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Frequency-dependent impedance of nanocapacitors from electrode charge fluctuations

as a probe of electrolyte dynamics
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The frequency-dependent impedance is a fundamental property of electrical components. We
show that it can be determined from the equilibrium dynamical fluctuations of the electrode charge
in constant-potential molecular simulations, extending in particular a fluctuation-dissipation for the
capacitance recovered in the low-frequency limit and provide an illustration on water/gold nanoca-
pacitors. This work opens the way to the interpretation of electrochemical impedance measurements
in terms of microscopic mechanisms, directly from the dynamics of the electrolyte, or indirectly via
equivalent circuit models as in experiments.

The electrical impedance, which quantifies the cur-
rent induced by a small oscillatory applied voltage, is
a fundamental property of the components of an electric
circuit. Electrochemical impedance spectroscopy (EIS)
techniques [1, 2] are routinely used to characterize batter-
ies [3] and capacitors [4] in the mHz-kHz range, while di-
electric relaxation spectroscopy (DRS) techniques allow
probing interactions and microscopic dynamics at higher
frequencies (MHz-THz) [5, 6]. Electrodes in nanoflu-
idic devices also open new avenues for energy conver-
sion from salinity gradients [7, 8] or from light [9], for
catalysis [10] or sensing charged species and measur-
ing ultra-low flow rates with electrochemical correlation
spectroscopy [11, 12]. Measurements are usually inter-
preted in terms of equivalent circuits (EC) [13, 14] com-
bining elements with impedance Z(ω) = 1/iCω, R, or
iLω, with ω the frequency, for capacitors, resistors or in-
ductors, respectively, or more complex ones such as con-
stant phase elements. The frequency-dependent response
highlights the relevant time scales in the dynamics of the
polarization of the liquid and the transport of charge car-
riers within such electrochemical devices. The diffusion
and migration of ions can be modeled analytically at the
mean-field level [15–17] and their coupling with hydrody-
namic flows with mesoscopic simulations methods [18], to
predict the charging dynamics of a capacitor. The effect
of steric and other correlations on the dynamics can be
introduced in such descriptions [19] or in classical Den-
sity Functional Theory [20, 21]. Charge transport within
porous electrodes, which are used in many devices, can
be modeled using such liquid state theories or simpler
constitutive equations, in order to make the link with
EC such as the transmission line model (TLM) [22–24].

Molecular simulations have greatly contributed to re-
cent progress in the description of electrode/electrolyte
interfaces, taking into account the polarization of the
electrodes by the ions and solvent molecules of the elec-
trolyte [25]. Several methods have been developed to
impose the potential of the metal both in ab initio and
classical molecular dynamics (MD) simulations [26–30],
which enabled the molecular-scale study of simple and

complex electrochemical systems, including supercapaci-
tors [31–34]. In such constant-potential simulations, the
charge of the electrodes fluctuates in response to the dy-
namical evolution of the electrolyte. The local and global
responses of the charge of porous electrodes to an applied
voltage step can be monitored to build EC models such
as the TLM in order to extrapolate to larger system sizes
and longer time scales and bridge the gap with the elec-
trochemical impedance measurements [35, 36], or to de-
sign optimal charging protocols [37, 38]. The capacitance
and so-called equivalent series resistance of the system
can also be obtained using a recently proposed nonequi-
librium “computational amperometry” approach [39].

An alternative strategy to compute the capacitance
from MD simulations and to extract information on the
interfacial electrolyte is to study the equilibrium fluctu-
ations of the electrode charge [40, 41]. The differential
capacitance, i.e. the response of the electrode charge
Q to a change in voltage ∆Ψ between the electrodes,
is related to the variance of the charge distribution via

a fluctuation-dissipation relation Cdiff = ∂⟨Q⟩
∂∆Ψ

= β⟨δQ2⟩,
where brakets denote an ensemble average, δQ = Q−⟨Q⟩
and β = 1/kBT with kB the Boltzmann constant and
T the temperature. The link between the thermal fluc-
tuations of charge carriers and electrical response was
already observed almost a century ago by Nyquist and
Johnson, who considered the thermal noise in electronic
conductors [42, 43], and exploited in the analysis of elec-
trochemical systems [44]. Molecular simulations further
allowed to correlate the voltage-dependence of the differ-
ential capacitance with changes in the interfacial struc-
ture of an ionic liquid or a water-in-salt-electrolyte be-
tween graphite electrodes [45–47]. More recently the
charge fluctuations within electrodes were also linked to
the electrode-electrolyte interfacial free energy [48].

Here, we show that the frequency-dependent
impedance can be extracted from the equilibrium
dynamical fluctuations of the electrode charge in
constant-potential simulations, the above fluctuation-
dissipation relation for the capacitance being recovered
in the low-frequency limit. This opens the possibility to



investigate with MD simulations the link between the
impedance and the dynamics of the liquid between the
electrodes. We then illustrate this on water/gold nanoca-
pacitors. Both experiments and simulations recently
highlighted some peculiarities of nanoconfined water,
such as the decrease of dielectric constant [49, 50] and its
anisotropy close to interfaces [51], as well as its unusual
dynamical behavior [52, 53] and confinement-induced
spectral changes [54, 55]. In addition, the dynamics of
water on metals proceeds by local reorientation jumps
or by rare collective fluctuations, depending on the
metal [56–58]. Finally, the coupling between the inter-
facial fluctuations of water and the electronic response
of carbon plays an important role in the water-graphite
friction [59]. The present approach offers a way to probe
the dynamics of the liquid encoded in the electrical
impedance measured with electrodes.

FIG. 1. (a) Simulated system for an inter-electrode distance
d = 4.94 nm, with the color of gold electrode atoms indicating
their instantaneous charge, and water hydrogen and oxygen
atoms shown in white and red, respectively. (b) Differen-
tial capacitance divided by the lateral area of the electrodes,
Ael, as a function of d, with the contributions CBO

diff arising
from the thermal fluctuations of the liquid and Cempty

diff arising
from those suppressed in the Born-Oppenheimer sampling of
the charges, which corresponds to the empty capacitor. Also
shown are the predictions of continuum electrostatics without
(green dashed line) and considering (symbols) the Dielectric
Dividing Surfaces (see text; the error bars on the capacitance
arise from that on the positions of the DDS).

