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Abstract

In this paper, we study the estimation of past inflation based on reserving trian-
gles of average claims costs. More precisely, we focus on methodologies introduced
by H. G. Verbeek in 1972 and by G.C. Taylor in 1977 that allows to estimate such an
historical inflation index based on average claims costs triangle. Those methods rely
on recursive formula that challenges the understanding of underlying assumptions
and that can complexify the interpretation of the results. We alternatively show
the equivalence of those techniques with a Chain Ladder on a specificly rearranged
triangle. We therefore highligths the spirit of that technics that firstly compute the
ultimate average claims costs by calendar year and secondly deduce the inflation in-
dex based on calendar evolutions. Moreover, this allow to rationalize the underlying
assumptions of Taylor and Verbeek methodology, using the mathematical conceptu-
alization of Chain Ladder by Mack in 1993. We illustrate those findings on simulated
data.
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1 Introduction

Inflation (resp. deflation) quantify the rate of decrease (resp. increase) of the value of
money. At global economic scale, inflation is one of the indicators closely monitored
because significant values can challenge people trust in the money system. For instance
this is officially the only indicator on which the objective of the European Central Bank
is evaluated. Indeed, from 2003 and until 2021, the European Central Bank had to
ensure that the mid-term inflation was close but lower to 2% per year. As from 2021,
the objective is more symetric because the European Central Bank has ensure that the
mid-term inflation is close to 2% per year. On a finantial point of view, the inflation also
impact the real interest rates. For insurers the real interest rates are important because
the rentability of the assets depends on interest rates and the evaluation of the liabilities
depends on the inflation of claims costs.

The insurance business and especially insurance liabilities are also very sensitive to
inflation. Thus, monitoring inflation is necessary for relevant level of princing and reserv-
ing. Usually, claims reserves are computed by Chain Ladder methodology, explained by
Mack (1993). This methodology allows to compute futur developments of claims costs
based on the past developments that may have been perturbed historical inflaiton. Hence
the past inflation is implicitly projected in the future, in the sense that there is no para-
metric assumption on past and futur inflation. However, this implicit projection may be
challenging for several reasons : we do not control this implicit inflation by a parameter
and the underlying assumptions of Chain Ladder may suffer.

Also because the futur may not be similar to the past, it can therefore be interrested
to retreat the claims triangle using an inflation index and then to compute futur cash
flows based on a parametric assumption. We can use external inflation index but also an
experience index based on average claims costs triangles. This technique, introduced by
Taylor (1977) and Verbeek (1972) relies on a recursive formula. Several methodologies
proposed to extend this methodologies such as Wüthrich (2010), Gigante et al. (2019) and
Beard (1977). In this paper, we complete those analysis by showing the equivalence be-
tween Taylor and Verbeek technique with an application of the well-knowed Chain Ladder
technique on a calendar triangle. This finding legitimate the applications of all extentions
of Chain Ladder in order to estimate claims past inflation on insurance portfolios.
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2 Methodology introduced by Taylor and Verbeek

Inflation is a risk to which every insurer is subject, and its control is necessary. Moreover,
modeling inflation can be tricky and finding an efficient method is a major issue, taken
very seriously in insurance companies. Indeed, a correct estimation of inflation allows to
minimize the risk of under-provisioning. For this purpose, the Allianz Group has pro-
posed to use the Verbeek Taylor method, which is much less known in the usual non-life
insurance methods than the Chain Ladder method. However, unlike the Chain Ladder
method, it allows to determine the inflation factors: λj ∀j ∈ [0, n]. Indeed, the Chain
Ladder method does not take into account the management of historical inflation in the
future, and this method only works if inflation is constant.

The Taylor model is an iterative calculation method.

Occurence\Development 0 1 . . . j . . . n-1 n

0 r0λ0 r1λ1 . . . rjλj . . . rn−1λn−1 rnλn

1 r0λ1 r1λ2 . . . rjλj+1 . . . rn−1λn

...
...

