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We study numerically the Toner-Tu field theory where the density field is maintained constant,
a limit case of “Malthusian” flocks for which the asymptotic scaling of correlation functions in the
ordered phase is known exactly. While we confirm these scaling laws, we also show that such
constant-density flocks are metastable to the nucleation of a specific defect configuration, and are
replaced by a globally disordered phase consisting of asters surrounded by shock lines that constantly
evolves and remodels itself. We demonstrate that the main source of disorder lies along shock lines,
rendering this active foam fundamentally different from the corresponding equilibrium system. We
thus show that in the context of active matter also, a result obtained at all orders of perturbation
theory can be superseded by non-perturbative effects, calling for a different approach.

Understanding simple models and theories of collective
motion emerging from spontaneous symmetry breaking
has spurred the field of active matter, and largely con-
tinues to animate it. Emblematic in this context are the
Vicsek model [1] and its field theoretical description, the
Toner-Tu equations [2]. In spite of a lot of progress, sev-
eral aspects of their asymptotic behavior are in fact still
open problems. In particular, the original derivation of
exact scaling relations for the correlation functions of the
density and ordering (velocity) field in two dimensions
(2D) [3] was later shown to rely on unduly neglecting
some relevant terms [4]. Unsurprisingly, numerical mea-
surements of correlation functions are inconsistent with
the original prediction [5].

To make analytical progress, Toner and collaborators
looked for simpler situations where the couplings between
the conserved density field and the ordering field, which
are at the origin of the difficulties mentioned above, are
qualitatively modified. One such option is to tame the
density field by considering “Malthusian flocks” in which
particles die and reproduce on a fast scale [6–8]. Another
is to introduce an incompressibility constraint [9, 10]. In
these two cases, remarkably, the scaling laws governing
fluctuations of the ordered phase can be calculated at
all orders of perturbation theory (in 2D for Malthusian
flocks and any larger dimension for incompressible ones),
providing rare examples of exact results about nontrivial
out-of-equilibrium systems.

Incompressible and Malthusian flocks have otherwise
received little attention. Rana and Perlekar have studied
coarsening in the deterministic incompressible case [11,
12]. The order-disorder transition in Malthusian flocks
was approached using dynamical renormalization [13],
and in a particle-based model [14].

Embarking on a numerical check of the exact results
obtained by Toner et al. for the fluctuating ordered phase
could appear as a waste of time. This is nevertheless
what we did for Malthusian flocks, motivated mostly by
recent results demonstrating the fragility of (usual, com-

pressible) flocks to arbitrarily weak perturbations such
as spatial anisotropy [15], quenched and chirality disor-
der [16–19], and even one small fixed obstacle [20]. More
generally, results obtained at all orders in perturbation
theory do not necessarily constitute the ultimate answer,
since non-perturbative effects can always arise. Famous
examples include the KPZ equation [21] and the Potts
model in 6− ε dimensions [22, 23].

Here we report on 2D numerical simulations of the
Toner-Tu field theory in which the density field is main-
tained strictly constant, a limit case of Malthusian flocks.
We find that while the predicted scaling laws are indeed
obeyed by the homogeneous flocking phase, this phase is
in fact always metastable to the nucleation of a specific
defect configuration, leaving eventually a globally disor-
dered cellular structure consisting of asters surrounded
by shock lines that constantly evolves and remodels itself.
The extended nature of these shock lines, across which
the orientation of the field changes rapidly, renders this
active foam fundamentally different from its equilibrium
equivalent, the disordered phase of the XY model. We
indeed show that the main source of disorder lies along
and at the intersection of shock lines.

Our starting point is the following minimal active field
theory with advection and alignment governing a single
polarity/velocity field v:

∂tv + λ(v · ∇)v = ∇2v + (a− |v|2)v +
√

2η ξ , (1)

where ξ is a delta-correlated, unit-variance, zero-mean
Gaussian white noise and two coefficients have been set
to unity without loss of generality, leaving the three pa-
rameters a, λ and the noise intensity η. One more pa-
rameter could be set to unity but we retain these three to
explore the different limits of the model. Equation (1) is
the standard Toner-Tu theory where the density is kept
constant, without imposing incompressibility. It can also
be obtained from the field theory for Malthusian flocks
by integrating out the fast density field, as done in [6].
Note that Eq. (1) is invariant under the transformation
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FIG. 1. Left: v̄(L) for different λ values (a = 0.7, η = 0.5 and
initial ordered state). Error bars correspond to two standard
errors of the mean computed over 5 independent samples.
For large λ values, v̄(L) is reasonably well fitted by v̄− v̄∞ =
AL−ω with ω = 2/3 (v̄∞ = 0.67, A = 0.77, for λ = 0.5,
orange curve, and v̄∞ = 0.68, A = 0.57, for λ = 1.0, red
curve). Right: S⊥ vs. q‖ for q⊥ = 0 (red squares) and vs.
q⊥ for q‖ = 0 (a = 5, λ = 1, η = 0.5, L = 800). Dashed lines:
scaling predicted at small wave vectors [6], which arises only
beyond a crossover scale for S⊥(q⊥). Averages are taken over
a time 106 small enough that the nucleation events described
in Fig. 2 are not observed.

