
HAL Id: hal-04019705
https://hal.science/hal-04019705

Preprint submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are Gaussian data all you need? Extents and limits of
universality in high-dimensional generalized linear

estimation
Luca Pesce, Florent Krzakala, Bruno Loureiro, Ludovic Stephan

To cite this version:
Luca Pesce, Florent Krzakala, Bruno Loureiro, Ludovic Stephan. Are Gaussian data all you need?
Extents and limits of universality in high-dimensional generalized linear estimation. 2023. �hal-
04019705�

https://hal.science/hal-04019705
https://hal.archives-ouvertes.fr


Are Gaussian data all you need? Extents and limits of universality
in high-dimensional generalized linear estimation
Luca Pesce1, Florent Krzakala1, Bruno Loureiro2, and Ludovic Stephan1

1Ecole Polytechnique Fédérale de Lausanne (EPFL). Information, Learning and Physics (IdePHICS) lab.
CH-1015 Lausanne, Switzerland.

2Département d’Informatique, École Normale Supérieure - PSL & CNRS, 45 rue d’Ulm,
F-75230 Paris cedex 05, France.

Abstract

In this manuscript we consider the problem of generalized linear estimation on Gaussian mixture data with labels
given by a single-index model. Our �rst result is a sharp asymptotic expression for the test and training errors in the
high-dimensional regime. Motivated by the recent stream of results on the Gaussian universality of the test and training
errors in generalized linear estimation, we ask ourselves the question: "when is a single Gaussian enough to characterize
the error?". Our formula allow us to give sharp answers to this question, both in the positive and negative directions.
More precisely, we show that the su�cient conditions for Gaussian universality (or lack of thereof) crucially depend on
the alignment between the target weights and the means and covariances of the mixture clusters, which we precisely
quantify. In the particular case of least-squares interpolation, we prove a strong universality property of the training
error, and show it follows a simple, closed-form expression. Finally, we apply our results to real datasets, clarifying some
recent discussion in the literature about Gaussian universality of the errors in this context.

1 Introduction
It is commonsense in machine learning that structure in the data is an important ingredient for successful learning.
Quantifying this statement, and in particular how structure in the features impact the training and generalization errors
the most, is an important endeavor in the broad program of "seeing through" the modern machine learning black box.
On the theoretical side, there has been some important recent progress in this direction in the context of generalized
linear estimation. For instance, a recent line of work on linear regression trained on Gaussian data has shown that good
generalization can arise even in the "overparametrized regime" where the training error is exactly zero [1–3]. This benign
over�tting property crucially depends on the covariance structure, occurring when the signal components of the target
align with a lower-dimensional of the data, leaving space for the noise to spread along the higher-dimensional orthogonal
subspace [1]. Analogous conclusions hold, under similar conditions, to generalized linear tasks [4–6]. Indeed, this is
only one example of many surprising insights learned from the study of generalized linear models on Gaussian data
over the past few years [7–10]. Despite the seemingly constraining assumption on the distribution of the features, a
recent line of work provides strong evidence for the Gaussian universality of the training and generalization errors in
generalized estimation in di�erent settings. These includes rigorous results for non-Gaussian designs [11, 12], random
feature maps [13–16], neural tangent features [17], Gaussian mixtures with random labels [18], as well as extensive
numerical evidence for other feature maps [15, 19] and even real datasets [19–21]. These works beg the question "when
are Gaussian features a good model for learning?". Our aim is to give precise answers to this question in the context of
generalized linear estimation on a popular model for multi-modal data, known to be able to approximate any distribution:
the Gaussian mixture model.

1.1 Main results
Our main contributions in this work are as follows:
• Exact asymptotics of GLMs: We provide the exact asymptotic limit for the training and test errors of a generalized
linear model with convex loss in high dimensions, when the data is drawn from a Gaussian mixture model with a
single-index target. These asymptotics are based on the so-called replica method from statistical physics, and follow the
same line as [22], which considered instead the task of learning the mixture labels.
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• Universality of training and test errors: We provide a set of su�cient conditions on the target weights θ0 such
that both the asymptotic training and test errors for a Gaussian mixture model are independent from the cluster means.
In particular, these conditions are satis�ed by a target whose direction is uniform on Sd−1. In the case of ridge regression,
we show an even stronger result: namely, the training loss is also independent from the cluster covariances, and reduces
to that of a single Gaussian with identity covariance.

