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Abstract. In a large variety of systems (biological, physical, social etc.),
synchronization occurs when different oscillating objects tune their rhythm
when they interact with each other. The different underlying network
defining the connectivity properties among these objects drives the global
dynamics in a complex fashion and affects the global degree of synchrony
of the system. Here we study the impact of such types of different net-
work architectures, such as Fully-Connected, Random, Regular ring lat-
tice graph, Small-World and Scale-Free in the global dynamical activity
of a system of coupled Kuramoto phase oscillators. We fix the external
stimulation parameters and we measure the global degree of synchrony
when different fractions of nodes receive stimulus. These nodes are chosen
either randomly or based on their respective strong/weak connectivity
properties (centrality, shortest path length and clustering coefficient).
Our main finding is, that in Scale-Free and Random networks a sophis-
ticated choice of nodes based on their eigenvector centrality and average
shortest path length exhibits a systematic trend in achieving higher de-
gree of synchrony. However, this trend does not occur when using the
clustering coefficient as a criterion. For the other types of graphs consid-
ered, the choice of the stimulated nodes (randomly vs selectively using
the aforementioned criteria) does not seem to have a noticeable effect.

1 Introduction

Complex networks’ theory is a powerful tool in various fields that allow us to
investigate and understand the real world [1,2]. For example, different ensembles
of neurons connected by synapses coordinate their activity to perform certain
tasks (in biology), infrastructures like the Internet are formed by routers and
computer cables and optical fibers (in hardware communication) and the human
personal or professional relationships (in social sciences) to name a few [3].
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Nonlinearity is a very important feature in complex systems giving a rich
repertoire of different activity patterns, such as stable, unstable, periodic etc. A
modification of some parameter might also produce a change in their stability,
and therefore in the dynamics of the system. Furthermore, such systems may
have a high sensitivity to initial conditions, or to any external input, that could
completely change their dynamics [4].

Such dynamics often yield to a self-organised coherent activity, i.e. to synchro-
nization. The latter can be loosely defined as the capacity of different oscillating
objects to adjust their rhythm due to their interaction and plays a key role in a
large variety of systems, whether biological, physical, or even social (see e.g. [5]).
In a more formal way, synchronization emerges from the interaction of several
autonomous oscillators, also called self-sustained oscillators. That is, nonlinear
dynamical systems that produce oscillations without any need of external source.
Their dynamics is given by a nonlinear differential equation or, in the case of
multiple coupled oscillators, by several coupled differential equations.

The relative way that autonomous oscillators are connected within a given
network can affect their global activity and synchronization properties. Neural
networks can be represented as a graph of connections between the different neu-
rons. Since the introduction of small-world networks and scale-free networks (see
e.g. [6,8]), the field of network graph analysis has attracted the attention of many
studies aimed to better understand complex systems (see e.g. [9,10,11,12,13]).
Furthermore, modern network connectivity techniques allow us to capture var-
ious aspects of their topological organization, as well as to quantify the local
contributions of individual nodes and edges to network’s functionality (see e.g.
[14]).

In neuroscience, synchronization plays a very important role. The human
brain is a very large and complex system whose activity comprises the rapid
and precise integration of a gigantic amount of signals and stimulus to perform
multiple tasks (see e.g. [14,15,16]). One example occurs in epileptic seizures,
where periods of abnormal synchronization in the neural activity can spread
within different regions of the brain, and cause an attack in the affected person
(see e.g. [17]). More examples are found in other brain diseases such as Parkinson
disease, where an excessively synchronized activity in a brain region correlates
with motor deficit (see e.g. [18,19] and references therein) or tinnitus (see e.g.
[20,21,22] and references therein).

