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Abstract

This paper addresses the interaction of two coaxial cylinders separated by a thin fluid layer. The cylinders
are flexible, have a finite length, and are subject to a vibration mode of an Euler-Bernoulli beam. Assuming a
narrow channel, an inviscid and linear theoretical approach is carried out, leading to a new simple and tractable
analytical expression of the fluid forces. We show that the dimensionless form of the fluid forces matrix reduces
to a single coefficient whose properties (sign and variations) strongly depend on the boundary conditions, the
wave-number of the vibration modes, and the aspect ratio of the cylinders. All these properties are made
explicit in our formulation, which applies to all classical types of boundary conditions. A numerical approach
based on an Arbitrary Lagrange-Eulerian method is also presented and successfully compared to the theoretical
predictions.

Keywords: Fluid-Structure Interaction; Fluid forces, Coaxial cylinders; Narrow annulus

1. Introduction

This study finds its motivation in the understanding of the vibrations of guide tubes used in the Jules
Horowitz Reactor. This test reactor was built primarily for research into materials and fuels for the nuclear
power industry and nuclear medicine, see [1] for more details. The guide tubes are cylindrical structures made
of aluminum, with a length of 2.1 m and an outer diameter of 2R1 = 40 mm. These tubes are used to guide
the drive mechanism and the experimental equipment under test and are inserted into the cylindrical free space
between the fuel assemblies. The diameter of the free space is 2R2 = 44 mm, so that the central part of the
guide tubes is strongly constricted, with a 2 mm clearance, see Fig. 1. Like the fuel elements, the guide tubes
are exposed to an axial flow from the primary circuit, with a characteristic velocity of 15 m/s in the middle part.
Here, we consider the fluid-structure interaction problem corresponding to the particular configuration in which
there is no axial flow but in which both the cylindrical fuel assembly and the guide tube vibrate. As the fuel
element is of length L = 700 mm, the aspect ratio L/R1 = 35 is not large enough to apply the two-dimensional
potential flow theory and the slender-body approximation presented in [2, 3, 4, 5, 6, 7, 8] to estimate the fluid
force matrix. Thus, it is necessary to develop a three-dimensional theory that accounts for the finite size of
the tube and the confinement of the configuration, which affects the intensity of the fluid forces, as shown in
[2, 9, 10, 11, 12]. The three-dimensional calculation of the fluid force acting on a flexible cylinder vibrating
in a narrow coaxial cylindrical duct can be solved following the approach of [13]. However, this approach is
not flexible enough to be used in an engineering environment as it yields a non-closed form solution for the
fluid forces. Also, it does not cover the possibility of a fully flexible duct in which both the inner and outer
cylinders are imposed different modes of vibration. Here, we carry out a three-dimensional inviscid theory and
use the simplifying assumption of a narrow annulus, see [14, 15], to provide a very tractable method that yields
a new analytical formulation of the fluid force matrix. This formulation does not rely on the slender-body
approximation so that it is applicable to cylinders of any size. Also, it considers the possibility of a fully flexible
duct covering all types of classical boundary conditions.
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Figure 1: Left: sketch of the Jules Horowitz reactor (JHR), from [16]. Right: axial and radial cross section of the JHR assembly
cell.

The paper is organized as follows. The statement of the problem and the governing equations are presented
in § 2. In § 3 and § 4 we carry out a new theoretical formulation to estimate the fluid force matrix. A comparison
between theoretical predictions and numerical results is detailed in § 5. Finally, some conclusions are drawn in
§ 6.

2. Definition of the problem and governing equations

We consider the three-dimensional problem of two coaxial cylinders, C1 (inner cylinder) and C2 (external
cylinder), with axes along ex, separated by a thin layer of fluid. The cylinder Ci is flexible and points on its
lateral boundary are imposed a simple harmonic displacement ℜ

{
eiΩiTQi (X)

}
with Ωi the angular frequency,

T the dimensional time, X the longitudinal coordinate, ℜ the real part operator and i the imaginary complex
unit. The displacement profile is of the form

Qi(X) = Qi(X)ey +Θi(X)ex, (1)

with
Qi (X) = Qi

Wi (X)

