumpk. We also note that uλ = 2n guarantees
that uλ > (n

k
)k/2, which yields the runtimes shown in the right column of Table 1.

Corollary 16 shows that when we have (almost) unbounded distributions and use power-
law exponents slightly greater than one for all parameters except the population size, for
which we use a power-law exponent slightly greater than two, we have a good performance
both on easy monotone functions, which give us a clear signal towards the optimum, and
on the much harder jump functions, without any knowledge of the jump size.

We now also show that the proposed choice of the hyper-parameters gives us a bet-
ter performance than any static parameters choice on Jumpk for constant k. As we
have already noted in the introduction, only for such values of k different variants of
the (1 + (λ, λ)) GA and many other classic EAs have a polynomial runtime, hence this
case is the most interesting to consider. We prove the following theorem which holds for
any static parameters choice of the (1 + (λ, λ)) GA, even when we use different population
sizes λM and λC in the mutation and in the crossover phases respectively.

Theorem 17. Let n be sufficiently large. Then the expected runtime of the (1 + (λ, λ)) GA
with any static parameters p, c, λM and λC on Jumpk with k ≤ n

512
is at least B :=

1

91
√

ln(n/k)
(2n

k
)(k+1)/2.

Before we prove Theorem 17, we give a short sketch of the proof to ease the further
reading. First we show that with high probability the (1 + (λ, λ)) GA with static parame-
ters starts at a point with approximately n

2
one-bits. In the second step we handle a wide

range of parameter settings and show that for them we cannot obtain a runtime better than
B by showing that the probability to find the optimum in one iteration is at most 1/B.
For the remaining settings we then show that we are not likely to observe an Ω(n) progress
in one iteration, hence with high probability there is an iteration when we have a fitness
which is n

2
+ Ω(n) and at the same time which is n − k − Ω(n). From that point on the

probability that we have a progress which is Ω(k log(n
k
)) is very unlikely to happen hence

26

with high probability the (1 + (λ, λ)) GA does not reach the local optima of Jumpk (nor

the global one) in Ω(n
k log(n

k
)
) iterations which is equal to Ω((λM+λC)n

k log(n
k
)
) fitness evaluations

by the definition of the algorithm. For the narrowed range of parameters this yields the
lower bound.

To transform these informal arguments into a rigorous proof we use several auxiliary
tools. The first of them is Lemma 14 from [DWY21], which we formulate as follows2.

Lemma 18 (Lemma 14 in [DWY21]). Let x be a bit string of length n with exactly m
one-bits in it. Let y be an offspring of x obtained by flipping each bit independently with
probability r

n
, where r ≤ n

2
. Let also m′ be a random variable denoting the number of

one-bits in y. Then for any ∆ ≥ 0 we have

Pr
[

m′ −m ≥ (n− 2m)
r

n
+∆

]

≤ exp

(−∆2

2(1− r/n)(r +∆/3)

)

.

We also use the following lemma, which bounds the probability to make a jump to a
certain point.

Lemma 19. If we are in distance d ≤ n
2
from the unique optimum of any function, then the

probability P that the (1 + (λ, λ)) GA with mutation rate p, crossover bias c and population
sizes for the mutation and crossover phases λM and λC respectively finds the optimum in
one iteration is at most

P ≤ min
{

1, λMpd(1− p)n−d + λMλC(pc)
d(1− pc)n−d

}

≤ min

{

1, 2λMλC

(

d

2n

)d
}

.

A very similar, but less general result has been proven in [ADK22] (Theorem 16).

Proof of Lemma 19. Without loss of generality we assume that the unique optimum is the
all-ones bit string. Hence, the current individual has exactly d zero-bits. Let pℓ be the
probability that we choose ℓ as the number of bits to flip at the start of the iteration of the
(1 + (λ, λ)) GA. Let also pm(ℓ) be the probability (conditional on the chosen ℓ) that the
mutation winner has all zero-bits flipped to ones. Note that this is necessary for crossover
to be able to create the global optimum. Let pc(ℓ) be the probability that conditional on
the chosen ℓ and on that we flip all d zero-bits in the mutation winner, we then flip ℓ− d
zeros in the mutation winner in at least one crossover offspring. Then by the law of total
probability we have

P =

n
∑

ℓ=0

pℓpm(ℓ)pc(ℓ). (1)

2Note that in [DWY21] the authors prove upper bounds on both getting a too high and a too low
number of one-bits after applying a standard bit mutation. Since we only use the first one, we do not
mention the second bound here

27

For ℓ < d the probability that we flip all d zero-bits in the mutation winner is zero.
For ℓ = d we flip all d zero-bits in one particular mutation offspring with probability

qm(ℓ) =
(

n
d

)−1
. Since we create all λM offspring independently, the probability that we flip

all d zero-bits in at least one offspring is

pm(ℓ) = 1− (1− qm(ℓ))
λM ≤ λMqm(ℓ) = λM

(

n

d

)−1

,

where we used Bernoulli inequality. Since when we create such an offspring in the mutation
phase, we already find the optimum, we assume that we do not need to perform the
crossover and therefore, pc(ℓ) = 1 in this case.

When ℓ > d, the probability to flip all d zero-bits in one offspring is

qm(ℓ) =

(

n− d

ℓ− d

)(

n

ℓ

)−1

.

The probability to do so in one of λM independently created offspring is thus

pm = 1− (1− qm(ℓ))
λM ≤ λMqm(ℓ) = λM

(

n− d

ℓ− d

)(

n

ℓ

)−1

.

The probability that in one crossover offspring we take from the current individual all
ℓ − d bits which are zeros in the mutation winner and take from the mutation winner all
d bits which are zeros in the current individual is qc(ℓ) = cd(1 − c)ℓ−d. Consequently, the
probability that we do this in at least one of λC independently created individuals is

pc(ℓ) = 1− (1− qc(ℓ))
λC ≤ λCqc(ℓ) = λCc

d(1− c)ℓ−d.

