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Abstract—This paper proposes an algorithm for real-time congestion
management in a distribution network. It sets up a peer-to-peer market
allowing the distribution system operator to inject network charges. This
enables him to obtain flexibility from distributed agents with hetero-
geneous preferences. These network charges vary in real time and
are related to the network’s congestion. Prosumers minimize their cost
function, and find a consensus through alternating direction method
of multipliers decomposition. This formulation allows the management
of the large number of agents present in the distribution networks
only using one price broadcast by the distribution system operator to
prosumers. We illustrate with the CIGRE low voltage test case that this
strategy is efficient to manage congestion and presents limited sub-
optimality compared to the optimal power flow.

Index Terms—Distributed Optimisation, Peer-to-peer, Distribution Sys-
tem Operator, Cost Allocation, Real-Time, Flexibility, Congestion Man-
agement.

1 INTRODUCTION

The deployment of Distributed Energy Resources (DERs)
alters the management paradigm of distribution networks
which will host 99% of new DER infrastructures [1]. Electri-
cal consumption is expected to drastically rise [2] because
of new uses – electric mobility, heat pump – exposing it to
risks of congestion and non-compliance with voltage limits
[3]. However, the violation of thermal constraints can lead
to the premature aging of conductors or even to black-
outs, which represent a significant additional cost for the
Distribution System Operator (DSO). Currently, these con-
straints are managed through long-term physical network
reinforcement [4]. However, the introduction of distributed
flexibilities creates a possibility of new management of the
network, which is essential to achieve energy transition
while limiting the costs of new infrastructures [5]. This tran-
sition is facilitated by the widespread deployment of smart
meters [6] which enables limited yet bilateral information
exchange between DSO and prosumer. But currently, DSOs
do not have efficient means of controlling large numbers of
agents in real time.

Within the Demand Response (DR) literature, two types
of approach stand out. In incentive-base DR programs,
agents are offered payments in order to deliver a specific
amount of load reduction. In price-based DR programs, con-
sumers voluntarily provide load reductions by responding

to economic signals [7]. The purpose of these programs
is to match production and consumption. But fluctuating
prices rarely reflect the price of using the network and
to our knowledge are never used to solve the constraints
associated with it.

A new market design focused on the interaction between
DSO, aggregator and prosumers, opt-in for prosumers and
that satisfies Pareto efficiency was proposed in [5]. The DSO
can manage network constraints by buying flexibilities from
the agents, but the negotiation mechanism is not suited to
real-time application. Alternatively, Steriotis [8] proposed
a real-time pricing scheme that offers an easily adjustable
level of financial incentives to consumers, by fairly reward-
ing the desirable consumption changes. But prosumers have
to announce their future consumption to the aggregator
which can lead to privacy issues. Finally, Lu [9] proposed
to handle constraints directly by solving an Optimal Power
Flow (OPF) in a distributed manner taking advantage of
the radial structure of the distribution networks to obtain
an exact relaxation of the problem. Real-time resolution is
made possible by warm-starting the algorithm by using the
offline scheduling solution as the initial point. However, it
does not directly involve prosumers in the decision making.
On the other hand, peer-to-peer (P2P) markets are able
to process a large number of agents with heterogeneous
and private preferences (i.e. renewables, zonal) without
increasing the computational complexity [10]. It is the most
generic formulation because any market configuration can
be expressed as a P2P market [11]. In addition, fluctuating
pricing helps with involving prosumers by making them
more responsible [12]. A P2P market was proposed in [13]
to solve economic dispatch while introducing an exogenous
grid price. This provides the system operator with a lever
to compel market agents to comply with grid physical
constraints. A consumption decrease proportional to the
agents’ flexibility was observed when price increases. This
algorithm is a good candidate but no rule was provided
to fix the network charges in advance and the algorithm
requires iterative bilateral communication with the SO.

Thus, supposing that a communication network lies on
top of the electric grid, we propose a real-time implementa-
tion of [13] allowing the DSO to manage congestion in the
network using only a broadcast price reflecting the network
state. Section 2 presents the P2P formalism and how it can
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be used to solve electricity markets in distribution networks.
Simulation results are presented and discussed in section 3
using a test case relying on the CIGRE low voltage network.
Section 4 contains our conclusions and perspectives for
further work.

