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Using Brownian dynamics simulations, we investigate the effects of confinement, adsorption on surfaces and ion-ion
interactions on the response of confined electrolyte solutions to oscillating electric fields in the direction perpendicular
to the confining walls. Nonequilibrium simulations allow to characterize the transitions between linear and nonlinear
regimes when varying the magnitude and frequency of the applied field but the linear response, characterized by the
frequency-dependent conductivity, is more efficiently predicted from the equilibrium current fluctuations. To that end,
we (rederive and) use the Green–Kubo relation appropriate for overdamped dynamics, which differs from the standard
one for Newtonian or underdamped Langevin dynamics. This expression highlights the contributions of the underlying
Brownian fluctuations and of the interactions of the particles between them and with external potentials. While already
known in the literature, this relation has rarely been used to date, beyond the static limit to determine the effective
diffusion coefficient or the DC conductivity. The frequency-dependent conductivity always decays from a bulk-like
behavior at high frequency to a vanishing conductivity at low frequency due to the confinement of the charge carriers
by the walls. We discuss the characteristic features of the crossover between the two regimes, most importantly how
the crossover frequency depends on the confining distance and the salt concentration, and the fact that adsorption
on the walls may lead to significant changes both at high- and low-frequencies. Conversely, our results illustrate
the possibility to obtain information on diffusion between walls, charge relaxation and adsorption by analyzing the
frequency-dependent conductivity.

I. INTRODUCTION

The dynamics of bulk and confined electrolytes play an
essential role in fields as diverse as electrochemical energy
storage in batteries and supercapacitors1, energy harvesting
from salinity gradients (so-called blue or osmotic energy) and
desalination2–6, biological and bio-inspired systems7, or con-
taminant transport and retention (e.g. by clay minerals) in the
environment8. The motion of ions in colloidal suspensions,
polyelectrolyte solutions or porous materials contributes sig-
nificantly to the overall electric response of these com-
plex systems9–15, characterized by the complex, frequency-
dependent conductivity or permittivity, or observables quanti-
fying more involved properties such as electro-acoustic cou-
plings. The interpretation of electrochemical impedance spec-
troscopy, routinely used to characterize energy storage de-
vices, requires taking into account charge transport and in-
terfacial processes occuring at the surface of electrodes16,17.

The equilibrium fluctuations of the ionic current, quanti-
fied e.g. by its power spectral density, encode information on
the underlying microscopic dynamics of the ions in the sol-
vent. Following earlier studies of bulk charge transport18,19,
the “electrical noise” measured through nanopores20–24 and in
(nano)electrochemical devices 25–27 can in principle be used
to infer information on charge transport and interfacial pro-
cesses. However this step requires disentangling the contri-
butions of the various processes that contribute to the current
fluctuations, such as diffusion, migration, advection, adsorp-
tion/desorption on surfaces, or (redox) reactions, and resorting

to modelling is necessary to interpret the experiments.

Since the pioneering work of Debye, Hückel and Onsager,
the canonical theory of ion transport in bulk electrolytes re-
lies on the description of ions experiencing the effects of an
implicit solvent28–30: thermal fluctuations (Brownian motion)
and friction, screening of electrostatic interactions (permittiv-
ity), and hydrodynamic interactions (viscosity). Various levels
of refinement can be adopted, for example to capture the short-
range repulsion between ions due to their finite size31–36. The
more recent development of stochastic Density Functional
Theory37,38 also allowed to recover earlier results for elec-
trolytes and provide in principle a way to couple consistently
the ionic and solvent fluctuations39–42. Additionally, Brow-
nian descriptions have been used to predict the frequency-
dependent conductivity or electro-acoustic couplings in bulk
electrolytes43–46.

For confined electrolytes, the above-mentioned experi-
ments prompted theoretical efforts to model current fluctua-
tions through nanopores47–53. The charging dynamics in elec-
trochemical devices and its link to charge or current fluctua-
tions is an old problem, which regained interest in the con-
text of nanocapacitors, with various approaches from molec-
ular simulations to meso- and macroscopic scale studies54–62.
The possibility to extract information on the microscopic dy-
namics of ions from the frequency-dependent permittivity of
materials was examined e.g. for salt-free charged lamellar
systems (such as biological membranes, clay-like minerals),
with an analytical solution of the coupled equations describ-
ing diffusion, electrostatics at the mean-field level, and ad-

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
39

25
8



Accepted to J. Chem. Phys. 10.1063/5.0139258

2

sorption/desorption of counterions63.
As in other contexts, numerical simulations on various

scales can be used to describe the dynamics in electrolytes
beyond the regimes, usually limited to low concentrations,
where analytical descriptions apply64–67. While some stud-
ies used molecular simulations to investigate the frequency-
dependent conductivity of electrolyte solutions68,69, the nat-
ural approach to capture the above-mentioned effects of an
implicit solvent (even though the treatment of hydrodynamic
interactions requires special care), is to describe the motion
of ions by Brownian dynamics, i.e overdamped Langevin dy-
namics70. It has been successfully used to investigate trans-
port in bulk electrolyte solutions and suspensions of charged
nanoparticles71–75, or confined electrolytes76. Various nonlin-
ear responses have been identified depending in particular on
the importance of ion-ion interactions (weak vs strong electro-
static coupling regime, hydrodynamic interactions), the mag-
nitude of the applied external field and confinement77,78.

Here, we use Brownian dynamics simulations to investi-
gate the field- and frequency-dependent response of confined
electrolytes, and assess the effects of the geometry, adsorp-
tion on the confining walls and ion-ion interactions. We show
the benefits of using linear response theory to predict the
frequency-dependent conductivity from equilibrium simula-
tions, using the Green–Kubo expression appropriate for over-
damped Langevin dynamics79–81. Even though the static limit
of the latter has already been used in Brownian dynamics sim-
ulations to determine the effective diffusion coefficient or the
static conductivity71–74, the frequency-dependent result (for
which we provide a slightly different derivation inspired from
Ref. 82) does not seem to have been much exploited in the
literature. Section II introduces the model of confined elec-
trolyte solutions, the relevant observables to characterize the
field- and frequency-dependent response to an applied electric
field and the simulation details. All results are then presented
in Section III.

II. BROWNIAN DYNAMICS OF CONFINED
ELECTROLYTE SOLUTIONS

In order to investigate the influence of confinement, adsorp-
tion on surfaces and ion-ion interactions on the response of
electrolyte solutions to an oscillatory electric field, we con-
sider Brownian particles confined between two parallel walls
and compare several models introducing progressively the
above physical features, as described in Section II A. We then
introduce the relevant physical observables in Section II B and
simulations details in Section II C.

A. Model

We consider an aqueous NaCl electrolyte solution confined
in a slit pore between walls separated by a distance L, as il-
lustrated in Figure 1. The simulated systems consist of N ion
pairs with ionic charges qi = Zie (with valencies Zi = +1 for
cations and -1 for anions, respectively, and e the elementary

FIG. 1. The simulated systems consist of a 1:1 electrolyte, de-
scribed by ions in an implicit solvent, confined between parallel
walls separated by a distance L. The box is cubic with dimensions
Lx = Ly = Lz = Lbox and periodic boundary conditions are used in
the directions along the planes. 3D periodic boundary conditions
with a slab correction are used to compute electrostatic interactions,
when present, to model a system with periodicity in the x̂ and ŷ di-
rections only (note that the present study is limited to the simple case
where the permittivity of the confining medium is equal to that of the
confined fluid, see text). Ions interact with the confining walls via a
short-range external potential which depends only on z, is repulsive
in general and may also include an attractive part to model adsorption
(see Eq. (7)). We investigate the response of the system to an oscil-
latory electric field E(t) = E0 sinωt in the direction perpendicular to
the walls.

charge), in an implicit solvent characterized by its relative per-
mittivity εr = 78.5. The ions are described as Brownian parti-
cles with a diffusion coefficient Di. Their positions ri evolve
according to the overdamped Langevin equation:

ṙi = βDiFi +
√

2Diη̂i (1)

where β = 1/kBT , with kB Boltzmann’s constant and T the
temperature, η̂i is a Gaussian white noise, and the force Fi
acting on the ions may include the interactions between them
and with the walls, as well as the force qiE due to the applied
time-dependent electric field in the z direction with magnitude

E(t) = H(t)E0 sinωt , (2)

where the Heaviside function H indicates that the field is ap-
plied only after some initial time taken as t = 0 (the system
is at equilibrium without field for t < 0). For the model sys-
tem considered here (whose limitations are emphasized be-
low), the response to an electric field parallel to the walls does
not significantly differ from that of a bulk electrolyte and will
not be discussed here.