Recall that ℓ is chosen from the binomial distribution Bin(n, p), thus we have pℓ =
(

n
ℓ

)

pℓ(1− p)n−ℓ. Putting all the estimates above into (1) we obtain

P = pdpm(d) +
n
∑

ℓ=d+1

pℓpm(ℓ)pc(ℓ)

≤
(

n

d

)

pd(1− p)n−dλM

(

n

d

)−1

+

n
∑

ℓ=d+1

(

n

ℓ

)

pℓ(1− p)n−ℓλM

(

n− d

ℓ− d

)(

n

ℓ

)−1

λCc
d(1− c)ℓ−d

= λMpd(1− p)n−d + λMλC(1− p)n−d(pc)d
n
∑

ℓ=d+1

(

n− d

ℓ− d

)(

p(1− c)

1− p

)ℓ−d

= λMpd(1− p)n−d + λMλC(1− p)n−d(pc)d
n−d
∑

i=1

(

n− d

i

)(

p(1− c)

1− p

)i

28

≤ λMpd(1− p)n−d + λMλC(1− p)n−d(pc)d
(

p(1− c)

1− p
+ 1

)n−d

= λMpd(1− p)n−d + λMλC(1− p)n−d(pc)d
(

1− pc

1− p

)n−d

= λMpd(1− p)n−d + λMλC(1− pc)n−d(pc)d.

We now consider function fd(x) = xd(1 − x)n−d on interval x ∈ [0, 1]. To find its
maximum, we consider its value in the ends of the interval (which is zero in both ends)
and in the roots of its derivative, which is

f ′
d(x) = dxd−1(1− x)n−d − (n− d)xd(1− x)n−d−1 = xd−1(1− x)n−d−1(d− nx).

Hence, the only root of the derivative is in x = d
n
. Since fd(x) is a smooth function, it

reaches its maximum there, which is,

fd

(

d

n

)

=

(

d

n

)d(

1− d

n

)n−d

.

Since we assume that d ≤ n
2
, we conclude that for all x ∈ [0, 1] we have

fd(x) ≤
(

d

n

)d(

1− d

n

)n−d

=

(

d

n

)d
(

(

1− d

n

)n
d
−1
)d

≤
(

d

2n

)d

.

Hence we have both pd(1− p)n−d ≤ (d
2n
)d and (1− pc)n−d(pc)d ≤ (d

2n
)d, from which we

conclude

P ≤ λMpd(1− p)n−d + λMλC(1− pc)n−d(pc)d

≤ (λM + λMλC)

(

d

2n

)d

≤ 2λMλC

(

d

2n

)d

.

Since P cannot exceed one, we also have

P ≤ min
{

1, λMpd(1− p)n−d + λMλC(1− pc)n−d(pc)d
}

≤ min

{

1, 2λMλC

(

d

2n

)d
}

.

An important corollary from Lemma 19 is the following lower bound for the case when
we use too small population sizes.

Corollary 20. Consider the run of the (1 + (λ, λ)) GA with static parameters on Jumpk

with k < n
2
. Let the population sizes which are used for the mutation and crossover phases

be λM and λC respectively. Let also the current individual x be a point outside the fitness
valley, but with at least n

2
one-bits. Then if λMλC < ln(n

k
)(2n

k
)k−1, then the expected

runtime until we find the global optimum is at least 1

2
√

ln(n/k)
(2n

k
)
k+1
2 .

29

Proof. Since the algorithm has already found the point outside the fitness valley, it will
never accept a point inside it as the current individual x. Hence, unless we find the
optimum, the distance to it from the current individual is at least k and at most n

2
.

We now consider the term (d
2n
)d, which is used in the bound given in Lemma 19, as a

function of d and maximize it for d ∈ [k, n
2
]. For this purpose we consider its values in the

ends of the interval and in the zeros of its derivative, which is,
(

(

d

2n

)d
)′

=

(

d

2n

)d(

d ln

(

d

2n

))′

=

(

d

2n

)d(

ln

(

d

2n

)

+ 1

)

.

Hence, the derivative is equal to zero only when d
2n

= e−1, that is, when d = 2n
e
. Since we

only consider d which are at most n
2
, the derivative does not have roots in this range. We

also note that for d < 2n
e

the derivative is negative, hence the maximal value of (d
2n
)d is

reached when d = k. Therefore, by Lemma 19 we have

P ≤ min

{

1, 2λMλC

(

d

2n

)d
}

≤ min

{

1, 2λMλC

(

k

2n

)k
}

.

(2)

Since λMλC ≤ ln(n
k
)(2n

k
)k−1 and since for all x ≥ 2 we have ln(x) < x

2
, we compute

2λMλC

(

k

2n

)k

≤ 2 ln
(n

k

)

(

2n

k

)k−1(
k

2n

)k

= ln
(n

k

)

· k
n
≤ 1

2
.

Therefore, the minimum in (2) is equal to the second argument.
Thus, the runtime TI (in terms of iterations) is dominated by the geometric distribution

with parameter 2λMλC

(

k
2n

)k ≤ 1
2
. This implies that the expected number of unsuccessful

iterations is E[TI]−1 ≥ E[TI]
2

. Since in each unsuccessful iteration we have exactly λM+λC

fitness evaluation, we have

E[TF] = (λM + λC)
E[TI]

2
≥ λM + λC

4λMλC

(

k
2n

)k
=

(

1

λM
+

1

λC

)

· 1
4

(

2n

k

)k

.

By Lemma 7 we obtain

E[TF] ≥
(

1

λM
+

1

λC

)

· 1
4

(

2n

k

)k

≥ 1

2

√

1

λMλC

(

2n

k

)k

≥ 1

2

√

1

ln
(

n
k

)

(

k

2n

)k−1

·
(

2n

k

)k

=
1

2
√

ln
(

n
k

)

(

2n

k

)
k+1
2

.

30

In the following lemma we also show that too large population sizes also yield a too
large expected runtime.

Lemma 21. Consider the run of the (1 + (λ, λ)) GA with static parameters on Jumpk

with k < n
2
. Let the population sizes which are used for the mutation and crossover phases

be λM and λC respectively. Let also the current individual x be a point outside the fitness
valley, but with at least n

2
one-bits. Then if λMλC > 1

ln(n
k
)
(2n

k
)k+1, then the expected runtime

until we find the global optimum is at least 1

16
√

ln(n/k)
(2n

k
)
k+1
2 .