Ni
, Θi(X) = −Ri

dQi

dX
(X), (2)

the displacement of the neutral axis and the displacement due to the rotation of the cross-sections, respectively.
The rotational displacement Θi is set so that the cross-sections remain orthogonal to the cross axis. In equa-
tion (2), Qi is the amplitude of the displacement, Wi(X) a bending mode of vibration of an Euler-Bernoulli
beam and Ni = sup (|Wi (X)|, X ∈ [0, L]) its infinite norm. The cylinder Ci has a length Li, radius Ri, boundary
∂Ci with outward unit normal vectors ni, see Fig. 2. We note R = (R1 + R2)/2 the mean radius and L = L1

the confined length.
The fluid is Newtonian, homogeneous, of volume mass density ρ and dynamic viscosity ν. The Navier-Stokes
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Figure 2: Two coaxial finite flexible cylinders in a narrow coaxial cylindrical channel.

equations for the incompressible fluid flow (V, P ) write

∇ ·V = 0, (3a)
∂V

∂T
+ (V · ∇)V +

1

ρ
∇P − ν∆V = 0. (3b)

Introducing the dimensionless fluid flow (v, p) as V = QiΩi v and P = ρ (R2 −R1)QiΩ
2
i p, the dimensionless

Navier-Stokes equations write

∇∗ · v = 0, (4a)
∂v

∂t
+

Qi

R2 −R1
(v · ∇∗)v +∇∗p− ν

(R2 −R1)
2
Ωi

∆∗v = 0, (4b)

with t = ΩiT the dimensionless time and ∇∗ = (R2 −R1)∇ the dimensionless gradient operator. Assuming
a small imposed amplitude of vibration compared to the size of the channel, i.e. Qi/(R2 − R1) ≪ 1, and an
angular frequency Ωi such that (R2 −R1)

2
Ωi/ν ≫ 1, the nonlinear and viscous terms of the dimensionless

Navier-Stokes equations are negligible. From the linearity of the problem, the fluid flow is ℜ
{∑2

i=1 e
it(vi, pi)

}
and the dimensionless Navier-Stokes equations along with the inviscid boundary conditions write

∇∗ · vi = 0, (5a)
ivi +∇∗pi = 0, (5b)

(vi − iqi) · ni = 0 on ∂Ci, (5c)
vi · nj = 0 on ∂Cj , j ̸= i, (5d)

with qi = wi/Ni ey the dimensionless displacement and wi (x) = Wi (Lx) the vibration mode expressed in term
of the dimensionless longitudinal coordinate x = X/L. The fluid-structure interaction is addressed through the
boundary conditions (5c) and (5d) which express the continuity of the normal velocities at the boundary of
the cylinders. This interaction yields a fluid force ℜ

{∑2
j=1 e

iΩjT ρπRiLRjQjΩ
2
j f

ij

}
, with fij the dimensionless

force acting on Ci, due to the motion of Cj . Assuming ni ≈ (−1)
i+1

er with er = cos (θ) ey +sin (θ) ez the unit
polar direction and θ the polar angle, the dimensional inviscid fluid force fij is given by the integral of the total
pressure field on ∂Ci. Introducing ε = R2/R1 as the radius ratio, the dimensionless fluid force writes

fij = (−1)
i+1 R2 −R1

Rj

1

π

1∫
0

2π∫
0

−pj (x, θ)erdθdx,

∼
ε→1

(−1)
i+1

(ε− 1)
1

π

1∫
0

2π∫
0

−pj (x, θ)erdθdx.

(6)
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3. Theoretical pressure field

The divergence of equation (5b) shows that the pressure field is a harmonic function

∆∗pi =
∂2pi
∂r2

+
1

r

∂pi
∂r

+
1

r2
∂2pi
∂θ2

+

(
1

rl

)2
∂2pi
∂x2

= 0, (7)

with (r, θ, x) = (R/(R2 −R1), θ,X/L) the dimensionless cylindrical coordinates and

l =
L

R
∼

ε→1
l =

L

R1
, r =

R

R2 −R1

∼
ε→1

1

ε− 1
, (8)

the aspect ratio and the dimensionless mean radius, respectively. Restricting the analysis to a narrow annulus,
where r ≈ r, the Laplace equation (7) approximates to

1

r

∂pi
∂r

+
1

r2
∂2pi
∂θ2

+

(
1

rl

)2
∂2pi
∂x2

= −∂2pi
∂r2

. (9)

Averaging equation (9) in the radial direction of the annulus yields

1

r

〈
∂pi
∂r

〉
+

1

r2
∂2⟨pi⟩
∂θ2

+

(
1

rl

)2
∂2⟨pi⟩
∂x2

= −
[
∂pi
∂r

]∂Cj

∂Ci

, (10)

with ⟨pi⟩ =
R2/(R2−R1)∫
R1/(R2−R1)

pidr. The first left hand side term writes
〈

∂pi

∂r

〉
=

r2∫
r1

∂pi

∂r dr = pi (r2) − pi (r1), with

ri = Ri/(R2 −R1) the dimensionless cylindrical coordinate of ∂Ci. Assuming that the pressure fluctuation
pi(r2) − pi(r1) is small compared with the average pressure ⟨pi⟩ in the narrow annulus, this term is negligible
compared to the second left hand side term of equation (10). The right hand side term is obtained from the
projection of equation (5b) on er. Using the boundary conditions equation (5c) and equation (5d) one obtains