When interactions between ions are considered (as dis-
cussed below, we also study as a reference the case of ideal,
i.e. non-interacting, particles), they interact via pairwise ad-
ditive potentials including electrostatic interactions, screened
by the solvent, and a Week–Chandler–Andersen (WCA) po-
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tential to describe short-range repulsion:

vi j(r) =
qiq j

4πε0εrr
+ vWCA

i j (r), (3)

with ε0 the vacuum permittivity and

vWCA
i j (r) =

{
vLJ

i j (r) − vLJ
i j (r

∗) , r ≤ r∗,
0 , r > r∗,

(4)

with the Lennard–Jones (LJ) potential

vLJ
i j (r) = 4εi j

[(σi j

r

)12
−
(σi j

r

)6
]
, (5)

and r∗ = 21/6σi j the position of the minimum of vLJ
i j . The

LJ energy and diameter εi j and σi j are computed from the
corresponding parameters for ions i and j using the Lorentz–
Berthelot mixing rules.

Each ion interacts with the two walls placed at z = ±L/2
through the potential

U(z) = Vw(z+L/2) + Vw(z−L/2), (6)

which depends only on z. The chosen form arises from the in-
tegration of LJ interactions with atoms in a closed-packed face
centered cubic lattice, with lattice parameter σw, cut along a
(100) face. The resulting potential includes short-range repul-
sion and an attractive well leading to adsorption83–86.

V ads
w (z) = 2π εw

[
2
5

(
σw

z

)10

−
(

σw

z

)4

−
√

2

3
(

z/σw +0.61/
√

2
)3


 , (7)

where the energy εw tunes the strength of the ion-wall attrac-
tion. In order to model purely repulsive walls, we use the same
truncation and shifting as for the short-range ion-ion interac-
tions, i.e.

V rep
w (z) =

{
V ads

w (z) − V ads
w (z∗) , z ≤ z∗,

0 , z > z∗,
(8)

with z∗ ≈ 0.987σw corresponding to the minimum of V ads
w .

Fig. 2 illustrates these ion-wall potentials for some cases con-
sidered (described in more detail in Section II C).

Despite its limitations (see e.g. Ref. 87 for a recent discus-
sion), the overdamped Langevin equation (1) provides a good
description of the dynamics of monoatomic ions for the pre-
diction of the static conductivity or the effective diffusion co-
efficient of ions71,73,74. Since we focus here on the frequency-
dependent response, we should emphasize that it neglects all
inertial effects, corresponding to the relaxation of the ion ve-
locity. This occurs on a time scale τi = βmiDi, with mi the
mass of the ion. For frequencies such that ωτi ' 1, Eq. (1)
should be replaced by an underdamped Langevin dynamics or
even a molecular description. However for NaCl, τi is in the
range of 10-25 fs, corresponding to frequencies f = ω/2π as

−0.50 −0.25 0.00 0.25 0.50
z /L

−2

0

2

4

6

β
U
(z
)

V rep
w , βεw = 0.17

V ads
w , βεw = 0.17

V ads
w , βεw = 0.50

FIG. 2. Illustration of the ion-wall potential for σw/L = 0.3, with L
the distance between the two walls and σw the characteristic length
entering in the potential. The orange and blue lines show the full
(V ads

w , Eq. (7)) and truncated-shifted (V rep
w , Eq. (8)) potential for

βεw = 0.17, while the green line corresponds to V ads
w for βεw = 0.50.

high as 1 THz, which will not be considered here. The present
model also neglects the frequency dependence of the sol-
vent permittivity, which decreases significantly for frequen-
cies larger than 10 GHz.

Another important aspect neglected in the present Brow-
nian description is the role of hydrodynamics, which modi-
fies the dynamics of ions in several ways. In the bulk, hy-
drodynamic interactions between ions impact (even more so
for increasing salt concentration) their self-diffusion as well
as the conductivity of the solution via the so-called elec-
trophoretic effect (see e.g. Ref. 36). A second point related
to the coupling of the ions with the solvent is that the pres-
ence of solid walls perturbs the hydrodynamic flows, an ef-
fect which is captured at the continuum level by imposing a
vanishing normal velocity (no flux into the solid) and either
no-slip or slip boundary condition for the tangential veloc-
ity. This solvent-mediated solute-wall coupling changes the
mobility (or the diffusion coefficient) of the solute, which be-
comes anisotropic, to an extent which depends on the distance
to the wall (or the relative position with respect to both walls
under confinement) and on the hydrodynamic boundary con-
dition88–90. We further note that the presence of interfaces
leads to the layering of the solvent, which may also impact
the dynamics of ions in the close vicinity of the surface be-
yond the continuum hydrodynamic description. The decrease
of the collective or individual mobility as solutes approach a
surface has also been reported in molecular simulations (see
e.g. Refs. 91–93), and hydrodynamics also explains finite-
size effects due to the periodic boundary conditions in the di-
rections parallel to the walls on the diffusion coefficient of
confined particles94.

More generally, the couplings between ions and solvent
give rise to so-called electrokinetic effects such as electro-
osmosis (solvent flow induced by an electric field), which
arise at charged interfaces. Such couplings may develop over
various scales and pose specific challenges for modelling (see
e.g. Refs. 64,67,95–99). In order to address progressively
the contributions of confinement, adsorption on the walls and
ion-ion interactions on the frequency-dependent conductivity,
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we leave the above effects related to the hydrodynamic cou-
pling to the solvent for future work. Such an approximation
is of course expected to be less accurate as the salt concentra-
tion increases and the distance between walls decreases. We
note that for sufficiently low applied fields normal to the walls
(in particular in the linear response regime), there is no flow
in that direction (see e.g. Ref. 61), so that neglecting hydro-
dynamics might be sufficient, but that convective flows may
develop for large fields78.

Finally, an interface between media with different dielec-
tric properties modifies electrostatic interactions, which can
be accounted for by the concept of image charges, and in
practice require special care when performing simulations of
confined electrolytes. The two extreme cases are that of a
liquid/air interface, where the relative permittivity εr of the
liquid is larger than that of air (close to that of vacuum), es-
pecially for water, and that of an interface between a liquid
and a metallic wall (which can be considered as the limit of
infinite permittivity). It is for example well known that such
dielectric jumps at water/air, water/oil or water/membrane in-
terfaces play an important role on the distribution of ions and
on the interfacial tension, even when the interface is charge-
neutral65,100–104. They can also influence the ionic mobility
near walls in non-trivial ways105 (see also the above discus-
sion of hydrodynamics). Efficient algorithms have been in-
troduced to deal with such dielectric jumps in particle-based
simulations106–112. For simplicity, we will only consider the
special case with no dielectric jump at the interface, i.e. when
the permittivity of the surrounding medium is equal to that of
the confined fluid. While this is admittedly not the most rel-
evant case for aqueous electrolytes, this can be considered as
a first step to describe the effect of electrostatic interactions
between ions and we leave the effect of the influence of the
dielectric jump for further study.

With all these caveats in mind, the present model provides
a good starting point for a systematic analysis of the field- and
frequency-dependent response of confined electrolytes to an
oscillatory electric field.

B. Field- and frequency-dependent conductivity

The conductivity quantifies the electric current induced by
an applied electric field. The instantaneous electric current is
generally determined from the velocity of charged particles
as ∑i qivi(t), where the sum runs over ions i. However, the
velocity is ill-defined for the overdamped Langevin dynamics
(Eq. (1)) and one considers instead the hydrodynamic velocity
βDiFi(t), reached by the ions within a time scale τi = βmiDi,
to define the electric current

Jel(t) = ∑
i

βDiqiFi,z(t) , (9)

where the force in the ẑ direction includes the interactions with
the other ions and the walls, as well as the force qiE(t) arising
from the applied field. For a bulk ideal electrolyte (i.e. uncon-
fined non-interacting ions), the latter is the only contribution
to the current and JNE

el (t) = V σNEE(t), with V the volume of

the system and the Nernst-Einstein conductivity

σNE =
β

V ∑
i

Diq
2
i =

βe2N (D++D−)
V

, (10)

the second equality holding only for the present case of a 1:1
electrolyte, with diffusion coefficients D+ and D− for cations
and anions, respectively.

Starting from an equilibrium configuration in the absence
of the field, applying from t = 0 an external field E(t) =
E0 sinωt = Im[E0eiωt ], leads after a transient regime to a sta-
tionary regime where the current is also periodic with the
same period T = 2π/ω . In the limit of vanishingly small per-
turbation, E0 → 0, the response is linear so that the current
oscillates at the same frequency. The complex, frequency-
dependent conductivity σ̃(ω) can then be defined from the
stationary current by

lim
E0→0

Jel(t)

V E0
= Im

[
σ̃(ω)eiωt

]
. (11)

The conductivity is in general a complex quantity, but its real
and imaginary parts are linked by the Kramers-Kronig rela-
tions. In practice, it is therefore sufficient to study the real
part σ(ω) = Re[σ̃(ω)] to fully characterize the frequency-
dependence.