In this study, we focus at a rather theoretical framework. We set out to in-
vestigate the impact of different network architectures, such as Fully-Connected,
Random, Regular ring lattice graph, Small-World and Scale-Free in the global
dynamical activity of a system of coupled Kuramoto phase oscillators [23]. The
Kuramoto model has been broadly used to study various types of oscillatory
complex activity, see e.g. [24,25,26] (to name only a few) and references therein.
Our goal is to investigate the impact of the network (graph) structure in the sys-
tem’s global degree of synchronization when applying identical and fixed external
stimulus to different subsets of nodes which are chosen according to various net-
work connectivity criteria. We find that, in scale-free and random networks, a
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sophisticated choice of nodes based on graph connectivity properties exhibits a
systematic trend in achieving higher degree of synchrony. For the other types of
graphs considered, the choice of the stimulated nodes (randomly vs selectively
using the aforementioned criteria) seems to not have a noticeable effect.

2 Methods and Materials

2.1 Connectivity measurements

We here study the dynamics of phase oscillators coupled via binary, undirected
graphs G = (V,E), containing a set of N vertices V = {v ∈ J1 : NK} and a set
E = {(v, w) ∈ J1 : NK2} of edges. Let A be the corresponding adjacency matrix,
with Avw = 1 if there is a connection between node v and node w, 0 otherwise.
Self-connections are excluded, so Av,v = 0 for any vertex v. For our analysis
later on, we will use the following graph connectivity measurements [27]:

– Shortest path length. The shortest path length Lv,w between any two
nodes v and w is the number of connections on the shortest path going
from one to another, computed following Dijkstra’s algorithm. We define
the shortest path length of a node v as the average shortest path between v
and any other node of the network:

< Lv >=
∑
w∈V

Lv,w
N

. (1)

Note that Lv,w might not be defined if there is no way connecting node v to
node w. The lower the shortest path length, the fastest the information goes
from one node to another. For example, when building a subway network
(that is, a graph where different stations are interconnected), one might
want to minimize the stations’ average shortest path length so the users can
easily navigate across the city.

– Centrality. The eigenvector centrality is used to quantify the importance
of a node in the network. Let λ be the highest eigenvalue for A, so that all
the corresponding eigenvector’s components are non null. The eigenvector
centrality xv of vertex v is defined as the vth component the eigenvector,
namely:

xv =
1

λ

∑
w∈V

Aw,vxw. (2)

Keeping in mind the subway network example, a station with a high cen-
trality would be densely connected to other stations, in particular to other
central ones.

– Clustering. Let kv =
∑
w Avw be the degree of node v. In the case of a

undirected graph, kv(kv−1)
2 edges can exist in the direct neighborhood of v.

With nv the number edges that actually exist in this neighborhood, the local
clustering coefficient is defined as [16]:

Cv =
2nv

kv(kv − 1)
. (3)
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That is, in a subway network where stations B and C are the next stop after
station A on their line, clustering would give the probability that there exists
a line directly connecting B and C.

2.2 Neural networks as graphs

We investigate synchronization properties in various network configurations that
exhibit in general different characteristics. In more detail we here employ the
neural networks described in the following list (see e.g. [6]):

– Fully-Connected networks. They contains (N − 1)2 edges connecting
every node in one layer to every node in the other layer.

– Regular networks. They consist of a lattice of N nodes, each being con-
nected to their k nearest neighbors.

– Small-World networks. A Small-World network is constructed from a
Regular one after multiple random rewiring phases: going clockwise over the
lattice, a vertex and the edge to its nearest neighbor are selected. The edge
is removed, and the vertex reconnected to a random node with probability
p, without duplicating any existing edge. This random rewiring is repeated,
considering the following nearest neighbour, until having rewired with prob-
ability p all edges of the network. Choosing p in an adequate range of values,
the built network exhibits both high mean clustering and low mean charac-
teristic path length, that is small-worldness.

– Random networks. Using the same procedure as for Small-World net-
works, setting p = 1 produces a Random graph, with all edges being system-
atically randomly rewired.

– Scale-Free networks. They are networks whose degree distribution follows
a power-law:

P (k) ∝ k−γ . (4)

with k the node degrees, γ a real constant. The Barabási-Albert model gives
a procedure for the construction of scale-free networks [7], by starting with
a small Fully-Connected network of m0 nodes then adding one by one the
N −m0 remaining nodes, connecting them to the m already present nodes
with probability

pv =
kv∑
w
kw

, (5)

w ∈ J0 : m − 1K. Scale-free networks exhibit nodes with degrees that are
several standard deviations away from the average degree of the network.
These highly connected nodes are called hubs. Note that, however, for smaller
networks with size N < 100, the scale-free property might not be properly
observable.