We consider systems such as illustrated in Fig. 1a, with
two rigid electrodes maintained at a fixed potential dif-
ference ∆Ψ and separated by a liquid with fixed number
of particles and temperature T . The charge of each elec-
trode atom fluctuates in order to satisfy the constant-
potential constraint, so that the total charge ±Q of the
oppositely charged electrodes (due to global electroneu-
trality), which is the thermodynamic variable conjugate
to ∆Ψ, also fluctuates in response to the thermal fluc-
tuations of the liquid. The complex admittance Y (ω) =

1/Z(ω), with Z(ω) the impedance, quantifies the linear
response of the induced electric current, I(t) = Q̇(t), to
a small oscillatory voltage, V (t) = V 0eiωt, in addition to
the voltage ∆Ψ defining the thermodynamic ensemble,
from the change in current ⟨∆I(t)⟩ = Y (ω)V (t). Using
linear response theory, we show in section I of the Sup-
plemental Material (SM) [60] that the admittance can be
expressed using the Laplace transform of the current or
charge auto-correlation functions (ACF), as:

Y (ω) = β

∫ ∞

0

⟨δI(0)δI(t)⟩e−iωtdt

= β

[

iω⟨δQ2⟩+ ω2

∫ ∞

0

⟨δQ(0)δQ(t)⟩e−iωtdt

]

.(1)

This fundamental result explicitly links the dynamics of
the electrode charge, which reflect the thermal fluctua-
tions of the liquid, with the impedance of the system. It
generalizes the above fluctuation-dissipation relation for
the capacitance, which is recovered in the low frequency
limit ω → 0 since the leading term of Eq. 1 is iωβ⟨δQ2⟩,
the admittance of a capacitor with capacitance β⟨δQ2⟩.
Importantly, Eq. 1 also offers a practical tool to com-
pute the impedance spectrum from the dynamics of the
charge fluctuations over the frequency range correspond-
ing to the time scales accessible to simulations (typically
between 10 MHz and 1000 THz for all-atom simulations,
or lower if coarse-grained models are used), as shown be-
low.
The fluctuating charges introduced in Ref. [26] as addi-

tional degrees of freedom to simulate constant-potential
conditions followed an equation of motion with a ficti-
tious mass. Ref. [27] then suggested to determine the
set of charges that self-consistently satisfy the constant-
potential constraints at each step of the simulation, so
that the electrode atom charges are enslaved to the mi-
croscopic configurations of the liquid. Such a Born-
Oppenheimer (BO) sampling allows to use larger time
steps, but also suppresses some charge fluctuations that
may contribute to some observables. For example, the
suppressed fluctuations lead to a missing term in the
capacitance corresponding to that of an empty capaci-
tor, Cempty

diff [41]. Separating the instantaneous charge as
Q(t) = QBO(t)+QnBO(t) into the BO and non-BO terms
and expanding ⟨δQ2⟩ and ⟨δQ(0)δQ(t)⟩ in Eq. 1 yields

Y (ω) = Y BO(ω) + Y nBO(ω) , (2)

where the first term is obtained by replacing Q by QBO

in Eq. 1 and the second is the remainder. The latter
depends on the choice of dynamics for the additional de-
grees of freedom, which should only manifest themselves
at high frequencies since they mimick the electronic re-
sponse, except for the “static” contribution for ω → 0
where Y nBO(ω) ≈ iωCempty

diff . In practice, the non-BO
contribution to the capacitance is small compared to the
BO one arising from the thermal fluctuations of the liq-



uid [41] (see also below). In the following, we drop the
BO superscript and refer to the BO charges as simply Q.

As an illustration of the possibilities offered by the
analysis of the equilibrium dynamical fluctuations of the
electrode charge in constant-potential simulations, we in-
vestigate gold/water nanocapacitors (see Fig. 1a). Sim-
ulations are performed under periodic boundary condi-
tions in the x and y directions only, with fixed number
of molecules and corresponding inter-electrode distance.
The latter is determined by prior equilibration at a con-
stant pressure of 1 atm in the direction perpendicular to
the electrode surfaces, resulting in d =2.51, 4.94, 9.76,
and 19.42 nm between the first atomic planes of the elec-
trodes. Details on the systems and molecular models
can be found in the SM Sec. II [60]. All simulations are
performed using the MD code Metalwalls [61], with a
potential difference ∆Ψ = 0 V between the electrodes
except for the response to a voltage step. Unless oth-
erwise stated, the uncertainty is expressed as standard
error computed from 10 blocks of the trajectory.

Fig. 1b shows the BO and non-BO contributions to
the differential capacitance as a function of the inter-
electrode distance d. As indicated above, the former
contribution, CBO

diff = β⟨δQ2⟩, is much larger than the
latter, Cempty

diff , computed from the properties of the elec-
trodes as described in Ref. 41. The figure also shows that
the prediction from continuum electrostatics, εwε0Ael/d,
with ε0 the vacuum permittivity, εw the relative permit-
tivity of bulk water, and Ael the lateral area of the elec-
trodes, only qualitatively reproduces the dependence of
the capacitance with d in the considered range. This is
due to the failure to capture the potential drop across
the interfacial water layers, as previously reported on
other surfaces [62]. The prediction can be greatly im-
proved by considering the Dielectric Dividing Surface
(DDS), obtained from the interfacial permittivity pro-
files [63]. As the Gibbs Dividing Surface for density
profiles, the DDS locates an equivalent sharp interface
between a (water-free) region with permittivity ε0 and
another with ε0εw (see SM Sec. III [60]). In this picture,
the capacitance per unit area corresponds to that of three
capacitors in series, Ael/CDDS = 2wDDS/ε0+dDDS/ε0εw,
with wDDS ≈ 1.27 Å the distance between the last atomic
plane of each electrode and the corresponding DDS, and
dDDS = d−2wDDS the width of the equivalent bulk water
region, and provides a rather accurate description of the
actual capacitance (see Ref. 64 for a related approach for
the solvation free energy).

Turning to the dynamics of the charge fluctuations,
Fig. 2a shows that the charge ACF displays oscillations
at short times and an approximately exponential decay
at longer times. Increasing the inter-electrode distance
damps the former and slows down the latter. In the linear
response regime, ⟨δQ(0)δQ(t)⟩ should reflect the evolu-
tion of Q during the (dis)charge of the capacitor. Fig. 2b
shows the charge as a function of time before after a

FIG. 2. (a) Electrode charge auto-correlation function,
⟨δQ(0)δQ(t)⟩, divided by Ael for the 4 considered inter-
electrode distances; the shaded areas represent the standard
error associated with each curve. (b) Response of the charge
Q divided by Ael (colored solid lines) to a voltage change from
∆Ψ = 0 V to 1 V (black dashed line). For each system, the
results are averaged over 10 trajectories. (c) Comparison of
the responses with the equilibrium charge ACFs, normalized
as (ft − f∞)/(f0 − f∞), where f is either Q recorded during
the charging (symbols), or ⟨δQ(0)δQ(t)⟩ (solid lines).

change from ∆Ψ = 0 V to 1 V. The plateaus reached
after the transient regime are consistent with the capaci-
tance for each d, and the characteristic time to reach the
new equilibrium increases with d, consistently with the
slower decay of the ACF in Fig. 2a. However, the link
between the equilibrium ACF and the out-of-equilibrium
response is much deeper: Fig. 2c shows the equivalence
between the two when properly rescaled, as expected
from the fluctuation-dissipation theorem, indicating that
in these systems the response is linear at least up to 1 V
(as observed for the capacitance of water/graphite capac-
itors [62]).