Proof. By Lemma 7 we have that the cost of one iteration is

λM + λC ≥ 2
√

λMλC >
2

√

ln
(

n
k

)

(

2n

k

)
k+1
2

,

hence to prove this lemma it is enough to consider only the first iteration of the algorithm,
which already takes at least 2√

ln(n/k)
(2n

k
)
k+1
2 fitness evaluations plus one evaluation for the

initial individual.
We first show that if λM ≥ 2

n
2 −2, then we are not likely to sample the optimum before

making 2
n
2 − 1 fitness evaluations. For this we note that the initial individual and all

mutation offspring in the first iteration are sampled independently of the fitness function,
thus they are random points in the search space. Therefore, for each of these individuals
the probability to be the optimum is 2−n. Consequently, by the union bound, when we
create the initial individual and 2

n
2 − 2 mutation offspring, the probability that at least

one of them is the optimum is at most

2
n
2 − 1

2n
= 2−

n
2 (1− 2−n) ≤ 2−(

n
2
+1).

Hence, with probability at least (1 − 2−(
n
2
+1)) we have to make 2

n
2 − 1 or more fitness

evaluations, which implies that

E[TF] ≥
(

1− 2−(
n
2
+1)
)

(

2
n
2 − 1

)

= 2
n
2 − 3

2
+ 2−(

n
2
+1) ≥ 2

n
2
−1,

if n ≥ 3. Without proof we note that 1

16
√

ln(n/k)
(2n

k
)
k+1
2 is increasing in k for k ≤ n

2
. Hence,

for k ≤ n
2
we have that

1

16
√

ln(n/k)

(

2n

k

)
k+1
2

≤ 1

16
√

ln(2)
· 4(n

4
+ 1

2) ≤ 2
n
2
−2 ≤ E[TF].

In the rest of the proof we assume that λM < 2
n
2 − 2. Since the mutation winner is

chosen based on the fitness, we cannot use the same argument with random points in the
search space for the crossover phase. However, we can consider an artificial process, which

31

in parallel runs the crossover phase for each mutation offspring seen as winner. If none of
these parallel processes has generated the optimum within m crossover offspring samples,
then also the true process has not done so within a total of 1+λM +m fitness evaluations.
We note that in the parallel crossover phases, since no selection has been made, again all
offspring are uniformly distributed in {0, 1}n.

Let us fix m = 2
n
2
−1. By the union bound, the probability that one of 1 + λM +mλM

individuals generated by the artificial process is the optimum is at most

1 + λM +mλM

2n
<

1 +
(

2
n
2 − 2

)

(1 +m)

2n
=

1 +
(

2
n
2 − 2

)(

2
n
2
−1 + 1

)

2n
=

1 + 1
2
(2n − 4)

2n
≤ 1

2
.

At the same time, if the original (1 + (λ, λ)) GA creates 1+λM+m ≥ m individuals, it also
performs at least m fitness evaluations. Hence, the expected number of fitness evaluations
is at least

E[TF] ≥
m

2
= 2

n
2
−2 ≥ 1

16
√

ln(n/k)

(

2n

k

)
k+1
2

.

We are now in position to prove Theorem 17.

Proof of Theorem 17. Initialization. Recall that the initial individual is sampled uni-
formly at random, hence the number of one-bits in it follows a binomial distribution
Bin(n, 1

2
). By the symmetry argument we have that the number of one-bits X in the

initial individual is at least n
2
with probability at least 1

2
. By Chernoff bounds (see, e.g.,

Theorem 1.10.1 in [Doe20]) we also have that the probability that X is greater than n
2
+ n

8

is at most

Pr

[

X ≥
(

1 +
1

4

)

n

2

]

≤ exp

(

−n/2
48

)

= e−Θ(n).

Hence, with probability at least 1
2
− e−Θ(n) the initial individual has a number of one-bits

(and hence, the fitness) in [n
2
, 5n

8
]. We now condition on this event3.

Narrowing the reasonable population sizes. Since we condition on starting in
distance d ≤ n

2
from the optimum of Jumpk, by Corollary 20 and Lemma 21 we have that

if we choose λM and λC such that λMλC ≥ 1
ln(n/k)

(2n
k
)k+1 or λMλC ≤ ln(n

k
)(2n

k
)k−1, then

the expected runtime is at least 1

16
√

ln(n/k)
(2n

k
)
k+1
2 = 91B

16
. Hence, in the rest of the proof we

assume that ln(n
k
)(2n

k
)k−1 < λMλC < 1

ln(n/k)
(2n

k
)k+1.

We note that by Lemma 7 this assumption also implies that the cost of one iteration is

λM + λC ≥ 2
√

λMλC ≥ 2

√

ln
(n

k

)

(

2n

k

)
k−1
2

.

3Without proof we note that if the initial individual has less than n
2 one-bits, our lower bound would

also hold. However, the proof of this fact would require more complicated arguments, hence in order to
increase the readability of the paper we avoid considering that case.

32

Narrowing the reasonable mutation rate and crossover bias. We now show
that using a too large mutation rate or crossover bias also yields a runtime which is greater
than (2n

k
)
k+1
2 and therefore greater than B. Conditional on the current individual x being

in distance d ≤ n
2
from the optimum, by Lemma 19 we have that if pc ≥ 1

2
(and therefore,

p ≥ 1
2
), then we have

P ≤ λM(1− p)n/2 + λMλC(1− pc)n/2 ≤ λM

(

1

2

)
n
2

+ λMλC

(

1

2

)
n
2

≤ 2λMλC

(

1

2

)
n
2

.

Therefore, the expected number of fitness evaluations until we find the optimum is at least

E[TF] ≥
λM + λC

P
≥
(

1

λM
+

1

λC

)

· 2n
2
−1.

Since we already assume that λMλC ≤ 1
ln(n/k)

(2n
k
)k+1, by Lemma 7 we have

1

λM
+

1

λC
≥ 2

√

1

λMλC
≥ 2

√

ln
(n

k

)

(

k

2n

)
k+1
2

.

Therefore, we have

E[TF] ≥ 2
n
2 ln
(n

k

)

(

k

2n

)
k+1
2

= 2
n
2 ln
(n

k

)

(

k

2n

)k+1(
2n

k

)
k+1
2

.