2 METHOD

2.1 Peer to peer market
The general formulation [13] of a P2P market is given in
(1). Where P is the matrix of power trade pnm of agent
n with agent m, ωn is the set of partners of n, fn is the
cost function, pn is the power exchanged, pn and pn are
respectively the minimum and maximum power limits. hn

is a regularization function which condense all network
constrains. It is equal to 0 if they are respected and +∞
if they are violated.

min
P

∑
n∈Ω

fn(pn) + hn(pn) (1a)

s.t. P = −PT (1b)

pn =
∑

m∈ωn

pnm n ∈ Ω (1c)

pn ≤ pn ≤ pn n ∈ Ω (1d)
pn ≤ pnm ≤ pn n ∈ Ω (1e)

Baroche [13] proposed to replace h by an exogenous
terms. These exogenous term would aim not only at allocat-
ing congestion-related costs but also at controlling prosumer
demand via their sensitivity to energy prices. Hence, h can
be replaced by a cost allocation function defined as

hn(pn) = γ · pn (2)

where γ is the network charge fixed by the DSO which
represent the network’s solicitation.

Problem (1) can be efficiently solved using the Alter-
nating Direction Method of Multipliers (ADMM) [14]. The
resulting decentralized negotiation mechanism [13] reads :

(
pnm

)k+1

m∈ωn
= argmin

(pnm)m∈ωn

fn(pn) + γ · pn (3a)

+
∑

m∈ωn

[
λk
nm

(
pknm − pkmn

2
− pnm

)

+(ρ/2)

(
pknm − pkmn

2
− pnm

)2
]

s.t. (1c)–(1e)
λk+1
nm = λk

nm − ρ(pk+1
nm − pk+1

mn )/2 (3b)

where penalty factor ρ > 0 and λnm is the dual variable
associated to the trade pnm. According to [14], supposing
cost functions fn to be closed, proper, and convex is a
sufficient condition to ensure convergence of (3).

2.2 Real time implementation using rolling iteration
warm start
Convergence of trades P towards the optimal trades requires
a certain number of iterations which depends on the number

of agents NΩ, the cost function fn and the parameter ρ.
The core element of the proposed algorithm is that at each
time t0, agents solve their local problems and enforce their
decision with an effective power exchange pt0n . The DSO
then measures the grid state, updates grid cost value and
broadcast it at the next time step t0 + ∆t. For small ∆t
values, the solution should always be close to the optimal.
This concept has already been studied for optimal control
and Hours [15] has shown that a well chosen ρ keeps the
residuals bounded. Indeed, we can assume that between
two close instants, the power p∗t0n requested by agent n
at t0 is not very different from p∗t0+∆t

n . Similarly, the cost
function f t0

n should be close to f t0+∆t
n . We can therefore

find ∆t such that the solution of (1) is almost identical at
both times. Thus, we propose the algorithm 1.

Algorithm 1: Real time congestion control
Result: pn, ∀n ∈ Ω
while True do

for n ∈ Ω do
Get the grid cost via DSO broadcast: γt ;
Get trades from other agents: ptmn, ∀m ∈ ωn ;
Update dual variable: λt

nm ← (3b) ;
Compute new power exchange: pt+∆t

n ← (3a)
;

end
DSO computes network charges : γt+∆t ← (6);
t← t+∆t ;

end

2.3 Price evolution
The DSO is in charge of maintaining the network’s integrity
and must ensure that it is not congested. Although the distri-
bution network’s state is generally not well known because
of the small number of sensors, we will consider that it is
observable in real time, for example via an estimator [16].

The DSO determines the most constrained line or voltage

l′ = argmax
l∈L

Il/Cl (4)

where Il and Cl are respectively the current and the maxi-
mum current admissible in l. Any technique can be chosen
to determine the price the network’s cost : Machine Learn-
ing, Reinforcement Learning, Kalman filter, etc. but even
simple solutions can work out as illustrated section 3.

3 TEST CASE AND RESULTS

3.1 Test case
Simulations1 were carried out using panda power [17] on
the single-phase CIGRE European LV distribution network
[18]. Fig. 1 shows the network’s topology. It is composed of
44 buses, 40 prosumers including 33 with solar panels. To
model the power exchanged by each agent, we used the
1 minute time step time series from [19]. For illustrative
purpose, agent’s power and lines’ capacity were adapted. A

1. Test case and algorithm available at gitlab.com/satie.sete/rt-
congestion-control/-/releases#1.3

https://gitlab.com/satie.sete/rt-congestion-control
https://gitlab.com/satie.sete/rt-congestion-control
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Fig. 1. CIGRE low voltage network 44-bus, with 40 prosumers including
33 with solar panels.