While it is possible to determine the conductivity in
nonequilibrium simulations in the presence of an applied field,
for reasons discussed below it is however standard practice in
molecular simulations to determine the linear response from
the equilibrium fluctuations, i.e. in the absence, using Green–
Kubo (GK) relations. In molecular dynamics (MD) simula-
tions, the complex conductivity is obtained from the Laplace
transform of the current autocorrelation function (ACF) as113

σ̃GK
MD(ω) =

β

V

∫ ∞

0

〈
JMD

el (0)JMD
el (t)

〉
0 e−iωtdt (12)

with JMD
el (t) = ∑i qivi,z(t) (for a bulk isotropic system, it is

often written as an average over the 3 directions of space).
However, in Brownian dynamics the relevant current is given
instead by Eq. (9) and linear response theory leads to a differ-
ent expression of the complex conductivity:

σ̃GK
BD (ω) = σNE − β

V

∫ ∞

0

〈
J0

el(0)J0
el(t)

〉
0 e−iωt dt . (13)

Note that the current ACF is at equilibrium, i.e. in the ab-
sence of applied field, so that the only contributions to the
electric current in Eq. (9) come from the interactions between
the ions and with the walls (hence the notation J0

el to empha-
size this point). Eq. (13) has been derived (in a simpler form
for the sedimentation of a one-component system, but the ex-
tension is straightforward) by Felderhof and Jones79. In Ap-
pendix A we provide a slightly different derivation based on
the Fokker–Planck (FP) equation for the evolution of the prob-
ability distribution ρ(R, t), with R= {ri}i=1...2N correspond-
ing to the trajectories of ions following Eq. (1). The FP equa-
tion can be solved directly in the case where the ions interact
only with the walls but not with each other. This provides an
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alternative route to compute the frequency-dependent linear
response given by Eq. (11) to validate the numerical method
in this ideal case. Details on this approach are provided in
Appendix B.

Even though the static limit of Eq. (13) (i.e. the limit ω →
0) has already been used in Brownian dynamics simulations
to determine the effective diffusion coefficient or the static
conductivity71,73,74, the frequency-dependent result does not
seem to have been much exploited in the literature. This
expression highlights the fact that the frequency-dependence
arises only from the interactions. It follows immediately that
for case of noninteracting particles and smooth walls, there
is no force in the directions parallel to the walls and the cor-
responding conductivity (which will not be further discussed
here) reduces to σNE for all frequencies. Anticipating the re-
sults, in contrast the confinement of the particles by the walls
results in all the considered cases in limω→0 σ(ω) = 0 in the
ẑ-direction. Such a separation between the underlying Brow-
nian motion and the interactions has also been introduced to
determine the velocity ACF of Brownian hard spheres (from
the time-dependent mean-square displacement) in Ref. 114;
however the possible connection with the above result was
not noted and the assumption of neglecting a correlation be-
tween the ideal and interaction term (which was verified nu-
merically) was necessary.

The nonlinear response is a priori multimodal and can be
analyzed using various properties of the stationary regime of
Jel(t) over a period T . In order to facilitate the comparison
with the linear regime, we use the following linear combina-
tion of Fourier coefficients of the current at the frequency of
the applied field

Jel(ω) =
2
T

∫ T

0
Jel(t)sinωt dt (14)

to define the field- and frequency-dependent conductivity as:

σ(E0,ω)≡ Jel(ω)

V E0
. (15)

In the limit E0 → 0, one recovers σ(E0,ω) → σ(ω) by def-
inition (see Eq. (11), which states that Jel(t) is, in the small
field limit, the sum of σ(ω)sin(ωt) and a term proportional
to cos(ωt), which disappears when integrating in (14)). Other
properties to characterize the nonlinear response are defined
and discussed in Appendix C.

C. Simulation details

Table I summarizes the considered systems (see Fig. 1), in
terms of composition, dimensions and interactions. A first
series allows to consider the effect of the confining distance L
between repulsive walls for ideal particles. The introduction
of attractive walls then allows to consider, for a fixed L, the
effect of adsorption. Finally, we investigate the effect of ion-
ion interactions as a function of concentration Cs for various L,
with repulsive walls. The salt concentrations corresponding to
the chosen number of ion pairs N, box size Lbox and distance L

System Ion pairs N Lbox (Å) L (Å)

Rep. walls 200 40 {20, 16, 12}
Attr. walls 200 40 20

Electrolyte I {30, 60, 120, 240, 480} 100 100
Electrolyte II {20, 45, 90, 180, 360} 200 35
Electrolyte III {45, 90, 180} 800 35

TABLE I. Simulated systems. In the first two cases, the ions are
treated as ideal particles and their interactions with the walls can
be repulsive (Eq. (8)) or attractive (Eq. (7)). In the last three cases
("Electrolytes"), ions interact with each other via WCA and electro-
static interactions (see Eq. (3)) and repulsively with the walls. N
cations and N anions are placed between the two walls, separated by
a distance L in a cubic box (Lx = Ly = Lz = Lbox), as shown in Fig. 1.

between walls range from 0.004 to 0.8 mol L−1. In all cases,
periodic boundary conditions are applied in the directions x̂
and ŷ along the walls. For nonequilibrium simulations, an
oscillatory electric field E(t) = E0 sinωt is applied in the ẑ
direction perpendicular to the walls.

We consider diffusion coefficients D+ = 1.28 10−9 m2.s−1

for Na+ and D− = 1.77 10−9 m2.s−1 for Cl−. These val-
ues were obtained for ions at infinite dilution and room tem-
perature by MD simulations with an explicit solvent (SPC/E
water model)115. The overdamped Langevin equation (1)
is solved numerically using the LAMMPS simulation pack-
age116, adapted with the overdampled BAOAB integrator117.
The interactions of the ions with the walls are given by
Eqs. (6), (7) and (8) with σw = 3 Å, and εw = 0.1 or
0.3 kcal.mol−1, corresponding to βεw ≈ 0.17 or 0.5 at T =
300 K (see Fig. 2). For the WCA interactions between ions,
we use σNa = 3 Å (resp. σCl = 3 Å) and εNa = 0.1 kcal.mol−1

(resp. εCl = 0.1 kcal.mol−1), with the Lorentz-Berthelot mix-
ing rule to compute the interactions between Na+ and Cl−.
Long-range electrostatic interactions are computed with the
P3M algorithm, using a cutoff of 15 Å for the real-space part
and a slab correction (with an equivalent system width of 3Lz
including the empty slab) to model a system with periodicity
in the x̂ and ŷ directions only118. Note that this treatment of
electrostatic interactions only applies to the special case where
there is no dielectric jump between the confined liquid and the
surrounding medium (see Section II A).

For equilibrium simulations, we use a time step δ t = 50 fs,
except for the electrolyte with the largest salt concentration
(Cs = 0.8 M) for which we use δ t = 25 fs. The total length
of the trajectory is Ttot = 50 µs, except for the same sys-
tem (Ttot = 25 µs) and in the case of ideal particles with
the most attractive walls (Ttot = 100 µs). For each simula-
tion, the trajectory is divided into Nblocks = 100 blocks (200
for the most attractive walls) on which the properties such
as time-correlation functions or their Fourier transforms are
computed. The reported results and uncertainties correspond
to the average and the 95% confidence interval computed us-
ing the standard deviation among blocks, respectively. The
length of each block (500 ns for most systems, 250 ns for ideal
particles with the most attractive walls) is much longer than all
the correlation times in the various systems, so that the blocks
can be considered as statistically independent from each other.
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For each block, the real part of the frequency-dependent con-
ductivity is computed using a non-uniform sampling of the
current ACF and numerical integration of Eq. (13) using the
trapezoidal rule for the considered frequencies. Specifically,
the short-time behavior of the ACF (for t < 10 ps) is estimated
from the first 2000 steps of each block with the current evalu-
ated at every step, while the rest of the ACF is estimated from
samples of the current every 100 time steps over the whole
block.

Nonequilibrium simulations are performed with repulsive
walls separated by L = 20 Å with 200 pairs of particles
(first entry of Table I) and in the presence of a field E(t) =
E0 sin(ωt), using a time step δ t = 50 fs, with a total trajectory
length Ttot = 1 µs. The results presented in Fig. 3 are ob-
tained for field magnitudes E0 ∈ {0.001, 0.01, 0.1} V/Å and
frequencies ω/2π ∈ {2, 4, 8}× 10{−1,0,1} GHz. While the
largest field considered is beyond what could be sustained by
real water, it remains interesting to include it in the discus-
sion of the various regimes that may arise upon increasing
the external driving. For the results presented in Fig. 4, the
magnitudes and frequencies are E0 = 2p 10−2 V/Å with p ∈
{−3,−2, ...,9, 10} and ω/2π ∈ {1, 2, 4}×10{−1,0,1,2} GHz.
In such nonequilibrium simulations, we monitor the nonequi-
librium current Jel(t) in the stationary regime, which is
reached after a transient regime that depends on E0 and ω but
is shorter than 10 periods T = 2π/ω of the field in all cases.
We therefore discard the first 10 periods of the signal and the
results are averaged over the Ttotω/2π −10 remaining periods
(90 periods for the smallest frequency).

