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Deterministic equivalent and error universality of deep random features learning

is manuscript considers the problem of learning a random Gaussian network function using a fully connected network with frozen intermediate layers and trainable readout layer. is problem can be seen as a natural generalization of the widely studied random features model to deeper architectures. First, we prove Gaussian universality of the test error in a ridge regression se ing where the learner and target networks share the same intermediate layers, and provide a sharp asymptotic formula for it. Establishing this result requires proving a deterministic equivalent for traces of the deep random features sample covariance matrices which can be of independent interest. Second, we conjecture the asymptotic Gaussian universality of the test error in the more general se ing of arbitrary convex losses and generic learner/target architectures. We provide extensive numerical evidence for this conjecture. In light of our results, we investigate the interplay between architecture design and implicit regularization.

Introduction

Despite the incredible practical progress in the applications of deep neural networks to almost all elds of knowledge, our current theoretical understanding thereof is still to a large extent incomplete. Recent progress on the theoretical front stemmed from the investigation of simpli ed se ings, which despite their limitations are o en able to capture some of the key properties of "real life" neural networks. A notable example is the recent stream of works on random features (RFs), originally introduced by [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF] as a computationally e cient approximation technique for kernel methods, but more recently studied as a surrogate model for two-layers neural networks in the lazy regime [START_REF] Chizat | On lazy training in di erentiable programming[END_REF][START_REF] Rey Pennington | Nonlinear random matrix theory for deep learning[END_REF][START_REF] Mei | e Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve[END_REF][START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF]. RFs are a particular instance of random neural networks, whose statistical properties have been investigated in a sizeable body of works [START_REF] Lee | Deep neural networks as gaussian processes[END_REF][START_REF] De | Gaussian process behaviour in wide deep neural networks[END_REF][START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF][START_REF] Zavatone | Exact marginal prior distributions of nite bayesian neural networks[END_REF][START_REF] Noci | Precise characterization of the prior predictive distribution of deep relu networks[END_REF]. e problem of training the readout layer of such networks has been addressed in the shallow (one hidden layer) case by [START_REF] Mei | e Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve[END_REF][START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF], who provide sharp asymptotic characterizations for the test error. A similar study in the generic deep case is, however, still missing. In this manuscript, we bridge this gap by considering the problem of learning the last layer of a deep, fully-connected random neural network, herea er referred to as the deep random features (dRF) model. More precisely, our main contributions in this manuscript are:

• In Section 3, we state eorem 3.3, which proves an asymptotic deterministic equivalent for the traces of the product of deterministic matrices with both conjugate kernel and sample covariance matrix of the layer-wise post-activations.

• As a consequence of m. 3.3, in Section 4 we derive a sharp asymptotic formula for the test error of the dRF model in the particular case where the target and learner networks share the same intermediate layers, and when the readout layer is trained with the squared loss. is result establishes the Gaussian equivalence of the test error for ridge regression in this se ing.

• Finally, we conjecture (and provide strong numerical evidence for) the Gaussian universality of the dRF model for general convex losses, and generic target/learner network architectures. More speci cally, we provide exact asymptotic formulas for the test error that leverage recent progress in high-dimensional statistics [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] and a closed-form formula for the population covariance of network activations appearing in [START_REF] Cui | Optimal learning of deep random networks of extensive-width[END_REF]. ese formulas show that in terms of second-order statistics, the dRF is equivalent to a linear network with noisy layers. We discuss how this e ective noise translates into a depth-induced implicit regularization in Section 5.

A GitHub repository with the code employed in the present work can be found here.

Related work

Random features were rst introduced by [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF]. e asymptotic spectral density of the single-layer conjugate kernel was characterized in [START_REF] Rey Pennington | Nonlinear random matrix theory for deep learning[END_REF][START_REF] Liao | On the spectrum of random features maps of high dimensional data[END_REF][START_REF] Benigni | Eigenvalue distribution of some nonlinear models of random matrices[END_REF]. Sharp asymptotics for the test error of the RF model appeared in [START_REF] Mei | e Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve[END_REF][START_REF] Mei | Generalization error of random feature and kernel methods: hypercontractivity and kernel matrix concentration[END_REF] for ridge regression, [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF][START_REF] Dhifallah | A precise performance analysis of learning with random features[END_REF] for general convex losses and [START_REF] Liang | A precise high-dimensional asymptotic theory for boosting and minimum-1-norm interpolated classi ers[END_REF][START_REF] Bosch | Double descent in random feature models: Precise asymptotic analysis for general convex regularization[END_REF] for other penalties. e implicit regularization of RFs was discussed in [START_REF] Jacot | Implicit regularization of random feature models[END_REF]. e RFs model has been studied in many di erent contexts as a proxy for understanding overparametrisation, e.g. in uncertainty quanti cation [START_REF] Clarté | A study of uncertainty quanti cation in overparametrized high-dimensional models[END_REF], ensembling [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF][START_REF] Loureiro | Fluctuations, bias, variance & ensemble of learners: Exact asymptotics for convex losses in high-dimension[END_REF], the training dynamics [START_REF] Bodin | Model, sample, and epoch-wise descents: exact solution of gradient ow in the random feature model[END_REF][START_REF] Bordelon | Learning curves for SGD on structured features[END_REF], but also to highlight the limitations of lazy training [START_REF] Ghorbani | Limitations of lazy training of twolayers neural network[END_REF][START_REF] Ghorbani | When do neural networks outperform kernel methods?[END_REF][START_REF] Yehudai | On the power and limitations of random features for understanding neural networks[END_REF][START_REF] Re Ne I | Classifying high-dimensional gaussian mixtures: Where kernel methods fail and neural networks succeed[END_REF];

Deep random networks were shown to converge to Gaussian processes in [START_REF] Lee | Deep neural networks as gaussian processes[END_REF][START_REF] De | Gaussian process behaviour in wide deep neural networks[END_REF]. ey were also studied in the context of inference in [START_REF] Manoel | Multi-layer generalized linear estimation[END_REF][START_REF] Gabrié | Entropy and mutual information in models of deep neural networks[END_REF], and as generative priors to inverse problems in [START_REF] Aubin | e spiked matrix model with generative priors[END_REF][START_REF] Hand | Phase retrieval under a generative prior[END_REF][START_REF] Aubin | Exact asymptotics for phase retrieval and compressed sensing with random generative priors[END_REF]. e distribution of outputs of deep random nets was characterized in [START_REF] Zavatone | Exact marginal prior distributions of nite bayesian neural networks[END_REF][START_REF] Noci | Precise characterization of the prior predictive distribution of deep relu networks[END_REF]. Close to our work is [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF], which provide exact formulas for the asymptotic spectral density and Stieltjes transform of the NTK and conjugate kernel in the proportional limit. Our formulas for the sample and population covariance are complementary to theirs. e test error of linear-width deep networks has been recently studied in [START_REF] Li | Statistical mechanics of deep linear neural networks: e backpropagating kernel renormalization[END_REF][START_REF] Ariosto | Statistical mechanics of deep learning beyond the in nite-width limit[END_REF] through the lens of Bayesian learning;

Gaussian universality of the test error for the RFs model was shown in [START_REF] Mei | e Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve[END_REF], conjectured to hold for general losses in [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF] and was proven in [START_REF] Goldt | e Gaussian equivalence of generative models for learning with shallow neural networks[END_REF][START_REF] Hu | Universality Laws for High-Dimensional Learning with Random Features[END_REF]. Gaussian universality has also been shown to hold for other classes of features, such as two-layer NTK [START_REF] Montanari | Universality of empirical risk minimization[END_REF], kernel features [START_REF] Jacot | Implicit regularization of random feature models[END_REF][START_REF] Bordelon | Learning curves for SGD on structured features[END_REF][START_REF] Cui | Large deviations for the perceptron model and consequences for active learning[END_REF][START_REF] Cui | Error rates for kernel classi cation under source and capacity conditions[END_REF]. [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] provided numerical evidence for Gaussian universality of more general feature maps, including pre-trained deep features.

Deterministic equivalents of sample covariance matrices have rst been established in [START_REF] Burda | Signal and noise in correlation matrix[END_REF][START_REF] Yin | Anisotropic local laws for random matrices[END_REF] for separable covariances, generalizing the seminal work [START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF] on the free convolution of spectra in an anisotropic sense. More recently these results have been extended to non-separable covariances, rst in tracial [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF], and then also in anisotropic sense [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF][START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF].

Setting & preliminaries

Let (x µ , y µ ) ∈ R d × Y, µ ∈ [n] := {1, • • • , n}, denote some training data, with x µ ∼ N(0 d , Ω 0 ) independently and y µ = f (x µ ) a (potentially random) target function. is work is concerned with characterising the learning performance of generalised linear estimation:

ŷ = σ θ ϕ(x) √ k , (1) 
with deep random features (dRF):

ϕ(x) := (ϕ L • ϕ L-1 • • • • • ϕ 2 • ϕ 1 ) L (x), (2) 
where the post-activations are given by:

ϕ (h) = σ 1 k -1 W • h , ∈ [L]. (3) 
e weights {W ∈ R k ×k -1 } ∈[L] are assumed to be independently drawn Gaussian matrices with i.i.d. entries (W ) ij ∼ N(0, ∆ ) ∀1 ≤ i ≤ k , 1 ≤ j ≤ k -1 . To alleviate notation, sometimes it will be convenient to denote k L = k. Only the readout weights θ ∈ R k in [START_REF] Rahimi | Random features for large-scale kernel machines[END_REF] are trained according to the usual regularized empirical risk minimization procedure:

θ = argmin θ∈R k n µ=1 (y µ , θ ϕ(x µ )) + λ 2 ||θ|| 2 , (4) 
where : Y × R → R + is a loss function, which we assume convex, and λ > 0 sets the regularization strength.

To assess the training and test performances of the empirical risk minimizer (4), we let g : Y × R → R + be any performance metric (e.g. the loss function itself or, in the case of classi cation, the probability of misclassifying), and de ne the test error: g ( θ) := E g(y, θ ϕ(x))

(5)

Our main goal in this work is to provide a sharp characterization of [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF] in the proportional asymptotic regime n, d, k -→ ∞ at xed O(1) ratios α := n /d and γ := k /d, for all layer index ∈ [L]. is requires a precise characterization of the sample and population covariances and the Gram matrices of the post-activations.

Background on sample covariance matrices

Marchenko-Pastur and free probability: We brie y introduce basic nomenclature on sample covariance matrices. For a random vector x ∈ R d with mean zero E x = 0 and covariance Σ := E xx ∈ R d×d , we call the matrix Σ := XX /n ∈ R d×d obtained from n independent copies x 1 , . . . , x n of x wri en in matrix form as X := (x 1 , . . . , x n ) the sample covariance matrix corresponding to the population covariance matrix Σ. e Gram matrix q Σ := X X/n ∈ R n×n has the same non-zero eigenvalues as the sample covariance matrix but unrelated eigenvectors. e systematic mathematical study of sample covariance and Gram matrices has a long history dating back to [START_REF] Wishart | e generalised product moment distribution in samples from a normal multivariate population[END_REF]. While in the "classical" statistical limit n → ∞ with d being xed the sample covariance matrix converges to the population covariance matrix Σ → Σ, in the proportional regime d ∼ n 1 the non-trivial asymptotic relationship between the spectra of Σ and Σ has rst been obtained in the seminal paper [START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF]: the empirical spectral density µ( Σ) := d -1 λ∈Spec( Σ) δ λ of Σ is approximately equal to the free multiplicative convolution of µ(Σ) and a Marchenko-Pastur distribution

µ c MP of aspect ratio c = d/n, µ( Σ) ≈ µ(Σ) µ d/n MP . (6) 
Here the free multiplicative convolution µ µ c MP may be de ned as the unique distribution ν whose Stieltjes transform m = m ν (z) := (x -z) -1 dν(x) satis es the scalar self-consistent equation

zm = z 1 -c -czm m µ z 1 -c -czm . (7) 
e spectral asymptotics (6) originally were obtained in the case of Gaussian X or, more generally, for separable correlations X = √ ΣY for some i.i.d. matrix Y ∈ R d×n . ese results were later extended [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF] to the general case under essentially optimal assumptions on concentrations of quadratic forms x Ax around their expectation Tr AΣ.