quadratic function is here used for each prosumer (5). How-
ever, in a real implementation, each agent is encouraged to
implement the cost function f t

n of their choice which can be
the result of an internal cost-saving optimisation [20].

f t
n(p) = −Fn · pt∗n · p+ 0.5 · Fn · p2 (5)

where pt∗n is the objective power of the agent n at time t.
Fn represents the agent’s sensitivity to a price fluctuation γ.
The larger Fn is, the less sensitive the agent will be to γ, and
the closer the power obtained ptn will be to pt∗n . In return, the
agent will pay a high price to the DSO when the network is
constrained. In this paper we have chosen to use a quadratic
function because (3) is efficiently solved by [21].

With the aim of achieving significant price fluctuations,
we fixed agents’ flexibility between 25 and 200. Only p∗n
changes over the course of the simulation. Agents 0 repre-
sents the external grid with infinite power. It is very flexible
(F0 = 0.1) and has a zero power objective (p∗0 = 0kW ). This
agent can be used to manage the coordination between TSO
and DSO although this is beyond the scope of the article.

As mentioned section 2.3, any technique can be chosen to
set the network charges γt, we illustrate with a PI regulator
:

γt = max

[
0 ;

(
Kp +

1

Ti

∫
· dt

)
·
( Itl′
Ct

l′
− 1

)]
(6)

where Kp is the proportional gain, Ti the integration con-
stant and γt the fluctuating grid cost at time t.

3.2 Time series analysis
The first two panels of Fig. 2 show the evolution of the
powers exchanged by agent 10 (not very flexible) and agent
5 (very flexible). Objective (b) represents the agent’s objective
power, i.e. the minimum of its cost function pt∗. Exogenous
(a), OPF (c) and OPF without line limits (d) represent respec-
tively the power exchanged by applying the Exogenous al-
gorithm, OPF with line limits and OPF without constraints.
This legend is common to the first 3 panels. We adopt the
producer convention : pn > 0 means that the power is
produced by the agent n. Agent 10 being inflexible, the
exchanged powers ptn are equal to pt∗10 for all t, contrary
to agent 5. Before minute 100, the exchanged powers (c)
and (d) are equal because no constraints are active. The
exchanged powers are lower than the target because the grid
agent pushes self-consumption and forces the most flexible
agents to consume less. After minute 100 the curves (c) and

Fig. 2. Evolution of the power, network charges, maximum line loading
and network charges γt during the simulation.

Fig. 3. Primal and dual residual throughout the simulation

(d) differ because the network is constrained. As requested,
the power consumption (a) follows the variations of (c),
although instantaneous variations are unavoidable.

The third panel represents the evolution of the most
saturated line during the simulation for the three algo-
rithms. Without control (d), the network exceeds the thermal
constraint from minute 100 and reaches at most 155%. (c) is
the strategy that implements the OPF, so it respects the con-
straints. (a) respects the constraint in spite of slight overruns
– a qualitative analysis is made section 3.3. Finally the last
panel represents the evolution of the network charges γt

given by the PI controller. It is null when constraints are
inactive.

The primal (7a) and dual (7b) residual expressed as a
percentage of the power exchanged during the simulation
represent the degree of agreement between agents.

rt+1 =

[ ∑
n∈ω
m∈ωn

(pt+1
nm + pt+1

mn )
2

]
/

∑
n∈ω
m∈ωn

(pt+1
nm )2 (7a)

st+1 =

[ ∑
n∈ω
m∈ωn

(pt+1
nm − ptnm)2

]
/

∑
n∈ω
m∈ωn

(pt+1
nm )2 (7b)

Fig. 3 shows the evolution of these residues during the
simulation. They never exceed 2%. This means that the
evolution of p∗,t is slow enough for the algorithm to remain
at a reasonable consensus level.
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Fig. 4. Histogram of line loading percent for the Exogenous algorithm
((Ki,Kp) = (0.01, 0.01)) and the OPF without constrains. Respectively
1.7% and 4.2% of the lines exceed the maximum admissible current.
Biggest overflows are 28% and 58%.

3.3 Statistical analysis

The histogram of the line load rating is presented Fig. 4.
Over the simulation period (250 minutes), only 1.7% of the
lines exceed the maximum admissible current. The biggest
overflow is 28% and appeared only once. The network
charges are determined by a PI controller (section 2.3). The
optimal values of Kp and Ki cannot be known in advance
because of the difficulty to characterize the system com-
posed of the network and its agents (whose cost functions
are private). We perform an exhaustive search to determine
the optimal pair.