• The importance of Homoscedasticity: In the particular case of a homoscedastic Gaussian mixture (a mixture of
Gaussians that share the same covariance matrix), we further demonstrate universality results that can actually be
observed on real data after a random feature map (see e.g. Fig. 1 and 2). We also unveil the universal behavior of the
linear separability transition, a phenomenon studied in detail for pure Gaussian data in [10] and that appears to be
universal for a homoscedastic mixture.

• Breaking universality: In contrast to the results of the previous paragraph, we show that there are two ways to break
Gaussian universality. First, strongly heteroscedasticity can break the universal behavior. Second, in the homoscedastic
case we show that the correlation between the data and the task matters: even a small correlation between the target
weights and the cluster means su�ce to break universality, in the sense that the asymptotic errors of a model trained in a
Gaussian mixture di�ers from the one of a model trained on Gaussian data. Rather than the structure of the data itself,
what appears to matter is thus the correlation between this structure and the task to be learned.

1.2 Related works
Exact asymptotics: An appealing feature of Gaussian data is that the asymptotic performance of di�erent models can
be sharply characterized in the proportional high-dimensional limit where n, d→∞ at �xed sample complexity α := n/d.
This is particularly the case for ridge regression, because of the close connection to a random matrix theory problem;
see e.g. [2, 3, 23]. Beyond the quadratic case, there exists many asymptotic rigorous studies, for instance [24] studied
M-estimators, [25] the performance of the LASSO estimator, while [19] provided a general result for convex losses and
penalties with arbitrary covariances.

In the case of Gaussian mixtures, most of the e�ort has been geared towards classi�cation, i.e. recovering the cluster
label instead of teacher-generated ones. For binary classi�cation, examples include [26–28], the latter of which also shows
an equivalence between classi�cation and a single-index model. In the multi-class setting, [29] studied the performance
of ridge regression classi�ers; the most general result in this line is [22], which considers any convex (not necessarily
separable) loss.

Gaussian universality: Remarkably, this model is also able to capture the errors of particular classes of non-Gaussian
features. This Gaussian universality property (GEP) [30] was proven to hold for generalized linear estimation with random
features [13–16, 31], neural tangent features [17] and kernel features [21, 32–35]. [36] showed that Gaussian universality
is preserved on the random features model when the weights are trained at order one steps, but break if an extensive
number of steps are taken. Beyond the realm of theorems, [19] provided numerical evidence of Gaussian universality for a
broader class of realistic features from trained neural networks. On a close line, [18] studied the Gaussian universality for
pure random binary labels, which was an important source of inspiration for the present work, while [19–21, 34, 37, 38]
has numerically shown that for ridge regression in particular, the Gaussian formula captured the learning curves of some
simple real datasets.

2 Setting & motivation
Let (xν , yν) ∈ Rd × Y denote ν=1, · · · , n pairs of independently sampled training points. We shall be interested in
studying the properties of generalized linear estimation ŷ(x) = f̂(θ>x) with weights θ ∈ Rd learned from the training
data by minimizing the following empirical risk:

R̂λn(θ) =
1

n

n∑
ν=1

`

(
yν ,

θ>x√
d

)
+ λr(θ) (1)

where ` : Y × R → R+ is a convex loss function and r : Rd → R is a convex penalty. For example, this includes the
particular case of ridge regression where `(y, ŷ) = (y − ŷ)2 and r(θ) = ||θ||22. The key quantities of interested in the
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following will be the training and generalization error, de�ned as:

εtr(θ̂) =
1

n

n∑
ν=1

`

(
yν ,

θ̂>xν√
d

)
(2)

εgen(θ̂) = E

[
g

(
ynew, f̂

(
θ̂>xnew√

d

))]
(3)

where g : Y×R→ R+ is a performance metric of the choice of the statistician, not necessarily equal to the loss function
`(y, ŷ). For example, in the case of binary classi�cation with Y = {−1,+1}, we can take `(y, ŷ) = log(1 + e−yŷ) to
be the logistic loss, while taking g(y, ŷ) = I [y 6= ŷ] to be the classi�cation error. Note that in eq. (3) the expectation
is taken over a new data pair (xnew, ynew) which we assume is independently drawn from the same distribution of the
training data.