We note that for k ∈ [1, n
512

] the term
(

k
2n

)k+1
is decreasing in k (we avoid the proof of this

fact, but note that it trivially follows from considering the derivative). Consequently, if we
assume that k ≤ n

512
, then we have

E[TF] ≥ 2
n
2 ln(512)

(

1

1024

)
n

512
+1(

2n

k

)
k+1
2

= 2
n
2
−10(n

512
+1) · ln(512)

(

2n

k

)
k+1
2

=
ln(512)

1024
· 2 123n

256

(

2n

k

)
k+1
2

≥ ln(512)

1024
· 2 246

256

(

2n

k

)
k+1
2

≥ 1

91

(

2n

k

)
k+1
2

.

Hence, using pc ≥ 1
2
gives us the expected runtime which is not less than B.

Making a linear progress. For the rest of the proof we assume that we have popu-
lation sizes such that λMλC ∈ [ln(n

k
)(2n

k
)k−1, 1

ln(n/k)
(2n

k
)k+1] and p and c such that pc ≤ 1

2
.

We now show that at some iteration before we have already made at least (2n
k
)
k+1
2 fitness

evaluations we get a current individual x with fitness in [n
2
+ n

8
, n
2
+ n

4
]. For this we show

that conditional on f(x) ≥ n
2
we are not likely to increase fitness in one iteration by at

least n
8
in a very long time.

For this purpose we consider a modified iteration of the (1 + (λ, λ)) GA, where in the
crossover phase we create not only λC offspring by crossing the current individual x with

33

the mutation winner x′, but we create λM ·λC offspring by performing crossover between x
and each mutation offspring λC times. The best offspring in this modified iteration cannot
be worse than the best offspring in a non-modified iteration. Hence the probability that
we increase the fitness by a least n

8
is at most the probability that the best offspring of this

modified iteration is better than the current individual x by at least n
8
.

Consider one particular offspring y′ created in this modified iteration. Recall that its
parent was created by first choosing a number ℓ from the binomial distribution Bin(n, p)
and then flipping ℓ bits, therefore it is distributed as if we created it by flipping each
bit independently with probability p. Then when we create y′ we take each flipped bit
from its parent with probability c, hence in the resulting offspring each bit is flipped with
probability pc, independently of other bits. Consequently the distribution of y′ is the same
as if we created it via the standard bit mutation with probability of flipping each bit equal
to pc. Note that this argument works only when we consider one particular individual,
since the mutation offspring are dependent on each other (since they have the same number
ℓ of bits flipped) and therefore, their offspring are all also dependent.

To estimate the probability that y′ has a fitness by n
8
greater than x, we use Lemma 18

with r = pcn (note that since pc < 1
2
, we have r ≤ n

2
, thus we satisfy the conditions of

Lemma 18). Since we are conditioning on m = f(x) ≥ n
2
, we have (n− 2m) r

n
≤ 0. Hence,

with ∆ = n
8
we obtain

Pr
[

f(y′)− f(x) ≥ n

8

]

≤ Pr
[

f(y′)− f(x) ≥ (n− 2f(x))
r

n
+∆

]

≤ exp

(−∆2

2(1− r/n)(r +∆/3)

)

≤ exp

(

−
(

n
8

)2

2
(

pcn+ n
24

)

)

≤ exp

(

−
(

n
8

)2

2
(

n
2
+ n

24

)

)

≤ exp

(

−n
2

64
· 12

13n

)

= e−
3n
208 ≤ e−

n
70 .

After n
k
modified iterations we create λMλCn

k
offspring, therefore by the union bound the

probability that at least one of them has a fitness by at least n
8
greater than the fitness of

its parent is at most λMλCn
k

e−
n
70 . Since we also have λMλC ≤ 1

ln(n/k)
(2n

k
)k+1, this probability

is at most

1

ln
(

n
k

)

(

2n

k

)k+1

· n
k
· e− 3n

16 =
1

2 ln
(

n
k

)

(

2n

k

)k+2

e−
n
70 ≤ 1

2

(

2n

k

)k+2

e−
n
70 .

We also note that the term
(

2n
k

)k+2
is increasing in k for k ∈ [1, n

512
] (we omit the proof, since

it trivially follows from considering its derivative). Therefore, for such k this probability
is at most

1

2
· 1024 n

512
+2 · e− n

70 = 219 exp

(

ln(1024)n

512
− n

70

)

≤ 219e−0.0007n = e−Θ(n).

34

Let T5n/8 be the first iteration when we have x with at least 5n
8
one-bits. If T5n/8 ≤ n

k
,

then with probability 1− e−Θ(n) none of the offspring created up to this moment improved
the fitness by more than n

8
. Hence, we have that x has at most 5n

8
+ n

8
= 3n

4
one-bits.

Otherwise, if T5n/8 >
n
k
, by this iteration we already make at least

(λM + λC)
n

k
≥ 2

√

ln
(n

k

)

(

2n

k

)
k−1
2 n

k
≥
(

2n

k

)
k+1
2

.

fitness evaluations and thus the runtime exceeds (2n
k
)
k+1
2 . Hence, in the rest of the proof

we assume that at some point we have a current individual x with fitness in [5n
8
, 3n

4
].

Slow progress towards the local optimum. We now show that after reaching fitness
at least 5n

8
, the (1 + (λ, λ)) GA makes a progress not greater than δ := 26

3
(k+ 2) ln(n

k
) per

iteration.
For this purpose we again consider an iteration of the modified algorithm, which gen-

erates λMλC offspring in each iteration. Recall that each offspring created here can be
considered as one created by standard bit mutation with mutation rate pc. We apply
Lemma 18 to one particular offspring y′ with r = pcn and ∆ = r

4
+ δ and obtain

Pr[f(y′)− f(x) ≥ δ] = Pr
[

f(y′)− f(x) ≥ (n− 2f(x))
r

n
+ (2f(x)− n)

r

n
+ δ
]

≤ Pr
[

f(y′)− f(x) ≥ (n− 2f(x))
r

n
+

r

4
+ δ
]

≤ exp

(

−
(

r
4
+ δ
)2

2
(

1− r
n

)(

r + r
12

+ δ
3

)

)

≤ exp

(

−
(

r
4
+ δ
)2

2
(

13r
12

+ δ
3

)

)

.