The impedance is usually analyzed in a Nyquist plot,



FIG. 3. Nyquist plot of the impedance Z(ω) in the complex
plane, parameterized by the frequency ω, for the 4 considered
inter-electrode distances (colors). Results from MD simula-
tions using Eq. 1 (symbols) are shown with the predictions of
the corresponding equivalent circuit models (solid lines, see
text and SM Sec. V [60]).

which reports its imaginary and real parts in the com-
plex plane, parameterized by the frequency. The MD
results obtained from the ACF using Eq. 1 (see SM
Sec. IV [60] for details on the numerical procedure) are
shown in Fig. 3, for frequencies ranging approximately
from 20 GHz to 300 THz. This range is well above typi-
cal EIS measurements [2], which are typically performed
for salt solutions. However, no particular dielectric fea-
tures are expected for pure water in this range [65], while
the one we consider overlaps with the ones expected for
SPC/E water, the so-called Debye relaxation and libra-
tional modes [66]. For a sufficiently large system in the
lateral directions, the charge ACF, hence the admittance
scales linearly with Ael, as shown numerically in SM
Sec. II [60]. We therefore plot the impedance multiplied
by Ael in Fig. 3. As in experiments, we model the data us-
ing an EC fitted to the admittance/impedance from MD
(see SM Sec. V [60]). The Nyquist plots are typical of ca-
pacitors with a vertical asymptote at low frequency. The
growing real part with inter-electrode distance reflects an
increase in dissipative processes. The corresponding re-
sistance scales approximately as d/Ael, as expected for
a macroscopic resistor. At high frequency, we observe
a sign change in the imaginary part, which reflects the
short-time oscillations of the ACF and can be modeled
using an inductor in the EC, with L ∝ d/Ael.

The frequency-dependence is shown in the Bode plot,
Fig. 4, where the norm of the complex admittance is
multiplied by the effective water slab width dDDS and
divided by the lateral area Ael to highlight the scaling
relations with system size. The most prominent feature

FIG. 4. Norm of the complex admittance obtained via Eq. 1
for the 4 considered inter-electrode distances (colors). The
MD simulation results (solid lines) are shown multiplied by
the distance dDDS between the two Dielectric Dividing Sur-
faces and divided by Ael to highlight the scalings with system
size. The dashed lines indicate the prediction at low frequency
of a mono-exponential model using the capacitance C and the
characteristic time τ defined as the integral of the normalized
charge ACF. The inset shows τ as a function of d, with a fit
corresponding to the DDS picture (see text).

is a common peak, with magnitude inversely proportional
to dDDS, located at ω ≈ 1.37 ± 0.03 × 1014 rad s−1 and
corresponding to the short-time oscillations observed in
the charge ACF shown in Fig. 2a. Interestingly, this fre-
quency coincides with the one of the previously reported
oscillations of the dipole moment of nanoconfined wa-
ter [52, 53] as well as a feature in the bulk permittiv-
ity spectrum of water ascribed to librational modes [66].
This points to the link between the water polarization
and the electrode charge (see below). The linear scaling
of this peak with dDDS suggests that it is mainly due to
“bulk” water rather than to an interfacial mechanism.

The broad shoulder at low frequency is well described
by a Debye model with a single relaxation time. In-
deed, from Eq. 1 the admittance can be approximated
at low frequency by Y (ω) ≈ iωβ⟨δQ2⟩ × (1 − iωτ) ≈
iωCdiff/(1 + iωτ), with τ the integral of the normalized
charge ACF. The deviations from the scaling with d re-
flect the interfacial component of the capacitance cap-
tured by the DDS model (see the above discussion of
Fig. 1). In the EC picture, this low-frequency behav-
ior corresponds to a RC circuit in series, with relax-
ation time τ = RC. Both estimates of τ coincide and
increase with inter-electrode distance approximately as
τ∞ × d/[d+ 2(εw − 1)wDDS] (see inset of Fig. 4 and SM
Sec. V [60]). The fitted value τ∞ ≈ 8.6 ps is close to the
characteristic time corresponding to the Debye relaxation
in bulk water (τD ≈ 9 ps) that can be interpreted as aris-



ing from the migration of orientational defects in the H-
bond network [67], even though the separation between
individual and collective motion is challenging [66].

As a first step towards the molecular interpretation
of the admittance/impedance, we monitor the compo-
nents of the dipole moment of the confined water slab in
the directions perpendicular and parallel to the electrode
surfaces. We show in SM Sec. VI [60] that the former
almost perfectly follows the dynamics of the electrode
charge, while the latter decays more slowly and is only
slightly affected by d. We also show that, under the con-
sidered conditions, the perpendicular component of the
total water dipole satisfies M⊥

wat(t) = Q(t)dQ(t), with dQ
the instantaneous distance between the charge-weighted
atomic positions in each electrode. In the present case of
a perfect metal, these positions almost coincide with the
first atomic planes for all microscopic configurations (see
also Refs. 68, 69 for the charge induced on the same model
of gold electrodes), so that M⊥

wat(t) ≈ Q(t)d, which ex-
plains the direct link between the ACF of the electrode
charge and that of M⊥

wat. The situation might be dif-
ferent in the case of imperfect screening of charge and
potential within metals, which can be introduced in MD
using the Thomas-Fermi model [70]. We use the relation
between charge and polarization fluctuations to separate
the contributions of interfacial and bulk-like water to ad-
mittance. Our analysis reveals that the influence of ad-
layer water to the librational peak is negligible (see SM
Sec. VI [60]).

Overall, the present work offers the possibility to ex-
tract the frequency-dependent impedance/admittance of
electrochemical systems in molecular simulations from
the equilibrium dynamical fluctuations of the electrode
charge. This opens the way to the interpretation of
impedance measurements in terms of microscopic mech-
anisms, either directly from the dynamics of the elec-
trolyte, or indirectly by EC models used to analyze the
experimental data, provided that all the relevant pro-
cesses emerge within the time scales probed with atom-
istic simulations. Beyond the case of pure water consid-
ered as an illustration, the next step is to investigate
electrolyte solutions. Comparison with previous data
(see SM Sec. VII [60]) suggests that ions increase the ca-
pacitance and introduce longer timescales in the charge
relaxation that can be probed using implicit solvent de-
scriptions [71], allowing to extend simulations to larger
time scales and bridge the gap with the lower frequency
range probed in DRS and EIS experiments. The theo-
ries for the ion dynamics used to model the latter, based
e.g. on a frequency-dependent friction [72–74] could also
benefit from simulations with an explicit solvent and/or
electrodes. The frequency range considered here for pure
water overlaps with that of THz spectroscopy, which can
be used to extract microscopic contributions [75] and to
investigate electrode/electrolyte interfaces [76]. Future
directions may also include the non-linear dynamical re-

sponse to large voltages, using e.g. the statistical tools
developed to sample electric current fluctuations in MD
simulations [77, 78], as well as systems with redox reac-
tions at the surface of the electrodes [79, 80].
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I. ADMITTANCE FROM THE ELECTRODE CHARGE FLUCTUATIONS

In this section, we report a more detailed derivation of Eq. 1 in the main text which

relates the fluctuations of electrode charges and the admittance. The following derivation

is inspired by the one reported in Ref. 1 (see in particular section 7.6), and considers a

perturbation of a reference Hamiltonian H0 written in the form

Htot = H0 − AF (t), (1)

where F (t) represents the time-dependent control variable perturbing the system and A

is its conjugate variable. The response to a generic time-dependent perturbation can be

decomposed into its Fourier components, so that it is sufficient to consider the effect of a

monochromatic perturbation F (t) = F 0eiωt. As described in Ref. 1, one should in principle

introduce a regularization in the form of a factor eϵt with ϵ > 0 ensuring the absence of

perturbation for t → −∞ and take the limit ϵ → 0 at the end of the calculation, but we

drop it in the following for simplicity. Linear response theory then allows expressing the

average response of a variable B to the (sufficiently small) perturbation as

⟨∆B(t)⟩ =

∫ t

−∞

ϕBA(t− s)F (s)ds , (2)

where ϕAB(t) is the after-effect function, which can be express as the equilibrium correlation

function:

ϕBA(t) = β⟨δB(t)δȦ⟩, (3)

with δB = B − ⟨B⟩ (and similarly for A) and Ȧ denotes the time-derivative or A.