III. RESULTS

We first discuss generic features of the field- and frequency-
dependence of the response to an applied electric field for a
confined electrolyte, for ideal particles confined between re-
pulsive walls, with a fixed distance L between the latter in
Section III A. We then consider the effects of confinement
and adsorption on the walls in Sections III B and III C, respec-
tively. Finally, we discuss the effects of ion-ion interactions in
Section III D.

A. Ideal particles: field- and frequency-dependent response

We first consider the simplest case of ideal particles con-
fined between repulsive walls (system I in Table I) for a fixed
distance L = 20 Å. Fig. 3 shows the electric current Jel(t) de-
fined in Eq. (9), in the stationary regime of nonequilibrium
BD simulations with various magnitudes E0 and frequencies
ω of the applied electric field (see Eq. (2)). Results are shown
for 3 values of E0 as a function of ωt to compare the currents
over a single period, and normalized by the maximal current
for ideal particles in the absence of confinement by the walls
(bulk case), V σNEE0. The figure also shows (dashed lines) the
time-dependent current in that case, JNE

el (t) =V σNEE(t).
Let us first consider panel 3a, for the largest considered

field (E0 = 10−1 V/Å). For high frequencies, the current al-
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FIG. 3. Electric current in the stationary regime of nonequilibrium
simulations, for an ideal electrolyte confined between repulsive walls
separated by a distance L = 20 Å (system I in Table I), and various
magnitudes of the applied field (E0 = 10−1, 10−2 and 10−3 V/Å in
panels a, b and c, respectively) and frequencies ω (see colorbars).
Results are shown for a single period as a function of ωt, normal-
ized by the maximal current for ideal particles in the absence of con-
finement by the walls (bulk case), V σNEE0. Results for the time-
dependent current in that case, JNE

el (t) = V σNEE(t), are also shown
as dashed lines. The shaded areas indicate 95% confidence intervals.

most exactly follows the result corresponding to unconfined
electrolytes. For low frequencies, the current first follows
the same trend, but then reaches an extremum and decays to
zero within each half-period. Upon decreasing the frequency,
the maximum current Jmax decreases and this maximum is
reached after a characteristic time tmax occuring earlier within
the period (see Appendix C for a more detailed discussion).
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As the magnitude of the field decreases (panels 3b and 3c for
E0 = 10−2 and 10−3 V/Å, respectively), for a given frequency,
the deviations from the ideal response JNE

el (t) =V σNEE(t) are
less pronounced, and the uncertainty on the stationary cur-
rent increases (for the fixed trajectory length considered here).
The latter observation indicates that it is difficult to obtain the
frequency-dependent conductivity of the system by consider-
ing numerically the limit E0 → 0 in Eq. (11).

From the definition Eq. (9) of Jel(t), it immediately follows
that the deviations from the ideal current are due to the forces
experienced by the particles other than the effect of the ap-
plied electric field, which in the present case are limited to the
short-range repulsive forces exerted by the confining walls.
One should then consider two time scales, corresponding to
the diffusion and migration of the particles over the relevant
characteristic distance between the walls (L̃, discussed below),
namely

τdiff =
L̃2

π2D
(16)

and

τE =
L̃

βeDE0
(17)

where for simplicity we consider the same diffusion coeffi-
cient D for cations and anions, with charges qi =±e.

10−1 100 101 102

ω τdiff

100

101

102

103

τ d
iff
/τ

E

0.0

0.2

0.4

0.6

0.8

1.0
σ
(E

0,
ω
)
/
σ
N
E

FIG. 4. Field- and frequency-dependent conductivity σ(E0,ω) (see
Eq. (15)) for ideal particles confined between repulsive walls sep-
arated by a distance L = 20 Å. The results are shown normalized
by the ideal conductivity σNE as a function of the frequency ω ,
scaled by the diffusion time, and of the ratio τdiff/τE between the
diffusion and migration times (see Eqs. (16) and (17)). The vertical
(ωτdiff = 1) and diagonal (ωτE = 1) dashed lines show the transition
between the confined and bulk-like regimes (with vanishing and bulk
conductivity, respectively), while the horizontal line (τdiff/τE = 1)
marks the transition between the diffusion- and migration-dominated
regimes.

A systematic investigation of the deviations from the
ideal response is shown in the frequency domain in Fig. 4,
which reports the field- and frequency-dependent conductivity
σ(E0,ω) (see Eq. (15)) for ideal particles confined between
repulsive walls separated by a distance L = 20 Å. The ideal

behavior, corresponding to σ(E0,ω)≈ σNE, is always recov-
ered at high frequency. In contrast, at low frequency the effect
of the confining walls manifests itself as σ(E0,ω) ≈ 0. The
transition between the two regimes depends on the magnitude
of the applied field. For sufficiently large fields, the migration
of the ions over the pore width occurs fast with respect to their
diffusion (τE ≪ τdiff) and deviations of the ideal response are
observed when a significant fraction of the particles reaches
the walls within the period, i.e ωτE < 1. In the opposite limit
where the motion of ions is dominated by diffusion, the tran-
sition occurs when the latter process is sufficiently fast to ho-
mogenize the system within a period of the field, i.e ωτdiff < 1.
Further discussion of the nonlinear response in the high-field
regime is provided in Appendix C, which confirms that the
main origin of the nonlinearity is the fact that the ions reach
the walls within the (half-)period of the applied field.

We now investigate in more detail the linear response ob-
tained in the limit of vanishing fields (see Eq. (11)), i.e
τdiff/τE → 0, and characterized by the (field-independent and)
frequency-dependent conductivity σ(ω). Fig. 5a compares
the results obtained over the whole frequency spectrum from
equilibrium BD simulations, using Eq. (13), for ideal parti-
cles confined between repulsive walls separated by a distance
L = 20 Å, to σ(E0,ω) from nonequilibrium simulations with
several fields, corresponding to various values of τdiff/τE , and
selected frequencies, as well as to the results obtained by solv-
ing the Fokker-Planck equation in the absence of an applied
field (see Appendix B).

The predictions from equilibrium simulations using linear
response theory (blue line) are in excellent agreement with
the solution of the FP equation in the absence of applied field
(dashed line) over the whole frequency range. This validates
the use of the Green–Kubo expression for BD simulations,
Eq. (13). The uncertainty obtained with this method grows
at lower frequencies, due to the finite length of the trajecto-
ries. Both results are also consistent with the results from
nonequilibrium simulations with small applied fields, as ex-
pected. However, the latter have to be determined separately
for each frequency, whereas the equilibrium routes provides
σ(ω) for all frequencies from a single simulation. In addi-
tion, the uncertainty on the results grows as the magnitude of
the field decreases (as already observed for the stationary cur-
rent in Fig. 3). Finally, we note that the nonequilibrium route
to σ(ω) requires simulations with several fields to ensure that
one is in the linear response regime. It allows considering
the response of the system beyond this regime, as illustrated
with the results for the larger fields. The latter show that the
transition between the confined regime at low frequency and
the ideal response at high frequency is shifted towards higher
frequencies upon increasing the magnitude of the field, as al-
ready discussed in Fig. 4.

Fig. 5b then shows both the real (as in panel Fig. 5a) and
imaginary parts of the frequency-dependent conductivity. The
results from equilibrium Brownian dynamics simulations are
in good agreement with the solution of the Fokker–Planck
equation also for the imaginary part. The latter displays a
maximum for ωτdiff = 1, pointing to the role of this diffusive
time scale, which will be further discussed in Section III B. As
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Fokker− Planck
τdiff/τE = 0 (LRT)
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FIG. 5. Frequency-dependent conductivity σ(ω) (see Eq. (11)) for
ideal particles confined between repulsive walls separated by a dis-
tance L = 20 Å. The results are shown normalized by the ideal con-
ductivity σNE as a function of the frequency ω , scaled by the diffu-
sion time τdiff (see Eq. (16)). (a) Results from equilibrium Brown-
ian dynamics simulations (blue line) using Eq. (13) within linear re-
sponse theory (LRT) are compared to σ(E0,ω) from nonequilibrium
simulations with several fields (corresponding to various values of
τdiff/τE , indicated by the color) and selected frequencies (symbols).
The shaded area and the error bars indicate 95% confidence intervals.
Results obtained by solving the Fokker–Planck equation in the ab-
sence of an applied field (see Appendix B), are also shown (dashed
lines). (b) Real (blue) and imaginary (red) parts of the frequency-
dependent conductivity from equilibrium Brownian dynamics sim-
ulations (solid lines) and from the Fokker–Planck equation (dashed
lines). The vertical dotted line indicates ωτdiff = 1.

mentioned when introducing the complex conductivity (see
Eq. 11), all the relevant information is encoded in either the
real or imaginary part, since they are related by the Kramers-
Kronig relations. However the imaginary part provides a
more convenient way to define the characteristic crossover fre-
quency as:

ω∗ = argmax
ω

Im [σ̃(ω)] . (18)

In the case shown in Fig. 5b, the real and imaginary parts are
approximately equal to ≈ 0.4σNE for this frequency. As a fi-
nal remark, we note that the plateau at high-frequency of the
real part of the conductivity, limω→∞ σ(ω) = σNE, is a con-
sequence of the Brownian description Eq. 1, which neglects
the relaxation of velocities at short times, as discussed in Sec-
tion II A. With a more realistic description of these timescales,

using underdamped Langevin dynamics or molecular dynam-
ics, one would recover the expected decay to zero of the con-
ductivity in the limit ω → ∞ where ions cannot follow the
applied field.