Fig. 1 provides a visual representation of the above mentioned graphs. Note
that for visualization purposes we here show only a small fraction of the actual
networks that we use later in our simulations where the number of nodes is set
be N = 500.
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(a) Fully-Connected (b) Scale-Free

(c) Regular (d) Swall-World (e) Random

Fig. 1. Network graphs. Small graphs of size N = 20 showing the different network
structures: (a) Fully-Connected graph, (b) Scale-Free graph with initial size m0 = 5,
(c) Regular graph with node degree k = 4, (d) Small-World graph with initial node
degree k = 4 and rewiring probability p = 0.2 and (c) Random graph with initial node
degree k = 4. See text for more details.

2.3 The Kuramoto model

We use of the Kuramoto model to study the neural activity of the coupled
system. To this end we consider a population of N phase oscillators [23]:

θ̇i = ωi + Fδi sin(Ωt+ θi) +
K

ki

∑
j

Aij sin(θj − θi), (6)

where θi denotes the phase of the i−th oscillator, ωi its respective frequency (Hz)
drawn from a Lorentz probability distribution g(ω) of scale parameter γ = 0.5,
centered in x0 = 1. A is the binary adjacency matrix coupling the oscillators, ki
the degree of oscillator i and K is the global coupling constant. We apply external
stimulus in a subset of the oscillators with fixed amplitude F and frequency
Ω. The term δi is a binary function indicating this subset of nodes where the
stimulation is applied in different realization in our simulations,

δi =

{
1 if node i is in the stimulated subset
0 else. (7)

We set the time-step at 0.01s and we integrated the system with an Euler scheme
(no noise is considered).
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The system’s degree of synchrony is measured using its order parameter r
[23]:

reiψ =
1

N

N∑
j=1

eiθj , (8)

where Ψ denotes the population’s mean phase. The order parameter r tends to 1
for a perfectly synchronized population and to 0 in the absence of synchronization
respectively. Due to the presence of strong fluctuations, all r time-series shown
in this paper are determined using a moving average on r, on time windows of
length 2s sliding each 0.1s. The final states of a population, rf , are computed by
averaging these moving-averaged r time-series over a 15s time-window where the
system has reached its stable state. The system’s degree of synchrony depends
on the coupling strength K’s relative position to a critical coupling strength Kc,
whose value depends on the network configuration (see e.g. [28,29]). Here, we
set this value at K = 0.2 so that all considered networks are desynchronized in
the absence of any external stimulation.

3 Results

Network modulation. In order to adequately tune the stimulus’ amplitude
and frequency values such that they can lead the system into a synchronous
state, we first perform a systematic analysis in the parameter space (F,Ω).
Hence, we begin by applying external stimulus to all the nodes for each pair of
parameters and measure the final order parameter rf . Such a parameter map
reveals the presence of the well-known Arnold tongues [5], namely regions in the
plane (F,Ω) for which the system gets synchronized.

In Fig. 2, we present the different synchronization regions (presence of sev-
eral Arnold tongues) for a Regular network of a relatively small size N = 20 and
mean neighborhood k = 4. For every other studied network, the maps depicts
similar features with large synchronization regions at relatively small amplitudes
of the external current, F < 200. These tongues get thinner with higher values of
F . Inside the main Arnold tongues, the oscillators are phase-locked at the forc-
ing frequency Ω and rf ≈ 1. Inside zones of weaker degree of synchrony rf < 1,
some oscillators are phase-locked, while the oscillators of higher natural frequen-
cies keep rotating independently. The white star symbol in the bottom-left part
of the figure indicates the chosen parameters (F,Ω) = (5, 1) for our forthcoming
simulations, resulting in a partial phase-locking of the network. Note that we
have performed similar analysis with larger sizes but smaller parameter grid size
and the overall picture turns out to be consistent. We have also prepared similar
plots for all considered network configurations (figures not shown here).