v → −v and λ → −λ [24]. In the following, we inte-
grate Eq. (1) in 2D square domains of linear size L using
a pseudo-spectral method with Euler explicit time step-
ping and antialiasing. We set the spatial resolution to
dx = 2 and the time resolution to dt = 0.1, unless other-
wise explicitly stated.

In 2D, Eq. (1) for λ = 0 reduces to the relaxational
dynamics of a field theory describing the XY model. We
thus expect a Berezinskii–Kosterlitz–Thouless transition
from disorder to quasi-long-range order (QLRO) when,
say, increasing a [25, 26]. On the other hand the λ ad-
vection term controls the activity level and Toner et al.
predict true long-range order (LRO) for large-enough a
whenever λ 6= 0.

Simulating Eq. (1) with a large enough mass a from an
ordered initial condition, the system indeed settles in a
symmetry-broken state with non-zero mean velocity. We
compute the order parameter v̄ = 〈|〈v〉x|〉t for various
system sizes L (〈·〉x and 〈·〉t denote respectively space
and time averages). In the passive limit λ = 0, we see
v̄(L) ∼ L−θ, the signature of QLRO (a typical case is
shown in Fig. 1(a)). The exponent θ varies continuously
with a (not shown). Using its expected value θ = 1

8 at
the BKT transition, we estimate the latter to happen
at a ' 0.38. In the active case with not too small λ,
in contrast, v̄(L) decays slower than a power law. As
expected, our data is reasonably well fitted by v̄ − v̄∞ ∼
L−ω, indicating LRO. Decreasing λ, this behavior is only
observed beyond a crossover scale that seems to diverge
when λ→ 0 (Fig. 1(a)).

We further computed the scaling of velocity fluctua-
tions via the structure factor, i.e. the Fourier trans-
formed equal-time spatial correlation function S⊥(q) =
〈|v⊥(q, t)|2〉t where v⊥(q) is the velocity orthogonal to

the direction of global order at wavevector q = (q⊥, q‖)
[27]. Our results, shown in Fig. 1(b), indicate anisotropic
scaling in good quantitative agreement with the predic-
tions of Toner et al. in the small wavenumber limit:
S⊥(q‖) ∼ |q‖|−2 if q‖ � q⊥ and S⊥(q⊥) ∼ |q⊥|−6/5 if
q⊥ � q‖ [6].

The agreement between our measurements and the the-
oretical prediction is hardly surprising. However, as we
show now, this is far from being the whole story. For
not too large a values, in a large-enough system, the or-
dered phase described above is easily observed to break
down spontaneously: fluctuations can lead to the emer-
gence of a specific local configuration made of an aster
surrounded by a semi-circular shock line (Fig. 2(a)). The
aster is a point around which polarity is arranged radi-
ally, where a +1 topological defect is thus located. Across
the shock line, polarity varies rapidly. It actually embeds
a −1 defect as we will see later. In large systems, this
initial nucleation is followed by others located elsewhere,
and/or the emergence of new asters (and their accom-
panying shock lines) along the shock line of the initial
aster (Fig. 2(b)). Eventually, proliferation stops and a
globally-disordered, dynamical state is reached, with a
well-defined average number of asters and a web of shock
lines surrounding them (Fig. 2(c,d) and Movie 1 in [28]).
In this steady state, new asters are constantly generated
near shock lines —dominantly near their intersections—,
while existing asters see their position and size fluctu-
ate until one of their surrounding shock line meets their
center, at which point they disappear.

We studied the statistics of the nucleation process of
the first aster from the ordered phase. Figure 2(e) shows
that the lifetime τ of the ordered phase, i.e. the time it
takes for nucleation events to happen, is distributed ex-
ponentially with a characteristic time that scales roughly
like 1/L2, the inverse system size. In other words, the
nucleation rate is proportional to L2. This confirms that
the emergence of asters and their surrounding shock line
is essentially a local nucleation process, even though the
ordered phase possesses built-in long-range correlations.
Replicating this study at higher values of a quickly be-
comes numerically prohibitive because τ can then take
very large values.