For all δ > 0 and r > 0 we bound the argument of the exponent as follows.

(

r
4
+ δ
)2

2
(

13r
12

+ δ
3

) =
3

2
·
(

13r
4

+ δ − 3r
)(

r
4
+ δ
)

(

13r
4

+ δ
) =

3

2

(

1− 3r
13r
4

+ δ

)

(r

4
+ δ
)

≥ 3

2

(

1− 12

13

)

δ =
3

26
δ.

Recall that δ = 26
3
(k + 2) ln(n

k
). Hence, we have

Pr[f(y′)− f(x) ≥ δ] ≤ exp

(

−
(

r
4
+ δ
)2

2
(

13r
12

+ δ
3

)

)

≤ e−
3δ
26

= exp
(

−(k + 2) ln
(n

k

))

=
(n

k

)−(k+2)

.

35

By the union bound the probability that we create such offspring in n/4−k
δ

iterations is
at most

n
4
− k

δ
λMλC

(n

k

)−(k+2)

≤ n

4δ
· 1

ln
(

n
k

)

(n

k

)k+1(n

k

)−(k+2)

≤ k

4δ
=

3k

26(k + 2) ln
(

n
k

) ≤ 3

26
.

If we start at some point x with fitness f(x) ≤ 3n
4
and we do not improve fitness by at

least δ for n/4−k
δ

iterations, then we do not reach the local optima or the global optimum
in this number of iterations (note that for the considered values of k ≤ n

32
and δ the value

of n/4−k
δ

is at least one). During these iterations we do at least (λM + λC)
n/4−k

δ
fitness

evaluations. Since we have already shown that λM + λC ≥ 2
√

ln(n
k
)(n

k
)
k−1
2 , this is at least

2

√

ln
(n

k

)(n

k

)
k−1
2 ·

n
4
− k

δ
=
(n

k

)
k+1
2 · (n− 4k)k

2δn

√

ln
(n

k

)

fitness evaluations. We now estimate the factor (n−4k)k
2δ

√

ln(n
k
). Since by the theorem

conditions we have k ≤ n
32
, for n large enough we have

(n− 4k)k

2δn

√

ln
(n

k

)

≥ 7nk

16δn

√

ln
(n

k

)

=
21k
√

ln
(

n
k

)

416(k + 2) ln
(

n
k

) ≥ k

20 · 2k
√

ln
(

n
k

)

≥ 1

40
√

ln
(

n
k

)

.

Summary of the proof. We now bring our arguments together. For the narrowed
range of parameters we have shown that (i) with probability 1

2
−e−Θ(n) the initial individual

has between n
2
and 5n

8
one-bits, (ii) then with probability 1 − e−Θ(n) we reach a point

which has between 5n
8
and 3n

4
one-bits or exceed

(

n
k

)
k+1
2 fitness evaluations, (iii) then with

probability at least 1− 3
26

= 23
26

we do not reach the local optima or the global optimum in
1

40
√

ln(n/k)

(

n
k

)
k+1
2 fitness evaluations. Hence, with probability at least

(

1

2
− e−Θ(n)

)

(

1− e−Θ(n)
)23

26
=

23

52
− e−Θ(n)

we do not find the optimum before making 1

40
√

ln(n/k)

(

n
k

)
k+1
2 fitness evaluations. Therefore,

the expected runtime TF (in terms of fitness evaluations) is at least

E[TF] ≥
(

23

52
− e−Θ(n)

)

1

40
√

ln
(

n
k

)

(n

k

)
k+1
2 ≥ 1

91
√

ln
(

n
k

)

(n

k

)
k+1
2

.

36

23 24 25 26 27 28 29 210 211 212 213 214
100

101

102

Problem size n

R
u
n
ti
m
e
/
n
ln
(n
)

βpc = 1.0 βpc = 1.2
βpc = 1.4 βpc = 1.6
βpc = 1.8 βpc = 2.0
βpc = 2.2 (1+1) EA

Figure 3: Running times of the heavy-tailed (1 + (λ, λ)) GA on OneMax starting from a
random point, normalized by n ln(n), for different βpc = βp = βc and βλ = 2.8 in relation
to the problem size n. The expected running times of (1 + 1) EA, also starting from a
random point, are given for comparison.

4 Experiments

As our theoretical analysis gives upper bounds that are precise only up to constant fac-
tors, we now use experiments to obtain a better understanding of how the heavy-tailed
(1 + (λ, λ)) GA performs on concrete problem sizes. We conducted a series of experiments
on OneMax and Jump functions with jump sizes k ∈ [2..6].

Since our theory-based recommendations for βp and βc are very similar, the analysis
on the jump functions treats the corresponding distributions very symmetrically, and our
preliminary experimentation did not find any significant advantages from using different
values for βp and βc, we decided to keep them equal in our experiments and denote them
together as βpc, such that βp = βc = βpc.

In all the presented plots we display average values of 100 independent runs of the
considered algorithm, together with the standard deviation.

4.1 Results for OneMax

For OneMax we considered the problem sizes n ∈ {2i | 3 ≤ i ≤ 14} and all combinations
of choices of βpc ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2} and βλ ∈ {2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2}.
For reasons of space, we only present a selection of these results.

Figure 3 presents the running times of the heavy-tailed (1 + (λ, λ)) GA on OneMax

against the problem size n for all considered values of βpc, whereas a fixed value of βλ = 2.8
is used. The running times of the (1 + 1) EA are also presented for comparison. Since the
runtime is normalized by n ln(n), the plot of the latter tends to a horizontal line, and so do
the plots of the heavy-tailed (1 + (λ, λ)) GA with βpc ≥ 1.8. Other plots, after discounting

37

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

106

107

βλ

R
u
n
ti
m
e

βpc = 1.0 βpc = 1.2 βpc = 1.4
βpc = 1.6 βpc = 1.8 βpc = 2.0
βpc = 2.2

Figure 4: Running times of the heavy-tailed (1 + (λ, λ)) GA on OneMax starting from a
random point, for n = 214 and different βpc = βp = βc depending on βλ.

for the noise in the measurements, appear to be convex upwards and, similarly to [ABD22],
they will likely become horizontal as n grows. For OneMax, bigger values of βpc appear
to be better. Since greater βpc increases the chances of behaving similar to the (1 + 1) EA
during an iteration, this fits to the situation discussed in Lemma 9. The plots look similar
also for βλ different from 2.8, so we do not present them here.