Two metrics are proposed : the undelivered power (8a)
and the maximum overflow in the lines (8b). For each
simulation we have NΩ (number of agents in the network)
values of Pnot delivered and NT (number of time step) values
of Loverflow. We choose to represent, for each metric, the
median value and the 95% quantile.

pnnot delivered =

∑
t |ptn,exo − ptn,OPF |∑

t |ptn,exo|
(8a)

Lt
overflow = max

i∈L
lti,overflow (8b)

Fig. 5a shows the median undelivered power for dif-
ferent Ki, Kp pairs. (Ki,Kp) = (0, 0) corresponds to the
performance of the algorithm without correction. Without
correction, the undelivered power exceeds 7.5% for half of
the agents and drops to 4.5% with the best setting. Fig.
5b shows that without correction, the undelivered power
is higher than 48% for 5% of the agents. With the best
regulation, it drops to 25%. Without corrector, the most
overloaded line exceeds 8% of overload half of the time
(Fig. 5c). With a corrector, the network is not under stress
at all for at least half of the time. Finally Fig. 5d shows that
the most overloaded line exceeds 37% of overload 5% of the
time. With the best controller, it is reduced to 7.5%.

Fig. 6 shows the influence of flexibility on the average
network’s charges per MWh. The trend suggests that the
more flexible an agent is, the lower the cost. For example, the
cost paid by agent 5 is 1.5 times lower than that of agent 10.
This trend needs to be confirmed for larger networks with
more agents. Simulations were performed on one core of an
Intel Core i7-9850H 2.60GHz. Results presented in table 1
are for a 250 time steps simulation, which represents 250min
simulated.

Fig. 5. Sensitivity analysis for the PI controler. Fig. (a) and (b) represent
the quantile of power deference between the exogenous algorithm and
the OPF with line limits expressed in %. Fig. (c) and (d) represent the
quantile of maximum loading expressed in %. Each value is taken for a
specific Ki and Kp pair.

Fig. 6. Influence of the flexibility (arbitrary range) on network charges
paid. Agents 5 and 10 whose time series are given in Fig. 2 respectively
very flexible and inflexible pay different prices for the same amount of
energy.

4 CONCLUSION

In this paper, we proposed a new algorithm to manage
congestion in a distribution network in real time by broad-
casting, through smart meters, a variable representing the
cost of network usage. At each time step t, the agents
retrieve the network charges γt. Then, they compute the
optimum of their cost function f t

n and propose trades ptnm
to the other agents. They directly apply the result of their
minimization to the network (i.e., consume the power ptn)
without worrying about the convergence of the algorithm
or the possible congestion this could create. The DSO then
estimates the state of the network, in particular the maxi-
mum line congestion. It infers a price γt+∆t with the goal

TABLE 1
Computation time

Algorithm Exogenous OPF OPF without constrains
time (s) 23 263 258
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of resolving congestions. The algorithm being peer to peer,
it is scalable and able to manage a large number of agents
without increasing the computation time – minimizations
are performed locally by agents.

The proposed algorithm was tested on a modified ver-
sion of the CIGRE low voltage 44-bus test system. We used a
simple, yet effective, PI controler to set the network charges.
The algorithm not only reduces the number of overloaded
lines but also the amplitude of the overload. Moreover, in
our case study, less than 5% of prosumers had a significant
drop in their consumption.

This exogenous approach is a good candidate for future
implementation of peer-to-peer markets with low involve-
ment of the system operator, but it needs to be tested on
a more representative test case that takes into account the
realistic constraints of distribution networks – hundreds
of agents and buses. Designing a more complex pricing
system anticipating the agents’ response should improve
the algorithm’s performance. Other types of pricing can be
considered: for example, to maintain voltage in their oper-
ating limits, to manage unbalanced three-phase networks
or to encourage producers and consumers in a different
way. Other questions require additional investigation, in
particular : is the grid costs universal for the whole grid or it
only applies for the congested area ? If it is universal, agents
in the network areas without congestion are unnecessarily
penalized. If it is locational, it is not fair for those agents in
the weaker network areas because they always lose money
due to the imposed grid cost. In conclusion, this approach
should not be seen as a way to generate revenue for the DSO
in order to strengthen the network. It is a new emergency
way of managing the network. The matter of redistributing
the profit between agents equally remains an open question.
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