Deterministic equivalents: It has only been recognised much later [START_REF] Burda | Signal and noise in correlation matrix[END_REF][START_REF] Yin | Anisotropic local laws for random matrices[END_REF] that the relationship (6) between the asymptotic spectra of Σ and Σ, q Σ actually extends to eigenvectors as well, and that the resolvents G(z) := ( Σ -z) -1 , q G(z) := ( q Σ -z) -1 are asymptotically equal to deterministic equivalents

M (z) := - (Σ q m(z) + I d ) -1 z , | M (z) := q m(z)I n , (8) 
also in an anisotropic rather than just a tracial sense, highlighting that despite the simple relationship between their averaged traces

m(z) := m µ(Σ) µ c MP (z), q m(z) = c -1 z + c m(z),
the sample covariance and Gram matrices carry rather di erent non-spectral information. e anisoptric concentration of resolvents (or in physics terminology, the self-averaging) has again rst been obtained in the Gaussian or separable cases [START_REF] Burda | Signal and noise in correlation matrix[END_REF][START_REF] Yin | Anisotropic local laws for random matrices[END_REF]. e extension to general sample covariance matrices was only achieved much more recently [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF][START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] under Lipschitz concentration assumptions. In this work we speci cally use the deterministic equivalent for sample covariance matrices with general covariance from [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] and extend it to cover Gram matrices.

Application to the deep random features model: In this work we apply the general theory of anisotropic deterministic equivalents to the deep random features model. As discussed in Section 4, to prove error universality even for the simple ridge regression case, it is not enough to only consider the spectral convergence of the matrices, and a stronger result is warranted. e application of non-linear activation functions makes the model neither Gaussian nor separable, hence our analysis relies on the deterministic equivalents from [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] and our extension to Gram matrices, which appear naturally in the explicit error derivations.

Notation

We will adopt the following notation:

• For A ∈ R n×n we denote A := 1 /n tr A.

• For matrices A ∈ R n×m we denote the operator norm (with respect to the 2 -vector norm) by A , the max-norm by A max := max ij |A ij |, and the Frobenius norm by

A 2 F := ij |A ij | 2 .
• For any distribution µ we denote the push-forward under the map λ → aλ + b by a ⊗ µ ⊕ b in order to avoid confusion with e.g. the convex combination aµ 1 + (1 -a)µ 2 of measures µ 1 , µ 2 .

• We say that a sequence of random variables (X n ) n is stochastically dominated by another sequence (Y n ) n if for all small > 0 and large D < ∞ it holds that P (X n > n Y n ) ≤ n -D for large enough n, and in this case write X n ≺ Y n .

Deterministic equivalents

Consider the sequence of variances de ned by the recursion

r +1 = ∆ +1 E ξ∼N(0,r ) σ (ξ) 2 (9) 
with initial condition r 1 := ∆ 1 Ω0 /d and coe cients

κ 1 = 1 r E ξ∼N(0,r ) [ξσ (ξ)] , κ * = E ξ∼N(0,r ) [σ (ξ) 2 ] -r κ 1 2 . ( 10 
)

Rigorous results on the multi-layer sample covariance and Gram matrices

Our main result on the anisotropic deterministic equivalent of dRFs follows from iterating the following proposition. We consider a data matrix X 0 ∈ R d×n whose Gram matrix concentrates as

X 0 X 0 d -r 1 I max ≺ 1 √ n , X 0 √ d ≺ 1 (11) 
for some positive constant r 1 . e Assumption [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] for instance is satis ed if the columns x of X 0 are independent with mean E x = 0 and covariance E x x = Ω 0 ∈ R d×d (together with some mild assumptions on the fourth moments), in which case r 1 = Ω 0 is the normalised trace of the covariance. We then consider X 1 := σ 1 (W 1 X 0 / √ d) assuming the entries of W 1 ∈ R k1×d are iid. N(0, 1) elements, and σ 1 satis es E ξ∼N(0,1) σ 1 ( √ r 1 ξ) = 0 in the proportional n ∼ d ∼ k 1 regime. Upon changing σ 1 there is no loss in generality in assuming ∆ 1 = 1 which we do for notational convenience.

Proposition 3.1 (Deterministic equivalent for RF). For any deterministic A and Lipschitz-continuous activation function σ 1 , under the assumptions above, we have that, for any

z ∈ C \ R + A X 1 X 1 k 1 -z -1 -M (z) ≺ AA * 1/2 δ 9 √ n , and 
A X 1 X 1 k 1 -z -1 -A q m(z) ≺ AA * 1/2 δ 9 √ n ,
where δ := dist(z, R + ),

-z M (z) := q m(z)Σ lin + I -1
,

Σ lin := (κ 1 1 ) 2 X 0 X 0 d + (κ 1 * ) 2 I, (12) 
and

m(z) := m µ(Σ lin ) µ n/k 1 MP (z), q m(z) = n -k 1 nz + n k 1 m(z).
Furthermore, Assumption (11) holds true with X 0 , r 1 replaced by X 1 , r 2 , respectively, and we have that dist(-

1/ q m(z), R + ) ≥ dist(z, R + ). Remark 3.2.
e tracial version of Proposition 3.1 has appeared multiple times in the literature, e.g. [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF]. It implies that the spectrum µ 1 of X 1 X 1 /k 1 is approximately given by the free multiplicative convolution

µ 1 ≈ µ (κ 1 1 ) 2 X 0 X 0 d + (κ 1 * ) 2 I µ n/k1 MP = µ (κ 1 1 ) 2 X 0 X 0 d δ (κ 1 * ) 2 µ n/k1 MP . (13) 
In case c ≤ 1, i.e. when µ c MP has no atom at 0, it was shown in [START_REF] Benaych-Georges | On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolutions[END_REF] that

µ µ c MP c µ µ c MP = (µ µ ) µ c MP ( 14 
)
which allows to simplify [START_REF] Liao | On the spectrum of random features maps of high dimensional data[END_REF]. Here c is the rectangular free convolution which models the distribution of singular values of the addition of two free rectangular random matrices, and the square-root is to be understood as the push-forward of the square-root map. Applying ( 14) to ( 13) yields

µ 1 ≈ κ 1 1 ⊗ µ 0 µ n/k1 MP n/k1 κ 1 * ⊗ µ n/k1 MP , (15) 
suggesting that the non-zero singular values of X 1 / √ k can be modeled by the non-zero singular values of the Gaussian equivalent model:

c W X 0 + c W (16) 
for some suitably chosen constants c , c and independent Gaussian matrices W, W .

e last assertion of Proposition 3.1 allows to iterate over an arbitrary (but nite) number of layers. Indeed, a er one layer we have

X 1 X 1 k 1 -z 1 -1 ≈ -q m(z 1 )z 1 Σ lin -z 1 -1 = c 1 X 0 X 0 k 0 -z 0 -1 , (17) 
using the de nitions from eorem 3.3 for c 1 , z 0 below. eorem 3.3 (Deterministic equivalent for dRF). For any deterministic A and Lipschitz-continious activation functions σ 1 , . . . , σ satisfying E ξ∼N(0,1) σ m ( √ r m ξ) = 0, under the Assumption (11) above, we have that for any z

∈ C \ R + A X X k -z -1 -c 1 • • • c q m 0 A ≺ AA * 1/2 δ 9 √ n and that A X X k -z -1 -q m A ≺ AA * 1/2 δ 9 √ n ,
where δ := dist(z , R + ), and we recursively de ne

Σ -1 lin := (κ 1 ) 2 X -1 X -1 k -1 + (κ * ) 2 I, q m := n -k nz + n k m µ(Σ -1 lin ) µ n/k MP (z ) - 1 c := q m z (κ 1 ) 2 , z -1 := c z - κ * κ 1 2 (18) 
for ≥ 1 and nally

q m 0 := d -n nz 0 + d 2 n 2 m µ(Ω0) µ d/n MP d n z 0 . (19) 
Proofs of Proposition 3.1 and eorem 3.3 are given in App. A.

Remark 3.4. e same iteration argument has appeared before in [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF]. e main di erence to our present work is the anisotropic nature of our estimate which allows to test both sample covariance, as well as Gram resolvent against arbitrary deterministic matrices. As we will discuss in the next section, this is crucial in order to provide closed-form asymptotics for the test error of the deep random features model.

Closed-formed formula for the population covariance

In Proposition 3.1 and eorem 3.3 we iteratively considered X X /k as a sample-covariance matrix with population covariance

E W X X k = E w σ X -1 w k -1 σ w X -1 k -1 ≈ Σ lin
and from this obtained formulas for the deterministic equivalents for both X X and X X . A more natural approach would be to consider X X /n as a sample covariance matrix with population covariance

Ω := E X0 X X n , (20) 
noting that the matrix X conditioned on W 1 , . . . , W has independent columns. eorem A.3 and Proposition A.4 apply also in this se ing, but lacking a rigorous expression for Ω the resulting deterministic equivalent is less descriptive than the one from eorem 3.3. A heuristic closed-form formula for the population covariance which is conjectured to be exact was recently derived in [START_REF] Cui | Optimal learning of deep random networks of extensive-width[END_REF]. We now discuss this result, and for the sake of completeness provide a derivation in Appendix App. B. Consider the sequence of matrices {Ω lin } de ned by the recursion

Ω lin +1 = κ ( +1)2 1 W +1 Ω lin W +1 k + κ ( +1)2 * I k +1 . (21) 
with Ω lin 0 := Ω 0 . Informally, Ω lin provides an asymptotic approximation of Ω in the sense that the normalized distance

||Ω lin -Ω || F / √ d is of order O( 1 / √ d).
Besides, the recursion [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF] implies that Ω lin can be expressed as a sum of products of Gaussian matrices (and transposes thereof), and a ords a straightforward way to derive an analytical expression its asymptotic spectral distribution. is derivation is presented in App. B.

It is an interesting question whether an approximate formula for the population covariance matrix like the one in Equation ( 21) can be obtained indirectly via eorem 3.3. ere is extensive literature on this inverse problem, i.e. how to infer spectral properties of the population covariance spectrum from the sample covariance spectrum, e.g. [START_REF] El | Spectrum estimation for large dimensional covariance matrices using random matrix theory[END_REF] but we leave this avenue to future work.

Consistency of eorem and the approximate population covariance

What we can note, however, is that Equation ( 21) is consistent with eorem 3.3. We demonstrate this in case of equal dimensions n = d = k 1 = • • • = k to avoid unnecessary technicalities due to the zero eigenvalues. We de ne

µ := µ X X k = q µ := µ X X n (22) 
and recall that Proposition 3.1 implies that

µ ≈ ((κ l 1 ) 2 ⊗ µ l-1 ⊕ (κ l * ) 2 ) µ MP . ( 23 
)
On the other hand (6) applied to the sample covariance matrix X X /n with population covariance Ω ≈ Ω lin implies that

q µ ≈ µ(Ω lin ) µ MP = µ (κ 1 ) 2 W Ω lin -1 W k -1 + (κ * ) 2 I k µ MP ≈ (κ 1 ) ⊗ µ(Ω lin -1 ) µ MP ⊕ (κ * ) 2 µ MP ≈ (κ 1 ) ⊗ q µ -1 ⊕ (κ * ) 2 µ MP , (24) 
demonstrating that both approaches lead to the same recursion. Here in the third step we applied [START_REF] Lee | Deep neural networks as gaussian processes[END_REF] to the sample covariance matrix Ω lin -1 W , and in the fourth step used the rst approximation for replaced by -1.

Gaussian universality of the test error

In the second part of this work, we discuss how the results on the asymptotic spectrum of the empirical and population covariances of the features can be used to provide sharp expressions for the test and training errors (5) when the labels are generated by a deep random neural network:

f (x µ ) = σ θ ϕ (x µ ) √ k . (25) 
e feature map ϕ denotes the composition ϕ L • ... • ϕ 1 of the L + 1 layers:

ϕ (x) = σ * 1 k -1 W • x ,
and θ ∈ R k is the last layer weights. To alleviate notations, we denote k := k L . e weight matrices {W } ∈[L ] have i.i.d Gaussian entries sampled from N(0, ∆ ). Note that we do not require the sequence of activations {σ } and widths {γ := k /d} to match with those of the learner dRF [START_REF] Chizat | On lazy training in di erentiable programming[END_REF]. We address in succession • e well-speci ed case where the target and learner networks share the same intermediate layers (i.e. same architecture, activations and weights) ϕ = ϕ , ∈ [L] with L = L, and the readout of the dRF is trained using ridge regression. is is equivalent to the interesting se ing of ridge regression on a linear target, with features drawn from a non-Gaussian distribution, resulting from the propagation of Gaussian data through several non-linear layers.

• e general case where the target and learner possess generically distinct architectures, activations and weights, and a generic convex loss.

In both cases, we provide a sharp asymptotic characterization of the test error. Furthermore, we establish the equality of the la er with the test error of an equivalent learning problem on Gaussian samples with matching population covariance, thereby showing the Gaussian universality of the test error. In the well-speci ed case, our results are rigorous, and make use of the deterministic equivalent provided by eorem 3.3. In the fully generic case, we formulate a conjecture, which we strongly support with nite-size numerical experiments.