∂pi
∂r

∣∣∣∣∂Cj

∂Ci

= ivi · er ≈ i (−1)
i+1

vi · ni = − (−1)
i+1 wi

Ni
cos (θ) , (11)

so that equation (10) approximates to

∂2⟨pi⟩
∂x2

+ l
2 ∂2⟨pi⟩

∂θ2
=

(
rl
)2

(−1)
i+1 wi

Ni
cos (θ) . (12)

Seeking a solution as ⟨pi⟩ = (−1)
i+1

pi (x) /Ni cos (θ), equation (10) finally approximates

d2pi
dx2

− l
2
pi =

(
rl
)2

wi. (13)

The forcing term wi on the right hand side of equation (13) represents the bending mode of vibration which
is imposed to the cylinder Ci. Modeling this cylinder as an Euler-Bernoulli beam, wi is a linear combination
between trigonometric and hyperbolic functions,

wi (x) = χ
(1)
i cosh (λix) + χ

(2)
i cos (λix) + χ

(3)
i sinh (λix) + χ

(4)
i sin (λix) , (14)

with χ
(k)
i some real coefficients which depend on the type of boundary conditions applied at the ends of the

beam. To simplify the following developments, we write the displacement on a compact form, wi =
2∑

k=1

w
(k)
i

with
w

(k)
i (x) = χ

(k)
i cos

(
ikλix

)
+ χ

(k+2)
i (−i)

k
sin

(
ikλix

)
. (15)

From the linearity of equation (13), the dimensionless pressure term pi writes pi =
2∑

k=1

pi
(k) with pi

(k) satisfying

d2pi
(k)

dx2
− l

2
pi

(k) =
(
rl
)2

w
(k)
i . (16)

The solution of this linear equation is the sum of the solution of the homogeneous equation and a particular
solution sought as a superposition of cosine and sine functions. This yields

pi
(k) (x) = −

[
r2g

(k)
i

(
x, l

)
+ a

(k)
i

(
l, r

)
elx + b

(k)
i

(
l, r

)
e−lx

]
, (17)
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with
g
(k)
i

(
x, l

)
=

1

1 + (−1)
k(
λi

/
l
)2w(k)

i (x). (18)

The functions a(k)i and b
(k)
i are determined with the dimensionless pressure conditions at both ends of the beam,

namely pi(0) and pi(1)

a
(k)
i

(
l, r

)
+ b

(k)
i

(
l, r

)
= −

[
pi

(k) (0) + r2g
(k)
i

(
0, l

)]
, (19a)

a
(k)
i

(
l, r

)
el + b

(k)
i

(
l, r

)
e−l = −

[
pi

(k) (1) + r2g
(k)
i

(
1, l

)]
. (19b)

Solving the linear system (19) yields

a
(k)
i

(
l, r

)
= b

(k)
i

(
−l, r

)
=

[
r2g

(k)
i

(
0, l

)
+ pi

(k) (0)
]
e−l −

[
r2g

(k)
i

(
1, l

)
+ pi

(k) (1)
]

2 sinh
(
l
) , (20)

so that the dimensionless pressure pi
(k) generated by w

(k)
i writes

pi
(k) (x) = −

[
r2g

(k)
i

(
x, l

)
+

2∑
n=1

a
(k)
in

(
l, r

)
e(−1)nlx

]
, (21)

with a
(k)
in

(
l, r

)
= a

(k)
i

(
(−1)

n
l, r

)
, i.e.

a
(k)
in

(
l, r

)
=

(−1)
n

2

r2g
(k)
i

(
0, l

)
e(−1)nl sinh

(
l
) +

(−1)
n+1

2

r2g
(k)
i

(
1, l

)
sinh

(
l
) +

(−1)
n

2

pi
(k) (0)

e(−1)nl sinh
(
l
) +

(−1)
n+1

2

pi
(k) (1)

sinh
(
l
) . (22)

The first two terms in equation (22) scale as r2 and thus are predominant over the last two terms for a narrow
annulus. Injecting equation (18) in equation (22) yields a

(k)
in

(
l, r

)
∼ r2an

(
l, w

(k)
i

)
with

an

(
l, w

(k)
i

)
=

1

1 + (−1)
k
(λi/l)