To investigate the dependencies on βλ and βpc more thoroughly, we consider the largest
available problem size n = 214 and plot the runtimes for all parameters configurations in
Figure 4. The general trend of an improving performance with growing βpc can be clearly
seen here as well. For βλ, the picture is less clear. It appears that very small βλ also
result in larger running times, medium values of roughly βλ = 2.4 yield the best available
runtimes, and a further increase of βλ increases the runtime again, but only slightly. As
very large βλ, such as βλ = 3.2, correspond to regimes similar to the (1 + 1) EA, this might
be a sign that some of the working principles of the (1 + (λ, λ)) GA are still beneficial on
an easy problem like OneMax.

4.2 Results for Jump Functions

For Jump functions we used the problem sizes n ∈ {2i | 3 ≤ i ≤ 7}, subject to the condition
k ≤ n

4
and hence n ≥ 4k, as assumed in the theoretical results of this paper. As running

times are higher in this setting, we consider a smaller set of parameter combinations,
βpc ∈ {1.0, 1.2, 1.4} and βλ ∈ {2.0, 2.2, 2.4}.

Figure 5 presents the results of a comparison of the heavy-tailed (1 + (λ, λ)) GA with
the (1 + 1) EA on Jump with jump parameter k ∈ {3, 5}. We chose two most distant
distribution parameters for the heavy-tailed (1 + (λ, λ)) GA for presenting in this fig-
ure. However, the difference between these is negligible compared to the difference to
the (1 + 1) EA. Such a difference aligns well with the theory, as the running time of the

38

24 25 26 27
102

104

106

Problem size n

R
u
n
ti
m
e

βpc = 1.0, βλ = 2.0 βpc = 1.2, βλ = 2.2 (1+1) EA

25 26 27
104

107

1010

Problem size n

Figure 5: Running times of the heavy-tailed (1 + (λ, λ)) GA on Jump, depending on the
problem size n, in comparison to the (1 + 1) EA. Jump sizes are k = 3 on the left and
k = 5 on the right.

Table 3: The p-values for experimental results presented in Figure 5
k n Student’s t-test Wilcoxon rank sum test
3 16 1.46 · 10−3 4.14 · 10−6

3 32 1.88 · 10−12 2.87 · 10−20

3 64 2.59 · 10−14 5.29 · 10−26

5 32 9.32 · 10−15 1.58 · 10−34

5 64 8.01 · 10−15 1.58 · 10−34

(1 + 1) EA is Θ(nk), whereas Theorem 13 predicts much smaller running times for the
heavy-tailed (1 + (λ, λ)) GA.

Due to large standard deviation, we performed statistical tests on the results presented
in Figure 5 using two statistical tests: the Student’s t-test as the one which checks mean
values which are the subject of our theorems, and the Wilcoxon rank sum test as a non-
parametric test. The results are presented in Table 3, where for each row and each test
the maximum p-value is shown out of two between the (1 + 1) EA and either of the pa-
rameterizations of the heavy-tailed (1 + (λ, λ)) GA. The p-values in all the cases are very
small: except for the case k = 3, n = 16, they are all well below 10−10, which indicates
a vast difference between the algorithms and hence a clear superiority of the heavy-tailed
(1 + (λ, λ)) GA.

The parameter study, presented in Figure 6, suggests that for Jump the particular
values of βpc are not very important, although larger values result in the marginally better
performance. However, larger βλ tend to make the performance worse, which is more
pronounced for larger jump sizes k. This finding agrees with upper bound proven in
Corollary 16, in which (n/k) is raised to a power that is proportional to ελ = βλ− 1. Each
difference is statistically significant with p < 0.008 using the Wilcoxon rank sum test.

Finally, Figure 7 shows the running times of the heavy-tailed (1 + (λ, λ)) GA for a
fixed parameterization βpc = 1.0 and βλ = 2.0 for all available values of n and k, to give
an impression of the typical running times of this algorithm on the Jump problem.

39

2 2.1 2.2 2.3 2.4

105

106

βλ

R
u
n
ti
m
e

βpc = 1.0 βpc = 1.2 βpc = 1.4

2 2.1 2.2 2.3 2.4
106

107

108

109

βλ

Figure 6: Dependency of running times of the heavy-tailed (1 + (λ, λ)) GA on Jumpk on
βλ and βpc for k = 3 (on the left) and k = 6 (on the right). Problem size n = 27 is used.

23 24 25 26 27

105

Problem size n

R
u
n
ti
m
e

k = 6
k = 5
k = 4
k = 3
k = 2

Figure 7: Running times of the heavy-tailed (1 + (λ, λ)) GA with βpc = 1.0 and βλ = 2.0
on Jumpk for k ∈ [2..6] depending on the problem size n.

5 Conclusion

Using mathematical and experimental methods, we showed that choosing all parameters of
an algorithm randomly from a power-law distribution can lead to a very good performance
both on easy unimodal and on multimodal problems. This lazy approach to the parameter
tuning and control problem requires very little understanding how the parameters influence
the algorithm behavior. The only design choice left to the algorithm user is deciding the
scaling of the parameters, but we observed that the natural choices worked out very well.
Our empirical and theoretical studies show that the precise choice of the (other) parameters
of the power-law distributions does not play a significant role and they both suggest to
use unbounded power-law distributions and to take a power-law exponent 2 + ε for the
population size (so that the expected cost of one iteration is constant) and 1 + ε for other
parameters (to maximize the positive effect of a heavy-tailed distribution). With these
considerations, one may call our approach essentially parameter-less.

Surprisingly, our randomized parameter choice even yields a runtime which is better
than the best proven runtime for optimal static parameters on Jump functions of some

40

jump sizes. An interesting question (which we leave open for the further research) is
whether a random parameter choice can outperform the algorithms with known optimal
static parameters also on other problems. The experiments on OneMax when starting
with a good solution (in distance

√
n from the optimum) indicate that it is possible since

there we observed a benefit from the key mechanisms of the (1 + (λ, λ)) GA.