In particular, we will be interested in characterizing these errors under the assumption that the labels have been
generated by the following target distribution:

yν ∼ P0

(
·
∣∣ θ>0 xν√

d

)
(4)

for some �xed vector θ0 ∈ Rd and distribution P0. A common choice for P0 is yν = f0

(
θ>0 x

ν

√
d

+ ξ
)

for additive
Gaussian noise ξ ∼ N(0,∆). This setting is sometimes refereed to as a teacher-student setting. We will sometimes adopt
this convenient terminology, refereeing to the target distribution P0 as the teacher and θ0 ∈ Rd as the teacher weights.
Similarly, we will sometimes refer to the model ŷ as the student and θ̂ ∈ Rd the student weights. As previously mentioned,
we shall be considering both regression Y = R and binary classi�cation Y = {−1,+1}.

This model has been the subject of a plethora of works in the high-dimensional statistics literature over the past few
years, in particular under the Gaussian design assumption:

Model 2.1 (Gaussian covariate model). In the Gaussian covariate model (GCM), we assume the inputs are independently
drawn from a Gaussian distribution:

xν ∼ N

(
µ√
d
,Σ

)
, ν = 1, · · · , n. (5)

We denote Gθ0,Σ,µ the teacher-student problem under this data assumption.

A key motivation for this work is the common intuition that data from standard classi�cation tasks such as MNIST
are closer to multi-modal distributions than to a single-mode Gaussian. Therefore, in this manuscript we ask ourselves
the question: "when is Gaussian data all you need?". In particular, we focus our attention to a prototypical distribution to
model multi-modal data (and a universal approximator of densities): the K cluster Gaussian mixture:

Model 2.2 (Gaussian mixture model). In the Gaussian mixture model (GMM), we assume the inputs are independently
drawn from a mixture of K Gaussians:

xν ∼
∑
c∈C

pcN

(
µc√
d
,Σc

)
, ν = 1, · · · , n. (6)

where C := {1, · · · ,K} is the set of possible clusters, and pc ∈ [0, 1] is the probability of belonging to cluster c ∈ C,
whose means and covariance are given by (µc,Σc).

We note that despite Model 2.1 being a special case K = 1 of Model 2.2 when the labels yν do not depend on the
input cluster, it will be instructive to treat the K = 1 and K > 1 case as two di�erent models.

3 Main theoretical results
In this section, we introduce our main theoretical results concerning universality of high-dimensional generalized
linear estimation of GMMs. Our result builds on a long line of works providing an exact asymptotic characterization of
empirical risk minimizers (2) on the proportional high-dimensional limit for Model 2.1 [2, 19, 23, 24]. In particular, closer
to our derivation are the rigorous results in [19, 22]. We prove that the training and generalization error concentrate
in high-dimensions in a deterministic expression given by the solution of a set of self-consistent equations. Then we
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Figure 1: An illustration of Gaussian universality with vanishing regularization λ = 0+ for a selection of datasets (MNIST,
Fashion-MNIST, Cifar10) with a random teacher function, after a random feature map: Generalization (left) and training
(right) errors as a function of the number of samples per dimension α = n/d for ridge regression (top pannels) and
logistic classi�cation (bottom pannels). The solid purple line is the exact asymptotics formula for Gaussian covariates
with identity covariance, while the vertical green lines are the threshold values α?(∆) at which an unique minimizer of
the loss starts to exist. Dots show numerical simulations for di�erent real datasets with random features maps. All data
follows the Gaussian predictions for the training loss, illustrating Theorems 3.4 and 3.6. In particular the separability, or
interpolation, threshold is the one of the Gaussian model (see corollary 3.5). Each learning task was ran for two di�erent
value for the noise variance corrupting the labels - crosses are associated to ∆ = 3 while pluses to ∆ = 0.3. Error bars
are built using standard deviation over 30 runs.

analyze Gaussian universality, provably characterizing a set of su�cient conditions the learning task must respect such
that the test and training errors of Model 2.2 asymptotically agrees with the ones from Model 2.1.

Since we deal with sequences of random variables, we will need a rigorous de�nition of convergence. For two
sequences of numbers (an), (bn), we write

an ' bn i� lim
n→∞

an − bn = 0. (7)

Accordingly, for two sequences of random variables (Xn), (Yn), we de�ne closeness in probability by

Xn
P' Yn i� Xn − Yn

P→ 0, (8)

where P→ denotes convergence in probability.

3.1 Exact asymptotics
Our �rst result is to give closed-form asymptotic characterization of the performance of the minimizer of 2 for the
Gaussian Mixture model 2.2, generalizing the rigorous results of [22]:

Proposition 3.1. (Exact asymptotics, informal statement) Consider the empirical risk minimization problem introduced
in eq. (1) under Gaussian mixture data given by Model 2.2. For any pseudo-Lispchitz performance metric g, the training
and generalization errors (2) converge in the high-dimensional limit of n, d→∞ with �xed ratio α = n/d to deterministic
expressions which are entirely determined by the solution of a set of self-consistent replica saddle-point equations (33).

