The Park-and Loop Routing Problem with Parking Selection

Théo Le Colleter, Dorian Dumez, Fabien Lehuédé, Olivier Péton

IMT Atlantique, LS2N, Nantes, France

21 février 2023

Solution Method

Computational Results

Conclusion

A study on parking selection in VRP algorithms Motivation

- VRP algorithms presume a single parking spot per customer
- Generally, in VRP softwares, this location is the address of the customer
- **Question 1:** Is this the best we can recommend?
- Question 2: Is it adding a lot of complexity to algorithms to consider other options?

Acknowledgment: Gwenaël Rault @ mapotempo

Problem definition

Solution Method

Computational Results

Conclusion 00

Motivation

- 1. There may not be a parking spot in front of each customer
- 2. Assuming there is one, is it always the best?
- 3. Would there be a different route if we had considered other parking spots?
- 4. Why not serving several customers from a parking spot?
- 5. If there is no parking spot, who is choosing?

Problem definition

Solution Method

Computational Results

Conclusion 00

Motivation

- 1. There may not be a parking spot in front of each customer
- 2. Assuming there is one, is it always the best?
- 3. Would there be a different route if we had considered other parking spots?
- 4. Why not serving several customers from a parking spot?
- 5. If there is no parking spot, who is choosing?

Problem definition

Solution Method

Computational Results

Conclusion 00

Motivation

- 1. There may not be a parking spot in front of each customer
- 2. Assuming there is one, is it always the best?
- 3. Would there be a different route if we had considered other parking spots?
- 4. Why not serving several customers from a parking spot?
- 5. If there is no parking spot, who is choosing?

Problem definition

Solution Method

Computational Results

Conclusion 00

Motivation

- 1. There may not be a parking spot in front of each customer
- 2. Assuming there is one, is it always the best?
- 3. Would there be a different route if we had considered other parking spots?
- 4. Why not serving several customers from a parking spot?
- 5. If there is no parking spot, who is choosing?

Problem definition

Solution Method

Computational Results

Conclusion 00

Motivation

- 1. There may not be a parking spot in front of each customer
- 2. Assuming there is one, is it always the best?
- 3. Would there be a different route if we had considered other parking spots?
- 4. Why not serving several customers from a parking spot?
- 5. If there is no parking spot, who is choosing?

Solution Method

Computational Results

Conclusion 00

Motivations from the litterature

- Unproductive driving while looking for a parking space [Bates et al., 2017]
- Search for parking represents 62% of delivery drivers working time [Allen et al., 2018]
- Fall in driving average speeds in cities and road space reallocated to pedestrians, bicycles and buses [Martinez-Sykora et al., 2020]

Problem definition

Solution Method

Computational Results

Conclusion 00

Context of the study

- Last-mile delivery in city centers
- To deliver shops (red locations on the map available as open data)
- Using *loading zones* as potential parking spots (blue locations, also open data)

All maps with leaflet | © OpenStreetMap contributors Data at https://data.nantesmetropole.fr and https://www.data.gouv.fr Solution Method

Computational Results

Conclusion 00

Problem definition

The Park-and-Loop Routing Problem with Parking Selection

Let us presume that :

- A vehicle route starts from the depot, visits a sequence of parking locations, and returns to the depot
- A walking-trip starts from a served parking location, visits a sequence of customers, and returns to the same parking location

The **PLRP-PS** consists of designing vehicle routes and walking-trips to serve all the customers, respecting:

- vehicles capacities & maximum route durations
- trip capacities and a maximum walking distance per driver

and minimizing:

- (i) the number of drivers
- (ii) the sum of driving times, walking times, and parking times

Problem definition

Solution Method

Computational Results

Conclusion 00

PLRP-PS Illustration

The Park-and-Loop Routing Problem with Parking Selection

Parking and walking in the VRP literature

- Levy and Bodin [1989] location arc routing problem for mail delivery
- Bodin and Levy [2000], Irnich [2008] Park-and-loop (PAL) practice / structure
- Gussmagg-Pfliegl et al. [2011] PAL node-routing problem
- Martinez-Sykora et al. [2020] Traveling Salesman Problem with combination of driving and walking
- Reed et al. [2021] Capacitated Delivery Problem with Parking (CDPP)
- Coindreau et al. [2019] Vehicle Routing Problem with Transportable Resources (VPR-TR)
- Cabrera et al. [2021] Doubly Open Park-and-Loop Routing Problem (DOPLRP)

Also related to VRPs with trucks and trailers, two echelon VRPs, VRPs with drones,...