We now study directly the dynamic active foam. This
steady state is easily reached from disordered initial con-
ditions after a typically short coarsening transient (cf.
Movie 2 in [28]). This allows to study it at parame-
ter values for which the spontaneous nucleation of an
aster from the ordered phase would take unreasonably
long times. The active foam can be characterized by its
average number of asters, but we preferred to measure
the more robust correlation length ξ extracted from the
azimuthally averaged structure factor [29]. At fixed pa-
rameters, ξ converges to a well-defined asymptotic value
when the system size L is increased: the active foam is
self-averaging, and reliable estimates of its intrinsic cor-



3

0⇡

⇡/2

�⇡/2

(a)  t=33000 (b)  t=65000 (c)  t=160000 (d)  t=260000 (e)

0 1 2

10�2

10�1

Ps�2

s2⌧
⇥105

L=1200
L⇥s=1800
L⇥s=2400

FIG. 2. (a-d): Snapshots taken during a run starting from an ordered state showing the nucleation of a first defect and the
following evolution (a = 0.48, λ = 1.0, η = 0.5, L = 3600). (e): Probability distribution P of the lifetime of the ordered phase
τ , defined at the first time for which the nucleation of an aster decreases v̄ by more than 20% (a = 0.45, λ = 1.0, η = 0.5). Data
obtained at 3 different L values, rescaled by a factor s2 proportional to L2.

relation length are obtained as soon as L � ξ. At fixed
activity λ, we find that ξ increases with increasing a, but
this growth is modest, possibly linear with a (Fig. 3, left).
Contrary to the passive case where the BKT transition at
a ' 0.38 marks the fast divergence of correlations, we do
not see any sign of a transition beyond which the ordered
phase would remain stable. Extrapolating our numerical
results, we conclude that the ordered phase is metastable
for any non-zero λ [30] and positive a (ignoring a possible
renormalized value for the a = 0 mean-field threshold),
even if at large a values it can be stable for a long enough
time to measure its properties, such as in Fig. 1.

To better understand why the active regime is so differ-
ent from the passive case, we now turn to a more detailed
study of the objects at play in the dominating active foam
phase, i.e. asters and shock lines.

Asters have been reported in models of the self-
organization of microtubules and molecular motors [31–
34], but also in variants of the Toner-Tu equations [32,
35–38], as well as in active gel theory [39, 40]. All these
systems are more complex than ours, including a density
and/or a motor concentration field. To our best knowl-
edge, only Vafa [41] studied defects in the simple Equa-
tion (1) of interest here, concluding that asters are the
most stable +1 defects [42]. This result is in agreement
with our observations of the active foam, where asters
are quite passive regions, and most of the remaining ac-
tivity occurs at the shock lines and in particular at their
intersection (cf. Movies 1 and 2 in [28]).

Active foam configurations are best understood in the
deterministic version of Eq. (1), either by switching off
the noise from a given configuration, or by watching the
slow coarsening following disordered initial conditions (cf.
Movie 3 in [28]) [43]. The right panel of Fig 3 shows
a late configuration comprising a few remaining asters
and their surrounding shock lines, extracted from this
coarsening process. Close inspection shows that shock
lines are extended objects across which the phase varies
rapidly but not discontinuously. Given the existence of
+1 defects (at the centers of asters), −1 defects must

be present. In the 5-aster configuration under scrutiny, 9
defects with topological charge−1 are found embedded in
the shock lines (white circles, zoom B), typically located
at the locations closest to the aster centers, where the
phase jump is ±π. The −2π circulation around these
defects is mostly due to two phase jumps occurring when
crossing the shock line. This suggests that the important
structures are the shock lines and not the pointwise −1
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FIG. 3. Left: Variation of correlation length ξ with a for
different sizes L. Data taken in the active foam steady state
(λ = 1.0, η = 0.5). Error bars correspond to two standard
errors of the mean, computed over 10 independent time inter-
vals, each much longer than the correlation time of the global
velocity. At a given a value, small size data may not be re-
liable since ξ can then be of the order of L. At L = 900 in
particular, data for a > 2.0 are not shown since only very
few or even no asters are present. Right: Typical configura-
tion taken during coarsening in the deterministic limit η = 0
(a = 1, λ = 1.0, L = 900, dx = 0.5, dt = 0.01, colors as
in Fig. 2(a), from Movie 3 in [28]). Apart from the 5 clearly
visible asters, which have +1 topological charge, 9 shock-line
embedded −1 defects are present (white circles), as well as
4 vortex-like +1 defects present at some shock line vertices
(black diamonds). Labels A, B, C in the main panel point to
the defects shown more clearly in the small lower panels.
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defects. Given that the global topological charge must
be zero, our inspection is not complete. Indeed one can
locate 4 other +1 vortex-like defects located at shock lines
vertices (black diamonds, zooms A, C). Note finally that
the shock line vertices are rather unstable dynamically,
even in the absence of noise (cf. Movie 3 [28]), although
in that case the coarsening proceeds all the way to the
ordered state.