εtr(θ̂)
P' εtr(θ0, {µc}c∈C, {Σc}c∈C)

εgen(θ̂)
P' εgen(θ0, {µc}c∈C, {Σc}c∈C)

(9)
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The key di�erence between Prop. 3.1 and Thm. 1 from [22] is the distribution of the labels. While the labels in [22]
are given by the GMM cluster index, in Prop. 3.1 we consider labels generated by the target function (4). While we do
not provide a formal proof of these results, note that the generic proof scheme from [22], that maps the solution to the
study of a so-called approximate message passing algorithm [39], can be readily adapted to our setting. Indeed, the
approximate message passing scheme in our scenario is the same, and the only di�erence in the proof is to include a
teacher in the its asymptotic analysis, similarly as was done in [40].

Once we speci�ed the GMM, and properly de�ned the ERM in eq. (1) we can evaluate the expressions in eqs. (2),(3)
as a function of low-dimensional quantities which de�ne the su�cient statistics of the asymptotic errors, and are also
known as order parameters. We give the detail of the computation in Appendix A.

3.2 Uncorrelated teachers
An in-depth comparison of the asymptotic expressions for the errors of Models 2.1 & 2.2 reveals that their key di�erence
lies on the way the leading target direction θ0 correlate with the cluster means and covariances. A �rst step towards
universality is therefore to characterize under which conditions the asymptotic errors are independent of the means. We
make the following assumptions:

Assumption 1. The teacher θ0 respects, ∀(c, c′) ∈ C× C:

lim
n,d→∞

θ>0 µc
d

= 0 (10)

lim
n,d→∞

1

d
θ>0 Σc′

(
λ+

∑
c∈C

V̂ ?c Σc

)−1

µc → 0 (11)

where {V̂ ?c }Kc=1 are the �xed points of the (replica) saddle point equations describing the centered GMM problem.

Assumption 2. The loss function, and the teacher distribution are both symmetric:

`(x, y) = `(−x,−y) (12)
P0 (y|τ) = P0 (−y| − τ) , (13)

and the regularization is an `2 penalty λ/2‖·‖22.

Proposition 3.2. (Mean Universality)
Under Assumptions 1 and 2,the cluster means {µc}c∈C are not relevant in high-dimensional ERM estimation:

εGMM
gen

(
{µc}Kc=1, {Σc}Kc=1

)
' εGMM

gen

(
0, {Σc}Kc=1

)
(14)

εGMM
tr

(
{µc}Kc=1, {Σc}Kc=1

)
' εGMM

tr

(
0, {Σc}Kc=1

)
(15)

Therefore, intuitively mean universality can be achieved when the label generation process is uncorrelated with
the data structure, see Appendix B for a detailed discussion. The assumptions on the target and loss function are not
restrictive, and are easily satis�ed by odd target activation f0 and margin-based losses of the form l(y, z) = `(yz).
Stronger universality can be shown by doing simplifying assumption on the data structure. Indeed, if the mixture is
homogeneous (in the sense that the all the covariance are identical, a condition often called homoscedasticity in statistics)
we have Gaussian universality:

Theorem 3.3. (Gaussian Universality of homoscedastic GMMs) Under the assumption of 3.2, consider an homoscedastic
GMM:

Σc = Σ ∀c ∈ C

Then for all α and ∆, the errors of the GMM are asymptotically equal to those of a GCM:

εGMM
gen

(
{µc}Kc=1,Σ

)
' εGCM

gen (θ0,Σ,0) (16)
εGMM
tr

(
{µc}Kc=1,Σ

)
' εGCM

tr (θ0,Σ,0) (17)

This results follow in a straightforward way from Theorem. 3.2. We have mapped under controllable assumptions a
GMM problem to a simpler Gaussian one.

Additionally, if we consider vanishing regularization, we can prove that errors are independent from the shape of the
covariance, and therefore we can take an isotropic mixture:
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Theorem 3.4. (Covariance universality for λ = 0+) Under the assumption of Thm. 3.3, assume that it exists an unique
minimizer of the empirical risk (1) with zero regularization. Then, the test & training errors a homoscedastic GMM (2.2)
estimation problem asymptotically coincide with those of a centered, isotropic Gaussian model G(θ0,I,0) (2.1).