2

(−1)
n
e(−1)n+1 l

2

2 sinh (l)

[
w

(k)
i (0) e(−1)n+1 l

2 − w
(k)
i (1) e−(−1)n+1 l

2

]
. (23)

Finally, from ⟨pi⟩ = (−1)
i+1

pi/Ni cos (θ), and assuming that pi = ⟨pi⟩, the dimensionless pressure in the
narrow channel writes

pi (x, θ) ∼
ε→1

−(−1)i+1 1

(ε− 1)2
1

Ni

2∑
k=1

[
g
(k)
i (x, l) +

2∑
n=1

an

(
l, w

(k)
i

)
e(−1)nlx

]
cos (θ) . (24)

4. Fluid force matrix

In the previous section, we have obtained an analytical expression of the pressure field in the narrow duct.
We now proceed with the determination of the fluid forces acting on the two cylinders. Inserting equation (24) in
equation (6) shows that the dimensionless fluid force fij has no component along the ex direction, i.e. fij ·ex=0,
whereas the ey component writes

(fij · ey) ∼
ε→1

1

ε− 1

(
f (l, w1) −f (l, w2)
−f (l, w1) f (l, w2)

)
. (25)

The dimensionless force coefficient f (l, wj) depends on both the aspect ratio l and the vibration mode wj and
writes

f (l, wj) =
1

Nj

2∑
k=1

1

1 + (−1)
k
(λj/l)

2

∫ 1

0

w
(k)
j (x) dx+

1

Nj

2∑
k=1

2∑
n=1

an

(
l, w

(k)
j

)∫ 1

0

e(−1)nlxdx,

=
1

Nj

1

sinh (l)

[
χ
(1)
j

(
(1− cosh (l)) (1 + cosh (λj))

l
+

sinh (l) sinh (λj)

λj

)
1

1− (λj/l)
2

+ χ
(2)
j

(
(1− cosh (l)) (1 + cos (λj))

l
+

sinh (l) sin (λj)

λj

)
1

1 + (λj/l)
2

+ χ
(3)
j

(
(1− cosh (l)) sinh (λj)

l
+

sinh (l) (cosh (λj)− 1)

λj

)
1

1− (λj/l)
2

+ χ
(4)
j

(
(1− cosh (l)) sin (λj)

l
+

sinh (l) (1− cos (λj))

λj

)
1

1 + (λj/l)
2

]
.

(26)
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The dimensionless fluid force acting on an infinitely long cylinder is obtained by taking the limit of equa-
tion (26) as l → ∞. It yields

f(l, wj) →
l→∞

f(wj) =
1

Nj

∫ 1

0

wj(x)dx,

=
1

Nj

[
χ
(1)
j sinh (λj) + χ

(2)
j sin (λj) + χ

(3)
j (cosh (λj)− 1) + χ

(4)
j (1− cos (λj))

]
1

λj
.

(27)

In Figs. 3, 4, and 5, we show the evolution of the dimensionless fluid force coefficient, f(l, wj), as a function
of the aspect ratio l, for various types of boundary conditions listed in Table A.7. We observe that f(l, wj)
exhibits very different behaviors (positive, negative, monotonic, or non-monotonic function of l, slow or fast
approach of the asymptotic limit of equation (27) as l → ∞) depending on the boundary conditions and the
wave-number of the imposed vibration mode. It is worth to emphasize that the sign of f(l, wj) determines the
direction of the fluid force relative to the imposed displacement. In fact, if f(l, wj) is positive; see for example
the sliding-pinned case, first and third vibration modes; the fluid force acting on the moving cylinder Cj (resp.
the stationary cylinder Ci, i ̸= j) has the same (resp. opposite) direction as the displacement. On the other
hand, if f(l, wj) is negative; see for example the sliding-pinned case, second vibration mode; the self (resp.
cross) fluid force and the imposed displacement have opposite (resp. the same) directions.

Figure 3: Evolution of the theoretical dimensionless force coefficient, f(l, wj), given by (26), as a function of the aspect ratio,
l = L/R1, for various types of boundary conditions and vibration modes.
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Figure 4: Evolution of the theoretical dimensionless force coefficient, f(l, wj), given by (26), as a function of the aspect ratio,
l = L/R1, for various types of boundary conditions and vibration modes.
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Figure 5: Evolution of the theoretical dimensionless force coefficient, f(l, wj), given by (26), as a function of the aspect ratio,
l = L/R1, for various types of boundary conditions and vibration modes.