B. Ideal particles: effect of confinement
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FIG. 6. (a) Normalized equilibrium density profiles for 3 distances
L between the repulsive walls. The simulation results (solid lines,
with shaded areas indicating 95% confidence intervals, follow the
Boltzmann distribution expected for ideal particles (dashed lines).
The vertical dotted lines indicate the positions of the Gibbs Dividing
Surfaces (see Eq. (19)); the distance between the latter defines the
characteristic length L̃. (b) Frequency-dependent conductivity σ(ω)
for the 3 distances L. The results are shown normalized by the ideal
conductivity σNE as a function of the frequency ω , scaled by the
diffusion time τdiff defined from L̃ in Eq. (16). The inset shows the
same quantity when defining the diffusion time τ ′diff using L instead
of L̃.

All the results presented so far correspond to a fixed dis-
tance L = 20 Å between the repulsive walls. We now con-
sider the effect of this distance on the frequency-dependent
conductivity and discuss the characteristic length L̃ introduced
to define the diffusion and migration time scales in Eqs. (16)
and (17). Fig. 6a shows the normalized equilibrium density
profiles for 3 distances L between the repulsive walls. As
expected for non-interacting particles, they follow the Boltz-
mann distribution ρ(z) ∝ e−βU(z). In the present case of short-
range particle-wall repulsion, this leads to a flat profile except
near the wall, where the density decays to zero over a typi-
cal distance ∼ σw (see Eqs. (7) and (8)). For such smooth

   
    

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t. 

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I:

10
.10

63
/5.

01
39

25
8



Accepted to J. Chem. Phys. 10.1063/5.0139258

9

density profiles, an equivalent sharp interface between a ho-
mogeneous region with bulk density ρb and an empty region
inside the wall can be defined as the Gibbs Dividing Surface
(GDS), at the position z−GDS such that (for the left interface in
the region z < 0, and a similar definition of z+GDS for the other
interface):

∫ z−GDS

−∞
ρ(z)dz =

∫ 0

z−GDS

[ρb −ρ(z)] dz . (19)

These positions are indicated as vertical dotted lines in Fig. 6a.
The width of the region occupied by the fluid, which defines
the characteristic confining length is then the distance between
these two interfaces, i.e.

L̃ = z+GDS − z−GDS . (20)

In practice, we find numerically that for the considered re-
pulsive wall this is well approximated by L̃ ≈ L− 1.7σw. In
order to illustrate the relevance of Eq. (20) to define the char-
acteristic times in Eqs. (16) and (17), we show in panel 6b
the frequency-dependent conductivity for 3 distances between
walls, as a function of the frequency scaled by τdiff. This scal-
ing perfectly captures the effect of confinement, while it is not
the case if L is used instead of L̃ to define the diffusion time,
as illustrated in the inset.

C. Ideal particles: effect of adsorption

The effect of adsorption on the frequency-dependent con-
ductivity is explored by considering the 3 particle-wall in-
teraction potentials illustrated in Fig. 2, for a fixed distance
between the walls L = 20 Å: repulsive with βεw = 0.17, at-
tractive with βεw = 0.17 and attractive with βεw = 0.50 (see
Eqs. (7) and (8)). The first case corresponds to the one dis-
cussed in sections III A and III B and serves as a reference.
Fig. 7a shows the normalized equilibrium density profiles,
which follow the Boltzmann distribution ρ(z) ∝ e−βU(z), as
expected for ideal particles. Upon introducing short-range at-
traction to the wall, one observes the desired adsorption of
particles with peaks in the density near the surfaces, which
grow with increasing βεw.

Fig. 7b then reports the corresponding frequency-dependent
conductivity. The simulation results (solid lines), are in good
agreement with the numerical solution of the Fokker–Planck
equation for ideal particles (dashed lines). While adsorption
does not change the limits of vanishing conductivity for ω → 0
(due to confinement by the walls) and of ideal conductivity for
ω → ∞ (when the driving oscillates too fast to feel the pres-
ence of the walls), it does change the cross-over between these
limits. On the one hand, the frequency at which σ(ω) starts
increasing is shifted towards lower values of ω . On the other
hand, the regime of ideal conductivity is reached for higher
frequencies. These observations, which are also visible in the
imaginary part of the frequency-dependent conductivity (in-
sert of panel Fig. 7b) indicate that adsorption results in both
slower and faster equilibrium current fluctuations than with
repulsive walls. Without entering into a systematic analysis
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FIG. 7. (a) Normalized equilibrium density profiles for a fixed dis-
tance L = 20 Å between the walls and three particle-wall interac-
tions (see Eqs. (7) and (8)): repulsive with βεw = 0.17, attractive
with βεw = 0.17 and attractive with βεw = 0.50. The simulation re-
sults (solid lines, with shaded areas indicating 95% confidence inter-
vals), follow the Boltzmann distribution expected for ideal particles
(dashed lines). (b) Frequency-dependent conductivity σ(ω) for the
same systems, normalized by the ideal conductivity σNE, as a func-
tion of the frequency ω , scaled by the diffusion time τdiff defined (see
Eq. (16)) with L̃ in the absence of adsorption. The simulation results
(solid lines), are in good agreement with the numerical solution of the
Fokker–Planck equation for ideal particles (dashed lines). The inset
in panel (b) shows the imaginary part of the frequency-dependent
conductivity.

of the combined effects of the attraction strength βεw and the
distance between walls L, which is out of the scope of the
present work, one can identify the faster process as the diffu-
sion within the potential wells at the surface and the slower
one as the diffusion between the two potential wells. These
results confirm the possibility to use the frequency-dependent
conductivity as a probe of adsorption on surfaces – and the
relevance of BD simulations to analyze it.

D. Electrolytes: effect of ion-ion interactions

In the previous sections III A to III C, the particles inter-
acted only with the confining walls and the external fields,
but not between themselves. A more realistic model of elec-
trolyte solutions requires taking into account the long range
electrostatic interactions between ions, as well as short-range
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repulsion preventing in particular the collapse of oppositely
charged ions. Here, we explore the effect of such ion-ion in-
teractions (see Eq. (3)) on the frequency-dependent conduc-
tivity σ(ω), and consider the role of the salt concentration Cs
and the effective distance L̃ between the walls.

In the bulk, the mean-field Debye–Hückel theory of elec-
trolytes, valid for sufficiently low concentrations, results in
the well-known picture of an ionic cloud around each ion.
The electrostatic potential and ionic concentrations decay as
e−r/λD/r, with r the distance from the ion and the Debye
screening length

λD =

(
4πlB ∑

α

cα Z2
α

)−1/2

, (21)

where the sum runs over species α with concentrations cα and
with the Bjerrum length lB = e2/4πε0εrkBT . In the present
case of a 1:1 electrolyte, this reduces to λD = 1/

√
8πlBCs.

In addition, charge fluctuations are predicted to relax over a
typical timescale called the Debye time

τDebye =

(
4πlB ∑

α

cα Z2
α Dα

)−1

, (22)

which simplifies to τDebye = λ 2
D/D when cations and anions

have the same diffusion coefficient D. In the following, we
will compare the numerical results to this simpler estimate us-
ing the average diffusion coefficient D = (D+ +D−)/2, i.e.
neglect the higher-order effect of the transient internal field
induced by different diffusivities and leading to the coupled
diffusion of both ions (Nernst–Hartley equation)119. While
many features of the ionic dynamics are overall preserved for
unequal diffusion coefficients (see e.g. Ref. 120 for an illus-
tration on the charging dynamics of nanocapacitors), dramatic
effects have been reported for bulk electrolytes under large AC
fields121.