Problem definition

Solution Method

Computational Results

Conclusion 00

Solution methodology

- A simple solution framework: small and large neighborhood search
 A LNS variant inspired by Ropke and Pisinger [2006] and Christiaens and Vanden Berghe [2020]
- Four types of insertion
- Parking selection strategies

$$\begin{array}{c} \hline \end{tildew} \hline \end{tildew}$$

Problem definition

Solution Method

Computational Results

Conclusion 00

SLNS operators

Туре	Name	Customer	Parking	Route	Source
Destroy	Random Worst Related String Historical Route	$\begin{array}{l} \boldsymbol{\Sigma}_{small}^{-}, \boldsymbol{\Sigma}_{large}^{-} \\ \boldsymbol{\Sigma}_{small}^{-}, \boldsymbol{\Sigma}_{large}^{-} \\ \boldsymbol{\Sigma}_{small}^{-}, \boldsymbol{\Sigma}_{large}^{-} \\ \boldsymbol{\Sigma}_{small}^{-}, \boldsymbol{\Sigma}_{large}^{-} \\ \boldsymbol{\Sigma}_{small}^{-}, \boldsymbol{\Sigma}_{large}^{-} \end{array}$	$\begin{array}{l} \Sigma^{-}_{large} \\ \Sigma^{-}_{large} \\ \Sigma^{-}_{large} \\ \Sigma^{-}_{large} \\ \Sigma^{-}_{large} \end{array}$	Σ ⁻ large	Ropke and Pisinger [2006] Ropke and Pisinger [2006] Hemmelmayr et al. [2012] Christiaens and Vanden Berghe [2020] Pisinger and Ropke [2007] Hemmelmayr et al. [2012]
Repair	Random Closest Farthest Largest FIFO	$\begin{array}{l} \Sigma_{small}^{+}, \Sigma_{large}^{+} \\ \Sigma_{small}^{+}, \Sigma_{large}^{+} \\ \Sigma_{small}^{+}, \Sigma_{large}^{+} \\ \Sigma_{small}^{+}, \Sigma_{large}^{+} \\ \Sigma_{small}^{+}, \Sigma_{large}^{+} \end{array}$			Christiaens and Vanden Berghe [2020] Christiaens and Vanden Berghe [2020] Christiaens and Vanden Berghe [2020] Christiaens and Vanden Berghe [2020] <i>this paper</i>

Problem definition

Solution Method

Computational Results

Conclusion 00

Types of insertions

(a) Insertion in a new route

(c) Insertion in a new walking trip (existing route, served parking location)

(b) Insertion through a new parking location (existing route)

(d) Insertion in an existing walking-trip (existing route, served parking location)

Solution Method

Computational Results

Conclusion 00

Parking selection strategies

ONLY for insertion types (a) and (b) (all served parking spots are evaluated)

A parking selection strategy is made of

- A parking selection criterion
- A parking selection method

Two parking selection criteria (from a customer)

- radius-r: walking time to a parking location
- k-nearest: rank wrt the other parking locations

Two parking selection methods

- Filtering
- Sorting

Solution Method

Computational Results

Conclusion 00

Parking selection methods Filtering

For each customer, keep only a subset of parking locations

13 / 32

Solution Method

Computational Results

Conclusion

Parking selection methods

Sorting

- 1. Sort parking locations wrt walking distance
- 2. Stop selecting parking locations based on the parking selection criterion

k-nearest

• After each insertion evaluation, select μ according to $\mathcal{U}(0,1)$ *

• Stop if
$$\mu < p$$
 (with $p = \frac{1}{k}$)

Example: k = 5

i	1	2	3	4	5	6	7	8	9	10
р	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
μ	0.37	0.88	0.09	0.62	0.86	0.71	0.58	0.7	0.58	0.0

with *i* the positions of the parking locations in the sorted list

Solution Method

Computational Results

Conclusion 00

Parking selection methods Sorting

r-radius

- After each insertion evaluation, select μ according to $\mathcal{U}(0,1)$
- Stop if $\mu > e^{-\lambda x}$ (with $\lambda = \frac{1}{r}$ and x the walking time to the parking spot)

Example: r = 5 minutes

х	1	1	2	3	7	11	15	16	17	21
$e^{-\lambda x}$	0.9	0.9	0.82	0.74	0.5	0.33	0.22	0.2	0.18	0.12
μ	0.37	0.88	0.09	0.62	0.86	0.71	0.58	0.7	0.58	0.0