Well-speci ed case

We rst establish the Gaussian universality of the test error of dRFs in the matched se ing ϕ = ϕ , for a readout layer trained using a square loss. is corresponds to Y = R, (y, ŷ) = 1 /2(y -ŷ) 2 . is case is particularly simple since the empirical risk minimization problem (4) admits the following closed form solution:

θ = 1 / √ k(λI k + 1 /kX L X L ) -1 X L y ( 26 
)
where we recall the reader X L ∈ R k×n is the matrix obtained by stacking the last layer features column-wise and y ∈ R n is the vector of labels. For a given target function, computing the test error boils down to a random matrix theory problem depending on variations of the trace of deterministic matrices times the resolvent of the features sample covariance matrices (c.f. App. C for a derivation):

g ( θ) = ∆ Ω L (λI k + 1 /kX L X L ) -1 + 1 -λ(λ -∆)∂ λ Ω L (λI k + 1 /kX L X L ) -1 (27) 
Applying eorem 3.3 yields the following corollary:

Corollary 4.1 (Ridge universality of matched target). Let λ > 0. In the asymptotic limit n, d, k -→ ∞ with xed O(1) ratios α = n /d, γ := k /d and under the assumptions of eorem 3.3, the asymptotic test error of the ridge estimator (26) on the target (25) with L = L * and ϕ * = ϕ and additive Gaussian noise with variance ∆ > 0 is given by:

g ( θ) k→∞ ----→ g = ∆ ( Ω L q m L (-λ) + 1) -λ(λ -∆) Ω L ∂ λ q m L (-λ) (28) 
where q m L can be recursively computed from (18) respectively. In particular, this implies Gaussian universality of the asymptotic mean-squared error in this model, since (28) exactly agrees with the asymptotic test error of ridge regression on Gaussian data x ∼ N(0 d , Ω L ) derived in [START_REF] Dobriban | High-dimensional asymptotics of prediction: Ridge regression and classi cation[END_REF]. A detailed derivation of ( 27) and Corollary 4.1 is given in App. C, together with a discussion of possible extensions to deterministic last-layer weights and general targets. Note that, while it is not needed to establish the Gaussian equivalence of ridge dRF regression in the well-speci ed case, the trace of the population covariance Ω L can be explicitly computed from the closed-form formula (21).

General case

Despite the major progress stemming from the application of the random matrix theory toolbox to learning problems, the application of the la er has been mostly limited to quadratic problems where a closed-form expression of the estimators, such as [START_REF] Ghorbani | When do neural networks outperform kernel methods?[END_REF], are available. Proving universality results akin to Corollary 4.1 beyond quadratic problems is a challenging task, which has recently been the subject of intense investigation. In the context of generalized linear estimation (4), universality of the test error for the L = 1 random features model under a generic convex loss function was heuristically studied in [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF], where the authors have shown that the asymptotic formula for the test error obtained under the Gaussian design assumption perfectly agreed with nite-size simulations with the true features. is Gaussian universality of the test error was later proven by [START_REF] Hu | Universality Laws for High-Dimensional Learning with Random Features[END_REF] by combining a Lindeberg interpolation scheme with a generalized central limit theorem. Our goal in the following is to provide an analogous contribution as [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF] to the case of multi-layer random features. is result builds on a rigorous, closed-form formula for the asymptotic test error of misspeci ed generalized linear estimation in the high-dimensional limit considered here, which was derived in [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF].

We show that in the high-dimensional limit the asymptotic test error for the model introduced in Section 2 is in the Gaussian universality class. More precisely, the test error of this model is asymptotically equivalent to the test error of an equivalent Gaussian covariate model (GCM) consisting of doing generalized linear estimation on a dataset Ď = {v µ , yµ } µ∈ [n] with labels yµ = f ( 1 / √ k θ u µ ) and jointly Gaussian covariates:

(u, v) ∼ N Ψ L Φ L L Φ L L Ω L (29) 
where we recall Ω L is the variance of the model features [START_REF] Clarté | A study of uncertainty quanti cation in overparametrized high-dimensional models[END_REF] and Φ ∈ R k ×k and Ψ ∈ R k ×k are the covariances between the model and target features and the target variance respectively:

Φ L L := E ϕ (x)ϕ(x) , Ψ L := E ϕ (x)ϕ (x) (30) 
is result adds to a stream of recent universality results in high-dimensional linear estimation [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF][START_REF] Montanari | Universality of empirical risk minimization[END_REF][START_REF] Gerace | Gaussian universality of linear classi ers with random labels in high-dimension[END_REF], and generalizes the random features universality of [START_REF] Mei | Generalization error of random feature and kernel methods: hypercontractivity and kernel matrix concentration[END_REF][START_REF] Goldt | e Gaussian equivalence of generative models for learning with shallow neural networks[END_REF][START_REF] Hu | Universality Laws for High-Dimensional Learning with Random Features[END_REF] to L > 1. It can be summarized in the following conjecture: of matrices

Ψ lin +1 = κ ( +1) 1 2 W +1 Ψ lin W +1 k + κ ( +1) * 2 I k +1 (31) 
with the initial condition Ω lin 0 = Ψ lin 0 := Ω 0 . Further de ne

Φ lin L L = 1 =L κ 1 W k • Ω 0 • L =1 κ 1 W √ k . (32) 
e sequence {κ 1 κ * } L =1 is de ne by [START_REF] Noci | Precise characterization of the prior predictive distribution of deep relu networks[END_REF] with σ , ∆ . In the special case L = 0, which correspond to a single-index target function, the rst product in Φ lin L L should be replaced by I d . is particular target architecture is also known, in the case L = 1, as the hidden manifold model [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF][START_REF] Goldt | Modeling the in uence of data structure on learning in neural networks: e hidden manifold model[END_REF] and a ords a stylized model for structured data. e present paper generalizes these studies to arbitrary depths L. One is then equipped to formulate the following, stronger, conjecture: Conjecture 4.3. In the same limit as in Conjecture 4.2, the test error of the empirical risk minimizer (4) trained on D = {(x µ , y µ )} µ∈[n] with covariates x µ ∼ N(0 d , Ω 0 ) and labels from [START_REF] Ghorbani | Limitations of lazy training of twolayers neural network[END_REF] is equal to the one of a Gaussian covariate model [START_REF] Manoel | Multi-layer generalized linear estimation[END_REF] with the matrices Ψ lin L , Ω lin L , Φ lin L L (21), [START_REF] Hand | Phase retrieval under a generative prior[END_REF]. Conjecture 4.3 allows to give a fully analytical sharp asymptotic characterization of the test error, which we detail in App. D. Importantly, observe that it also a ords compact closed-form formulae for the population covariances Ω L , Φ L L , Ψ L . In particular the spectrum of Ψ lin L , Ω lin L can be analytically computed and compares excellently with empirical numerical simulations. We report those results in detail in App. B. Figs. 1 and 2 present the resulting theoretical curve and contrasts them to numerical simulations in dimensions d = 1000, revealing an excellent agreement.

Depth-induced implicit regularization

An informal yet extremely insightful takeaway from Conjecture 4.3, and in particular the closed-form expressions [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF], is that the activations in a deep non-linear dRF (2) share the same population statistics as the activations in a deep noisy linear network, with layers

ϕ lin (x) = κ 1 W x k -1 + κ * ξ , (33) 
where ξ ∼ N(0 k , I k ) is a Gaussian noise term. It is immediate to see that [START_REF] Aubin | Exact asymptotics for phase retrieval and compressed sensing with random generative priors[END_REF] lead to the same recursion as [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF]. is observation, which was made in the concomitant work [START_REF] Cui | Optimal learning of deep random networks of extensive-width[END_REF], essentially allows to equivalently think of the problem of learning using a dRF (2) as one of learning with linear noisy network. Indeed, Conjecture 4.3 essentially suggests that the asymptotic test error depends on the second-order statistics of the last layer acrivations, shared between the dRF and the equivalent linear network. Finally, it is worthy to stress that, while the learner dRF is deterministic conditional on the weights {W }, the equivalent linear network [START_REF] Aubin | Exact asymptotics for phase retrieval and compressed sensing with random generative priors[END_REF] is intrinsically stochastic in nature due to the e ective noise injection ξ at each layer. Statistical common sense dictates that this e ective noise injection has a regularizing e ect, by introducing some randomness in the learning, and helps mitigating over ing. Since the e ective noise is a product of the propagation through a non-linear layer, this suggest that adding random non linear layers induces an implicit regularization. We explore this intuition in this last section.

Observe rst that the equivalent noisy linear network [START_REF] Aubin | Exact asymptotics for phase retrieval and compressed sensing with random generative priors[END_REF] reduces to a simple shallow noisy linear model

ŷlin θ (x) = σ 1 √ k θ (A L • x +ξ L ) (34) 
where the e ective weight matrix A is

A L := L =1 κ 1 W k -1
and the e ective noise ξ L is Gaussian with covariance

C L ξ C L ξ = L-1 0=1 (κ 0 * ) 2 L = 0 +1 κ 1 W √ k -1 L = 0 +1 κ 1 W √ k -1 + (κ L * ) 2 I k .
e signal-plus-noise structure of the equivalent linear features [START_REF] Li | Statistical mechanics of deep linear neural networks: e backpropagating kernel renormalization[END_REF] has profound consequences on the level of the learning curves of the model (2):

• When α = 1, there are as many training samples as the dimension of the data d-dimensional submanifold A L x, resulting in a standard interpolation peak. e noise part ξ L induces an implicit regularization which helps mitigate the over ing.

• As α = γ L , the number of training samples matches the dimension k L of the noise, and the noise part is used to interpolate the training samples, resulting in another peak. is second peak is referred to as the non-linear peak by [START_REF] Stéphane D'ascoli | Triple descent and the two kinds of over ing: where and why do they appear?[END_REF].

erefore, there exists an interplay between the two peaks, with higher noise ξ L both helping to mitigate the linear peak, and aggravating the non-linear peak. e depth of the network plays a role in that it modulates the amplitudes of the signal part and the noise part, depending on the activation through the recursions [START_REF] Noci | Precise characterization of the prior predictive distribution of deep relu networks[END_REF].

We give two illustrations of the regularization e ect of depth in Fig. 3. Two activations are considered : σ a = tanh (for which the noise level, as measure by tr C L ξ decreases with depth) , and a very weakly non-linear activation

σ b (x) = 1.1 × sign(x) × min(2, |x|)
, corresponding to a linear function clipped between -2.2 and 2.2 (for which tr C L ξ increases with depth). Note that, because for σ a the e ective noise decreases with depth, the linear peak is aggravated for deeper networks, while the non-linear peak is simultaneously suppressed. Conversely, for σ b , additional layers introduce more noise and cause a higher non-linear peak, while the induced implicit regularization mitigates the linear peak. Further discussion about the e ect of architecture design on the generalization ability of dRFs ( 2) is provided in App. E.

Conclusion

We study the problem of learning a deep random network target function by training the readout layer of a deep network, with frozen random hidden layers (deep Random Features). We rst prove an asymptotic deterministic equivalent for the conjugate kernel and sample covariance of the activations in a deep Gaussian random networks. is result is leveraged to establish a sharp asymptotic characterization of the test error in the speci c case where the learner and teacher networks share the same intermediate layers, and the readout is learnt using a ridge loss. is proves the Gaussian universality of the test error of ridge regression on non-linear features corresponding to the last layer activations. In the fully generic case, we conjecture a sharp asymptotic formula for the test error, for fully general target/learner architectures and convex loss. e formulas suggest that the dRF behaves like a linear noisy network, characterized by an implicit regularization. We explore the consequences of this equivalence on the interplay between the architecture of the dRF and its generalization ability.