Acknowledgements

This work was supported by RFBR and CNRS, project number 20-51-15009 and by a public
grant as part of the Investissements d’avenir project, reference ANR-11-LABX-0056-LMH,
LabEx LMH.

Declarations

The authors have no relevant financial or non-financial interests to disclose.

References

[ABD21] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Lazy parameter tuning
and control: choosing all parameters randomly from a power-law distribution.
In Genetic and Evolutionary Computation Conference, GECCO 2021, pages
1115–1123. ACM, 2021.

[ABD22] Denis Antipov, Maxim Buzdalov, and Benjamin Doerr. Fast mutation in
crossover-based algorithms. Algorithmica, 84:1724–1761, 2022.

[AD20] Denis Antipov and Benjamin Doerr. Runtime analysis of a heavy-tailed (1 +
(λ, λ)) genetic algorithm on jump functions. In Parallel Problem Solving From
Nature, PPSN 2020, Part II, pages 545–559. Springer, 2020.

[AD21] Denis Antipov and Benjamin Doerr. A tight runtime analysis for the (µ +
λ) EA. Algorithmica, 83:1054–1095, 2021.

[ADK19] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. A tight runtime
analysis for the (1 + (λ, λ)) GA on LeadingOnes. In Foundations of Genetic
Algorithms, FOGA 2019, pages 169–182. ACM, 2019.

[ADK22] Denis Antipov, Benjamin Doerr, and Vitalii Karavaev. A rigorous runtime
analysis of the (1 + (λ, λ)) GA on jump functions. Algorithmica, 84:1573–
1602, 2022.

[BBD21] Riade Benbaki, Ziyad Benomar, and Benjamin Doerr. A rigorous runtime
analysis of the 2-MMASib on jump functions: ant colony optimizers can cope

41

well with local optima. In Genetic and Evolutionary Computation Conference,
GECCO 2021, pages 4–13. ACM, 2021.

[BD17] Maxim Buzdalov and Benjamin Doerr. Runtime analysis of the (1 + (λ, λ))
genetic algorithm on random satisfiable 3-CNF formulas. In Genetic and Evo-
lutionary Computation Conference, GECCO 2017, pages 1343–1350. ACM,
2017.

[BLS14] Golnaz Badkobeh, Per Kristian Lehre, and Dirk Sudholt. Unbiased black-box
complexity of parallel search. In Parallel Problem Solving from Nature, PPSN
2014, pages 892–901. Springer, 2014.

[COY17] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. On the runtime analysis
of the Opt-IA artificial immune system. In Genetic and Evolutionary Compu-
tation Conference, GECCO 2017, pages 83–90. ACM, 2017.

[COY19] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Artificial immune sys-
tems can find arbitrarily good approximations for the NP-hard number parti-
tioning problem. Artificial Intelligence, 274:180–196, 2019.

[COY21] Dogan Corus, Pietro S. Oliveto, and Donya Yazdani. Automatic adaptation of
hypermutation rates for multimodal optimisation. In Foundations of Genetic
Algorithms, FOGA 2021, pages 4:1–4:12. ACM, 2021.

[DD18] Benjamin Doerr and Carola Doerr. Optimal static and self-adjusting
parameter choices for the (1 + (λ, λ)) genetic algorithm. Algorithmica,
80:1658–1709, 2018.

[DDE15] Benjamin Doerr, Carola Doerr, and Franziska Ebel. From black-box com-
plexity to designing new genetic algorithms. Theoretical Computer Science,
567:87–104, 2015.

[DDK18] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Static and self-adjusting
mutation strengths for multi-valued decision variables. Algorithmica, 80:1732–
1768, 2018.

[DDK19] Benjamin Doerr, Carola Doerr, and Timo Kötzing. Solving problems with
unknown solution length at almost no extra cost. Algorithmica, 81:703–748,
2019.

[DELQ22] Duc-Cuong Dang, Anton V. Eremeev, Per Kristian Lehre, and Xiaoyu Qin.
Fast non-elitist evolutionary algorithms with power-law ranking selection.
In Genetic and Evolutionary Computation Conference, GECCO 2022, pages
1372–1380. ACM, 2022.

42

[DFK+16] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kris-
tian Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. Escaping
local optima with diversity mechanisms and crossover. In Genetic and Evolu-
tionary Computation Conference, GECCO 2016, pages 645–652. ACM, 2016.

[DFK+18] Duc-Cuong Dang, Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Per Kris-
tian Lehre, Pietro S. Oliveto, Dirk Sudholt, and Andrew M. Sutton. Escaping
local optima using crossover with emergent diversity. IEEE Transactions on
Evolutionary Computation, 22:484–497, 2018.

[DJW02] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[DJW12] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. Multiplicative drift
analysis. Algorithmica, 64:673–697, 2012.

[DLMN17] Benjamin Doerr, Huu Phuoc Le, Régis Makhmara, and Ta Duy Nguyen. Fast
genetic algorithms. In Genetic and Evolutionary Computation Conference,
GECCO 2017, pages 777–784. ACM, 2017.

[Doe16] Benjamin Doerr. Optimal parameter settings for the (1+ (λ, λ)) genetic algo-
rithm. In Genetic and Evolutionary Computation Conference, GECCO 2016,
pages 1107–1114. ACM, 2016.

[Doe20] Benjamin Doerr. Probabilistic tools for the analysis of randomized op-
timization heuristics. In Benjamin Doerr and Frank Neumann, edi-
tors, Theory of Evolutionary Computation: Recent Developments in Dis-
crete Optimization, pages 1–87. Springer, 2020. Also available at
https://arxiv.org/abs/1801.06733.

[Doe21] Benjamin Doerr. The runtime of the compact genetic algorithm on Jump
functions. Algorithmica, 83:3059–3107, 2021.

[Doe22] Benjamin Doerr. Does comma selection help to cope with local optima? Al-
gorithmica, 84:1659–1693, 2022.

[DQ22] Benjamin Doerr and Zhongdi Qu. A first runtime analysis of the NSGA-II on
a multimodal problem. In Parallel Problem Solving From Nature, PPSN 2022.
Springer, 2022. Also available at https://arxiv.org/abs/2204.13750.