...
...

...
n− j r0λn−j r1λn−j+1 . . . rjλn

...
...

...
n− 1 r0λn−1 r1λn

n r0λn

where:

• vj is the sum of n− j observable elements of column j such that vj =
∑n−j

k=0 ak,j

• dj is the sum of j + 1 elements of the diagonal j such that dj =
∑j

k=0 ak,j−k

• rj represents the payment candency such that rj =
vj

λj+λj+1+...+λn
such that

∑n
j=0 rj =

1
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• λj is an inflation factor such that λj =
dj

1−rn−rn−1−...−rh+1
and λn = dn

We notice the iterative character of this method. For instance for n = 5, to be able to
know λ3, it is necessary to have previously computed λ4 and λ5.

3 Equivalence with a Chain Ladder on a calendar tri-

angle

As seen in the previous section, the Taylor method is much more complex to understand
than the Chain Ladder method. It is by trying to understand it in order to master it,
that we found a direct link between the two.

This propostion is really good, because on the first hand, we have a method for estimate
inflation and on the other hand, it’s a method that we are confortable, we have trust on
it because we use a lot.

This proposal is really satisfactory, since on the one hand, we have a method for
estimating inflation and on the other hand, it is a method with which we are comfortable
and confident, since we already use it very often.

In fact, in order to find the λj, inflation coefficients, we just have to do a Chain Lad-
der in calendar view on the triangle of average costs. Thus, we will assume that the ai,j

coefficients represent average costs.

Let’s illustrate this, with n=5:

Occurence\Development 0 1 2 3 4 5

0 a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

1 a1,0 a1,1 a1,2 a1,3 a1,4 . . .

2 a2,0 a2,1 a2,2 a2,3 . . . . . .

3 a3,0 a3,1 a3,2 . . . . . . . . .

4 a4,0 a4,1 . . . . . . . . . . . .

5 a5,0 . . . . . . . . . . . . . . .

We projet on calendar view:
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Occurence\Development 0 1 2 3 4 5

0 a0,0 . . . . . . . . . . . . . . .

1 a1,0 a0,1 . . . . . . . . . . . .

2 a2,0 a1,1 a0,2 . . . . . . . . .

3 a3,0 a2,1 a1,2 a0,3 . . . . . .

4 a4,0 a3,1 a2,2 a1,3 a0,4 . . .

5 a5,0 a4,1 a3,2 a2,3 a1,4 a0,5

we accumulate the data:

Occurence\Development 0 1 2 3 4 5

0 b0,0 . . . . . . . . . . . . . . .

1 b1,0 b1,1 . . . . . . . . . . . .

2 b2,0 b2,1 b2,2 . . . . . . . . .

3 b3,0 b3,1 b3,2 b3,3 . . . . . .

4 b4,0 b4,1 b4,2 b4,3 b4,4 . . .

5 b5,0 b5,1 b5,2 b5,3 b5,4 b5,5

where bi,j =
∑i

k=i−j ak,i−k ∀i, j ∈ N tel que i− j ≥ 0

Let us note, from now on cj the coefficients of passage (development) of Chain Ladder
in calendar view: cj =

∑n
k=j bk,j∑n

k=j bk,j−1
, which make it possible to complete the upper triangle.

Hence:

Occurence\Development 0 1 2 3 4 5

0 b0,0 b0,1 b0,2 b0,3 b0,4 b0,5

1 b1,0 b1,1 b1,2 b1,3 b1,4 b1,5

2 b2,0 b2,1 b2,2 b2,3 b2,4 b2,5

3 b3,0 b3,1 b3,2 b3,3 b4,3 b5,3

4 b4,0 b4,1 b4,2 b4,3 b4,4 b4,5

5 b5,0 b5,1 b5,2 b5,3 b5,4 b5,5

We have thus determined the inflation coefficients λj j ∈ [0, 5] where λ5 = b5,5, λ4 =

b4,5, λ3 = b3,5, λ2 = b2,5, λ1 = b1,5 et λ0 = b0,5.
Once the approach is illustrated, let’s move on to the proposition:
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∀ h < n λh = bh,h ×
n∏

k=h+1

ck and si h = n λn = bn,n

You can find the mathematical demonstration in the appendix.