A Anisotropic deterministic equivalent A.1 Sample covariance matrices

Consider a random vector x ∈ R d with E x = 0 and E xx = Σ and for n ∈ N construct X = (x 1 , . . . , x n ) ∈ R d×n using n independent copies x 1 , . . . , x n of x. We are interested in the sample covariance and Gram matrices

Σ := XX n = 1 n n i=1 x i x i ∈ R d×d and q Σ := X X n = x i x j n n i,j=1 ∈ R n×n (35) 
and their resolvents

G(z) := ( Σ -z) -1 ∈ C d×d and q G(z) := ( q Σ -z) -1 ∈ C n×n . ( 36 
)
e expectations of the sample covariance and Gram matrices are

E Σ = Σ, E q Σ = d n Σ I n , (37) 
where we introduced the averaged trace

A := m -1 Tr A for A ∈ R m×m .
Note that while the two resolvents behave di erently as matrices, their traces are related due to the fact that the non-zero eigenvalues of Σ and q Σ agree, whence

G(z) = n d q G(z) + n -d pz . (38) 
e classical result on normalised traces of sample covariance and Gram resolvents is the following variance estimate under essentially optimal conditions. eorem A.1 (Tracial convergence of sample covariance matrices with general population [START_REF] Bai | Large sample covariance matrices without independence structures in columns[END_REF]). Assume that Σ 1, d/n ∼ 1 and that

E x Ax d -E x Ax d 2 = E x Ax d -ΣA 2 = o( A ) (39) 
for all deterministic matrices A. en it holds that

E ( Σ -z) -1 -m(z) 2 = o(1), E ( q Σ -z) -1 -q m(z) 2 = o(1), as n, d → ∞, (40) 
for all xed z ∈ C \ R + , where q m = q m(z) is the unique solution to the scalar equation

1 - d n + z q m = - d n (Σ q m + 1) -1 . (41) 
and m(z

) := n d q m(z) + d -n d 1 -z (42) 
Here m is the solution to the Marchenko-Pastur equation ( 6) and the correspodning measure is the free multiplicative convolution of the empirical spectral measure µ(Σ) := d -1 λ∈Spec(Σ) δ λ of Σ and a Marchenko-Pastur distribution µ c MP of aspect ratio c = d/n. us, by Stieltjes inversion the result of eorem A.1 can be phrased as

µ X X n = µ( q Σ) ≈ d n µ(Σ) µ d/n MP + n -d n δ 0 , µ XX n = µ( Σ) ≈ µ(Σ) µ d/n MP ( 43 
)
in a weak and global sense. Note that we have the limits

lim c→∞ µ(Σ) µ c MP = δ 0 , lim c→0 µ(Σ) µ c MP = µ(Σ) (44) 
which are precisely the expected behaviour since for large c = d/n the rank n of XX grows much smaller than d and therefore the empirical measure µ( Σ) is concentrated on the origin, while for small c = d/n by the law of large numbers XX /n ≈ E XX /n = Σ.

A.2 Anisotropic deterministic equivalents e tracial result from eorem A.1 only allows to control the eigenvalues of Σ, q Σ but not the eigenvectors. ere has been extensive work on non-tracial deterministic equivalents of Σ, q Σ, either in the form of entrywise asymptotics

q G ij ≈ • • •, isotropic asymptotics x Gy ≈ • • • for deterministic vectors x, y or functional tracial asymptotics A G ≈ • • • for deterministic matrices A.
Any of these results contain non-trivial information on how G, q G behave as matrices in the asymptotic limit and can be used to infer information on eigenvectors.

For separable correlations an optimal local law in isotropic and tracial form has been obtained in [START_REF] Yin | Anisotropic local laws for random matrices[END_REF]: [START_REF] Yin | Anisotropic local laws for random matrices[END_REF], eorem 3.6). If X = Σ1/2 X for some matrix X with independent identically distributed entries 1 with mean 0 and variance 1, and the spectral density µ(Σ) µ d/n MP is regular 2 , then it holds that

eorem A.2 ([
( Σ -z) -1 -m(z) + ( q Σ -z) -1 -q m(z) ≺ 1 n Im z , (45) 
in tracial sense, and for any deterministic vectors x, y

x ( Σ -z) -1 -(-Σ q m(z)z -z) -1 y + x ( q Σ -z) -1 y -q m(z)x y ≺ x y √ n Im z (46) 
in isotropic sense.

Note that in particular, matrix G(z) asymptotically is equal to a resolvent

M (z) := -Σ q m(z)z -z -1 (47) 
of the population covariance Σ, while q G asymptotically is a scalar multiple of the identity. More recently a functional tracial local law (albeit with very much suboptimal dependence on the spectral parameter) for G has been obtained in [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF]: [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF], Proposition 2.4). If Σ ≤ C and X satis es, for some positive constants c, C, σ

eorem A.3 ([
P (|f (X) -E f (X)| ≥ t) ≤ Ce -c(t/σ) 2 ∀ 1-Lipschitz f : (R d×n , • F ) → (R, | • |), (48) 
we have that for all deterministic matrices A and |z| 1 with high probability 3 .

A( Σ -z) -1 -A(-q m(z)zΣ -z) -1 ≤ AA * log n n dist(z, R + ) 9 , (49) 
where q m = q m(z) is the unique solution to the scalar equation

1 - d n + z q m = - d n (Σ q m + 1) -1 . (50) 
Note that the functional tracial formulation with convergence rate 1/n and error in terms of the Frobenius norm of A automatically includes an isotropic local law as a special case. Indeed, for A = xy it follows that

y ( Σ -z) -1 -(-q mzΣ -z) -1 x ≺ x y √ nδ 9 , (51) 
where we denote here and in the future δ ≡ δ(z) := dist(z, R + ). In this work we extend the functional tracial local law from [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] to the case of q G and obtain the following result:

Proposition A.4 (Functional local law for Gram matrices). Under the assumptions of eorem A.3 we have that

A( q Σ -z) -1 -q m(z) A ≺ AA * 1/2 δ 9 √ n . ( 52 
)
Note that the bound in Proposition A.4 is weaker than the bound in eorem A.3, and both results are very much weaker than eorem A.2 in the dependence on the spectral parameter. In light of related results it is natural to conjecture the following: Conjecture A.5. Assume that quadratic forms of x concentrate as

x Ax d -ΣA ≺ AA * 1/2 √ d (53) 
for any deterministic matrix A, and that Σ 1. en we have the functional tracial estimates

zA( Σ -z) -1 -A(-q m(z)Σ -I) -1 ≺ AA * 1/2 nδ A( q Σ -z) -1 -q m(z) A ≺ AA * 1/2 nδ . (54) 
Note that the Lipschitz concentration required in eorem A.3 is much stronger than the quadratic form concentration of Conjecture A.5 because it implies that the column vectors x of X satisfy

P (|f (x) -E f (x)| ≥ t) ≤ C exp - t 2 Cλ 2 f ( 55 
)
for all λ f -Lipschitz f : R d → R. erefore by Hanson-Wright ([54], m. 2.4)

P x Ax d -ΣA ≥ t AA * 1/2 √ d + t A d ≤ Ce -min{t 2 ,t}/C (56) 
and, since also A ≤ √ d AA * 1/2 , we have that with high probability

x Ax d -ΣA ≤ log d AA * 1/2 √ d + A d log d AA * 1/2 √ d . (57) 
Let us now turn to the proof of Proposition A.4. We will need the following result of Lipschitzness of the resolvent function, see e.g. [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] Lemma A.6. e map q G : X → X X/n -z -1 is (3δ -2 |z| 1/2 n -1/2 )-Lipschitz with respect to Frobenius norm.

Proof of Proposition A.4. Denote q m ≡ q m(z). By the Schur complement formula we have

q G ii = -z + z x i Ĝ(i) x i n -1 = -z + zc Σ Ĝ(i) -1 + O 1 √ nδ 9 = q m + O 1 √ nδ 9 , (58) 
using

Σ Ĝ(i) = Σ q G + 1 n Σ Ĝ(i) x i x i Ĝ(i) 1 + x i Ĝ(i) x i /n = - 1 z Σ( q mΣ + I) -1 + O 1 nδ 9 (59) 
and

z -c Σ( q mΣ + I) -1 = z - c q m + c q m 2 ( q mΣ + I) -1 = z - c q m - 1 q m 1 -c + z q m = - 1 q m ( 60 
)
in the last step. Next, for o -diagonal elements we have, again by Schur-complement, that

q G ij = z q G ii q G (i) jj x i Ĝ(ij) x j n = z q G ii q G jj - q G ij q G ji q G jj x i Ĝ(ij) x j n . (61) 
Here from the rst equality already a bound size n -1/2 δ -4 follows. us, together with Equation (58) it follows that

q G ij = q m 2 z x i Ĝ(ij) x j n + O 1 nδ 8 , (62) 
and therefore by mean-zero assumption that E q

G ij = O(1/nδ 8 )
. is together with Equation [START_REF] Eodor | Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression[END_REF] implies that

E q G -q m(z)I F = O 1 δ 9 . (63) 
We write

A q G -q m(z) A ≤ A q G -E A q G + E A q G -q m(z) A . (64) 
Note that from Lemma A.6 and Cauchy-Schwarz inequality, the map

X → A X X n -z is 3|z| 1/2 AA * 1/2 nδ 2 -Lipschitz, (65) therefore, 
A q G -E A q G ≺ |z| 1/2 AA * 1/2 nδ 2 (66) 
Also, from (63), we have

E A q G -q m(z) A ≤ 1 √ n AA * 1/2 E q G -q m(z)I F ≺ AA * 1/2 δ 9 √ n . ( 67 
)
e statement of the Proposition follows from (64), ( 66) and (67).

A.3 Random feature model

We consider a one-layer random feature model, with a scalar function σ 1 (x) applied entrywise.

σ 1 W 1 X 0 √ d , X 0 ∈ R d×n , W 1 ∈ R k1×d . ( 68 
)
We require the following assumptions.

Assumption A.7 (Gaussian weight). Entries of W 1 are iid. N(0, 1) elements.

Assumption A.8 (Orthogonal and bounded data). For a positive constant r 1 , X 0 satis es

X 0 X 0 d -r 1 I max ≺ 1 √ n , X 0 √ d op ≺ 1. (69) 
Assumption A.9 (Nonlinearity). e scalar function σ 1 is λ σ -Lipschitz and satis es σ 1 N(r1) = 0, where

f N(σ 2 ) := 1 √ 2πσ R f (x) exp - x 2 2σ 2 dx. ( 70 
)
Assumption A.10 (Proportional regime). For some constants c 1 , c 2 ,

c 1 n ≤ min{d, k 1 } ≤ max{d, k 1 } ≤ c 2 n, 0 < c 1 < c 2 < ∞. (71) 
For simplicity, we set the variance of the weight matrix to be equal to 1, although the results can be easily extended to arbitrary variance ∆, by scaling the function σ 1 .

Let wi denote the ith row of W 1 . We de ne

X 1 := σ 1 W 1 X 0 √ d = σ 1 X w1 √ d • • • σ 1 X wk1 √ d ∈ R k1×n (72) 
as a matrix with independent identically distributed rows and corresponding sample covariance matrix

Σ := X 1 X 1 k 1 = 1 k 1 σ 1 X 0 W 1 √ d σ 1 W 1 X 0 √ d . (73) 
We have (X 1 ) ij = σ 1 (ξ ij ), for ξ ij := w i x j ∼ N 0, x j 2 /d , where x j is the jth column of X 0 . In order to analyze functions of Gaussian variables, we use the following decomposition.

Lemma A.11 (Hermite decomposition). For any Lipschitz-continuous f and any σ > 0 we have the σ-Hermite expansion 4 ,

f (x) = k≥0 σ k k! He k x σ f (k) N(σ 2 ) (74)
where

He k (x) := (-1) k exp x 2 2 d k dx k exp - x 2 2 (75)
with He k (x) being the standard Hermite polynomials He 0 (x) = 1, He 1 (x) = x, He 2 (x) = x 2 -1, etc.

Note that the Hermite polynomials are pairwise orthogonal with respect to the Gaussian density. More precisely,

E He k (N 1 ) He j (N 2 ) = δ jk k! Cov(N 1 , N 2 ) k (76) for jointly Gaussian N 1 , N 2 with E N 1 = E N 2 = 0 and E N 2 1 = E N 2 2 = 1.
By applying (74) twice and using (76) we obtain the Parseval identity

f 2 N(σ) = k≥0 σ 2k k! f (k) 2 N(σ) . (77) 
In the proof of the deterministic equivalent for the deep random features model, we rely on techniques developed in [START_REF] Louart | Concentration of measure and large random matrices with an application to sample covariance matrices[END_REF][START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] which use concentration of measure theory to analyze random matrices. is approach works particularly well with common neural network architectures, where one can view transformations from layer to layer as Lipschitz mappings. e following Lemma establishes Lipschitzness of required functions.

Lemma A.12. Let f (x) be a λ-Lipschitz function. Let x, y, w ∈ R d , W ∈ R k×d and X ∈ R d×n . e following maps are Lipschitz, assuming f (x) is applied entrywise:

w → f x w √ d and W → f W X √ d , (78) 
with Lipschitz constants λ x/ √ d and λ X/ √ d respectively. Furthermore, under the event

Q := {|f (x w/ √ d)| 1 ∧ |f (y v/ √ d)| 1|}, the map w → f x w √ d f y w √ d ( 79 
)
is also Lipschitz with corresponding constant α λ x/

√ d + y/ √ d .
Proof. Lipschitz property of the rst and second map follows directly from Cauchy-Schwarz inequality. For the third map, since the product of Lipschitz functions is not necessarily Lipschitz, one needs to condition on the "good" event Q.