[DR22] Benjamin Doerr and Amirhossein Rajabi. Stagnation detection meets fast
mutation. In Evolutionary Computation in Combinatorial Optimization, Evo-
COP 2022, pages 191–207. Springer, 2022.

[DWY21] Benjamin Doerr, Carsten Witt, and Jing Yang. Runtime analysis for self-
adaptive mutation rates. Algorithmica, 83:1012–1053, 2021.

43

https://arxiv.org/abs/1801.06733
https://arxiv.org/abs/2204.13750

[DZ21] Benjamin Doerr and Weijie Zheng. Theoretical analyses of multi-objective
evolutionary algorithms on multi-modal objectives. In Conference on Artificial
Intelligence, AAAI 2021, pages 12293–12301. AAAI Press, 2021.

[FKK+16] Tobias Friedrich, Timo Kötzing, Martin S. Krejca, Samadhi Nallaperuma,
Frank Neumann, and Martin Schirneck. Fast building block assembly by ma-
jority vote crossover. In Genetic and Evolutionary Computation Conference,
GECCO 2016, pages 661–668. ACM, 2016.

[FQW18] Tobias Friedrich, Francesco Quinzan, and Markus Wagner. Escaping large
deceptive basins of attraction with heavy-tailed mutation operators. In Ge-
netic and Evolutionary Computation Conference, GECCO 2018, pages 293–
300. ACM, 2018.

[HS18] Václav Hasenöhrl and Andrew M. Sutton. On the runtime dynamics of the
compact genetic algorithm on jump functions. In Genetic and Evolutionary
Computation Conference, GECCO 2018, pages 967–974. ACM, 2018.

[JJW05] Thomas Jansen, Kenneth A. De Jong, and Ingo Wegener. On the choice of
the offspring population size in evolutionary algorithms. Evolutionary Com-
putation, 13:413–440, 2005.

[JW02] Thomas Jansen and Ingo Wegener. The analysis of evolutionary algorithms –
a proof that crossover really can help. Algorithmica, 34:47–66, 2002.

[LOW19] Andrei Lissovoi, Pietro S. Oliveto, and John Alasdair Warwicker. On the time
complexity of algorithm selection hyper-heuristics for multimodal optimisa-
tion. In Conference on Artificial Intelligence, AAAI 2019, pages 2322–2329.
AAAI Press, 2019.

[Müh92] Heinz Mühlenbein. How genetic algorithms really work: mutation and hill-
climbing. In Parallel Problem Solving from Nature, PPSN 1992, pages 15–26.
Elsevier, 1992.

[NW07] Frank Neumann and Ingo Wegener. Randomized local search, evolutionary
algorithms, and the minimum spanning tree problem. Theoretical Computer
Science, 378:32–40, 2007.

[QGWF21] Francesco Quinzan, Andreas Göbel, Markus Wagner, and Tobias Friedrich.
Evolutionary algorithms and submodular functions: benefits of heavy-tailed
mutations. Natural Computing, 20:561–575, 2021.

[RA19] Jonathan E. Rowe and Aishwaryaprajna. The benefits and limitations of
voting mechanisms in evolutionary optimisation. In Foundations of Genetic
Algorithms, FOGA 2019, pages 34–42. ACM, 2019.

44

[Rud97] Günter Rudolph. Convergence Properties of Evolutionary Algorithms. Verlag
Dr. Kovǎc, 1997.

[RW20] Amirhossein Rajabi and Carsten Witt. Self-adjusting evolutionary algorithms
for multimodal optimization. In Genetic and Evolutionary Computation Con-
ference, GECCO 2020, pages 1314–1322. ACM, 2020.

[RW21a] Amirhossein Rajabi and Carsten Witt. Stagnation detection in highly multi-
modal fitness landscapes. In Genetic and Evolutionary Computation Confer-
ence, GECCO 2021, pages 1178–1186. ACM, 2021.

[RW21b] Amirhossein Rajabi and Carsten Witt. Stagnation detection with randomized
local search. In Evolutionary Computation in Combinatorial Optimization,
EvoCOP 2021, pages 152–168. Springer, 2021.

[Wal45] Abraham Wald. Some generalizations of the theory of cumulative sums of
random variables. The Annals of Mathematical Statistics, 16:287–293, 1945.

[Wit05] Carsten Witt. Worst-case and average-case approximations by simple ran-
domized search heuristics. In Symposium on Theoretical Aspects of Computer
Science, STACS 2005, pages 44–56. Springer, 2005.

[Wit06] Carsten Witt. Runtime analysis of the (µ + 1) EA on simple pseudo-Boolean
functions. Evolutionary Computation, 14:65–86, 2006.

[Wit21] Carsten Witt. On crossing fitness valleys with majority-vote crossover and
estimation-of-distribution algorithms. In Foundations of Genetic Algorithms,
FOGA 2021, pages 2:1–2:15. ACM, 2021.

[WQT18] Mengxi Wu, Chao Qian, and Ke Tang. Dynamic mutation based Pareto
optimization for subset selection. In Intelligent Computing Methodologies,
ICIC 2018, Part III, pages 25–35. Springer, 2018.

[WVHM18] Darrell Whitley, Swetha Varadarajan, Rachel Hirsch, and Anirban Mukhopad-
hyay. Exploration and exploitation without mutation: solving the jump func-
tion in Θ(n) time. In Parallel Problem Solving from Nature, PPSN 2018, Part
II, pages 55–66. Springer, 2018.

45

	1 Introduction
	2 Preliminaries
	2.1 Objective Functions
	2.2 Power-Law Distributions
	2.3 The Heavy-Tailed (1 + (,)) GA
	2.4 Useful Tools

	3 Runtime Analysis
	3.1 Easy Problems
	3.1.1 OneMax
	3.1.2 LeadingOnes
	3.1.3 Minimum Spanning Tree Problem
	3.1.4 Approximations for the Partition Problem

	3.2 Jump Functions
	3.3 Recommended Hyperparameters

	4 Experiments
	4.1 Results for OneMax
	4.2 Results for Jump Functions

	5 Conclusion