5. Comparison to numerical simulations

5.1. TrioCFD
In the previous section, we have provided theoretical predictions for the fluid force matrix, considering

different types of boundary conditions. To assess the validity of these predictions, we now perform numerical
simulations with the open-source code TrioCFD [17, 18, 19].

The numerical domain is composed of two coaxial oscillating cylinders Cj , with radii Rj and lengths Lj (see
Fig. 2). The boundary conditions on the numerical domain consist of imposed displacement on the inner or
outer cylinder in the form Q(X) sin(ΩT ) and wall boundary conditions on the other.

The numerical simulation does not neglect the convective and viscous terms of the Navier-Stokes equations,
contrary to the theoretical approach. The fluid-structure interaction problem involving moving boundaries [20]
is solved using an Arbitrary Lagrange-Eulerian method (ALE) [21]. A fluid particle is identified by its position
relative to a frame moving with a nonuniform velocity VALE , and in which the Navier-Stokes equations write

∇ ·V = 0, (28a)
∂JV

∂T
− J

(
ν∆V − (V · ∇)V + (VALE · ∇)V − 1

ρ
∇P

)
= 0, (28b)

V − ΩQ(X) cos(ΩT ) = 0 on ∂Ci, (28c)
V = 0 on ∂Cj , j ̸= i, (28d)

where J is the Jacobian of the transformation between the ALE and the Lagrange descriptions. For moderate
deformations, VALE is usually defined as the solution of an auxiliary Laplace problem

∆VALE = 0, (29a)
VALE − ΩQ(X) cos(ΩT ) = 0 on ∂Ci, (29b)

VALE = 0 on ∂Cj , j ̸= i, (29c)

from which the kinematics of the mesh grid is updated. The numerical discretization of the system (28) is based
on the hybrid Finite Element-Volume method for tetrahedral grids [18, 22]. We denote by [D], [M ], [A], [L(V)],
and [G] the discrete divergence, mass, diffusion, nonlinear, and gradient matrix operators, respectively. In our
simulations, a first-order backward Euler scheme is used to discretize the Navier-Stokes equations, leading to

[D]Vh
n+1 = 0,

(30a)

[M ]

(
Jn+1Vh

n+1 − JnVh
n
)

∆t
− Jn+1

(
[A]Vh

n+1 − [L(Vh
n)]Vh

n+1 + [L(Vh
n)]Vh,ALE

n+1 − [G]Ph
n+1

)
= 0,

(30b)
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where Vh is the discrete fluid velocity, Ph is the discrete fluid pressure, Vh,ALE the discrete mesh velocity, and
∆t the time step. The superscripts n and n+ 1 indicate the time step at which the variable is computed.

A second-order upwind MUSCL scheme (Monotonic Upstream-centered Scheme for Conservation Laws,
see [23]) is used to approximate the nonlinear convective term [L(Vi)]. A multi-step technique (projection-
correction, see [24]) is employed to solve equation (30). The iterative solvers GMRES (Generalized Minimal
RESidual method,see [25]), and CGM (Conjugate Gradient Method, see [26]) from the PETSc library (Portable,
Extensible Toolkit for Scientific Computation, see [27]) are used for the resolution of the system (30) within the
multi-step technique.

The discretization of the domain is based on the mesh generator of the SALOME-platform [28]. We used a
locally refined grid of tetrahedrons with two different local sizes were defined: a small local size of 5× 10−4 m
for elements close to the inner cylinder, and a large global size 8× 10−4 m for other elements. For l = 15 and
ε = 1.1, the mesh is composed of 1 million tetrahedrons. The time step is 5×10−4 s, and the CPU time (Central
Processing Unit) is approximately 10 minutes.

5.2. Structure of the fluid force matrix
In this section, we check that the structure of the fluid force matrix, predicted theoretically and given by

equation (25) is correct. To do so, we first perform numerical simulations by imposing a vibration mode onto
the inner cylinder, and the outer cylinder is fixed. From the numerical fluid force acting on the two cylinders,
we extract the coefficients of the first column of the fluid matrix, defined in § 4. Then, we perform numerical
simulations by imposing the vibration mode onto the outer cylinder, and the inner cylinder is fixed. From the
numerical fluid force acting on the two cylinders, we extract the coefficients of the second column of the fluid
force matrix. Comparing the results of these two simulations, we check that the structure of the fluid force
matrix obtained numerically is similar to that obtained theoretically, see equation (25). The other numerical
parameters are L1 = 0.7 m the length for the inner cylinder, L2 = 0.8 m the length for the outer cylinder,
R1 = 0.02 m the radius of the inner cylinder, and R2 = 0.022 m the radius of the outer cylinder. All simulations
are performed with an imposed displacement of amplitude Q = K (R2 −R1), with K = 2.5 % and a forcing
frequency Ω/(2π) = 90 Hz.