Coming back to the noisy case, the radially organized
aster regions appear rather stable —in agreement with
Vafa’s findings [41]—, and the strongest fluctuations are
found along shock lines (Movies 1 and 2 in [28]). We stud-
ied these fluctuations in specially prepared systems with
a single shock line separating two large ordered homoge-
neous domains whose orientations differ by some angle
π − 2α (Fig. 4(a)). The profile of the interface, shown
in Fig. 4(b), is close to its deterministic shape. Under
the effect of noise the interface fluctuates. Its roughness
increases monotonically with α, and so does the width of
the mean profile (Fig. 4(c)). For α > 0, parity symme-
try is broken along the interface, and fluctuations on the
shock line are advected along the direction given by the
sign of 〈vy〉. We find that the advection speed of fluctua-
tions increases with α in the same way as the maximum

α h(y)
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FIG. 4. Study of the interface h(y) separating two half do-
mains with different bulk orientation (a = 1, λ = 1, η = 0.1,
periodic boundary condition in y). (a): Typical snapshot
showing h(y) (red line) defined by the points along x where
vx changes sign (300 × 100 system). Velocity is fixed sym-
metrically on lateral boundaries at an angle α = π/3 (blue
arrows). (b): Mean horizontal profiles of vx and vy measured
relative to the interface position h(y), averaged over y and
time. (c): variation with α of the width of the interfacial re-
gion, measured either by fitting the average profile 〈vx〉 (as in
(b)) by a tanh function (magenta squares) or as the roughness
of the interface w =

√
〈〈h2〉y − 〈h〉2y〉t (blue circles). System

size 100× 100. (d): same as (c) but showing the propagation
speed of fluctuations along the interface obtained either as the
maximum of 〈vy〉 in (b) (magenta squares) or from the space-
time Fourier transformed correlation function 〈|h(qy, ω)2|〉t as
the position of the peaks ω = vqy at small wave-vector qy.

of 〈vy〉 (Fig. 4(d)).
In typical configurations such as those shown in

Figs. 2(a-d),3(b), the local orientation difference across a
shock line varies with the position along the line. In the
notation introduced above, near the intersection with the
line joining the two aster centers (where a −1 defect typ-
ically sits), the phase jump corresponds to α ' 0 while
going away from this point means increasing α. Using the
results obtained in Fig. 4 with constant-α shock lines, we
can now understand why fluctuations are growing and
are advected faster and faster when going away from the
α ' 0 point. They are maximal at shock line intersec-
tions, making these regions the most unstable ones where
new asters are created. Thus the mechanisms maintain-
ing the active foam in a steady state are intimately linked
to the extended nature of shock lines.

In conclusion, we have shown numerically that fluctu-
ations in the ordered phase of the 2D constant-density
Toner-Tu theory obey the scaling laws predicted by a
renormalization group analysis, but we have also found
that these flocks are metastable to an ever-evolving ac-
tive foam made of asters surrounded by a network of
shock lines in a large region of parameter space. While
we cannot rule out in principle a divergence of the cor-
relation length or a sudden vanishing of defect prolifer-
ation mechanisms at parameter values unexplored here,
we find no indication of either scenario. On the contrary,
our demonstration that shock lines separating asters are
crucial to amplify and advect perturbations, and that the
vertices of the network they form are the most suscepti-
ble regions of space where new asters are created, should
remain valid at all parameter values.

Our findings constitute an instance, in the context of
active matter, where a result obtained at all orders of
perturbation theory is superseded by non-perturbative
effects, calling for a different approach.

The topology and dynamics of the structures at play
are qualitatively different from the binding/unbinding of
pairs of point defects that rules the fate of order in the
passive case of the XY model. This is reminiscent of
the recent study of coarsening in the compressible case,
where a network of “domain walls” was put forward but
no asters are present [44]. Coarsening was also studied in
the incompressible case, but there the dominating struc-
tures are standard vortices and anti-vortices [11]. The
objects at play in defected flocking systems can thus vary
qualitatively, an observation that calls for further study.

The field theory studied here is a limit case of that
for Malthusian flocks, where a fast but finite timescale
regulates the density field. It would be interesting to
see how our results translate to this more general set-
ting, including in microscopic, particle-level models. Fu-
ture work should also investigate the possibility of similar
“non-perturbative metastability” of long-range orienta-
tional order in other important models and field theories
of active matter both in 2D and 3D.
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Finally, our findings could be of relevance in some real
systems in spite of the simplicity of the framework we
considered. Prime candidates are found in cytoskeletal
active matter, i.e. in vitro mixtures of (mostly) biofila-
ments and molecular motors, for which the formation of
asters have been reported [45–53]
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