We have also implemented this method, to illustrate its efficiency. Here are some
box-plots illustrating the estimation of inflation with this new method:
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We can thus see that for each year of occurrence (n=15), the error is almost zero, and
it is even more so when the size of the portfolio increases. This confirms the relevance of
our proposal.
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4 Simulation study

4.1 Impact of average cost triangle computation

As mentioned before, this demonstration is based on a triangle of average costs. Therefore
we wanted to focus on the obtaining of this triangle, more precisely on the way to divide
the triangle of costs (payments), in order to improve the performance of the model.

Here are the 3 methods we are interested in:

Method 1: Method 1 is the usual method used in actuarial science, which consists in
starting from the triangle of the evolution of the number of claims and making a chain
ladder in order to obtain the vector of the ultimate number of claims for each year of
occurrence. Then divide the triangle of the evolution of the costs by this vector, and
finally project the triangle obtained in calendar view then cumulate it.

Method 2: Method 2 is a method for which we will use a simulated data: the number
of claims which comes from the sum of the columns for each line of the rectangle of the
number of claims that we simulated. Then we divide the triangle of the evolution of the
costs by this ultimate number of claims simulated, and finally, we project the obtained
triangle in calendar view and cumulate it.

Method 3: For method 3, we first cumulate the triangle of the evolution of the number
of claims and the triangle of the evolution of the costs, then we divide the two, and project
the obtained triangle in calendar view. For this method, we will not cumulate the data
since the coefficients have already been cumulated in the previous step.

At the end of these 3 methods, we can directly make a Chain-Ladder, and thus com-
plete the upper triangle and recover in the last column of the rectangle the Taylor coeffi-
cients, which are the inflation coefficients !

Comparison of the 3 methods:
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Thus, we can see that method 2 seems to estimate inflation the best, this seems
consistent since it is the method that has the most information. The method 1 also
estimates the inflation very well, it is moreover less extensive than the method 1. The
method 3 as for it has an estimation error of 1 %.

4.2 Impact of Chain Ladder ratio selections

Since it has been shown that the inflation estimate search is really just a Chain Ladder
projected into a calendar view of the average cost triangle, we wondered if we could apply
the same generalizations that we are used to doing with the Chain Ladder method. For
this purpose, we implemented 3 methods calculating in a different way the Chain Ladder
development coefficients.

Exclusion method ratio 0: The method 0, is the calculation of the coefficients of pas-
sage of classic way.

Exclusion ratio method 1: The method 1 is the calculation of the coefficients of pas-
sage with exclusion of the min and the max on the triangle of the ratio.

Ratio exclusion method 2: Method 2 is the calculation of the pass coefficients with
selection of the last 5 diagonals and exclusion of the min and max on the ratio triangle.

For this, we deliberately simulated a triangle with volatile data, hence the gross error.

Comparison of the 3 methods:
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Thus, we note that methods 2 and 3 that exclude data provide a better estimate of
inflation. To this end, we can consider using these Chain Ladder generalization methods
with the Taylor method.

5 Conclusion

As we have discussed and explained throughout this report, inflation estimation is a very
important topic for insurers. The Taylor Verbeek method allows for the estimation of
inflation, however, it is a little known method and quite complicated to understand and
interpret. The Chain Ladder method, on the other hand, is a basic method of calculating
reserves in non-life insurance with fairly simple reasoning. The fact that the Taylor
method has been shown to be a Chain Ladder projected into a calendar view should
simplify and help the inflation estimation calculations.