The frequency-dependent electrical impedance Z(ω) is the inverse of the admittance

Y (ω), which quantifies the response of the electric current I = Q̇ to a change V in the

voltage ∆Ψ between the two oppositely charged electrodes. The conjugate variable of voltage

is the total charge ±Q of the latter. We therefore consider the above general results in the

particular case A = Q, B = I, and F = V (with the appropriate sign convention to define

the voltage). Introducing the monochromatic form of V (t) = V 0eiωt in Eq. 2, we obtain:

⟨∆I(t)⟩ =

∫ t

−∞

ϕIQ(t− s)V (s)ds = V 0

∫ t

−∞

ϕIQ(t− s) exp[iωs]ds

=V 0 exp[iωt]

∫ t

−∞

ϕIQ(t− s) exp[−iω(t− s)]ds

=V 0 exp[iωt]

∫ ∞

0

ϕIQ(t) exp[−iωt]dt = V (t)

∫ ∞

0

ϕIQ(t) exp[−iωt]dt .



One can therefore identify the Fourier-Laplace transform of the after-effect function ϕIQ(t)

with the electrical admittance defined by ⟨∆I(t)⟩ = Y (ω)V (t). From Eq. 3, we obtain the

admittance from the autocorrelation function of the current as:

Y (ω) = β

∫ ∞

0

⟨δI(0)δI(t)⟩e−iωtdt . (4)

An alternative expression as function of the electrode charges can be obtained by noting

that ⟨δI(0)δI(t)⟩ = −d2⟨δQ(0)δQ(t)⟩/dt2, which follows from Faraday’s law. Considering

Laplace transform properties for derivatives, we obtain

Y (ω) = β

[

iω⟨δQ2⟩+ ω2

∫ ∞

0

⟨δQ(0)δQ(t)⟩e−iωtdt

]

, (5)

where we omitted a first derivative contribution d⟨δQ(0)δQ(0−)⟩/dt. This contribution

vanishes since equilibrium autocorrelation functions are even with respect to time, and if

we assume that ⟨δQ(0)δQ(t)⟩ is differentiable at t = 0. Eq. 5 allows to determine the

frequency-dependent electrical impedance of the system from the dynamics of the equilib-

rium fluctuations of the electrode charge, which can be sampled in molecular dynamics

simulations.



II. SIMULATION DETAILS

A. Setup

Each system includes two confining electrodes, separated by different distances d = 2.51,

4.94, 9.76 and 19.42 nm for 1080, 2160, 4320, and 8640 water molecules, respectively. Each

electrode consists of 1620 atoms fixed on an FCC lattice (9× 9× 5 unit cells with a lattice

parameter of a = 4.07 Å corresponding to the unit cell of gold), resulting in ten atomic

planes perpendicular to the z direction and facing the inner part of the system with a (100)

plane. For all the systems, the box has lateral dimensions Lx = Ly = 36.63 Å, and periodic

boundary conditions are applied only in the x and y directions.

All the atoms in the systems interact via electrostatic interactions, computed using a

2D Ewald sum method taking into account the Gaussian distributions of the electrode

atoms [2, 3] and truncated and shifted Lennard-Jones (LJ) potentials. Water molecules are

modeled with the SPC/E force field [4] and the LJ parameters for the gold atoms are taken

from Ref. 5, with the Lorentz–Berthelot mixing rules. Both the electrodes were treated

as metals using the fluctuating charge model, in which each electrode atom is equipped

with a Gaussian charge of width w = 0.40 Å, with magnitude being determined for each

configuration, using the matrix inversion method [6], to fulfill the constraints of constant

potential and of global electroneutrality.

Each simulation box is prepared with a preliminary equilibration in the NPzT ensemble,

fixing the constant pressure at 1 atm, to determine the equilibrium electrode-electrode dis-

tance. At this stage the electrodes act as pistons, and the system box is allowed to elongate

or compress along the z direction only. After equilibrating the electrode positions, we run

a short NV T simulation to allow the system to fully equilibrate in the conditions used for

production. In total, each equilibration includes at least 1 ns of dynamics. In all the simu-

lations, we use a 1 fs time step and the temperature is fixed at 298 K using a Nosé–Hoover

chain thermostat [7], with 5 chained thermostats having all the same time constant of 1 ps.

All simulations are performed using the molecular dynamics code Metalwalls [8].



B. Equilibrium and nonequilibrium simulations

The simulations at equilibrium conditions with a voltage ∆ψ = 0 V are conducted for

at least 10 ns for production. During the simulations, we sample both the total electrode

charge Q and the components of the total dipole moment at each time step. Molecular

configurations are sampled each picosecond. From these equilibrium trajectories, we also

extract ten configurations separated by 1 ns which are then used as initial configurations

for the non-equilibrium simulations. The nonequilibrium response is obtained, for each of

these initial configurations, by performing simulations under a voltage ∆ψ = 1 V for at least

250 ps, sampling the total charge at every time step.

C. Effect of lateral dimensions

FIG. S1. Total charge autocorrelation functions for the original system (solid lines), and its scaled

version (dots), obtained by doubling Lx and Ly. The results have been scaled by the respective

electrode areas Ael to facilitate the comparison. The uncertainty is calculated as the standard

deviation, obtained splitting the original data in 10 segments.

In order to check the effect of the lateral dimensions of the simulation box Lx and Ly,

we perform a supplemental simulation doubling the dimensions in the two directions, for

the system with an electrode-electrode separation d = 4.94 nm. The electrode atoms are



replicated in the two directions and the number of water is four times the original amount.

Fig. S1 compares the total charge autocorrelation function for the original and larger systems,

scaled by the lateral area. The good agreement between the two shows that the original

system is already sufficiently large.

D. Effect of the thermostat

Since our analysis involves the study of dynamical observables, one should consider the

possible influence of the thermostat and its parameterization on the frequency-response of

the system. We assess this issue in two ways. Firstly, we compare our admittance and

impedance results obtained in the canonical ensemble (NV T , with thermostat, using a

time constant of 1 ps as in the main text) and an average over microcanonical (NV E, no

thermostat) trajectories starting from independent initial conditions generated in the NV T

ensemble. Secondly, we investigate the possible effect of the time constant for the coupling

of the system with the thermostat, by peforming simulations for a range of values between

0.5 and 8 ps (with the same constant for the 5 elements of the thermostat chain in each

case). For both cases, we compare the total charge autocorrelation functions, the admittance

with Bode plots and the impedance in Nyquist plots. In order to reduce the computational

effort, we performed systematic tests only for the smallest system (d = 2.51 nm), but the

conclusions can be extended to the other cases.