The results of this comparative study are presented in Table 1 for the clamped-sliding case and in Table 2
for the free-pinned case. The theoretical approach is entirely linear and inviscid since the convective and viscous
terms of the Navier-Stokes equations are neglected. In our numerical simulations, these two terms are nonzero,
even if they are kept as small as possible by adjusting the amplitude of the displacement to the size of the
annulus and by using a high frequency of oscillation. Nevertheless, the nonlinear term can generate secondary
Fourier harmonics that would affect the value of the force matrix. Still, our theory reproduces the force matrix
satisfactorily, with a relative deviation that remains acceptable for all configurations tested.

Clamped
−

Sliding

Present
theory

Numerics
TrioCFD

Relative
deviation

(%)

l = 100

(
0.5132 −0.5132
−0.5132 0.5132

) (
0.5658 −0.5618
−0.5641 0.5700

) (
9.30 8.65
9.02 9.96

)
Table 1: Structure of the dimensionless fluid force matrix for the first vibration mode of the clamped-sliding case. The aspect ratio
is l = 100 and the radius ratio is ε = 1.1.

Free
−

Pinned

Present
theory

Numerics
TrioCFD

Relative
deviation

(%)

l = 100

(
−0.1945 0.1945
0.1945 −0.1945

) (
−0.2124 0.2097
0.2107 −0.2041

) (
9.41 7.25
7.69 4.70

)
Table 2: Structure of the dimensionless fluid force matrix for the first vibration mode of the free-pinned case. The aspect ratio is
l = 100 and the radius ratio is ε = 1.1.

Having validated the structure of the fluid force matrix, we now proceed with studying the effect of the radius
ratio and the aspect ratio on the (1, 1) coefficient. To perform these parametric studies, the inner cylinder is
imposed a vibration mode while the outer cylinder is fixed. The (1, 1) coefficient is eventually extracted from
the numerical fluid force acting on the inner cylinder.
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5.3. Effect of the radius ratio
In this section, we assess numerically the validity of the theoretical prediction, equation (26), for the dimen-

sionless fluid force coefficient f(l, wj), considering three values of the radius ratio, ε ∈ {1.0375, 1.1, 1.2}. Numer-
ical simulations are performed with R1 = 0.02 m and three different external radii, R2 ∈ {0.02075, 0.022, 0.024}
m. The length of the inner cylinder is L1 = 0.7 m, so the aspect ratio is l = 35.

The results of this comparative study are presented in Table 3 for the first three vibration modes of the
clamped-sliding case and in Table 4 for the free-pinned case. For both cases, we obtain a pretty good agreement
between the theoretical prediction and the numerical result; the relative deviation between the two approaches
remains less than 17%. For the two cases of boundary conditions, the maximum deviation is always obtained
for the least confined configuration, i.e. ε = 1.2. This is mainly due to the fact that our theoretical approach,
which is based on the assumption of a narrow annulus, loses precision as ε increases. More specifically, when
the annulus becomes wider, the fluid force matrix (fij ·ey) probably exhibits a sensitivity to ε, which is different
than 1/(ε− 1), as predicted by the theory, see equation (25).

Clamped
−

Sliding

Present
theory

Numerics
TrioCFD

Relative
deviation

(%)

ε = 1.0375

 0.4945
0.2656
0.1261

  0.5562
0.2955
0.1359

  11.1
10.1
7.21



ε = 1.1

 0.4945
0.2656
0.1261

  0.5455
0.2872
0.1419

  9.35
7.52
11.1



ε = 1.2

 0.4945
0.2656
0.1261

  0.5653
0.2953
0.1481

  12.52
10.0
14.8


Table 3: Dimensionless fluid force coefficient, f(l, wj), for the first three vibration modes of the clamped-sliding case and three
values of the radius ratio ε = {1.0375, 1.2, 1.2}. The aspect ratio is l = 35.

Free
−

Pinned

Present
theory

Numerics
TrioCFD

Relative
deviation

(%)

ε = 1.0375

 −0.2084
0.07320
−0.08420

  −0.2310
0.08393
−0.09286

  9.78
12.8
9.32



ε = 1.1

 −0.2084
0.07320
−0.08420

  −0.2245
0.08390
−0.08979

  7.17
12.8
6.23



ε = 1.2

 −0.2084
0.07320
−0.08420

  −0.2307
0.08823
−0.09175

  9.67
17.0
8.23


Table 4: Dimensionless fluid force coefficient, f(l, wj), for the first three vibration modes of the free-pinned case and three values
of the radius ratio ε = {1.0375, 1.1, 1.2}. The aspect ratio is l = 35.