6 Appendix

We know that:

λh =
dh

1− rn − rn−1 − ...− rh+1

=
bh,h

1− rn − rn−1 − ...− rh+1

and we want to show that

λh = bh,h ×
n∏

k=h+1

ck

so we want to show that
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Proposal 1:

1

1− rn − rn−1 − ...− rh+1

=
n∏

k=h+1

ck

To show this equality(1) we To show this equality (1) we will make a recurrence proof
on h. We suppose (1) to be true for the rank n, n − 1, ...., h + 1 and we will show it for
the rank h.

For that it is enough to show the following 4 propositions:

Proposal 2:

Show (1) is equivalent at show that:

1− rh+1 ×
bn,n ×

∏n−1
k=h+2 ck

bn,n−1

=
1

ch+1

Proposal 3:

1− rh+1

bn,n ×
∏n−1

k=h+2 ck

bn,n−1
=

(bn,n−1 +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)
∏n−1

i=h+2

∑n
k=i bk,i−1 −

∑n−(h+1)
i=0 ai,h+1

∏n−1
i=h+2

∑n
k=i bk,i

(bn,n−1 +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)
∏n−1

i=h+2

∑n
k=i bk,i−1

Proposal 4:

(bn,n−1 +

n−1∑
i=h+1

bi,i

n−1∏
k=i+1

ck)×
n−1∏

i=h+2

n∑
k=i

bk,i−1 = bn,n−1 ×
n−1∏

i=h+2

n∑
k=i

bk,i−1 +

n−1∑
j=h+1

bj,j

 n−1∏
i=j+1

n∑
k=i

bk,i

 j∏
i=h+2

n∑
k=i

bk,i−1)


Proposal 5:

bn,n−1

n−1∏
i=h+2

n∑
k=i

bk,i−1 +

n−1∑
j=h+1

bj,j

 n−1∏
i=j+1

n∑
k=i

bk,i

 j∏
i=h+2

n∑
k=i

bk,i−1)

 =

n−1∏
i=h+1

n∑
k=i

bk,i

Indeed, if we assume the above equalities to be true, then we have :

According to (3), we have:

1−rh+1

bn,n ×
∏n−1

k=h+2 ck

bn,n−1
=

(bn,n−1 +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)
∏n−1

i=h+2

∑n
k=i bk,i−1 −

∑n−(h+1)
i=0 ai,h+1

∏n−1
i=h+2

∑n
k=i bk,i

(bn,n−1 +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)
∏n−1

i=h+2

∑n
k=i bk,i−1
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According to (4), we have:

=
bn,n−1 ×

∏n−1
i=h+2

∑n
k=i bk,i−1 +

∑n−1
j=h+1 bj,j

[(∏n−1
i=j+1

∑n
k=i bk,i

)(∏j
i=h+2

∑n
k=i bk,i−1)

)]
−

∑n−(h+1)
i=0 ai,h+1

∏n−1
i=h+2

∑n
k=i bk,i

bn,n−1 ×
∏n−1

i=h+2

∑n
k=i bk,i−1 +

∑n−1
j=h+1 bj,j

[(∏n−1
i=j+1

∑n
k=i bk,i

)(∏j
i=h+2

∑n
k=i bk,i−1)

)]
And after (5), we have:

=

∏n−1
i=h+1

∑n
k=i bk,i −

∑n−(h+1)
i=0 ai,h+1

∏n−1
i=h+2

∑n
k=i bk,i∏n−1

i=h+1

∑n
k=i bk,i

=

∏n−1
i=h+2

∑n
k=i bk,i ×

∑n
k=h+1 bk,h+1 −

∑n−(h+1)
i=0 ai,h+1 ×

∏n−1
i=h+2

∑n
k=i bk,i∏n−1

i=h+1

∑n
k=i bk,i

=

∏n−1
i=h+2

∑n
k=i bk,i ×

(∑n
k=h+1 bk,h+1 −

∑n−(h+1)
i=0 ai,h+1

)
∏n−1

i=h+1

∑n
k=i bk,i

=

∑n
k=h+1 bk,h∑n

k=h+1 bk,h+1

=
1

ch+1

Now according to Proposition 2, showing (1) is equivalent to showing (2), and we have
just shown (2), hence (1).