The situation is expected to be more complex under con-
finement, as discussed in particular by Bazant et al. for the
charging dynamics of a nanocapacitor58. In the linear re-
sponse regime and in the limit of thin electric double layers
(λD ≪ L̃), they confirmed the previously reported role122–124

of τRC = λDL̃/2D, which corresponds to the characteristic
time of an RC circuit with capacitance predicted by Debye-
Hückel theory and resistance corresponding to the Nernst-
Einstein conductivity (Eq. (10)). They further provided the
leading correction in terms of the ratio between the Debye
length and inter-electrode distance (L̃ in the present work, in-
stead of 2L in Ref. 58).

Fig. 8 reports the frequency-dependent conductivity σ(ω)
normalized by the ideal conductivity σNE for a fixed distance
L = 100 Å and 5 salt concentrations Cs (see “Electrolyte I”
in Table I), corresponding to the limit of thin electric double
layers (λD ≪ L̃). The shape of the curves is similar to the
case of ideal particles, with a crossover from a vanishing con-
ductivity regime at low frequency (due to confinement) to an
ideal conductivity regime at high frequency. Compared to the
previous case of noninteracting particles, the transition occurs
for ω∗τDebye ≈ 1 for all concentrations (with the crossover fre-
quency defined by Eq. (18), even though we do not report the

10−2 10−1 100 101 102

ω τDebye

0.0

0.2

0.4

0.6

0.8

1.0

σ
(ω
)/
σ
N
E

Cs = 0.05M
Cs = 0.1M
Cs = 0.2M
Cs = 0.4M
Cs = 0.8M

101 103
ω τdiff

0.0

0.5

1.0

FIG. 8. Frequency-dependent conductivity σ(ω) normalized by the
ideal conductivity σNE for a fixed distance L = 100 Å between the
walls and 5 salt concentrations Cs (see “Electrolyte I” in Table I).
These conditions correspond to the limit of thin electric double layers
(λD ≪ L̃). The frequency is scaled by the Debye time τDebye (with
the dotted vertical line indicating ωτDebye = 1). The inset shows the
same results as a function of the frequency scaled by the diffusion
time τdiff (with the dotted vertical line indicating ωτdiff = 1).

imaginary part in Fig. 8), i.e. the relevant time scale is now
the Debye relaxation time τDebye. The latter captures the de-
pendence on the concentration, illustrated in the inset which
reports the same results as a function of the frequency scaled
by the diffusion time τdiff.
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σ
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E
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0.498M II
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0.016M III
0.008M III
0.004M III

10−1

100

101

π
λ
D
/
L̃

FIG. 9. Frequency-dependent conductivity σ(ω) normalized by the
ideal conductivity σNE for a wide range of concentrations and several
distances between the walls (see Table I for the definition of the sys-
tems labeled I, II and III). The results are shown as a function of the
frequency scaled by the Debye time τDebye and colored according to
the ratio πλD/L̃, with λD the Debye length. The vertical dotted line
indicates ωτDebye = 1, which corresponds to the crossover between
low and high frequency regimes in the limit πλD/L̃ ≪ 1.

Fig. 9 summarizes the results for all the considered elec-
trolyte systems (see Table I) covering a wide range of salt
concentrations Cs and several distances L between the walls.
The frequency-dependent conductivity is shown as a function
of the frequency scaled by the Debye time τDebye and colored
according to the ratio πλD/L̃, with λD the Debye length. The
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results for the systems labeled with I, where πλD/L̃ ≪ 1, are
the same as in Fig. 8, with a transition between the low and
high conductivity regimes for ω∗τDebye ≈ 1. Fig. 9 shows that
beyond the limit of thin double layers, the crossover is not
simply governed by the Debye relaxation time.

10−1 100 101

πλD /L̃

100

101

102

ω
∗
τ D

eb
ye

(
πλD

L̃

)0

48
5π2

(
πλD

L̃

)2

0.8M I
0.4M I
0.2M I
0.1M I
0.05M I

0.498M II
0.249M II
0.125M II
0.062M II
0.028M II

0.016M III
0.008M III
0.004M III
Bazant et al. (2004)

FIG. 10. Crossover frequency ω∗, defined by Eq. 18, scaled by
the Debye time τDebye as a function of the ratio πλ/L̃ between the
relevant length scales for electrostatic screening (λD) and diffusion
(L̃/π), for a wide range of concentrations Cs and several distances
L̃ between the walls (see Table I). The red solid line corresponds to
ω∗ = 1/τBazant using Eq. (23) (from the results of Ref. 58), while the
two dotted lines indicate the scalings expected for small and large
values of πλD/L̃.

A quantitative analysis of the crossover frequency is pro-
vided in Fig. 10, which shows ω∗, defined by Eq. (18), scaled
by the Debye time, as a function of the ratio πλD/L̃ between
the relevant length scales for electrostatic screening (λD) and
diffusion (L̃/π), for all the considered systems. In the thin
double-layer limit (πλD/L̃ ≪ 1), ω∗τDebye ≈ 1. For larger
values of the ratio πλD/L, the transition depends not only on
the bulk relaxation time but also on the confining distance
L. For πλD/L̃ ≫ 1, the quadratic scaling of ω∗τDebye with
πλD/L̃ shows that the transition between low and high con-
ductivity regimes occurs for ω∗ ∝ 1/τdiff: In this limit, the
Debye length is much larger than the confining distance and
the relevant process for charge transport is the diffusion of
ions between the walls. The crossover between two regimes
occurs for πλD/L̃ ≈ 1, as expected.

Interestingly, all our numerical results are very well de-
scribed by an analytical prediction (also shown in Fig. 10)
following from the work of Bazant et al. who solved the
Poisson–Nernst–Planck (PNP) equation to analyze the charge
dynamics in a capacitor58. Here, we do not consider the re-
sponse of an electrolyte confined between metallic electrodes
to a voltage step, but rather the response to an applied elec-
tric field, which corresponds to boundary conditions of fixed
surface charge rather than surface potential. In the linear re-
sponse regime, to which this section is restricted, the con-
ductivity corresponds to the fluctuations of the current under
conditions of vanishing applied field, hence vanishing surface
charge. This case can be recovered in Ref. 58 by consider-
ing the limit δ → ∞ in their result Eq. (50) for the time scale

characterizing the total charge in a half-cell. Indeed, while the
effective thickness λS introduced in the electrostatic boundary
conditions (Eq. (14) in Ref. 58) has a different interpretation
in their work, the limit λS → ∞ amounts to imposing a zero
electric field at the surface of the solid. Using the notation of
the present work for the distance between the walls (L instead
of 2L), and scaling the characteristic time defined in Eq. (50)
of Ref. 58 by the Debye relaxation time (instead of the RC
time), one obtains in this limit:

τBazant

τDebye
= 1− L̃

4λD
coth

L̃

4λD
sech

L̃

2λD
. (23)

The solid line in Fig. 10 corresponds to the assumption ω∗ =
1/τBazant, which is in excellent agreement with the simulation
results. One recovers in particular the two limiting regimes,
τBazant ∼ τDebye and τBazant ∼ 48

5π2 τdiff ≈ 0.97τdiff for small and
large values of πλD/L̃, respectively. In the intermediate re-
gion, τBazant is close to τRC, but the corresponding range of
πλD/L̃ is rather limited. The time scale in Eq. (23) corre-
sponds to the dynamics of the total charge of the half-cell, but
other time scales could be determined in Ref. 58, such as for
the local charge density of the electrolyte at the surface of the
electrodes. The good agreement between our results for the
crossover frequency and the former time (instead of the latter
or other measures of the charge dynamics) suggests that the
evolution of the total charge of a half-pore better reflects the
slower fluctuations of the total ionic current.

The shape of σ(ω) depends on the functional form of the
current ACF (see Eq. (13)): A mono-exponential decay re-
sults in a Lorentzian function for the frequency-dependent
conductivity, but the current ACF may display more com-
plex features, such as several exponential modes with differ-
ent weights. Another, somewhat more surprising observation
is that the simulation results are well described by the mean-
field PNP equation even for concentrations as high as 0.8 M.
At such concentrations, this theory is not expected to be ac-
curate, as for example the Debye screening length becomes
comparable to the size of ions and water molecules, which
questions the validity of continuous descriptions. Neverthe-
less, the above discussion further supports the relevance of the
present approach to predict the frequency-dependent conduc-
tivity from current fluctuations in Brownian dynamics simu-
lation.

IV. CONCLUSION

Using Brownian dynamics simulations, we investigated
the effects of confinement, adsorption on surfaces and ion-
ion interactions on the response of electrolyte solutions con-
fined between parallel walls to oscillating electric fields. The
frequency-dependent conductivity characterizing the linear
response always decays from a bulk-like behavior at high fre-
quency to a vanishing conductivity at low frequency due to the
confinement of the charge carriers by the walls. We discussed
the characteristic features of the crossover between the two
regimes, most importantly how the crossover frequency de-
pends on the confining distance and the salt concentration, and
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the fact that adsorption on the walls may lead to significant
changes in both the high- and low-frequency regions. Con-
versely, our results illustrate the possibility to obtain informa-
tion on diffusion between the walls, charge relaxation and ad-
sorption on the walls, by analyzing the frequency-dependent
conductivity. The interplay between adsorption on the walls
and ion-ion interactions, which were considered separately in
the present work, will be of particular interest.