Fig. S2 and S3 report the comparison between the electrochemical responses in the NV T

and NV E ensemble and the effect of the time constant of the thermostat for the simulations

in the NV T ensemble, respectively. The differences are not statististically significant and we

can conclude that the presence of a thermostat doesn’t affects the dynamics of the system

(and corresponding electrochemical observables) in all the considered cases.



FIG. S2. Comparison of electrochemical properties obtained in the canonical ensemble (NV T ,

with thermostat) or an average over microcanonical (NV E, no thermostat) trajectories starting

from independent initial conditions generated in the NV T ensemble. (a) Autocorrelation function

of the total charge; (b) magnitude of admittance as a function of frequency; (c) Nyquist plot of

the impedance.



FIG. S3. Comparison of electrochemical properties obtained in the canonical ensemble with dif-

ferent time constants for the thermostat. (a) Autocorrelation function of the total charge; (b)

magnitude of admittance as a function of frequency; (c) Nyquist plot of the impedance.



III. STATIC PROPERTIES

A. Total charge distributions

The total charge histograms are shown in Fig. S4 for all the systems we considered, at 0 V.

All the histograms present a Gaussian shape, with the variance being inversely proportional

to the electrode-electrode distance.

FIG. S4. Distribution of total electrode charge for all the systems we considered, at 0 V. The lines

are the results from MD simulations, the dots represent Gaussian probability density functions

with zero mean and the variance set to be ⟨Q2⟩ as calculated from MD results.

B. Equilibrium density profiles

The equilibrium water density profiles along the z-direction are reported in Fig S5. All

the systems feature the same layered water structure close to the electrode surface. In

general, the density profiles differ only in terms of width of the plateau region, which is

trivially wider for larger systems, except for the smallest system we considered. In the latter

case, the density profile does not reach a plateau, but the layered structure extends through

the whole width of the system.



FIG. S5. Water density profiles along the z-direction. (a) Comparison between the different

systems. (b) Zoom on the leftmost part of the profiles.

C. Dielectric profile

In order to characterize the local dielectric properties of our systems, we computed the

dielectric profiles ε−1
⊥ (z) in the confining direction (perpendicularly to the electrode planes).

We estimated the profiles using the approach described by Schlaich et al. described in Ref. 9.

The results of our analysis are reported in Fig. S6.

All the systems show the same identical charge density profile, shown in Fig. S6a. Based

on this observation, we consider the dielectric profile only for the case with d = 4.94 nm

without loss of generality. The dielectric profile for interfacial water shows an oscillating



FIG. S6. Charge density and dielectric profiles along the z-direction. (a) average charge density

profiles for all the systems we considered. (b) dielectric profile for the system with d = 4.94. The

dashed vertical line indicates the position of the dielectric dividing surface (DDS). The dotted

line represents the coarse-grained version of the dielectric profile, defined as a step function and

based on the DDS position. The shaded areas indicate the uncertainties, computed as the standard

deviation among 10 different samples drawn from the original trajectory.

behaviour close to the gold surface, as expected. From the dielectric profile, we calculated

the position of the Dielectric Dividing Surface (DDS) using the following definition [9]:

zDDS = zv +

∫ zl

zv

ε−1
⊥ (zl)− ε−1

⊥ (z)

ε−1
⊥ (zl)− ε−1

⊥ (zv)
dz (6)



where zv is the position of the electrode surface (z = 0 in our reference frame), zl is a

position in the water phase. In practice, we calculated ε−1
⊥ (zl) as the average value of ε

−1
⊥ (z)

in the profile plateau. In our case, we use zDDS to determine the effective water slab width

dDDS = d − 2wDDS, where wDDS = zDDS − zv ≈ 1.27 Å. The water slab width is used to

highlight the scaling relations between the admittance values in systems with varying d. We

also define a coarse-grained version of the dielectric profile using a step function based on

the position of the DDS [10]

ε⊥(z) =











1, for z ≤ zDDS

εw, for z > zDDS

, (7)

where εw is the dielectric constant of bulk water, which corresponds to 70.7 in the specific

case of SPC/E water. This simple model is used to rationalize the capacitance results

presented in the main text.



IV. CALCULATION OF THE IMPEDANCE FROM MD SIMULATIONS

A. Windowing

Time autocorrelation functions estimated from MD results suffer from the presence of

noise at large t values, because of the limited sampling. This effect impacts negatively on the

numerical calculation of the Laplace transform for the estimation of admittance/impedance.

In particular, we found this noise to particularly deteriorate the results at high frequency.

To suppress this effect, we treated the charge autocorrelation functions by multiplying them

with sigmoidal window functions having the following form

W (t, ϵ, τ) =
1

1 + eϵ(t−τ)
, (8)

with ϵ and τ two tunable parameters which were adjusted by hand in order to remove the

long-time noise while minimizing the impact on the overall shape of the autocorrelation

functions. It is clear that this kind of restriction of the original signal suppresses all the slow

modes whose period is longer than the region selected by the window function. However, we

tuned the window parameters such that only the most significant part of the autocorrelation

function was taken into account. A comparison between the original and windowed versions

of the autocorrelation functions is reported in Fig. S7 for all the systems. Once the param-

eters have been adjusted for each system, the same windowing functions were used to treat

every data segment used for the estimation of ⟨δQ(0)δQ(t)⟩ and admittance/impedance.

B. Filon-Lagrange integration

The estimation of admittance/impedance involves the numerical calculation of the

Fourier-Laplace transform of the electrode charge autocorrelation function ⟨δQ(0)δQ(t)⟩.

For the numerical calculation of the Laplace transforms, and of highly oscillatory integrals

in general, general-purpose quadrature methods such as the trapezium or Simpson’s rule,

may fail in terms of numerical stability, especially at high frequencies. In principle, one

could choose a sufficiently small sampling interval until the integrals would converge to a

numerically stable solution, but this would require harder computational efforts and the

storage of larger amounts of data.



FIG. S7. Comparison between the window functions W (see Eq. 8), the raw total charge auto-

correlation functions as calculated from the MD simulations, and the same after being multiplied

by W . Each plot reports the inter-electrode distance d, and the parameters ϵ and τ used for the

window function.