Let us now prove (2), (3), (4) and (5)

Proof of (2):

First, by the recurrence hypothesis, we know the expression of λh+1, so we know that
:

1

1− rn − rn−1 − ...− rh+2

=
n−1∏

k=h+2

ck × cn

So we know the expression of:
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1− rn − rn−1 − ...− rh+2 =
1

cn ×
∏n−1

k=h+2 ck
so,

1− rn − rn−1 − ...− rh+2 − rh+1 = (1− rn − rn−1 − ...− rh+2)− rh+1

=
1

cn ×
∏n−1

k=h+2 ck
− rh+1

=
bn,n−1

bn,n
× 1∏n−1

k=h+2 ck

(
1− rh+1 ×

bn,n ×
∏n−1

k=h+2 ck

bn,n−1

)
so it is enough to show that :

1− rh+1 ×
bn,n ×

∏n−1
k=h+2 ck

bn,n−1

=
1

ch+1

Demonstration of (3):

1− rh+1

bn,n ×
∏n−1

k=h+2 ck

bn,n−1

= 1− rh+1 ×
bn,n
bn,n−1

×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

= 1− vh+1

λn + λn−1 + ...+ λh+1

× bn,n
bn,n−1

×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

So using the recurrence hypothesis on the λk pour k ∈ [h+ 1, n]

= 1−
∑n−(h+1)

i=0 ai,h+1

bn,n +
∑n−1

i=h+1 λi

× bn,n
bn,n−1

×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

= 1−
∑n−(h+1)

i=0 ai,h+1

bn,n +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck × cn
× bn,n

bn,n−1

×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

= 1−
∑n−(h+1)

i=0 ai,h+1

bn,n + (
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)×
bn,n

bn,n−1

× bn,n
bn,n−1

×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

= 1−
∑n−(h+1)

i=0 ai,h+1

bn,n(1 + (
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)
1

bn,n−1
)
× bn,n

bn,n−1

×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

= 1−
∑n−(h+1)

i=0 ai,h+1

bn,n−1 +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck
×
∏n−1

i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

12



=
(bn,n−1 +

∑n−1
i=h+1 bi,i

∏n−1
k=i+1 ck)×

∏n−1
i=h+2

∑n
k=i bk,i−1 −

∑n−(h+1)
i=0 ai,h+1 ×

∏n−1
i=h+2

∑n
k=i bk,i

(bn,n−1 +
∑n−1

i=h+1 bi,i
∏n−1

k=i+1 ck)×
∏n−1

i=h+2

∑n
k=i bk,i−1

Demonstration of (4):

First, by rewriting (3) in terms of the expression of ck,on a:

bn,n−1 +
n−1∑

i=h+1

bi,i

n−1∏
k=i+1

ck =

bn,n−1+bn−1,n−1+bn−2,n−2

∑n
k=n−1 bk,n−1∑n
k=n−1 bk,n−2

+...+bh+2,h+2

∏n−1
i=h+3

∑n
k=i bk,i∏n−1

i=h+3

∑n
k=i bk,i−1

+bh+1,h+1

∏n−1
i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

By putting in the same denominator

=
(bn,n−1 + bn−1,n−1)