5.4. Effect of the aspect ratio
In this section, we compare theoretical and numerical predictions for the dimensionless fluid force coef-

ficient f(l, wj), considering seven values of the aspect ratio, l ∈ {15, 35, 50, 70, 100, 140, 175}. The radius
ratio is ε = 1.1. Numerical simulations are performed with seven different lengths for the inner cylinder,
L1 ∈ {0.3, 0.7, 1, 1.4, 2, 2.8, 3.5} m, and external cylinder, L2 ∈ {0.4, 0.8, 1.2, 1.6, 2.2, 3, 3.7} m.

The results of this comparative study are presented in Table 5 for the first three vibration modes of the
clamped-sliding case and in Table 6 for the free-pinned case. For the clamped-sliding (resp. free-pinned) case,
the maximum relative deviation is 16.1% (resp. 21.9%), and is observed for l = 15 and the third (resp. second)
mode of vibration. Note that these two maximum relative deviations are computed from very small values
of f(l, wj), and as such, they must be analysed with a very critical eye. In addition to a crude comparison
between the theoretical and numerical values of the fluid force coefficient, we show in Fig. 6 that both approaches
reproduce the same variations of f(l, wj) with the aspect ratio l. For the clamped-sliding case, we show that

10



f(l, wj) is always positive and is a monotonic increasing (resp. decreasing) function of the aspect ratio for the
first and third (resp. second) modes of vibration. For the free-pinned case, the sign and the variations of f(l, wj)
are shown to depend on the wave-number of the vibration mode. In fact, for the first (resp. second) mode,
we show that f(l, wj) is negative (resp. positive) and increases with the aspect ratio l. For the third mode
of vibration, f(l, wj) is negative, and exhibits a non-monotonic evolution, i.e. f(l, wj) first decreases for small
values of l, hits a minimum, and then increases to the asymptotic limit of an infinitely long cylinder. Finally, the
good reproduction of the variations and values of f(l, wj) led us to the conclusion that our analytical expression,
equation (26), is a good approximation of the fluid force coefficient, thereby validating our theoretical approach.

Clamped
−

Sliding

Present
theory

Numerics
TrioCFD

Relative
deviation

(%)

l = 15

 0.4560
0.2874
0.0923

  0.5077
0.3061
0.1100

  10.2
6.11
16.1



l = 35

 0.4945
0.2656
0.1261

  0.5455
0.2872
0.1419

  9.35
7.52
11.1



l = 50

 0.5031
0.2586
0.1343

  0.5612
0.2843
0.1517

  10.4
9.04
11.5



l = 70

 0.5089
0.2536
0.1397

  0.5590
0.2756
0.1548

  8.96
7.98
9.75



l = 100

 0.5132
0.2497
0.1437

  0.5658
0.2733
0.1594

  9.30
8.64
9.85



l = 140

 0.5160
0.2471
0.1464

  0.5687
0.2708
0.1620

  9.27
8.75
9.63



l = 175

 0.5174
0.2458
0.1477

  0.5717
0.2704
0.1638

  9.50
9.10
9.83


Table 5: Dimensionless force coefficient, f(l, wj), for the first three vibration modes of the clamped-sliding case and seven values
of the aspect ratio l = {15, 35, 50, 70, 100, 140, 175}. The radius ratio is ε = 1.1.
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Free
−

Pinned

Present
theory

Numerics
TrioCFD

Relative
deviation

(%)

l = 15

 −0.2234
0.04460
−0.07440

  −0.2379
0.05712
−0.08102

  6.10
21.9
8.17



l = 35

 −0.2084
0.07320
−0.08420

  −0.2245
0.08390
−0.08979

  7.17
12.8
6.23



l = 50

 −0.2025
0.08080
−0.08240

  −0.2220
0.09232
−0.08938

  8.78
12.5
7.81



l = 70

 −0.1981
0.08610
−0.08000

  −0.2147
0.09618
−0.08592

  7.73
10.5
6.89



l = 100

 −0.1945
0.09010
−0.07750

  −0.2124
0.1005

−0.08395

  9.41
10.3
7.68



l = 140

 −0.1920
0.09290
−0.07550

  −0.2100
0.1031

−0.08208

  8.57
9.89
8.01



l = 175

 −0.1907
0.09430
−0.07440

  −0.2094
0.1048

−0.08124

  8.93
10.0
8.42


Table 6: Dimensionless force coefficient, f(l, wj), for the first three vibration modes of the free-pinned case and seven values of the
aspect ratio l = {15, 35, 50, 70, 100, 140, 175}. The radius ratio is ε = 1.1.