A simple but very effective strategy was introduced by Filon, and it is based on repre-

senting the integrand using interpolators, for which the integrals can be calculated analyti-

cally [11]. In the specific case of the Fourier-Laplace transform of a signal f(t), we can write

the following approximation

f̂(ω) =

∫ ∞

0

f(t)e−iωtdt ≈

N−1
∑

j=0

∫ tkj+k

tkj

vj(t)e
−iωtdt, (9)

where the full integral has been substituted with a sum of integrals over consecutive, non-

overlapping segments (each one embedding k + 1 samples of f(t)), and the signal has been

substituted by a function which interpolates the points sampled from f(t). In our case, we

chose to interpolate our points using Lagrange polynomials of order 2 (i.e. in the form of

at2 + bt+ c) defined on consecutive triplets of data points. With this in mind, Eq. 9 can be



rewritten as a sum over consecutive triplets

f̂(ω) ≈
N−1
∑

j=0

∫ t2j+2

t2j

vj(t)e
−iωtdt =

n−1
∑

j=0

∫ t2j+2

t2j

ajt
2e−iωtdt+

∫ t2j+2

t2j

bjte
−iωtdt+

∫ t2j+2

t2j

cje
−iωtdt,

(10)

where the coefficients aj, bj, cj are determined from the Lagrange interpolation of f(t2j),

f(t2j+1), f(t2j+2). Now the integrals in Eq. 10 can be computed analytically without any

numerical error in the quadrature. In this method, we only rely on the assumption that the

interpolating functions are sufficiently accurate to represent the original signal. In practice,

we first determine the polynomial coefficients by Lagrange interpolation of ⟨δQ(0)δQ(t)⟩

considering consecutive triplets, then use Eq. 10 for the calculation of the Fourier-Laplace

transform of ⟨δQ(0)δQ(t)⟩ in the estimation of the admittance. We employ a similar formula

for the calculation of the inverse Fourier-Laplace transform, in the analysis of the time

response of equivalent circuit models (see next section).



V. ELECTRIC PROPERTIES

A. Equivalent circuit model

FIG. S8. Representation of the equivalent circuit used to fit the MD results.

All the considered systems display similar features both in terms of charge autocorrelation

functions and in terms of the corresponding admittance/impedance. Therefore, we chose to

fit the same equivalent circuit (EC) model, depicted in Fig. S8, for all the systems. Despite

the apparent complexity, the choice of our EC model can be supported by a few observations.

As can be noted, the structure is almost perfectly symmetrical, thus reflecting the systems’

symmetry. The leftmost and rightmost part represent the two interfaces and the respective

electrodes. Each interface is represented by a two-branched RC circuit. Each branch roughly

represents a single exponential mode in the charge autocorrelation function. Each mode is

then ’weighted’ by the terminal electrode capacitance Cel,1. The inductor L was introduced

to represent the ripples observed in the charge autocorrelation function at short times, and

to fit the high frequency branches in the Nyquist/Bode plots. Finally, the resistor Rb tunes

the magnitude of the admittance peak observed in the Bode plots, and serves as a simple

shift in the real axis of the Nyquist plot (parametric plot of the impedance in the complex

plane, as a function of the frequency). The impedance of this circuit is

Z(ω) = iωL+Rb + 2

[

iωCel,1 − ω2Cel,1R1C1

iωCel,1R1 + iωR1C1 + 1
+

iωCel,2 − ω2Cel,2R2C2

iωCel,2R2 + iωR2C2 + 1

]−1

. (11)



B. Fitting

We fitted the EC models to admittance and impedance, as calculated from MD results.

Our fitting procedure is entirely defined in the frequency domain and takes both the ad-

mittance and impedance into account simultaneously. For fitting a complex function, our

approach is to minimize the euclidean distance between the model and the MD results in

the complex plane. In the complex plane the distance of a point A to a target value A∗ is

defined as

∥A−A∗∥ =
[

(ℜ[A]−ℜ[A∗])2 + (ℑ[A]−ℑ[A∗])2
]1/2

, (12)

where ℜ and ℑ are the real and imaginary parts, respectively. In order to fit the MD results,

we minimize the following loss function

L(x) = wZ

∑

ω∥Z(ω,x)− Z∗(ω)∥
∑

ω∥Z
∗(ω)∥

+ wY

∑

ω∥Y (ω,x)− Y ∗(ω)∥
∑

ω∥Y
∗(ω)∥

, (13)

where x is a vector containing the EC parameters, Z(ω,x) and Y (ω,x) are the EC impedance

and admittance, respectively, and wZ and wY are weights used to tune the focus on the

impedance or on the admittance during the fitting. The weights are manually optimized

for each system in order to find a good compromise between the fitting of admittance and

impedance. The optimal parameters for the EC models are found as xopt = argminL(x).

C. Comparison with simpler EC models

The MD impedance results can be fitted with many possible circuit models. We found our

EC to accurately represent all the features present in the impedance/admittance spectra,

but one might question what happens if we use a simpler model to fit the MD results. In

Fig. S9 we compare different EC models used to fit the impedance results, reported in a

Nyquist plot. Note that each EC model is fitted independently, using the loss function

introduced in the previous section.

As expected, simplifying the original model, labelled as ‘EC’, reduces the accuracy of

the impedance fit. Specifically, removing the inductor and resistor (‘EC 2’) results in the

disappearance of the negative branch at high frequencies, which corresponds to neglecting

the oscillations present in the total charge autocorrelation function at short times. In ‘EC

3’, we further remove one of the two branches from each side of the equivalent circuit. In



FIG. S9. Comparison of different EC models (right) and their impedance fitted on MD results,

represented in a Nyquist plot (left). MD results are reported as black dots. The impedance of each

EC model is represented as a solid line. The circuit structures are reported on the right, with the

colors matching the ones used in the Nyquist plot.

this case, we obtain a single semicircle in the Nyquist plot, which poorly represents the

impedance behaviour at intermediate frequencies.

D. Electrochemical results

1. Step response in time domain

The equilibrium ⟨δQ(0)δQ(t)⟩ function can be compared with the step response of the

EC models. This mainly serves as a validation of the fitted models in the time domain. The

charge autocorrelation function is related to the the admittance via

⟨δQ(0)δQ(t)⟩ = L−1

{

Y (ω)

βω2

}

, (14)

where L−1 is the inverse Fourier-Laplace transform. Following the approach used by Straube

et al. for the definition of the inverse transform [12] this equation can be written in a more



explicit form

⟨δQ(0)δQ(t)⟩ =
1

πβ

∫ ∞

−∞

ℜ[Y (ω)]

ω2
e−iωtdω. (15)

We numerically calculated the inverse transform using the Filon-Lagrange method explained

in section IVB, swapping the frequency and time domain. The numerical results for all the

systems are shown in Fig S10. In all the cases, the equivalent circuit behaviour is in excellent

agreement with the MD results.

FIG. S10. Comparison between the charge autocorrelation functions as calculated from MD sim-

ulations (MD), and as calculated from the equivalent circuit models (EC), for all the systems.

2. Low frequency resistance and cell capacitance

The total resistance at low frequency can be calculated from the real part of the impedance

Rω→0 = ℜ[Z(ω → 0)]. In our case, the lowest accessible frequency is ω = 1.26× 1011 rad/s.

The EC and MD results for this property are shown in Fig. S11a. The equivalent circuit

results are in excellent agreement with MD, and both the datasets display a linear trend



R ∝ d, crossing 0 resistance for d = 0. This result is in agreement with the macroscopic

linear relation between the resistance and the width of a resistor.