∏n−1
i=h+2

∑n
k=i bk,i−1 + bn−2,n−2

∑n
k=n−1 bk,n−1 ×

∏n−2
i=h+2

∑n
k=i bk,i−1 + ...+ bh+1,h+1

∏n−1
i=h+2

∑n
k=i bk,i∏n−1

i=h+2

∑n
k=i bk,i−1

So

(bn,n−1 +

n−1∑
i=h+1

bi,i

n−1∏
k=i+1

ck)×
n−1∏

i=h+2

n∑
k=i

bk,i−1

= (bn,n−1 + bn−1,n−1)

n−1∏
i=h+2

n∑
k=i

bk,i−1 + bn−2,n−2

n∑
k=n−1

bk,n−1 ×
n−2∏

i=h+2

n∑
k=i

bk,i−1 + ...+ bh+1,h+1

n−1∏
i=h+2

n∑
k=i

bk,i

= (bn,n−1+bn−1,n−1)

n−1∏
i=n

n∑
k=i

bk,i×
n−1∏

i=h+2

n∑
k=i

bk,i−1+bn−2,n−2

n−1∏
i=n−1

n∑
k=i

bk,i×
n−2∏

i=h+2

n∑
k=i

bk,i−1+...+bh+1,h+1

n−1∏
i=h+2

n∑
k=i

bk,i×
h+1∏

i=h+2

n∑
k=i

bk,i−1

= bn,n−1 ×
n−1∏
i=n

n∑
k=i

bk,i ×
n−1∏

i=h+2

n∑
k=i

bk,i−1 +

n−1∑
j=h+1

bj,j ×

 n−1∏
i=j+1

n∑
k=i

bk,i

×

 j∏
i=h+2

n∑
k=i

bk,i−1


that is to say

= bn,n−1 ×
n−1∏

i=h+2

n∑
k=i

bk,i−1 +
n−1∑

j=h+1

bj,j ×

[(
n−1∏

i=j+1

n∑
k=i

bk,i

)
×

(
j∏

i=h+2

n∑
k=i

bk,i−1

)]
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Demonstration of (5):

We want to show that:

bn,n−1 ×
n−1∏

i=h+2

n∑
k=i

bk,i−1 +
n−1∑

j=h+1

bj,j

[(
n−1∏

i=j+1

n∑
k=i

bk,i

)(
j∏

i=h+2

n∑
k=i

bk,i−1)

)]
=

n−1∏
i=h+1

n∑
k=i

bk,i

Show this equality by reccurence

Let us assume the property is true for rank h+1 and show that it is still true for rank h.

Thus we want to show that :

bn,n−1 ×
n−1∏

i=h+1

n∑
k=i

bk,i−1 +
n−1∑
j=h

bj,j

[(
n−1∏

i=j+1

n∑
k=i

bk,i

)(
j∏

i=h+1

n∑
k=i

bk,i−1)

)]
=

n−1∏
i=h

n∑
k=i

bk,i

To do this, let’s show the recurrence hypothesis in the above expression:

= bn,n−1×
n−1∏

i=h+2

n∑
k=i

bk,i−1×
n∑

k=h+1

bk,h+
n−1∑

j=h+1

bj,j

[(
n−1∏

i=j+1

n∑
k=i

bk,i

)(
j∏

i=h+2

n∑
k=i

bk,i−1)

)(
n∑

k=h+1

bk,h

)]

+bh,h

(
n−1∏

i=h+1

n∑
k=i

bk,i

)(
h∏

i=h+1

n∑
k=i

bk,i−1)

)

=
n∑

k=h+1

bk,h

[
bn,n−1 ×

n−1∏
i=h+2

n∑
k=i

bk,i−1 +
n−1∑

j=h+1

bj,j

(
n−1∏

i=j+1

n∑
k=i

bk,i

)(
j∏

i=h+2

n∑
k=i

bk,i−1)

)]

+bh,h

(
n−1∏

i=h+1

n∑
k=i

bk,i

)(
h∏

i=h+1

n∑
k=i

bk,i−1)

)

=
n∑

k=h+1

bk,h

(
n−1∏

i=h+1

n∑
k=i

bk,i

)
+ bh,h

(
n−1∏

i=h+1

n∑
k=i

bk,i

)

=
n−1∏

i=h+1

n∑
k=i

bk,i ×

(
n∑

k=h

bk,h

)

14



=
n−1∏
i=h

n∑
k=i

bk,i

hence we obtain the result.
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