For simplicity, denote f (a, b)

:= f a b/ √ d . Under Q we can write, for some vectors u, v ∈ R d , |f (x, w)f (y, w) -f (x, v)f (y, v)| ≤ |f (x, w)f (y, w) -f (x, w)f (y, v)| + |f (x, w)f (y, v) -f (x, v)f (y, v)| = |f (x, w)||f (y, w) -f (y, v)| + |f (y, v)||f (x, w) -f (x, v)| λ x/ √ d + y/ √ d w -v . (80) 
Recall the notations

r 2 := σ 2 1 N(r1) κ 1 1 := σ 1 N(r1) κ 1 * := σ 2 1 N(r1) -r 1 (κ 1 1 ) 2 (81) 
for the proof of Proposition 

P σ x w √ d -E w σ x w √ d ≥ t ≤ e - t 2 2 x/ √ d 2 λ 2 σ . (83) 
Next, by Equation (90), for each i ∈ [n],

E w σ x w √ d = σ N( x 2 /d) = O(1/ √ n), (84) 
which implies that, with high probability,

σ x w √ d 1. ( 85 
)
Lemma A.14. For w ∼ N(0, I), the random variable σ x w

√ d σ w y √ d
is subgaussian with high probability. Its

subgaussian norm is O(λ σ ( x/ √ d + y/ √ d ))
Proof. Follows from Lemma A.13, Lemma A.12 and the Gaussian concentration theorem.

Lemma A.15. For matrices A, B ∈ R n×n , we have

1. AB F ≤ A B F , 2. Tr(AB) ≤ A F B F , 3. A -1 -B -1 = A -1 (B -A)B -1 , if A and B are invertible.
Lemma A. [START_REF] Dhifallah | A precise performance analysis of learning with random features[END_REF]. For any positive semi-de nite matrix Y and for any z ∈ C \ R + , we have

(Y -z) -1 ≤ dist(z, R + ) -1 . ( 86 
)
Proof of Proposition 3.1. De ne the population covariance matrix

Σ X := E w σ X 0 w √ d σ w X 0 √ d ∈ R n×n , w ∼ N(0, I). (87) 
Using Hermite series expansion (74) and (76), for xed X 0 , we can write an explicit form

Σ X = a≥0 1 a! D (a) X X 0 X 0 d a D (a) X , (88) 
where we de ned the diagonal matrix

D (a) X := diag σ (a) N( x1 2 /d) , . . . , σ (a) N( xn 2 /d) . (89) 
From Assumption A.8 and standard perturbation analysis it follows that

σ N( xi 2 /d) = σ N(r1) + O 1 √ n = O 1 √ n (90) and σ N( xi 2 /d) = σ N(r1) + O 1 √ n . (91) 
erefore, we can conclude that, for o -diagonal i = j,

(Σ X ) ij = a≥0 σ (a) N( xi 2 /d) σ (a) N( xj 2 /d) a! x i x j d a = σ 2 N(r1) x i x j d + O 1 n = (Σ lin ) ij + O 1 n (92) 
and for diagonal entries we can write directly from (87),

(Σ X ) ii = σ 2 N( xi 2 /d) = σ 2 N(r1) x i 2 d + σ 2 N(r1) -r 1 σ 2 N(r1) + O 1 √ n = (Σ lin ) ii + O 1 √ n . (93) 
Summing over all indices i, j we get that

Σ X -Σ lin F = O(1). (94) 
Let us de ne q m(Σ, z) as the solution to the following equation:

q m = d -n nz - d zn (Σ q m + 1) -1 , (95) 
and q m X := q m(Σ X , z), q m lin := q m(Σ lin , z). Consider the sequence of approximations (in a functional tracial sense):

X 1 X 1 k 1 -z -1 ≈ -q m X zΣ X -z -1 ≈ -q m lin zΣ X -z -1 ≈ -q m lin zΣ lin -z -1 . (96) 
e rst approximation follows from eorem A.3 applied to the matrix X = X 1 . e matrix X is concentrated due to Lemma A.12 and Gaussian concentration theorem.

e second approximation requires proving a stability property of the function q m(Σ, z). In particular, we write

A -q m X zΣ X -z -1 --q m lin zΣ X -z -1 = A -q m X zΣ X -z -1 (z( q m X -q m lin )Σ X ) -q m lin zΣ X -z -1 ≤ | q m X -q m lin | |z| 2 √ n AA * 1/2 q m X Σ X + I -1 q m lin Σ X + I -1 Σ X F ≤ |z| -2 | q m X -q m lin | AA * 1/2 . ( 97 
)
Now, we analyze the di erence between q m X and q m lin . According to (95), we can write

∆ := | q m X -q m lin | = d |z|n 2 Tr ( q m X Σ X + I) -1 -( q m lin Σ lin + I) -1 1 |z|n Tr ( q m X Σ X + I) -1 ( q m lin Σ lin -q m X Σ X )( q m X Σ lin + I) -1 ≤ 1 |z|n ( q m X Σ X + I) -1 F q m lin Σ lin -q m X Σ X F ( q m lin Σ lin + I) -1 ≤ 1 |z| √ n q m lin Σ lin -q m X Σ X F ≤ 1 |z| √ n q m lin Σ lin -q m lin Σ X F + d |z|n 3/2 q m lin Σ X -q m X Σ X F = | q m lin | |z| √ n Σ lin -Σ X F + Σ X |z| √ n ∆. ( 98 
)
Since Σ X |z| -1 n -1/2 1, we obtain using (94) that | q m Xq m lin | |z| -1 n -1/2 , and thus, for the second approximation,

A -q m X zΣ X -z -1 --q m lin zΣ X -z -1 1 δ 3 √ n AA * 1/2 . ( 99 
)
For the third approximation, we can write

A -q m lin zΣ X -z -1 --q m lin zΣ lin -z -1 = 1 |z|| q m lin | B,
where

B := A(Σ X + 1/ q m) -1 -A(Σ lin + 1/ q m) -1 ≤ 1 √ n AA * 1/2 (Σ X + 1/ q m) -1 -(Σ lin + 1/ q m) -1 F = 1 √ n AA * 1/2 (Σ X + 1/ q m) -1 (Σ lin -Σ X )(Σ lin + 1/ q m) -1 F ≺ AA * 1/2 δ 2 √ n , (100) 
where in the last inequality we used (94). Combining all the approximations together, we have proved that

A X 1 X 1 k 1 -z -1 --q m lin zΣ lin -z -1 ≺ AA * 1/2 δ 9 √ n . ( 101 
)
Next, we will verify that Assumption A.8 holds true when we replace matrix X 0 by X 1 and r 1 by r 2 . In particular, we want to show that, with high probability,

X 1 X 1 k 1 -r 2 I max = O 1 √ n . ( 102 
)
Note that Equations (92, 93) show that

Σ X -r 2 I max = O 1 √ n . ( 103 
)
We have that

X 1 X 1 k 1 ij = 1 k 1 k1 l=1 σ x i wl √ d σ w l x j √ d = 1 k 1 k1 l=1 Y l , where Y l := σ x i wl √ d σ w l x j √ d . (104) 
Note that Y l are independent random variables and from Lemma A.14 it follows that the subgaussian norm of Y l is O(λ σ X/ √ d ). erefore, from Hoe ding inequality, we have that

P X 1 X 1 k 1 ij -(Σ X ) ij ≥ t ≤ 2e - ct 2 k 1 λσ X/ √ d , (105) 
from which, applying union bound, we can deduce that

X 1 X 1 k 1 -Σ X max = O 1 √ n . ( 106 
)
Combining Equations ( 103) and (106) we get the required maximum norm bound. Next, with a standard ε-net argument (see, e.g. [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF], Proposition 3.4) we can show that

1 √ d X 1 -E X 1 ≺ 1. (107) Since √ n E X 1 max 1 it follows that E X 1 √ d ≤ nk 1 d E X 1 max k 1 d 1. (108) 
Finally, the claim that dist(-1/ q m(z), R + ) ≥ dist(z, R + ) follows elementarily from the xed point equation, see e.g. Proposition 6.2 in [START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF].

Proof of eorem 3.3.
is follows directly from iteratively applying Proposition 3.1 until we reach

X X k -z -1 ≈ c 1 • • • c X 0 X 0 d -z 0 -1 (109) 
in the last layer, where "≈" is to be understood in the sense of Proposition 3.1. Now, using that X 0 X 0 /n is a sample covariance matrix with population covariance matrix Ω 0 , it follows that

X 0 X 0 d -z 0 -1 = d n X 0 X 0 n - d n z 0 -1 ≈ d n d n m µ(Ω0) µ d/n MP d n z 0 + d -n dz 0 , (110) 
where we used Proposition A.4 once more in the nal step.

B Closed-form formulae for population covariances

B.1 Multi-Layer linearization

In this Appendix, we provide a (heuristic) derivation of closed-form expressions for the population covariances:

Ω L := E ϕ(x)ϕ(x) , Φ L L := E ϕ (x)ϕ(x) , Ψ L := E ϕ (x)ϕ (x) . ( 111 
)
is derivation has appeared in [START_REF] Cui | Optimal learning of deep random networks of extensive-width[END_REF], and we include it here for the sake of completeness.

Reminder of the results Consider the dRF (2) and target [START_REF] Ghorbani | Limitations of lazy training of twolayers neural network[END_REF], with data x ∼ N(0, Ω 0 ). Ω 0 is assumed to possess extensive Frobenius norm and trace, i.e. there exists constant c, c so that asymptotically (noting

k 0 = d) c < 1 d tr Ω 2 0 = 1 d ||Ω 0 || 2 F < c < ∞, c < 1 d tr Ω 0 < c < ∞. ( 112 
)
In terms of the limiting spectral density µ, these assumptions imply that the rst and second moments are nite and non zero. Consider the sequence of variances de ned by the recurrence r

( ) +1 = ∆ ( ) +1 E N(0,r ) z σ ( ) (z) 2 (113)
with the initial condition r ( )

1 = ∆ ( ) 1 
1 d tr Ω 0 ( 114 
)
and the GET [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF][START_REF] Goldt | e Gaussian equivalence of generative models for learning with shallow neural networks[END_REF][START_REF] Goldt | Modeling the in uence of data structure on learning in neural networks: e hidden manifold model[END_REF] coe cients

κ ( ) 1 = 1 r ( ) E N(0,r ) z zσ ( ) (z) κ ( ) * = E N(0,r ) z σ ( ) (z) 2 -r ( ) κ ( ) 1 2 . ( 115 
)
De ne the sequence of matrices

Ω lin +1 = κ 2 1 W +1 Ω lin W +1 k + κ 2 * I k +1 ( 116 
)
Ψ lin +1 = κ 2 1 W +1 Ψ lin W +1 k + κ 2 * I k +1 (117) 
with initialization

Ω lin 0 := Ψ lin 0 = Ω 0 , (118) 
and the matrix

Φ lin = r=1 s=1 κ r 1 κ s 1 × W • ... • W 1 • Σ • W 1 • ... • W -1 r=0 -1 s=0 k r k s . ( 119 
)
en

Ω L ≈ Ω lin L , Ψ L ≈ Ψ L and Φ ≈ Φ lin . A ≈ B is understood as ||A -B|| 2 F /d = O( 1 /d).
Example for L = 2 We give for concreteness an example for L = 1, L = 2 (RF teacher, 2-layer DRN student). e recursions (116)(119) for the student reads for L = 2

Ω 2 = (κ 1 1 ) 2 (κ 2 1 ) 2 W 2 W 1 ΣW 1 W 2 k 1 d + (κ 2 1 ) 2 (κ 1 * ) 2 W 2 W 2 k 1 + (κ 2 * ) 2 I k1 (120) 
Ψ 1 = (κ 1 1 ) 2 W 1 ΣW 1 d + (κ 1 * ) 2 I k 1 (121) Φ 1,2 = κ 1 1 κ 2 1 κ 1 1 W 1 ΣW 2 W 1 d √ k 1 ( 122 
)
Equivalent Linear Net Note that the linearization means one can think of the -th layer as a noisy linear layer,

ϕ (x) lin ≈ κ 1 1 k -1 W • x + κ * ξ (123)
with ξ ∈ R k an i.i.d Gaussian noise indepent layer from layer, and also independent between the teacher and student provided the teacher and student weights are drawn independently. Similarly for the teacher:

ϕ (x) ≈ κ 1 1 k -1 W • x + κ * ξ (124)
is provides a simple way to rederive the relations ( 116) and (119).

B.2 Derivation sketch for Ω L

We rst derive a relation between the covariance of the post-activations at two successive layers, and then iterate. Remark that since the computation for Ψ L is identical mutatis mutandis, we only address here Ω L .