Simulation protocol. We set the values F = 5, Ω = 1Hz for the stimulus in-
tensity and frequency in Eq. (6), so that the network is weakly entrained without
being completely phase-locked. We then measure the degree of synchronization
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Fig. 2. Synchronization regions in the stimulation frequency-amplitude pa-
rameter space for a Regular network. Final order parameter reached for a Regular
network of size N = 20, and degree k = 4 where all nodes are stimulated, for different
pairs of stimulus intensity (F ) and frequency (Ω) values in Eq. (6). Each data point
corresponds to a single simulation over 30s, the final order parameter being averaged
over the last 15s. The color map shows large main synchronization regions, as well
as small higher-order synchronization areas. The white star symbol at the bottom-left
part of the figure indicates the chosen parameters (F,Ω) = (5, 1) for the forthcoming
simulations.

(with the order parameter) in different networks described in Sect. 2.2. The sys-
tem starts evolving for 4s without any external input before we start applying
the stimulation to a subset of nodes until 30s. More precisely, we stimulate dif-
ferent fractions of nodes, i.e., 25%, 50% and 75% in each given network. These
nodes can be either chosen randomly, or depending on particular connectivity
properties (as described in Sect. 2.1). For the latter case, we first sort the nodes
according to their connectivity relative measurements (from higher to lower),
i.e. the eigenvector centrality, average shortest path length and clustering coef-
ficient. The resulting time series are smoothed with a moving average, and their
rf is averaged over the last 15s. In order to obtain a statistically relevant value
of the final value of the order parameter rf , we performed 20 simulations for
each different network-setup (randomizing the initialization/generation of the
networks, the natural frequencies and the initial conditions for each simulation).

In Fig.3, we show representative time-series for various stimulation setups for
Scale-Free networks of size N = 500 and initial size m0 = 5. Each panel corre-
sponds to a different initialization, from which the order parameter evolution is
computed depending on the amount of stimulated nodes and the way they are
selected. Thin solid lines correspond to randomly selected nodes. In that case,
a first subset containing 25% of the nodes is created. Then for the stimulation
of larger in size subsets, another 25% of nodes is successively added, so that
larger subsets of random nodes always contains the smaller one. The bold solid
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(a) Eigenvector centrality (b) Shortest path length (c) Clustering coefficient

Fig. 3. Representative r time-series for different stimulation setups of Scale-
Free networks. The order parameter as a function of time, for N = 500 oscillators,
when stimulating 0% (blue), 25% (orange), 50% (red) and 75% (black) of the nodes. The
stimulated nodes are chosen randomly, then based on their (a) eigenvector centrality
(b) average shortest path length and (c) clustering coefficient values. Bold solid lines
(resp. dashed lines) correspond to the stimulation of nodes with the highest (resp.
lowest) values, while thin solid lines correspond to the stimulation of randomly chosen
nodes.

lines (resp. dashed lines) show the time-series when the stimulated nodes are
the ones with the highest (resp. lowest) eigenvector centrality (panel (a)), aver-
age shortest path length (panel (b)) and clustering coefficient (panel (c)). Note
that higher values of the connectivity measurement do not necessarily lead to
stronger synchrony. In particular, lower values for the nodes’ average shortest
path length depicts shorter connections to the rest of the network, and therefore
a more efficient synchronization.

Optimization of global synchronization In Fig. 4, we present the main
finding of our work, namely a systematic comparison of the synchronization ef-
ficiency when applying identical stimulus in different types of graph networks.
Each panel is split into 3 columns showing the statistical summary for the ensem-
bles of different realizations and choosing to stimulate different subsets of nodes,
i.e. randomly (middle-orange boxplots in the legends) or with highest (upper-red
boxplots in legends) or lower (lower-blue boxplots in the legends) connectivity
measurement. Panel (a) refers to a Small-World network of size N = 500, initial
degree k = 4 and rewiring probability p = 0.2, (b) to a Random network of
size N = 500, initial degree k = 4 and rewiring probability p = 1 and (c) to a
Scale-Free network of size N = 500 and initial size m0 = 5 respectively. Note
this analysis is not performed on Regular and Fully-Connected networks, since
all nodes of such networks have identical connectivity properties and does not
allow any connectivity-based selection.
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(a) Small-World network (b) Random network