FIG. S11. (a) Total resistance at low frequency as a function of the electrode-electrode distance, as

calculated from MD (symbols) and EC models (solid line). The results are compared with a linear

fit of the MD results to show the extrapolation at d = 0. (b) Comparison between cell capacitance

calculated from MD using the electrode charge fluctuations β⟨δQ2⟩ (symbols) and from EC models

(solid line) for all the considered inter-electrode distances.

From the equivalent circuit models, the capacitance of the cell can be calculated as

C = (Cel,1 + Cel,2)/2. In Fig. S11b we compare the equivalent circuit capacitance with

the differential capacitance calculated from the variance of the total charge (β⟨δQ2⟩, from

Ref. 13), which corresponds to the capacitance calculated under the Born-Oppenheimer

approximation. Overall, we observe a decrease in the cell capacitance as we increase the



electrode-electrode separation, as expected for macroscopic capacitors. In all cases, the EC

results are in good agreement with the capacitance results from MD simulations.

3. Charge relaxation time

Fig. S12 shows the relaxation time τ of the charge as a function of the inter-electrode

distance. τ can be calculated from the integral of the normalized total charge autocorrelation

function. In practice, we perform the integral on the autocorrelation function multiplied by

the same window function used for the numerical Laplace transforms to mitigate the effect

of the noise at long times. We also estimate τ as the product between the total resistance

(estimated from the impedance as ℜ[Z(ω → 0)], as calculated from MD results) and the cell

capacitance, calculated as β⟨δQ2⟩. The increase of τ with increasing inter-electrode distance

reflects the slower relaxation of ⟨δQ(0)δQ(t)⟩. In all cases, we observe a good agreement

between the values of τ obtained as RC or from the charge ACF.

FIG. S12. Charge relaxation time as a function of the inter-electrode distance. τ is estimated either

as the integral of the normalized total charge ACF (blue solid line) or as the RC time (orange

dotted line), using the total resistance at low frequency and the cell capacitance. The scaling of

Eq. 16 is also shown (dashed green line).

The DDS picture further provides insights into the effect of the inter-electrode distance

d, thanks to the scalings discussed above or in the main text. Using R = αd/Ael (with

α a constant) for the cell resistance and the DDS model of the cell capacitance, Ael/C =



2wDDS/ε0 + dDDS/ε0εw and d = dDDS + 2wDDS, we obtain:

τ = RC = αε0εw
d

d+ 2(εw − 1)wDDS

= τ∞
d

d+ 2(εw − 1)wDDS

(16)

with τ∞ the value extrapolated for d→ ∞. Fig. S12 shows that this scaling rather accurately

describes the evolution of the relaxation time with d. Fitting the results with Eq. 16, we

obtain τ∞ ≈ 8.6 ps. This value is close to the characteristic time corresponding to the Debye

relaxation in bulk water (τD ≈ 9 ps) that can be interpreted as arising from the migration

of orientational defects in the H-bond network [14].

4. Individual parameters

The trends of the equivalent circuit parameters are reported in Fig. S13. In general,

we note that all the capacitances tend to decrease as we increase the electrode-electrode

separation, as it is expected from macroscopic theory. In contrast, the resistances tend to

increase. This is also expected, since wider dielectric slabs are associated with larger values

of resistances. We finally note a clear linear scaling the inductance as a function of d.



FIG. S13. Equivalent circuit parameters for the four systems we considered.



VI. TOTAL DIPOLE MOMENT

A. Relation with the electrode charge

For a given configuration, the total dipole moment M of the system is

Mtot(t) =
∑

i∈water

qiri(t) +
∑

j∈electrode

qj(t)rj , (17)

where the first sum runs over the mobile atoms of the liquid with fixed partial charges,

while the second runs over the fixed electrode atoms with fluctuating charges, with q and

r denoting the atomic charges and positions, respectively. Note that for the calculation of

M, we consider the unwrapped coordinates, to avoid artefacts due to periodic boundary

conditions. From the symmetry of the system, one should consider the components of the

dipole moment parallel (∥) and perpendicular (⊥) components to the electrode surfaces.

With our choice of axes, the latter simply corresponds to the z component, and we estimate

the autocorrelation function (ACF) of the parallel component as the average of the ACF of

the x and y components.

Separating the perpendicular component into the water and electrode dipoles, and sepa-

rating the latter into the contributions of the two electrodes, we have:

M⊥
tot =M⊥

wat +M⊥
el =M⊥

wat +Q1(t)zQ,1(t) +Q2(t)zQ,2(t) (18)

where in the second line we introduced the total charge of each electrode, as well as the

charge-weighted positions of each electrode (which are well defined except when the electrode

charge vanishes). Due to the global electroneutrality of the system, at each time step

Q1(t) = −Q2(t) = Q(t), so thatM⊥
tot =M⊥

wat−Q(t)dQ(t), where we introduced the difference

dQ(t) = zQ,2(t)− zQ,1(t). For a potential difference between the electrodes of 0 V (shortcut

conditions), the total dipole in the direction perpendicular to the electrodes vanishes, and

we obtain, for each configuration,

M⊥
wat(t) = Q(t)dQ(t) . (19)

Since the electrodes are treated as perfect metal (for the description of screening within

the metal with fluctuating charges in classical MD simulations, see Ref. 15), we expect the

charge to be localized mainly in the first atomic plane in contact with the liquid, regardless



FIG. S14. Correlation plots between the total charge and the components of total dipole moment of

water, for all the considered systems. The total dipole moment values are reported as fluctuations

(instantaneous value subtracted by the ensemble average value). Each row represents a system,

identified by the electrode-electrode distance (reported on the left). The three columns report

the x, y and z component of Mwat, respectively. In the third column we also report the effective

electrode-electrode distance found from the slope of a line fitted on the data.

of the charge distribution within that first plane. Therefore, one can approximate dQ(t) by



the time-independent distance d between the first atomic planes of both electrodes. Fig. S14

demonstrates that the resulting proportionality between δMz = M⊥
wat − ⟨M⊥

wat⟩ = Mz and

Q(t) is very well satisfied and that the effective distance deff obtained from a linear fit of

the correlation corresponds to within less than 1% to the the actual distance d between the

first atomic planes of both electrodes. This figure shows in contrast no correlation between

the total charge of the electrodes and the parallel components of the total water dipole, as

expected.

Following Eq. 19 and the observation that dQ(t) ≈ d, one expects that the perpendicular

component of the total water dipole moment follows the same dynamics as the total electrode

charges. Fig. S15 shows an almost perfect match between the ACFs of Q and M⊥
wat, while

⟨δM
∥
wat(0)δM

∥
wat(t)⟩ decays more slowly and only marginally depends on d, with a slight

decrease in the relaxation time with increasing d, consistently with the results reported in

Ref 16.

FIG. S15. Autocorrelation functions of the dipole moment of the confined water slab, with com-

ponents M⊥
wat (solid lines) and M

∥
wat (dashed lines) perpendicular and parallel to the electrode

surfaces, and of the electrode charge Q (symbols), for the 4 considered inter-electrode distances

(colors). The uncertainty, quantified as the standard error from 10 blocks of each trajectory, is

shown as shaded areas for M⊥
wat and as error bars for Q; it is omitted for M

∥
wat for clarity.