Figure 6: Evolution of the dimensionless force coefficient, f(l, wj), as a function of the aspect ratio, l = L/R1, for the first three
modes of the clamped-sliding and free-pinned boundary conditions. Lines correspond to the theoretical prediction, equation (26),
and open circles correspond to the numerical simulations.

6. Conclusion

We have considered the fluid-structure interaction problem of two flexible coaxial cylinders separated by a
thin layer of an inviscid fluid. The cylinders have a finite length and are imposed a small harmonic displacement
corresponding to a vibration mode of an Euler-Bernoulli beam. Based on the assumption of a narrow annulus,
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we have developed a new three-dimensional linear theory to estimate the pressure field in the duct. From the
integration of the pressure field, we have obtained a full analytical expression of the fluid force matrix, which is
actually shown to be completely determined by a unique coefficient. The sign and variations of this coefficient are
shown to strongly depend on the boundary conditions, the wave-number of the vibration modes, and the aspect
ratio of the cylinders. All these properties are made explicit in our formulation, covering all types of classical
boundary conditions and providing a tractable and straightforward expression of the fluid forces. To assess the
validity of our theoretical predictions, we also have performed numerical simulations with the open-source code
TrioCFD and its Arbitrary Lagrange-Eulerian implemented method. A thorough and successful comparison
was conducted considering different aspect ratios, radius ratios, and two types of boundary conditions.

As a next step, we intend to refine the present theory further to account for the radial variations of the
pressure field and, more importantly, to consider the viscous effects in the thin fluid layer. Our approach shall
build on our previous work [12] where an Helmholtz decomposition was used to estimate the total fluid force
acting on two parallel cylinders.
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Appendix A. List of the boundary conditions studied

In this appendix, we list in Table A.7 all the types of boundary conditions studied in the present article,
providing the parameters associated with the vibration modes.

Boundary
Conditions

χ(k) Wavenumber
equation

λj σ σj

Free
−

Free


1
1
−σ
−σ

 cosh (λ) cos (λ)
−1 = 0

 4.7300
7.8532
10.996

 cosh(λ)−cos(λ)
sinh(λ)−sin(λ)

 0.98250
1.0008
0.99997


Clamped

−
Clamped


1
−1
−σ
σ

 cosh (λ) cos (λ)
−1 = 0

 4.7300
7.8532
10.996

 cosh(λ)−cos(λ)
sinh(λ)−sin(λ)

 0.98250
1.0008
0.99997


Free
−

Sliding


1
1
−σ
−σ

 tanh (λ)
+ tan (λ) = 0

 2.3650
5.4978
8.6394

 sinh(λ)−sin(λ)
cosh(λ)+cos(λ)

 0.98250
0.99997
1.0000


Clamped

−
Sliding


1
−1
−σ
σ

 tanh (λ)
+ tan (λ) = 0

 2.3650
5.4978
8.6394

 sinh(λ)−sin(λ)
cosh(λ)+cos(λ)

 0.98250
0.99997
1.0000


Free
−

Pinned


1
1
−σ
−σ

 tan (λ)
− tanh (λ) = 0

 3.9266
7.0686
10.210

 cosh(λ)−cos(λ)
sinh(λ)−sin(λ)

 1.0008
1.0000
1.0000


Clamped

−
Pinned


1
−1
−σ
σ

 tan (λ)
− tanh (λ) = 0

 3.9266
7.0686
10.210

 cosh(λ)−cos(λ)
sinh(λ)−sin(λ)

 1.0008
1.0000
1.0000


Clamped

−
Free


1
−1
−σ
σ

 cosh (λ) cos (λ)
+1 = 0

 1.8751
4.6941
7.8548

 cosh(λ)+cos(λ)
sinh(λ)+sin(λ)

 0.73410
1.0185
0.99922


Pinned

−
Pinned


0
0
0
1

 λj = jπ

 π
2π
3π

 X X

Sliding
−

Pinned


0
1
0
0

 λj =
(2j−1)π

2

 π/2
3π/2
5π/2

 X X

Sliding
−

Sliding


0
1
0
0

 λj = jπ

 π
2π
3π

 X X

Table A.7: Boundary conditions studied in the present work. The vibration modes are of the form wj (x) = χ(1) cosh (λjx) +

χ(2) cos (λjx) + χ
(3)
j sinh (λjx) + χ

(4)
j sin (λjx), with χ(k) given in the first column.
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