(c) Scale-Free network

Fig. 4. Synchronization efficiency comparison for different types of graph
networks. Final order parameter obtained, for (a) Small-World networks (b) Ran-
dom networks (c) Scale-Free networks of size N = 500. The final value of the order
parameter rf is computed for different stimulation subset sizes, composed of randomly
chosen nodes (middle-orange boxplots in the legends), nodes with the highest connec-
tivity measurement (left-red boxplots) and nodes with the lowest connectivity measure-
ment (right-blue boxplots). rf shown are an average over 20 simulations. The analysis is
performed with three different connectivity measurements: eigenvector centrality (left
column in each panel), average shortest path length (central column in each panel) and
clustering (right column in each panel).

In Scale-Free networks, the global order parameter reaches higher values when
the stimulus is applied to the nodes with higher eigenvector centrality or lower
average shortest path length. In such networks, a small fraction of the nodes
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have significantly higher connectivity, and stimulating preferentially these nodes
enables strong synchronization compared to stimulating random nodes.

In Random networks, selecting stimulated nodes according to their lowest av-
erage shortest path length instead of randomly enhances synchronization. How-
ever, there is no benefit in choosing more central nodes. Indeed, the high degree
of randomness (induced by a rewiring probability p = 1, see Sect. 2.2) in these
networks’ connections causes disparity in the nodes’ average shortest path length,
without creating any node of way higher centrality. In Small-World networks,
the connections are distributed in a more homogeneous way, and hence the node
selection as no substantial impact on the system’s final synchrony.

For all three aforementioned networks and all stimulation subset sizes, the
selection of the nodes according to their clustering coefficient does not show
any advantage over a simple random choice. Note that, we also checked for a
potential overlap of clustering coefficient values between the randomly chosen
nodes and those chosen with higher respective values. It turns out that they
differ significantly. Our working hypothesis is that, by picking nodes with higher
clustering coefficient, we induce higher synchrony locally (member nodes of the
sub-network) while we disfavour other nodes outside of it. However, by choosing
nodes randomly, we end up stimulating simultaneously nodes within and outside
clusters eventually providing a better global synchronization. Finally, for all net-
works and stimulation subset selection methods, although they overall achieve
higher degree of synchrony, larger stimulated subsets containing 75% of the pop-
ulation do not allow to observe any clear advantage in particular selection of the
nodes, since all three possible subsets largely overlap.

4 Summary and Discussion

In this study, we investigated the impact of structure and connectivity properties
in a modulated network. We sought out to identify efficient ways to synchronize
a population of Kuramoto phase oscillators using nodes’ stimulation with fixed
small amplitude and frequency. To this end, we first performed a parameter
sweep exploration for stimulus amplitude and frequency parameters to identify
settings that allow the system to synchronize. Then, we computed the evolution
of characteristic networks of Kuramoto oscillators, where external stimulation
is applied to different subpopulations with identical fixed low amplitude and
frequency. In order to measure the system’s synchrony of each network-type and
stimulation configuration, we calculated the global order parameter for ensembles
of different random system initializations.

We showed that by choosing this subpopulations based on their respective
network connectivity properties (i.e. high eigenvector centrality and lower short-
path length), we were able to enhance the networks’ global degree of synchro-
nization in comparison to the one achieved by randomly choosing them. This is
not the case when using the clustering coefficient as a selection criterion. How-
ever, this direction deserves further investigation, e.g. detect different network
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communities, measure their local synchronization and study its impact on the
global synchrony when such nodes are chosen to be stimulated.

From a neuroscience point of view Scale-Free networks play an important
role in the structure and function of mammal brains, see for example [30] (a
study on the scale-free dynamics and the emergence of collective organisation
occurs in rodents) or [31] (investigating the fractal structure of the human brain
and its dynamics). Furthermore, in Alzheimer patients’ brain, the functional
connectivity structure is found to exhibit properties similar to Random network
graphs (see e.g. [32,33] and references therein). Thus, understanding how to
optimally synchronize systems with similar network structures can improve the
overall expected performance of a given external simulation protocol.
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