B. Contributions to the total dipole moment

We run supplemental simulations for the system with d = 4.9 nm, where we split the

contributions to the total dipole moment in the perpendicular direction into that of the first

layer of water adsorbed on both electrodes (adlayer, madl) and that of other water molecules

(middle, mmid). In practice, we divide the system in three contiguous regions along the z

direction (with z = 0 and z = d corresponding to the atomic planes of two electrodes in

contact with the electrolyte):

• the range {0 < z ≤ zw} denotes the adlayer region of the electrolyte, which fully

includes the first density peak of water (we use zw = 4.0 Å);

• the range {zw < z ≤ d− zw} denotes the central region of the liquid (we also refer to

this region as bulk-like, even though it also contains some interfacial molecules beyond

the adlayer);

• the range {d− zw < z ≤ d} denotes the second adlayer region.

The assignment of each molecule to a given region is done according to the position of its

oxygen atom. For each region (adl. or mid.), the polarization is computed as

mregion =
Nw
∑

i=1
zi,O∈region

[qOzi,O + qH(zi,H1
+ zi,H2

)] , (20)

where the sum runs over all the molecules i with their oxygen atom in the adlayer (resp.

middle) region, q is the atomic charge and the labels refer to each element. The dynam-

ics of the two polarization contributions is analyzed by considering the autocorrelation

functions ⟨madl(0)madl(t)⟩ and ⟨mmid(0)mmid(t)⟩, as well as the cross-correlation function

⟨madl(0)mmid(t)⟩. For simplicity, we only consider one of the two adlayers in our analysis.

Fig. S16a compares the different partial polarization time correlation functions (normal-

ized by their initial value), which all display an oscillatory behaviour at short times that is

particularly prominent for the autocorrelation of madl and its cross-correlation with mmid.

Instead, the oscillations in the autocorrelations of the total polarization and that of the

middle region are more damped and are remarkably similar. This is because the number of

water molecules residing in the middle part is much larger than the ones in the adlayer (1998

against 161, on average), so that the middle region polarization is almost representative of



FIG. S16. Dynamical behaviour of the polarization components (see text for their definition). (a)

Comparison between the time auto- and cross-correlation functions of the partial and total dipole

moments, normalized by their initial value. (b) Negative second derivative, ϕ(t), of the auto- and

cross-correlation functions. The inset in (b) shows the power spectral density of ϕ(t) with the same

color coding as the main plot.

the global polarization behaviour. This imbalance is also reflected in the magnitude of the

polarization fluctuations, ⟨δm2
adl⟩ =2.0 e2Å2 and ⟨δm2

mid⟩ =89.2 e2Å2, respectively. These

results already suggest that the fluctuations of the total polarization are dominated by water

molecules beyond the adlayers.

In addition, the polarization of the adlayer water molecules oscillates at a higher frequency

than the other water molecules. The cross-correlation function ⟨madl(0)mmid(t)⟩ displays a

frequency similar to the autocorrelation of madl, but its phase appears to be shifted by ≈ π.

The oscillatory behaviour of the total dipole moment and bulk-like polarization is clearly

present but due to the stronger damping is not very evident and a deeper investigation is

required to treat this feature quantitatively, as discussed below. Note that, in all cases, the

time scale of oscillations is much shorter than the characteristic adsorption lifetime of water

molecules (≈ 14 ps [17]), thus they are not due to water molecules crossing the boundary

between the adlayer and middle regions.

In order to further analyze the oscillatory part, Fig. S16b shows the function ϕ(t) defined

as the negative second time derivative of the partial polarization correlation functions, which

highlights the change in curvature of the time correlation functions. All the curves display

a behaviour reminiscent of a damped oscillator, which we fit with exponentially damped



cos (or sin in the case of the cross-correlation) functions to determine the main oscillation

frequency. The adlayer water molecules resonate at 1.88×1014±3.9×1011 rad/s, while those

in the middle region resonate with a frequency of 1.33×1014 ± 1.4 × 1012 rad/s, matching

well with that of the peak in the magnitude of admittance (1.33×1014 rad/s for this specific

system). This shift is further illustrated in terms of power spectral density in the inset of

Fig. S16b, where we highlight the peak frequency for each polarization contribution.

Our results on the oscillation frequencies are in agreement with the ones obtained for

SPC/E water confined between neutral walls [16]. Thus, we follow the same interpretation

and assign the oscillations to the librational modes (rotations of water molecules around

a fixed orientation). Libration contributes to polarization fluctuations both in the adlayer

and in bulk-like water, although the latter is the dominant contribution to the the total

polarization. The origin of the shift to higher frequencies of the librational peak at the

interface could be due to the stiffer rotational potential felt by water molecules at the

adlayer, as already observed experimentally for water/air interfaces [18]. In fact, as seen in

a previous study [19], the water molecules in the adlayer on top of the gold surface tend to

form a (mostly) flat layer (see Fig. S17).

FIG. S17. Representative snapshots of the water/gold interface. (a) Side view. (b) Top view (only

water molecules in the adlayer are shown). Gold, hydrogen and oxygen atoms are shown in yellow,

white and red, respectively.

Fig. S17a further indicates that water molecules in contact with the first adlayer exhibit

dangling bonds, which may modify their dynamics with respect to bulk water. Performing

the same analysis by selecting only the water molecules in the second layer (not shown), we

find indeed a peak frequency of 1.65×1014±5.8×1011 rad/s, which is intermediate between



that for the adlayer and for “bulk-like” water. Nevertheless, these interfacial modifications

of the libration frequency do not significantly impact the total polarization fluctuations.

Overall, the present analysis clearly shows that the prominent peak in the admittance mag-

nitude at relatively high frequencies mainly arises from the librational dynamics of water

molecules that reside beyond the adlayer, even though the latter also contribute to a lesser

extent, with a relative weight which depends on the distance between the electrodes.

VII. EFFECT OF DISSOLVED IONS

Although being beyond the scope of this work, the contribution of dissolved ions to the

electrochemical properties is particularly relevant.

FIG. S18. Electrode charge time autocorrelation function ⟨δQ(0)δQ(t)⟩ in the case of pure water

(blue), and 1M NaCl solution (orange), as reported in Ref 15, for the system with d = 4.96 nm.

As mentioned in the main text, we noted that the presence of ions introduces additional

features to the charge dynamics, and, in particular, longer time scales. A first comparison

with the case of pure water reported in the present work can be made using the results

obtained for a very similar system, using the same microscopic model and a distance d =

4.96 nm, but with a 1 M NaCl solution, reported by Scalfi and coworkers in a previous study

on the effect of screening inside the metal on interfacial properties [15]. While this study



did not consider the electrochemical impedance, results were shown for the autocorrelation

function of the total electrode charge (see Fig. S18). The comparison between pure water

and salt solution confirms that the presence of ions leads to additional features, including

an increase in the initial value (corresponding to a larger capacitance) and a slow decay at

long times, which would translate into additional features at low-frequency in the impedance

spectrum. However, the noise at long time in the data reported from Ref. 15 prevents the

use of our method to evaluate the frequency-dependent impedance without additional data.
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