Propagation through a single layer Consider the auxiliary single-layer problem

h(x) = σ 1 √ d W • x (125)
with x ∼ N(0, Σ). Suppose recursively that Σ statis es the properties ( 112). e population covariance of the postactivations h reads

Ω ij = h i (x)h j (x) x = e -1 2 u v    w i Σwi d w i Σwj d w i Σwj d w j Σwj d    -1   u v   det 2π w i Σwi d w i Σwj d w i Σwj d w j Σwj d σ(u)σ(v). (126) 
Note that have

E w w Σw d = ∆ d tr Σ ≡ r, (127) 
which by assumption is of order 1. Diagonalizing Σ = U ΛU and noting that U w is still Gaussian with independent entries,

V w w Σw d = 1 d 2 d i=1 λ 2 i V w (U w) 2 i = 2∆ d 2 tr Σ 2 = 2∆ d ||Σ|| 2 F d = O 1 d ( 128 
)
provided ||Σ|| 2 F /d is nite. We used the fact that the variance of a 1-degree of freedom χ 2 variable is 2. Plugging the de nition of r into the above yields, for i = j:

Ω ij = e -1 2 1 r 2 -O ( 1 d ) (ru 2 +rv 2 ) e 1 r 2 -O ( 1 d ) w i Σw j d uv 2π r 2 -O 1 d σ(u)σ(v) = e -1 2r z 2 √ 2πr σ(z) 2 + 1 r w i Σw j d e -1 2r z 2 √ 2πr zσ(z) 2 + O 1 d = κ 2 1 × w i Σw j d . ( 129 
)
on the diagonal (i = j), this becomes

Ω ii = e -1 2r z 2 √ 2πr σ(z) 2 = κ 2 * + rκ 2 1 ( 130 
)
yielding

Ω = κ 2 1 W ΣW d + κ 2 * I k (131) with κ 1 = 1 r E N(0,r) z [zσ(z)] κ 2 * = E N(0,r) z σ(z) 2 -r × κ 2 1 (132)
is extends the GET [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF] generalization used in [START_REF] Stéphane | On the interplay between data structure and loss function in classi cation problems[END_REF] to arbitrary input covariances.

Iterating layer to layer (115) and (116) follow by straightforward recursion from the single-layer results (132) and (131). One just need to connect (113) to the single-layer variance r (127).

r +1 = ∆ +1 1 k tr Ω = ∆ +1 1 k κ 1 2 tr W Ω -1 W k -1 + κ * 2 = ∆ +1 κ 1 2 r + κ * 2 = ∆ +1 E N(0,r ) z σ (z) 2 (133) 
We used

1 k tr W Ω -1 W k -1 = 1 k -1 k -1 i=1 λ -1 i 1 k U W W U ii = 1 k -1 k -1 i=1 λ -1 i ∆ = ∆ 1 k -1 tr Ω -1 = r (134) 
We used that W U is also an i.i.d Gaussian matrix. Finally, one must check that the assumption on Σ that ||Σ|| 2 F /d, tr Σ /d = O(1) carries over to Ω. Because W ΣW is positive semi de nite it is straightforward that

1 k ||κ 2 1 W ΣW d + κ 2 * I k || 2 F ≥ κ 2 * > 0. (135) 
e upper bound can be established using the triangle inequality and the submultiplicativity of the Frobenius norm, as

1 k ||κ 2 1 W ΣW d + κ 2 * I k || 2 F ≤ 1 k ||κ 2 1 W ΣW d || 2 F + κ 2 * ≤ κ 2 * + ||W || 4 F d 2 ||Σ|| 2 F k ≤ κ 2 * + c < ∞. (136) 
We used that ||W || 2 F /dk = 1 almost surely asymptotically. Moving on to the trace,

1 k Tr κ 2 1 W ΣW d + κ 2 * I k = κ 2 * + κ 2 1 kd Tr ΣW W . (137) 
Bounding

0 ≤ κ 2 1 kd Tr ΣW W = κ 2 1 kd k i=1 w i Σw i = κ 2 1 1 d Tr{Σ} ≤ κ 2 1 c , (138) 
where the last bound holds asymptotically almost surely.

B.3 Derivation sketch for Φ L L

We now turn to the cross-covariance Φ L L between the post-activations of two random networks with independent weights. Again, we rst establish a preliminary result, addressing the statistics of two correlated Gaussians propagating through non-linear layers with independently drawn weights.

Two Gaussians propagating through two layers Consider two jointly Gaussian variables

u ∈ R d , v ∈ R k (u, v) ∼ N Ψ Φ Φ Ω (139) 
each independently propagated through a non-linear layer

h (u) = σ 1 √ d W • u , h(v) = σ 1 √ d W • v . (140) 
e weights W ∈ R k ×d and W ∈ R k×d have independently sampled Gaussian entries, with respective variance ∆ and ∆. e i, j-th element of the cross-covariance Φ h can be expressed as

Φ h ij = h i (u)h j (v) u,v = e -1 2 x y     w i Σw i d w i Σwj √ d d w i Σwj √ d d w j Σwj d     -1   x y   det 2π   w i Σw i d w i Σwj √ d d w i Σwj √ d d w j Σwj d   σ (x)σ(y) (141) 
As before, the random variables w i Σw i /d and w j Σwj /d concentrate around their mean value

r ≡ ∆ d tr Ψ r ≡ ∆ d tr Ω (142) 
Plugging these de nitions into the above:

Φ h ij = e -1 2 1 r r-O ( 1 d ) (rx 2 +r y 2 ) e 1 r r-O ( 1 d ) w i Φw j √ d d xy 2π r r -O 1 d σ (x)σ(y) 
= e -1 2r z 2 √ 2πr σ (z) e -1 2r z 2 √ 2πr σ(z) + 1 r r w i Φw j √ d d e -1 2r z 2 √ 2πr zσ (z) e -1 2r z 2 √ 2πr zσ(z) + O 1 d := κ 1 κ 1 × w i Φw j √ d d (143) 
yielding

Φ h = κ 1 κ 1 W ΦW √ d d (144) 
with

κ 1 = 1 r E N(0,r) z [zσ(z)] κ 1 = 1 r E N(0,r ) z [zσ (z)] (145) 
One Gaussian propagating through one layer We will need another result, addressing again two correlated Gaussians, with only one propagating through a non-linear layer. Consider two jointly Gaussian variables

u ∈ R d , v ∈ R d (u, v) ∼ N Ψ Φ Φ Ω (146) 
with only v being propagated through a non linear layer

h(v) = σ 1 √ k W • v . (147) 
e entries W ∈ R k×d are independently sampled from a Gaussian distribution with variance ∆. e i, j-th element of the cross-covariance Φ between h(v) and u can be expressed as

Φ h ij = u i h j (v) u,v = e -1 2 x y     Ψ ii Φiwj √ k Φiwj √ k w j Σwj k     -1   x y   det 2π Ψ ii Φiwj √ k Φiwj √ k w j Σwj k xσ(y) (148) 
As before, the random variable w j Σwj /k concentrate around its mean value

r ≡ ∆ k tr Ω (149) 
Plugging this de nition into the above:

Φ h ij = e -1 2 1 Ψ ii r-O ( 1 d ) (rx 2 +Ψiiy 2 ) e 1 Ψ ii r-O ( 1 d ) Φ i w j √ k xy 2π Ψ ii r -O 1 d xσ(y) = e -1 2Ψ ii z 2 √ 2πΨ ii z e -1 2r z 2 √ 2πr σ(z) + 1 Ψ ii r Φ i w j √ k e -1 2Ψ ii z 2 √ 2πΨ ii z 2 e -1 2r z 2 √ 2πr zσ(z) + O 1 d := κ 1 × Φ i w j √ k (150) 
yielding

Φ h = κ 1 ΦW √ k (151) 
with

κ 1 = 1 r E N(0,r) z [zσ(z)] . (152) 
Iterating To establish (32), we iterate (144) min(L, L ) times, and followed by max(L, L ) -min(L, L ) iterations of the single layer relation (151), so as to nish propagating the data through the deeper (teacher [START_REF] Ghorbani | Limitations of lazy training of twolayers neural network[END_REF] or student (2)) network.

B.4 Spectrum of the covariances

In this section, we derive the spectrum of the linearized covariance [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF], which is a result of indenpendent interest.

Useful identities We remind rst some useful facts. For W ∈ R k ×k -1 with i.i.d Gaussian entries and Σ ∈ R k -1 ×k -1 a deterministic matrix admi ing a limiting spectral density µ -1 as k -1 → ∞, we have, from the fact that XX and X X share the same spectrum up to a zero eigenvalues,

µ 1 k -1 W ΣW = k -1 k × k k -1 ⊗ µ 1 k Σ 1 2 W W Σ 1 2 + k -k -1 k δ (153) e spectrum of 1 k Σ 1 2 W W Σ 1 2 is given by µ k -1 k MP µ -1 (154) 
where

µ k -1 k
MP is the Marcenko-Pastur distribution with aspect ratio k -1 /k . In terms of Stieltjes transforms:

m 1 k -1 W ΣW (z) = k -1 k 2 × m 1 k Σ 1 2 W W Σ 1 2 k -1 k z + k -1 k -1 1 z (155) 
Using the Marcenko-Pastur map and using the shorthand γ = k -1 k , we reach that the Stieltjes transform for

1 k -1 W ΣW is the solution of m(z) = (γ -1)xm(z) -γ zxm(z) + γ z dµ -1 (x) = γ -1 z - γ 2 z 1 xm(z) + γ dµ -1 (x) (156) 
Spectrum Ω lin e spectral distribution µ of Ω lin is then given by the recursion relation

µ = κ 1 2 ⊗ k -1 k × k k -1 ⊗ µ k -1 k MP µ -1 + k -k -1 k δ ⊕ κ * 2 (157) 
with initial condition µ 0 = µ Ω0 . is translates to

m (z) = γ -1 z -(κ * ) 2 - γ 2 κ 1 2 (z -(κ * ) 2 )m (z) m -1 - γ κ 1 2 m (z) . ( 158 
)
Numerical scheme We now discuss a numerical scheme to solve (158). Note that each m -1 is only evaluated at

z -1 ≡ - γ κ 1 2 m (z) (159) 
To solve this numerically we keep two arrays (m 0 , ..., m L ) and (z 0 , ...z L ), with m ≡ m (z ). For simplicity consider the case where the input covariance is identity, meaning

m 0 (z 0 ) = 1 1 -z 0 (160) 
en until convergence we iterate

∀0 ≤ i ≤ -1, z i ← - γ i+1 κ i 1 2 m i+1 (161) 
and keep

z L = λ + iη (162) 
with η = 0 + and λ the value at which we wish to evaluate the density µ L (λ). en we update

∀1 ≤ i ≤ L, m i ← γ i -1 -(γ i -1) 2 -4 mi-1γ 2 i (κ i 1 ) 2 z i -(κ i * ) 2 2 z i -(κ i * ) 2 (163) 
where we solved the update (158) directly, which is empirically yielding be er convergence than directly iterating (158). Fig. 4 shows the theoretical asymptotic distribution (157) for 3-layer RFs with sigmoid and sign activations, which is found to display excellent agreement with numerical estimations of the population covariance estimated with 10 5 independent samples. Fig. 5 shows the asymptotic distribution across L = 5 layers for a rectangular tanh network. In alignment to the observations of [START_REF] Fan | Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks[END_REF] for the conjugate kernel in similar models, the support of the distribution increases with depth, alongside an increase in the density of small eigenvalues. Note that the presence of small eigenvalues has been linked in a variety of se ings [START_REF] Mei | Generalization error of random feature and kernel methods: hypercontractivity and kernel matrix concentration[END_REF][START_REF] Cui | Generalization error rates in kernel regression: e crossover from the noiseless to noisy regime[END_REF][START_REF] Eodor | Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression[END_REF][START_REF] Hu | Sharp asymptotics of kernel ridge regression beyond the linear regime[END_REF] to an e ective additional implicit 2 regularization when using (2) to perform regression. is intuition is further discussed in Section 5. 