The proof of this general result is given in Appendix B.
Since the training error for losses such as logistic or hinge characterize the separability transition at λ = 0+, an

interesting consequence of Thm. 3.4 is the following:

Corollary 3.5. (Universality of linear separability for homoscedastic GMMs) The location of the separability / interpolation
transition αc above which the data stop to be linearly separable is the same for homoscedastic GMMs and the Gaussian
model.

This universality is particularly interesting in light of the detailed study of the separability transition for random
teacher weights and Gaussian data in [10]. Similar universality phenomena was observed for the reconstruction transition
in linear estimation in [41].

Surprisingly, if we further consider a square loss minimization, the estimation of any GMM (homoscedastic or not!)
under mean universality condition can be mapped to those of a trivial Gaussian problem:

Theorem 3.6. (Strong universality of the square loss for λ = 0+) Consider underparametrized learning of GMMs with
general means and covariance respecting the assumptions of Theorem. 3.2. Set in eq. (1): l(y, ŷ) = (y − ŷ)2 and consider
a generic noisy linear teacher activation P0(τ ; ∆) = N(τ,∆), with ξ ∼ N(0, 1). Then, the training error for a GMM
estimation problem is given by

εGMM
tr

(
{µc}Kc=1, {Σc}Kc=1

)
' (α− 1)∆

α
(18)

Note that the strong universality statement does not hold for the test error (a counterexample is discussed in
Appendix C using a strongly heteroscedastic case). However, as we see from Fig. 1, it seems surprisingly true that random
teacher regression on real data follows the Gaussian asymptotic prediction in the underparametrized region. Moreover,
we observe in the lower panel of Fig. 1 that even for non-quadratic losses we can draw a similar conclusion, and we
investigate this further in next section.

Finally, we note that it the limit of in�nite noise and binary labels, our results give back the ones observed for purely
random Rachemacher labels proven in [18].

3.3 Correlated teachers
We now consider the general case where the target weights correlate with the structure in the data, relaxing the
assumptions in Theorem. 3.2. Can we still say something? Our �rst result shows that the answer is yes. We focus on a
simple controlled setting in which we can express the ERM performance in a closed form for any teacher vector:

Theorem 3.7. (Exact asymptotics for isotropic covariance) Consider a ridge regression task with a 2-clusters GMM (2.2).
Note that, without loss of generality we can take µ+ = −µ− = µ. Assume isotropic covariances:

Σ+ = Σ− = Id, (19)

and denote:

ρ = lim
d→∞

1

d
θ>0 Σθ0, γ = lim

d→∞

1

d
||µ||22 (20)

π = lim
d→∞

1

d
µ>θ0 P0(τ ; ∆) = N(τ,∆). (21)

De�ning:

A(η) =
(η − 1)2

(
γη2 + 2η − 1

)
(∆ + (η − 1)2ρ) (1 + γη)2

with (22)

η = 1 +
1

2

(
α− 1 + λ−

√
4λ+ (α− 1 + λ)

2

)
The asymptotic errors admit a closed form expression in terms of η:

εGMM
gen ' g(α,∆, ρ, η)(1− π2A(η)) (23)
εGMM
tr ' t(α,∆, ρ, η)(1− π2A(η)) (24)

6



Figure 2: An illustration of Gaussian universality with �nite regularization λ for a selection of datasets (MNIST, Fashion-
MNIST, Cifar10) with a random teacher function, after a random feature map: Generalization (left) and training (right)
errors as a function of the number of samples per dimension α = n/d. In the upper panel we show ridge regression on
Cifar10 preprocessed with RF and tanh activation, while the lower one is logistic regression on MNIST with RF and erf
activation. The dashed curves are the exact asymtotics prediction of the Gaussian theory by matching covariance. The
good agreement illustrates the property of theorem 3.3. The di�erent colours represents di�erent regularization strength
λ ∈ {0.1, 1, 10} respectively in yellow, blue, and red. Error bars are built over 30 runs.

where g and t are the asymptotic limit of the generalisation εGCM
gen (θ0, I,0) and training εGCM

tr (θ0, I,0) error for a single
Gaussian model with unit covariance and uncorrelated teacher:

g(α,∆, ρ, η) =
α
(
∆ + (η − 1)2ρ

)
(α− η2)

(25)

t(α,∆, ρ, η) =
(α− η)2

(
∆ + (η − 1)2ρ

)
α (α− η2)

(26)