We obtained the frequency-dependent conductivity from
the equilibrium fluctuations of the electric current, using the
Green–Kubo relation appropriate for overdamped dynamics,
which differs from the standard one for Newtonian or under-
damped Langevin dynamics. This expression (Eq. (13)) high-
lights the contributions of the underlying Brownian fluctua-
tions and of the interactions of the particles between them and
with external potentials (here, confining walls). While already
known in the literature, the practical use of this relation seems
very limited to date, beyond the static limit ω → 0 to deter-
mine the effective diffusion coefficient or the static conduc-
tivity. We hope that the present work will motivate readers to
consider it to investigate the response of other Brownian sys-
tems to various time- or space-dependent external drivings,
e.g. to determine transport coefficients from equilibrium sim-
ulations along the lines developed in Ref. 125 for heat con-
ductivity, or the frequency-dependent response of soft matter
systems to magnetic fields126. As a natural extension of this
case of insulating walls, one might for example consider the
dynamics of a Brownian electrolyte between metallic walls
(see Ref. 127 for static properties), or more generally the ef-
fect of dielectric jumps between the confined liquid and the
surrounding media. In addition, future studies should also
assess the effect of the coupling of ions with hydrodynamic
flows, which was not considered in this work. In particular,
the conductivity in the directions parallel to the surfaces (not
discussed here) may deviate more significantly from the bulk
response.

The nonequilibrium response further allows to investigate
the transition from linear to nonlinear regimes upon increas-
ing the magnitude of the electric field. Even though we
did not explore this regime in the case of interacting parti-
cles, previous work has shown the variety of behaviors that
can arise by driving Brownian particles in opposite direc-
tions128,129, from charge correlations and hydrodynamic in-
teractions in confined electrolytes under strong electric fields
(see e.g. Ref. 78), or when the central region of the liquid be-
comes depleted from ions due to their migration towards the
walls58. Compared to the Green–Kubo approach for the linear
response, which provides the full frequency spectrum from
equilibrium fluctuations, the nonequilibrium study requires
running a simulation for each frequency. For a more efficient
investigation of the nonlinear regime, it might be possible to
take advantage of the recent developments based, on large de-
viation theory, to predict the response far from equilibrium
from the fluctuations in nonequilibrium steady-states130,131.

Appendix A: Green–Kubo formula for Brownian dynamics

We provide in this appendix a derivation of Eq. (13), al-
ready obtained by Felderhof and Jones in Ref. 79, using argu-
ments similar to those in Ref. 82. The basic idea is to write
out the perturbation of the probability distribution of the sys-
tem (described by the positions R = {ri}i=1...2N correspond-
ing to the trajectories of ions following Eq. (1)), which deter-
mines the linear response of the electric current introduced in
Eq. (9):

Jel(R, t) = ∑
i

βDiqiFi,z(R, t)

= ∑
i

βDiqiF
0
i,z(R)+E0 sin(ωt)β ∑

i

Diq
2
i

= J0
el(R)+E0 sin(ωt)β ∑

i

Diq
2
i , (A1)

where we denote by F0 the forces for the system in the equi-
librium situation E0 = 0, and introduced the corresponding
current J0

el.
For a given strength of the external field E0, the stationary

probability distribution ρE0(R, t) corresponds to a periodic cy-
cle which has the same period as the external forcing. In par-
ticular, ρE0(R, t) = ρE0(R,0). The space-time probability dis-
tribution satisfies the following Fokker–Planck equation with
periodic boundary conditions in time:

[
−∂t +L

†
eq +E0 sin(ωt)L †

pert

]
ρE(R, t) = 0, (A2)

where

Leq = ∑
i

Di(βF0
i,z(R)∂zi +∆ri), Lpert = β ∑

i

Diqi∂zi ,

(A3)
are respectively the generator of the equilibrium dynamics and
the generator of the external perturbation, with adjoints

L
†

eq f =∑
i

Di
(
∆ri f −β∂zi

[
F0

i,z f
])
, L

†
pert =−Lpert. (A4)

In the absence of external field, the equilibrium distribution
ρ0(R) does not depend on time and satisfies Eq. (A2) for
E0 = 0. We write ρ0(R) = e−βU (R), where U is the poten-
tial energy function of the system (shifted in order to incor-
porate the normalization that the probability measure should
sum to 1), so that F0

i =−∇ri
U .

Linear response theory corresponds to identifying the lead-
ing order term ν1(R, t) in the expansion of ρE0(R, t) in powers
of E0:

ρE0(R, t) = ρ0(R)+E0ν1(R, t)+E2
0 ν2(R, t)+O(E3

0 ) . (A5)

Upon identifying terms with the same powers of E0 in
Eq. (A2), the first non-trivial condition reads

(
−∂t +L

†
eq

)
ν1(R, t) =−sin(ωt)L †

pertρ0(R). (A6)

Given that ν1 is real valued, and that the time dependence
of the right hand side of the previous equation involves
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only e±iωt , and in fact Im(eiωt), we look for a solution of the
form

ν1(R, t) = Im
(

ν̃1(R)eiωt
)
. (A7)

The function ν̃1 satisfies
(
−iω +L

†
eq

)
ν̃1(R) =−L

†
pertρ0(R). (A8)

A simple computation shows that the right hand side is equal
to βJ0

elρ0. Therefore,

ν̃1 =−β
(
iω −L

†
eq

)−1 (
J0

elρ0
)
. (A9)

The function ν̃1 is well defined as it can be shown, similarly
to what is done in Ref. 82, that the operator iω −L †

eq can
be inverted on spaces of functions with average 0 (which is
the case here for the function J0

elρ0), while the adjoint op-
erator iω −Leq can be inverted on spaces of functions with
average 0 with respect to ρ0.

The linear response of a real valued observable θ with av-
erage 0 with respect to ρ0 is

∫
θ(R)ν1(R, t)dR = Im

(
sθ (ω)eiωt

)
, (A10)

where, using (A9) and performing an integration by part in
order to let the operator act on θ ,

sθ (ω) =
∫

θ(R)ν̃1(R)dR

=−β

∫
θ(R)

[(
iω −L

†
eq

)−1 (
J0

el ρ0
)]
(R)dR

=−β

∫ [(
iω −Leq

)−1
θ
]
(R)J0

el(R)ρ0(R)dR.

(A11)

Since eτLeq → 0 as τ →+∞ on spaces of functions with aver-
age 0 with respect to ρ0, it holds

(
iω −Leq

)∫ +∞

0
e−iωτ eτLeq dτ

=−
∫ +∞

0

d

dτ

[
e−iωτ eτLeq

]
dτ = Id. (A12)

This leads to the following operator identity on functions with
average 0 with respect to ρ0:

(
iω −Leq

)−1
=

∫ +∞

0
e−iωτ eτLeq dτ. (A13)

Therefore,

sθ (ω) =−β

∫ ∫ +∞

0
e−iωτ

(
eτLeqθ

)
(R)J0

el(R)ρ0(R)dRdτ

=−β

∫ +∞

0
e−iωτ

〈
θ(τ)J0

el(0)
〉

0 dτ, (A14)

where

〈
θ(τ)J0

el(0)
〉

0 =
∫ (

eτLeqθ
)
(R)J0

el(R)ρ0(R)dR (A15)

is the correlation function between θ and J0
el obtained by av-

eraging over trajectories of the equilibrium dynamics started
from initial conditions distributed according to ρ0.

Using the decompositions Eqs. (A1) and (A5), as well as
the normalization

∫
ρ0(R)dR = 1, we can now express the

stationary current to linear order in E0 as

Jel(t) =
∫

Jel(R, t)ρE0(R, t)dR

=
∫

J0
el(R)ρ0(R)dR+E0

[
sin(ωt)β ∑

i

Diq
2
i

+
∫

J0
el(R, t)ν1(R, t)dR

]
+O(E2

0 ) . (A16)

The first term vanishes, while the second one can be rewritten
using Eqs. (A10) to (A15) for θ = J0

el. One finally obtains (see
Eq. (11))

lim
E0→0

Jel(t)

E0
= Im

(
eiωtV σ̃(ω)

)
(A17)

with an explicit expression of the complex conductivity

σ̃(ω) =
β

V ∑
i

Diq
2
i −

β

V

∫ +∞

0
e−iωτ

〈
J0

el(τ)J
0
el(0)

〉
0 dτ ,

(A18)
which completes the proof of Eq. (13).