C Error universality of ridge regression

In this Appendix we provide a detailed derivation of ( 27) and Corollary 4.1. First, we start by recapping the se ing for this Corollary. Here, we are interested in characterizing the asymptotic mean-squared test error:

E gen. ( θ) = E y - θ ϕ(x) √ k 2 ( 164 
)
where ϕ : R d → R k are the L-layers random features de ned in (2) and θ ∈ R k is the ridge estimator:

θ = argmin   n µ=1 y µ - θ ϕ(x µ ) √ k 2 + λ 2 ||θ|| 2 2   = 1 √ k λI k + 1 k X L X L -1 X L y (165) 
where, following the notation in the main, we have de ned the features matrix X L ∈ R k×n by stacking together ϕ(x µ ) column-wise and the label vector y ∈ R n . In particular, in Corollary 4.1 we focus in the case where the labels are generated, up to additive Gaussian noise, by a L-layers random features target with the same architecture. Explicitly, this can be wri en as:

y µ = θ ϕ(x µ ) √ k + z µ (166)
where θ ∼ N(0 k , I k ) and z µ ∼ N(0, ∆) independently. Note that, for the purposes of the discussion here we do not need to assume the inputs x µ ∈ R d are Gaussian, but only that the data matrix X 0 ∈ R d×n satis es the concentration condition [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF]. In particular, this implies that the results in this Appendix hold for the test error (164) conditionally on the training inputs X 0 . From here, the computation is standard, and closely follows other works deriving closed-form asymptotics for ridge regression under di erent assumptions, e.g. [START_REF] Dobriban | High-dimensional asymptotics of prediction: Ridge regression and classi cation[END_REF][START_REF] Karoui | On robust regression with high-dimensional predictors[END_REF][START_REF] Wu | On the optimal weighted 2 regularization in overparameterized linear regression[END_REF][START_REF] Hastie | Surprises in high-dimensional ridgeless least squares interpolation[END_REF]. First, note we can rewrite:

E gen. ( θ) = E z,θ ,z,x θ ϕ(x) √ k + z - θ ϕ(x) √ k 2 (a) = 1 k E ,z,θ ( θ -θ ) E x ϕ(x)ϕ(x) ( θ -θ ) + ∆ (b) = 1 k E z,θ ( θ -θ ) Ω L ( θ -θ ) (167) 
where in (a) we used the independence of the test sample took the z average explicitly, and in (b) we have used the de nition (87). Focusing on:

θ -θ = 1 / √ k λI k + 1 /kX L X L -1 X L ( 1 / √ kX L θ + z) -θ = λI k + 1 /kX L X L -1 1 /kX L X L -I k θ + 1 / √ k λI k + 1 /kX L X L -1 X z ( 168 
) (c) = -λ λI k + 1 /kX L X L -1 θ + 1 / √ k λI k + 1 /kX L X L -1 X z (169) 
where in (c) we have used the following version of the Woodbury identity:

λ λI k + 1 /kX L X L -1 = I k -1 /k λI k + 1 /kX L X L -1 X L X L (170) 
Inserting the above in (167):

E gen. ( θ) = λ 2 /k E θ θ λI k + 1 /kX L X L -1 Ω L λI k + 1 /kX L X L -1 θ + + 1 /k 2 E z z X L λI k + 1 /kX L X L -1 Ω L λI k + 1 /kX L X L -1 X L z + ∆ (d) = λ 2 λI k + 1 /kX L X L -1 Ω L λI k + 1 /kX L X L -1 + + ∆ 1 /kX L X L λI k + 1 /kX L X L -1 Ω L λI k + 1 /kX L X L -1 + ∆ (171) 
where in (d) we took the expectations over the noise and target weights and used the de nition • ≡ 1 /k tr(•) with the cyclicity of the trace. We can put the expression above in a shape in which eorem 3.3 apply by adding and subtracting λI k to 1 /kX L X L the second trace term. is leads to the expression [START_REF] Yehudai | On the power and limitations of random features for understanding neural networks[END_REF] quoted in the main text:

E gen. ( θ) = ∆ Ω L (λI k + 1 /kX L X L ) -1 + 1 + λ(λ -∆) Ω L (λI k + 1 /kX L X L ) -2 = ∆ Ω L (λI k + 1 /kX L X L ) -1 + 1 -λ(λ -∆)∂ λ Ω L (λI k + 1 /kX L X L ) -1 (172) 
Note that the last expression requires applying eorem 3.3 to the derivative of the resolvent. In general, this can be justi ed by writing a squared resolvent G(z) 2 = (H -z) -2 of some non-negative matrix H ≥ 0 in terms of a Cauchy-integral

G(z) 2 = G (z) = 1 2πi γ 1 (w -z) 2 G(w) dw, ( 173 
)
where γ is any contour around z not crossing R + . In this way some local law of the type | A(G -M ) | ≺ dist(z, R + ) -k can be transferred to the derivative as

A(G (z) -M (z) = 1 2πi γ 1 (w -z) 2 A(G(w) -M (w)) dw = O ≺ dist(z, R + ) k+1 , (174) 
by choosing γ to be a small circle of radius dist(z, R + )/2 around z, using that the deterministic equivalent is also holomorphic away from R + . erefore, in the high-dimensional limit where n, k , d → ∞ at xed ratios α = n /d and γ = k /d, under the assumptions of eorem 3.3 for the input data X 0 ∈ R d×n [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] and the architecture of the deep random features and for λ > 05 we can apply eorem 3.3 to write the asymptotic limit of the test error:

lim k→∞ E gen. ( θ) = E gen. (λ, ∆, α, γ , κ 1 , κ ) ≡ ∆ ( Ω L q m L (-λ) + 1) -λ(λ -∆) Ω L ∂ λ q m L (-λ) (175) 
where q m L (z) can be computed recursively from [START_REF] Bosch | Double descent in random feature models: Precise asymptotic analysis for general convex regularization[END_REF] for a given regularization strength λ > 0, noise level ∆ > 0, sample complexity α > 0 and features architecture (γ , σ ) ∈[L] . On the other hand, it follows from the recursion (21) that the trace of the last-layer covariance Ω L admits the compact expression

Ω L = L-1 =1 κ * 2 L = +1 κ 1 2 ∆ + κ L * 2 + 1 d Ω 0 L =1 κ 1 2 ∆ (176)
in terms only of the coe cients [START_REF] Noci | Precise characterization of the prior predictive distribution of deep relu networks[END_REF]. Note that (175) agrees exactly with the formula for the asymptotic test error of ridge regression on a equivalent Gaussian dataset D = {(v µ , y µ )} µ∈[n] :

y µ = θ v µ √ k + z µ , v µ ∼ N(0 k , Ω L ). (177) 
which, to our best knowledge, was rst derived in [START_REF] Dobriban | High-dimensional asymptotics of prediction: Ridge regression and classi cation[END_REF]. is establishes the Gaussian universality of the asymptotic test error for this model.

C.1 Possible extensions

We now discuss some possible extensions of the universality result above. ey require, however, a more involved analysis, which we leave for future work. Our goal here is simply to highlight other possible applications of our deterministic equivalent in m. 3.3.

Deterministic last-layer weights:

e rst extension is to generalize the result above to deterministic last layer weights θ . Indeed, [START_REF] Wei | More than a toy: Random matrix models predict how real-world neural representations generalize[END_REF] shows that for ridge regression on a deterministic target y µ = 1 / √ k θ ϕ(x µ )6 , the test error can be asymptotically estimated from the generalized cross-validation (GCV) estimator, de ned as:

GCV λ = λ (λI k + ΩL ) -1 E train. ( θ) (178) 
where ΩL = 1 /nX L X L is the sample covariance matrix of the features and E train. ( θ) is the training error associated to the ridge estimator:

E train. ( θ) = 1 n n µ=1 y µ - θ ϕ(x µ ) √ k 2 (179) 
In particular, it is shown that:

eorem C.1 ( m. 8 of [START_REF] Wei | More than a toy: Random matrix models predict how real-world neural representations generalize[END_REF]). Assume that

X L X L n -z -1 -q m(z) + v X L X L zn -I -1 + Ω L q m(z) + 1 -1 v ≺ Im q m(z) √ n Im z , (180) 
for all deterministic vectors v with v Ω L v ≤ 1, where

q m(z) = k L -n nz + k L n m µ(Ω L ) µ k L /n MP (z). (181) 
en for all λ > 0 it holds that

GCV λ -E gen. ( θ) n -1 /2+o(1) θ Ω L θ ||Ω L || op. λ + tr Ω L λn 3 /2 (182) 
Applying eorem A.3 for xed weights W 1 , . . . , W L shows 7 that assumption (180) is satis ed in the proportional regime k L ∼ n, up to a worse z-dependence of the error dist(z, R + ) -9 rather than (Im q m(z)/ Im z) 1/2 , and only for bounded vectors v 1. Instead, our result eorem 3.3 proves a preliminary version of (180) with an explicit deterministic equivalent only depending on the input population covariance Ω 0 rather than the output population covariance Ω L , at the price of having an error which is larger by a factor of √ n. It is an interesting question whether our error rates can be improved to imply Equation (180) which is le for future work.

General case: As discussed in the introduction, in the general case we are interested in a target:

f (x µ ) = 1 √ k θ ϕ (x µ ), θ ∼ N(0 k , I k ), (183) 
where the L multi-layer random features ϕ : R d → R k are not necessarily the same as the L multi-layer random features ϕ : R d → R k . As discussed in the introduction, this contains as a special case the hidden-manifold model (HMM), introduced in [START_REF] Goldt | Modeling the in uence of data structure on learning in neural networks: e hidden manifold model[END_REF] as a model for structured high-dimensional data where the labels depend only on the coordinates of a lower-dimensional "latent space". While in Section 4 we provide an exact but heuristic formula to compute the error in this case (valid for arbitrary convex losses), the challenge in proving it with random matrix theory methods in the case of ridge regression comes from the fact that this is a mismatched model. Indeed, naively writing the expression for the test error in this case:

E gen. ( θ) = E θ ,x θ ϕ (x) √ k + z - θ ϕ(x) √ k 2 = Ψ L + 2 √ k k E θ θ Φ L L θ + 1 k E θ θ Ω L θ (184) 
where we recall the reader of the de nitions:

Ψ = E h (x)h (x) , Φ = E h (x)h (x) . (185) 
Indeed, applying m. 3.3 to the expression above is not as straightforward as above. To see this, focus on the second term:

E θ θ Φ L L θ = tr Φ L L (λI k + 1 /kX L X L ) -1 X L X L (186) 
where we de ned the target feature matrix X L ∈ R k ×n with columns given by ϕ(x µ ) ∈ R k . is would, naively, require a more re ned deterministic equivalent than m. 3.3 provides. Possible alternative approaches would be to rewrite the misspeci cation as an e ective additive noise (e.g. as in Appendix B of [START_REF] Clarté | A study of uncertainty quanti cation in overparametrized high-dimensional models[END_REF]) and derive a local-law akin to Assumption 180 with a control over the noise (see Appendix B of [START_REF] Wei | More than a toy: Random matrix models predict how real-world neural representations generalize[END_REF] for a discussion) or to use the linear pencil method as in [START_REF] Mei | e Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve[END_REF]. is provides an interesting avenue for future work.

D Exact asymptotics for the general case

In this appendix, we detail the sharp asymptotic characterization for the test error of the dRF (2) on a deep random network target [START_REF] Ghorbani | Limitations of lazy training of twolayers neural network[END_REF], for regression (Fig. 1) and classi cation (Fig. 2). e backbone of the derivation is the theorem of [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF], which fully characterizes the test error of the GCM (29) in terms of the covariance matrices Ψ L , Ω L and Φ L L . In the original work of [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF], these matrices for the dRF model had to be estimated numerically through a Monte-Carlo algorithm. In the present work however, the closed-form expressions a orded by ( 21), ( 31) and ( 32), which we remind in the next subsection, now a ord a way to access fully analytical formulas. We successively detail these characterizations for ridge regression and logistic regression readouts.

D.1 Reminder of second-order statistics of network activations

Before providing detailed asymptotic characterizations for the test error of ridge and logistic regression, we rst provide a reminder for the expressions of the linearized matrices Ψ lin L , Ω lin L and Φ lin L L [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF][START_REF] Aubin | e spiked matrix model with generative priors[END_REF][START_REF] Gabrié | Entropy and mutual information in models of deep neural networks[END_REF]. Using conjecture 4.3, these matrices can then be used in the formulas of [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] to access fully analytical formulas for the test errors, in terms only of the target network weights [START_REF] Ghorbani | Limitations of lazy training of twolayers neural network[END_REF] and the coe cients [START_REF] Noci | Precise characterization of the prior predictive distribution of deep relu networks[END_REF]. e following expressions follow from expliciting the solution of the recursions [START_REF] Stéphane | Double trouble in double descent: Bias and variance(s) in the lazy regime[END_REF][START_REF] Aubin | e spiked matrix model with generative priors[END_REF][START_REF] Gabrié | Entropy and mutual information in models of deep neural networks[END_REF])

Ω lin L = L =1 κ 1 W k -1 Ω 0 L =1 κ 1 W k -1 + L-1 =1 κ * 2 L = +1 κ 1 W k -1 Ω 0 L = +1 κ 1 W k -1 + κ L * 2 I k L (187) 
Ψ lin L = L =1 κ 1 W k -1 Ω 0 L =1 κ 1 W k -1 + L -1 =1 κ * 2 L = +1 κ 1 W k -1 Ω 0 L = +1 κ 1 W k -1 + κ L * 2 I k L (188) 
Φ lin LL = 1 =L κ 1 W k • Ω 0 • L =1 κ 1 W √ k (189) 
In the special case where the teacher has depth L = 0 (i.e. possesses an architecture with no hidden layer), the above expression reduce to

Ψ lin 0 = Ω 0 (190) Φ lin LL = Ω 0 • L =1 κ 1 W √ k . (191) 
e L = 0, L = 1 case has been studied in the literature [START_REF] Gerace | Generalisation error in learning with random features and the hidden manifold model[END_REF][START_REF] Goldt | Modeling the in uence of data structure on learning in neural networks: e hidden manifold model[END_REF] as the Hidden Manifold Model. e present work encompasses the analysis of its generalization to deep learners with L > 1 hidden layers.