Problem definition

Solution Method

Computational Results

Conclusion 00

Instances and parameters

Parking locations

352 loading zones locations¹ and 1196 customers locations²

 $^{^{1}} https://www.data.gouv.fr/fr/datasets/aires-de-livraison-du-centre-ville-de-la-ville-de-nantes/$

 $^{^{2}} https://data.nantesmetropole.fr/explore/dataset/244400404_base-sirene-entreprises-nantes-metropole/$

Solution Method

Computational Results

Conclusion 00

Instances and parameters

The set of 352 loading zones is considered for every instance

- Parking time is 5 minutes (pt = 5)
- Vehicles can park on customers with no loading zone within 300 meters ($d_{max} = 300$)

Experimentation: five runs per instance Best Known Solution (BKS) ; $\Delta = \frac{z-BKS}{BKS} \times 100$

Best parking selection strategy for the PLRP-PS

Parking se	Parking selection strategy			Max. Δ	Avg. Δ
all parking locations			5	3.12	1.25
		r			
		5	0	38.67	19.22
	filtering	10	0	28.56	15.93
radius-r		15	1	5.45	1.90
i dallab i		5	1	5.35	1.93
	sorting	10	3	5.40	2.11
		15	0	7.64	2.59
		k			
		5	4	3.48	0.88
	filtering	10	13	2.90	0.88
k-nearest		15	3	4.08	1.34
K HEATEST		3	8	3.37	0.81
	sorting	5	6	2.37	0.79
	U	10	7	2.85	0.85

First conclusion

k-nearest is better than radius-r

Solution Method

Computational Results

Conclusion 00

Best parking selection strategy for the PLRP-PS sorting or filtering?

filtering-k10					sorting-k5			
n	#Best	$Max\Delta$	AvgΔ	#veh	#Best	$Max\Delta$	AvgΔ	#veh
50	4	0.71	0.17	3.7	6	1.21	0.2	3.7
100	5	1.07	0.31	6.7	5	1.74	0.35	6.7
200	3	2.9	0.72	12.3	7	2.02	0.4	12.3
300	4	1.9	0.84	18.4	6	1.64	0.5	18.4
400	6	2.2	0.48	24.5	4	2.37	0.61	24.5
Avg.	22	2.9	0.5	_	28	2.37	0.41	-

Second conclusion

Filtering and sorting can both give good results but sorting is better

Problem definition

Solution Method

Computational Results

Conclusion 00

Validation of the method

	LN	IS	SN	IS	SLNS	
n	#Best	AvgΔ	#Best	AvgΔ	#Best	AvgΔ
50	0	0.98	0	0.95	10	0.00
100	0	3.26	0	2.43	10	0.00
200	0	4.71	0	4.80	10	0.00
300	0	5.10	0	6.01	10	0.00
400	0	6.10	0	7.68	10	0.00
Avg.	0	4.03	0	4.37	10	0.00

Detailed comparison of the LNS strategies per instance size

Solution Method

Computational Results

Conclusion

Validation of the method

PLRP benchmark [Coindreau et al., 2019]

- Variable Neighborhood Search (VNS) [Coindreau et al., 2019]
- Matheuristic (MH) [Cabrera et al., 2021]³

	VNS		Μ	IH	SLNS		
n	#BKS	Avg. Δ	# BKS	Avg. Δ	# BKS	Avg. Δ	
20	1	4.11	8	0.02	10	0.0	
30	1	3.13	9	0.01	7	0.16	
40	3	1.16	7	0.08	9	0.2	
50	3	1.99	4	0.77	7	0.2	
Total/Avg.	8	2.6	28	0.22	33	0.14	

³https://nicolascabrera.shinyapps.io/VRPTR/

Problem definition

Solution Method

Computational Results

Conclusion 00

Managerial insights CVRP vs PLRP vs PLRP-PS(C+LZ)

PLRP-PS(C+LZ)

Vehicles can park at customers and loading zones

The PLRP and PLRP-PS(C+LZ) provide similar results When comparing the PLRP-PS(C+LZ) to the CVRP:

- -16% Driving time
- -72% Parking time

 $\Rightarrow~-35\%$ Sum of driving time, walking time and parking time Vehicles park 3% of the time on delivery areas

Problem definition

Solution Method

Computational Results

Conclusion 00

Managerial insights CVRP vs PLRP vs PLRP-PS(LZ)

PLRP-PS(LZ)

Vehicles can park only at loading zones PLRP-PS(LZ) vs CVRP:

- -19% Driving time
- -80% Parking time
- \Rightarrow -30% Sum of driving time, walking time and parking time PLRP-PS(LZ) vs PLRP:
 - +49% Walking time

Managerial insights

Decomposition into driving, parking, and walking time

ntroduction 0000	roduction Problem definition		Solution Method	Compu- 00000	tational Results 00000●00	Conclu 00
		Mar	nagerial ins	sights		
			N			
0.5	50	100	200	300	400	
Average #parking per customer - 0.0 = -0.0 =						Type #LZ #cus

PLRP -

PLRP-PS(C+LZ) -PLRP-PS(LZ) -

PLRP-PS(LZ) -

PLRP-PS(C+LZ)-

PLRP -

- (Z1)S4-BS(LZ)

PLRP-PS(C+LZ)

PLRP -

PLRP-PS(C+LZ) -PLRP-PS(LZ) -

0.0

PLRP -

PLRP -

PLRP-PS(LZ)-

PLRP-PS(C+LZ)

25 / 32

Managerial insights

Average time per customer decomposed by driving time, parking time, and walking time

Managerial insights

Evolution of the average number of parking instances per customer with respect to parking time

Problem definition

Solution Method

Computational Results

Conclusion

Conclusion

Main take-away

- Integrating parking selection in VRP heuristics seems simple enough
- Select parking locations based on their ranks wrt customers
- Serving multiple customers from one parking location is efficient

Perspectives

- Stochastic parking times (and walking distance)
- Time windows and synchronization
- SLNS extensions and application to benchmarks

Problem definition

Solution Method

Computational Results

Conclusion

Thank you!

Problem definition

Solution Method

Computational Results

 $\underset{\circ\circ}{\text{Conclusion}}$

References I

- J. Allen, M. Piecyk, M. Piotrowska, F. McLeod, T. Cherrett, K. Ghali, T. Nguyen, T. Bektas, O. Bates, A. Friday, et al. Understanding the impact of e-commerce on last-mile light goods vehicle activity in urban areas: The case of london. *Transportation Research Part D: Transport and Environment*, 61:325–338, 2018.
- O. Bates, B. Knowles, and A. Friday. Are people the key to enabling collaborative smart logistics? In *Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems*, pages 1494–1499, 2017.
- L. Bodin and L. Levy. Scheduling of local delivery carrier routes for the united states postal service. In *Arc Routing*, pages 419–442. Springer, 2000.
- N. Cabrera, J.-F. Cordeau, and J. E. Mendoza. The Doubly Open Park-and-loop Routing Problem. Technical report, HEC Montréal, 2021.
- J. Christiaens and G. Vanden Berghe. Slack induction by string removals for vehicle routing problems. *Transportation Science*, 54(2):417–433, 2020.

Problem definition

Solution Method

Computational Results

Conclusion

References II

- M.-A. Coindreau, O. Gallay, and N. Zufferey. Vehicle routing with transportable resources: Using carpooling and walking for on-site services. *European Journal of Operational Research*, 279(3):996 – 1010, 2019.
- E. Gussmagg-Pfliegl, F. Tricoire, K. F. Doerner, and R. F. Hartl. Mail-delivery problems with park-and-loop tours: a heuristic approach. *Mail-delivery problems with park-and-loop tours: a heuristic approach*, pages 77–81, 2011.
- V. C. Hemmelmayr, J.-F. Cordeau, and T. G. Crainic. An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. *Computers & operations research*, 39(12): 3215–3228, 2012.
- S. Irnich. Solution of real-world postman problems. *European journal of operational research*, 190(1):52–67, 2008.
- L. Levy and L. Bodin. The arc oriented location routing problem. *INFOR: Information Systems and Operational Research*, 27(1):74–94, 1989.

Problem definition

Solution Method

Computational Results

Conclusion

References III

- A. Martinez-Sykora, F. McLeod, C. Lamas-Fernandez, T. Bektaş, T. Cherrett, and J. Allen. Optimised solutions to the last-mile delivery problem in london using a combination of walking and driving. *Annals of Operations Research*, 295(2):645–693, Dec 2020.
- D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. *Computers & operations research*, 34(8):2403–2435, 2007.
- S. Reed, A. M. Campbell, and B. W. Thomas. Does Parking Matter? The Impact of Search Time for Parking on Last-Mile Delivery Optimization. July 2021. URL http://arxiv.org/abs/2107.06788.
- S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. *Transportation science*, 40(4):455–472, 2006.