Appendix B: Spectral resolution of the Fokker–Planck
equation for ideal particles

Here, we solve the FP Eq. (A2) in the case of ideal particles
in the absence of applied electric field (E = 0), in order to
compute the expectation value of the spectral density of the
current appearing in the Green–Kubo formula Eq. (13). For
this simple case of ions only experiencing the force due to the
confining walls, the Fokker–Planck operator Eq. (A4) is a sum
of independent 1-particle operators L 0

eq = ∑i L0
eq,i with L0

eq,i
acting only on functions of ri. Moreover, the 2N−particle
density factorizes as a product of 1-particle densities. In the
geometry we consider, it is in fact sufficient to consider the
1-particle density ρ(z, t) as a function of z and t only, and
the 1-particle current in the direction z perpendicular to the
interface, with J0

el = βDqFz =−βDqU ′(z) (see Eq. (6) for the
definition of U). In this context, and in view of the derivation
leading to (A14), the spectral density of this current can be
expressed as
∫ ∞

0

〈
J0

el(0)J
0
el(t)

〉
0 e−iωt dt =

∫ ∞

0

〈
J0

el,e
tL0

eqJ0
el

〉
0

e−iωt dt,

(B1)
where the scalar product is

〈 f ,g〉0 =
∫ L/2

−L/2
f (z)g(z)ρ0(z)dz, (B2)

and the generator of the evolution acts on functions of z only:

L0
eq f = D

(
∂ 2

z f −β (∂zU)∂z f
)
. (B3)
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This operator is endowed with non-flux boundary conditions
∂z f (±L/2) = 0 at the walls.

The generator is negative and symmetric for the scalar prod-
uct 〈·, ·〉0, and can therefore be decomposed as

L0
eq =−∑

α

|φα〉λα 〈φα | , (B4)

with λα ≥ 0 and φα the eigenvalues and eigenvectors of L0
eq,

the eigenfunctions being normalized as 〈φα ,φα〉0 = 1. Note
that the eigenfunction associated with the smallest eigenvalue
in absolute value, namely 0, is a constant function. The other
eigenvalues are negative. Since 〈J0

el,1〉0 = 0, we obtain, in
view of an operator identity similar to (A13),

∫ ∞

0
〈Jel(0)Jel(t)〉0 e−iωt dt = ∑

α

|〈Jel|φα〉0|2
−λα + iω

. (B5)

The direct numerical diagonalization of L0
eq is prone to in-

stabilities because of divergences at the boundaries that are
incompatible with Neumann conditions. We circumvent this
problem by a standard transformation relying on a change of
unknown function. We introduce to this end the shifted poten-
tial U(z) such that ρ0(z) = e−βU(z), and write

φα(z) = eβU(z)/2ψα(z) . (B6)

The functions ψα are then eigenfunctions of the stationary
Schrödinger equation

Hψα = λα ψα ,
∫

ψ2
α = 1, (B7)

for a Hamiltonian with an effective potential:

H =D
(
−∂ 2

z +β W
)
, W (z) =

β

4

(
U
′(z)

)2− 1
2
U
′′(z). (B8)

Neumann boundary conditions on the eigenfunc-
tions φα translate, for regular potentials, into Robin
boundary conditions for ψα , namely ∂zψα(±L/2) +
ψα(±L/2)βU′(±L/2)/2 = 0. For singular potentials at the
boundaries, these conditions simplify to Dirichlet boundary
conditions ψα(±L/2) = 0.

Numerically, in order to avoid instabilities in the dy-
namics, we consider the problem on the restricted interval
[−L/2+0.7σw,L/2−0.7σw], divided using N + 2 equally
spaced points zi with lattice spacing h = (L−1.4σw)/(N+1).
The values of the eigenfunctions are set to 0 at the end points
of the interval, and only the values at the N interior points are
sought. In this setting, the operator H is represented by the
following N ×N tridiagonal matrix obtained by a central fi-
nite difference scheme for the one-dimensional Laplacian op-
erator:

H i, j =−D
δ i+1, j −2δ i, j +δ i−1, j

h2 +βDW (zi)δ i, j, (B9)

with δ k,l = 1 if k = l and 0 otherwise. This matrix is sym-
metric and we diagonalize it numerically using a standard
NumPy linear algebra library. The output is a finite set

{
λα ,ψ

i
α

}
0≤α≤N−1 with ordered real eigenvalues and corre-

sponding normalized orthonormal functions, which we use to
approximate Eq. (B5). In practice, we use N = 3000 which
does not differ from the result for N = 2000 or 2500 by more
than 1% of the conductivity over the whole frequency range
considered.

Appendix C: Nonlinear regime

In Section III A we examined the stationary current Jel(t) in
the presence of an oscillating external field E(t) = E0 sin(ωt)
and the conditions under which this response is nonlinear in
the perturbation. In particular, we noted that for sufficiently
large fields and low frequencies the current reaches a max-
imum Jmax at a finite time tmax < T/4, with T = 2π/ω the
period of the applied field, before vanishing before T/2; a
symmetric observation can be made for negative currents and
fields for the second half of the period. Here we propose a
simple model to analyze this nonlinear response in more de-
tail, which we quantify by the maximum current

Jmax = max
0≤t≤T

{Jel(t)} (C1)

and the root-mean-square current,

Jrms =
√

2
〈

J2
el(t)

〉
=

(
2
T

∫ T

0
J2

el(t)dt

)1/2

(C2)

which do not only involve the response at the frequency of the
applied field, in addition to the Fourier component of the cur-
rent at the frequency of the applied field, Jω (defined as Jel(ω)
in Eq. (14)). The simulation results for these quantities are
shown in Fig. 11, as a function of the inverse of the frequency
scaled by the migration time τE . For ωτE ≫ 1, all measures
of the current coincide with the current for ideal particles in
the absence of confinement by the walls, while for ωτE < 1
they differ (sufficiently large fields and/or sufficiently low fre-
quencies), suggesting that the nonlinear features are related to
the fact that the ions reach the walls within the period of the
field.

In order to simplify the discussion, we further assume
that cations and anions have the same diffusion coefficient
D. For large applied fields, the motion of the ions is dom-
inated by the migration of the ions and we can neglect the
effect of diffusion. For sufficiently low frequencies such that
τE < T/4 = π/2ω (see Eq. (17)), the ions reach the walls be-
fore the applied field takes its maximum value and then do
not move until the field is reversed at T/2. At the beginning
of each period, the ions start moving from ±L/2 (depending
on the sign of their charge). Solving their equation of mo-
tion ż±(t) = ±βDeE0 sin(ωt), we find that the time required
to reach the opposite wall is

tmax =
arccos(1−ωτE)

ω
(C3)

and that the current is maximum at that time, with

Jmax =V σNEE0 sin(ωtmax) . (C4)
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FIG. 11. Maximum value of the nonequilibrium steadystate current,
Jmax (see Eq. (C1)), root-mean-square current, Jrms (see Eq. (C2))
and Fourier component of the current at the frequency of the applied
field, Jω (defined as Jel(ω) in Eq. (14)), as a function of the inverse
of the frequency scaled by the migration time τE (see Eq. (17)). The
three currents are normalized by the maximal current for ideal parti-
cles in the absence of confinement by the walls (bulk case), σNEE0,
as in Fig. 3, for all the simulations corresponding to Fig. 4; only the
frequency limited to the range ωτdiff & 2 are shown. The lines are the
predictions Eqs. (C6), (C7) and (C8) of the simple model presented
in this Appendix.

In this high field limit, the current should then vanish abruptly
until the field is reversed. Fig. 3 shows that this is not the
case even for the largest applied field considered here. The
continuous decay to zero after tmax comes from the particles
that arrive later due to the dispersion of the ions arising from
the thermal fluctuations (which also explains why the current
is also reversed slightly before the reversal of the field). This
second phase therefore depends not only on τE but also on the
diffusive time scale τdiff. In order to make analytical predic-
tions, we do not take this into account and simply model the
rise and decay of the current as:

Jel(t) =





Jmax sin
(

π

2tmax
t

)
, t ∈ [0, 2tmax] ,

0, t ∈ [2tmax, T/2] ,
(C5)

and an opposite current for the second half-period. While this
model is a rather crude approximation, it allows us to obtain
analytical predictions for Jmax, Jrms and Jω . Specifically, we
find that they can be expressed as

Jmax =V σNEE0

√
1− (1−ωτE)

2, (C6)

Jrms = Jmax

√
2
π

arccos(1−ωτE), (C7)

Jω = Jmax
2
√
(1−ωτE)

2 − (1−ωτE)
4 arccos(1−ωτE)

(π/2)2 − arccos2 (1−ωτE)
.

(C8)

These predictions are also indicated in Fig. 11. The good
agreement with the simulation results for the three measures
of the nonlinear behavior confirms that the fact that the ions
reach the wall within the period is the main origin of the latter.
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