D.2 Ridge regression

We consider the supervised learning problem of training the readout weights θ of the dRF (2) on a dataset D = {x µ , y µ } n µ=1 , with x µ ∼ N(0 d , Ω 0 ) independently. e labels are given by a deep random network

y µ = θ ϕ (x µ ) k L + z µ , (192) 
where z µ ∼ N(0, ∆) is a Gaussian additive noise and the teacher feature map is

ϕ (x) = ϕ L • ... • ϕ 1 (x). (193) 
Note that compared to (25), we have adopted the notation θ := W L +1 ∈ R k L for the sake of clarity. De ning

ρ := θ Ψ L θ k L , (194) 
We consider the problem training the last layer θ of the learner dRF (2) with ridge regression, by minimizing the risk

θ = argmin θ n µ=1 y µ - θ ϕ(x µ ) √ k L 2 + λ 2 ||θ|| 2 . ( 195 
)
Building on the theorem of [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] and conjecture 4.3, the mean squared error achieved by this ERM algorithm is given by

g := E D E x∼N(0 d ,Ω0) f (x) - θ ϕ(x) √ k L 2 = ρ + q -2m, (196) 
with q, m the solutions of the system of equations

       V = 1 γ L α 1+V q = 1 γ L α ρ+q-2m (1+V ) 2 m = 1 √ γ L γ L α 1+V ,              V = 1 k L tr λI d + V Ω lin L -1 Ω lin L q = 1 k L tr qΩ lin L + m2 Φ lin LL θ θ Φ lin LL Ω lin L λI d + V Ω lin L -2 m = γ L γ L m k L tr Φ lin LL θ θ Φ lin LL λI d + V Ω lin L -1 . (197) 

D.3 Logistic regression

We now turn to the classi cation se ing, when the labels are given by a deep random network with sign readout

y µ = sign θ ϕ (x µ ) k L . ( 198 
)
Note that this corresponds to σ L +1 = sign. and the dRF readout weights θ are trained with logistic regression, using the ERM θ = argmin and f (y, ω, V ) de ned as the solution of f (y, ω, V ) = y 1 + e y(V f (y,ω,V )+ω) .

It follows from [START_REF] Loureiro | Learning curves of generic features maps for realistic datasets with a teacher-student model[END_REF] and Conjecture 4.3 that the associated test error reads

g := E D P x∼N(0 d ,Ω0) f (x) = sign θ ϕ(x) √ k L = 1 π arccos m √ ρq , (200) 
where m, q are the solutions of the system of equations

                     V = -α γ L dξe -ξ 2 2 √ 2π y=±1 Z y, m √ q ξ, ρ -m 2 q ∂ ω f (y, √ qξ, V ) q = α γ L dξe -ξ 2 2 √ 2π y=±1 Z y, m √ q ξ, ρ -m 2 q f (y, √ qξ, V ) 2 m = α √ γ L γ L dξe -ξ 2 2 √ 2π y=±1
∂ ω Z y, m √ q ξ, ρ -m 2 q f (y, √ qξ, V ) All values were evaluated using the sharp asymptotic characterization of conjecture 4.3, see also App.D. e parameter m, which parameterizes the number of parameters in these two networks, is varied from 0 to 15. For γ = 4 (le ), the deep architecture is consistently outperformed by the wide architecture. Closer to the interpolation peak, for γ = 1 (right), the implicit depth-induced regularization means that deeper architectures perform be er than wider architectures.

             V = 1 k L tr λI d + V Ω lin

E Architecture-induced implicit regularization

A seminal pursuit in machine learning research is the theoretical understanding of the interplay between the network architecture and it learning ability. While this is a challenging open question, the study of dRF (2), i.e. networks with intermediate layers frozen at initialization, allows to make some headway and gather some preliminary insight into these interrogations. It constitutes a highly stylized, but nonetheless versatile, playground for which some questions can be explored, and which hopefully pave the rst preliminary steps in the understanding of networks trained end-to-end.

Section 5 in the main text discussed the regularization induced by depth in dRF architectures. In this section, we further explore, using conjecture 4.3 as a exible toolbox to access asymptotic test errors, the role of other architectural features in the performance of dRF. Our purpose is mainly to complement the discussion of section E, and highlight some observations of interest. A more complete study falls out of the scope of the present manuscript and is le for future work. In this section, we brie y discuss two questions:

• For a xed number of parameters, is it be er to have a deep or wide architecture?

• What is the in uence of a narrow (bo leneck) hidden layer on the test error?

E.1 Deeper or wider

For a given number of parameters mγd, for m ∈ [START_REF] Benigni | Eigenvalue distribution of some nonlinear models of random matrices[END_REF] we explore the performance of • A rectangular deep net of depth L = m with width sequence γ 1 = ... = γ m = γ.

• A wide net with widths γ 1 = γ 3 = γ and γ 2 = (m -2)γ of depth L = 3.

for m ≥ 3, learning from a two-layers target with sign activation. e activation is taken to be tanh for all layers, in both networks. Note that in both architectures, the number of trainable parameter is also always the same, since the readout layer is in any case of width γd.

Fig. 6 compares the deep architecture (dashed lines) with the wide architecture (solid lines). In general, the wide architecture provides smaller test errors, in accordance with the intuition that additional layers introduce more e ective noise and therefore generically prove detrimental to the learning ability of the dRF, see Fig. 6, right panel. However, as discussed in section 5 in the main text, the implicit regularization induced by this noise can help mitigate over ing in some regimes. is is in particular the case in the vicinity of the interpolation peaks, for noisy targets. e le panel of Fig. 6 shows such a case, where deep architectures outperform wide architectures in small data regimes α = 0.5, 1. If the explicit regularization λ is optimized over, this e ect disappears. 

E.2 Bottleneck hidden layer

Another question of interest is the e ect of a very narrow hidden layer. Fig. 7 investigates the performance over a L = 1 target with sign activation and width γ 1 , of L = 4 dRFs, with γ 1 = γ 2 = γ 4 = γ and a bo leneck third layer γ 3 = 1 /2. e parameter γ was varied between 1 and 4. As intuitively expected, the bo leneck, by forcing an intermediary low-dimensional representation, has a regularizing e ect. While generically the bo leneck translates into a loss of information, it is bene cial in regimes where regularization is helpful, e.g. close to interpolation peaks or noisy se ings. Such an instance is presented in Fig. 7. Again, if the explicit regularization λ is tuned, this e ect disappears.

Figure 1 :

 1 Figure 1: Learning curves g (α) for ridge regression (σ = id, (y, z) = 1 /2(y -z) 2 , and g(y, ŷ) = (y -ŷ) 2 ) . Red dots correspond to numerical simulations on the learning model (2) (25), averaged over 20 runs. e solid line correspond to sharp asymptotic characterization provided by conjecture 4.3, and detailed in App. D. (le ) 2-layers target (L = 1,σ 1 = sign), (right) single-layer target (L = 0). Both are learnt with a 2-hidden layers RF (2) with σ 1,2 (x) = tanh(2x) activation and regularization λ = 0.001.

Conjecture 4 . 2 .Figure 2 :

 422 Figure 2: Learning curves g (α) for logistic regression (σ = sign, (y, z) = ln(1 + e -yz ) and metric g(y, ŷ) = 1-Θ(y ŷ)). Red dots correspond to numerical simulations on the learning model (2) (25), averaged over 20 runs. e solid line correspond to sharp asymptotic characterization provided by conjecture 4.3, and detailed in App. D. (le ) single-layer target (L = 0), (right) two-layer target (L = 1, σ 1 = erf) (25) hidden sign layer. Both are learnt with a depth L = 2 dRF (2) with activation σ 1,2 (x) = tanh(2x) and regularization λ = 0.05 (top) and σ 1,2 (x) = erf(x) and λ = 0.1 (bo om).

Figure 3 :

 3 Figure 3: Learning curves for ridge regression on a 1-hidden layer target function (γ 1 = 2, σ 1 = sign) using a L-hidden layers learner with widths γ 1 = ... = γ L = 4 and σ 1,...,L = tanh activation (le ) or σ 1,...,L (x) = 1.1 × sign(x) × min(2, |x|) clipped linear activation (right), for depths 1 ≤ L ≤ 6. e regularization is λ = 0.001. Solid lines represent theoretical curves evaluated from the sharp characterization of conjecture 4.3, while numerical simulations, averaged over 50 runs, are indicated by dots. e linear peak can be observed at α = 1, while the non-linear peak occurs for α = γ = 4 [53]. Despite sharing the same architecture, the use of di erent activations induces di erent implicit regularizations, leading to the linear (resp. non-linear) peak being further suppressed as the depth increases for the clipped linear activation (resp. tanh activation).

Figure 4 :Figure 5 :

 45 Figure 4: Limiting spectral distributions for the post-activation covariance Ω 2 (21) of a 2-hidden layers network (2), with architectures γ 1 = 6 /5, γ 2 = 3 /5 and activation σ 1 = σ2 = tanh(2•) (top), and γ 1 = 7 /10, γ 2 = 6/5 and activation σ 1 = σ2 = sign (bo om) (red) eoretical asymptotic spectral distribution obtained from solving the recursion (157) (see Appendix B for further details on the numerical scheme) (blue) Empirical distribution, estimated from the sample covariance of 10 5 samples, in dimension d = 1000.
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 126 Figure 6: Test error for a regression task on a L = 1 two-layer target with sign activation and width γ 1 = 4. Solid lines represent the test error of a dRF of depth m and widths γ 1 = ... = γ m = γ, while dashed lines indicate the test errors of wide and shallow dRFs with architecture γ 1 = γ 3 = γ and γ 2 = (m -2) × k.All values were evaluated using the sharp asymptotic characterization of conjecture 4.3, see also App.D. e parameter m, which parameterizes the number of parameters in these two networks, is varied from 0 to 15. For γ = 4 (le ), the deep architecture is consistently outperformed by the wide architecture. Closer to the interpolation peak, for γ = 1 (right), the implicit depth-induced regularization means that deeper architectures perform be er than wider architectures.

Figure 7 :

 7 Figure 7: Regression problem over a L = 1 target with sign activation and width γ 1 . Dashed lines represent the test error (evaluated using the sharp asymptotics of conjecture 4.3, see also App.D) of L = 4 dRFs, with γ 1 = γ 2 = γ 4 = γ and a bo leneck third layer γ 3 = 1 /2. Solid lines corresponds to a rectangular network with no bo leneck γ 1 = γ 2 = γ 3 = γ 4 = γ. Close to the interpolation peak (α = 1, 2) the regularization induced by the bo leneck mitigates the over ing and leads to smaller test errors.

with nite moments of all orders

See De nition 2.7 in[START_REF] Yin | Anisotropic local laws for random matrices[END_REF] 

e statement in[START_REF] Chouard | antitative deterministic equivalent of sample covariance matrices with a general dependence structure[END_REF] literally gives Im z rather than dist(z, R + ) but the proof verbatim gives the stronger bound since Im z is merely used as a lower bound on the smallest singular value of a matrix of the type AA * -z

Note that despite the appearance of the derivative smoothness is not required as by integration by parts the derivative can be transferred to the smooth Gaussian weight.

Technically, we don't need to assume the regularization is bounded away from here. It su ces to take it decaying slower than n -1/18 for m. 3.3 to apply.

For simplicity, we discuss the noiseless ∆ = 0 case here. See Appendix B of[START_REF] Wei | More than a toy: Random matrix models predict how real-world neural representations generalize[END_REF] for a discussion of noisy targets

Technically this requires some argument that with high probability the deep RF model with quenched weights satis es Lipschitz concentration with respect to X 0
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