The full closed form expressions and the extension to covariances of the form Σ = σId are derived in Appendix C.
Note that the correction factor to the Gaussian performance scales with π2, a measure of correlation between teacher
vector and data structure. Hence, we would be tempted to state that targets that correlate with the data structure, i.e.
π 6= 0, always break Gaussian universality. Although this is usually the case, in the limit of vanishing regularization we
are in the position to present an interesting corollary of Theorem. 3.7:

Corollary 3.8. (Restoration of universality for λ = 0+) Consider the same setting of Theorem. 3.7, further consider
underparametrized learning in the limit of vanishing regularization. Then, the test and training errors for a GMM estimation
are equal to a Gaussian one for any teacher vector (that is eqs (23) and (24) at η = 0):

εGMM
gen = ∆

α

α− 1
(27)

εGMM
tr = ∆

(α− 1)

α
(28)

We thus restore Gaussian universality for correlated teachers in the underparametrized regime, in a similar fashion
to what Theorem. 3.4 is stating for general convex losses and covariances under the mean universality condition.
The universality property for correlated teachers is valid also for more general homoscedastic mixtures with identity
covariance. For the sake of brevity we refer to Appendix C where we discuss in detail this interesting extension.
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Figure 3: An illustration of Gaussian universality for Training, and lack thereof for Generalization at vanishing regular-
ization. Instead of a random feature maps as in Fig. 1, we pre-processed grayscale Cifar10 with wavelet scattering (blue
dots) or orthogonal hadamard projections (yellow dots), or used directly the raw data (red dots). Using again a random
teacher function, the training error is found to agree perfectly with the universal Gaussian asymptotics predictions
with identity covariance and λ = 0+, as for theorem 3.6, but the generalization is found to show clear deviation. This
highlight the roles of heteroscedasticity in the data. Error bars are built over 30 runs.

θ0(Ω = 0.5)

θ0(Ω = 1)

θ0(Ω = 0)

Figure 4: On the importance of the correlation of the task and the structure of the data: Left & Center : Training
errors achieved in the ERM for estimation of 2-cluster GMM with µ+ = −µ− and Σ+ = Σ− = Id, plotted versus a
correlation parameter Ω: we build a series of learning tasks with teacher weights dependent on Ω, namely we take
θ0(Ω) = Ωµ⊥ +

√
1− Ω2µ+, with µ>+µ⊥ = 0. We �x the dimension to be d = 500, and (α, λ) = (1.2, 0.7). The

solid black line is the theoretical prediction coming from Gaussian asymptotics. The solid red line is the theoretical
prediction for the GMM performance, while the orange dots are the numerical simulations which agree as expected with
the theoretical prediction. In the left panel we have real labels and perform ridge regression, while on the central one
we consider binary labels and perform logistic regression. The error bars are built using standard deviation over 30
runs. Right: Geometrical intuition plotted for d = 2. Three hyperplanes (lines in 2D) are displayed correspondent to
Ω = {0, 0.5, 1}, respectively in green, blue, and orange. As Ω increase the labels become more uncorrelated with the
data structure.

4 Illustration on synthetic and real datasets
In this section we investigate the consequences of our main theoretical results. First, we consider the case of real data,
illustrating the applicability of our universality theorems in cases in which the target is not correlated with the data
structure. Based on these observations we move on studying simple synthetic settings described in Theorem 3.7 and
for which we can derive analytical results and systematically probe Gaussian universality. All the code used in our
experiments are available in a GitHub repository.

4.1 Random teacher universality
We analyze Gaussian universality of real data under the random teacher function assumptions of Prop. 3.2. We consider
three standard datasets: MNIST, Fashion-MNIST, and grayscale CIFAR-10, as well as synthetic data.

8

https://github.com/lucpoisson/GaussianMixtureUniversality


Universality with random feature maps — To go beyond simple linear �t, we pre-process the data with a random
feature map [42] as follows: take an image ων ∈ Rd′ and map it to xν = σ(Fων), where the elements F ∈ Rd×d′

are i.i.d drawn from N(0, 1) and σ(·) is an activation function. As shown in [42], for d→∞ this converge to a kernel
method. For each dataset we take a di�erent non-linearity (erf ,tanh, and sign as described in Fig. 1). We then build new
labels by plugging in eq. (4) θ0 ∼ N(0, Id), and we set for regression tasks f0(τ) = τ + ∆, while for classi�cation tasks
f0(τ) = sign(τ + ∆).

First, we analyze the vanishing regularization case in Fig. 1: random teacher regression on pre-processed real datasets
respects the strong universality of the training loss as stated in Theorem. 3.6. Interestingly, we also observe a perfect
match between the Gaussian asymptotics prediction and the simulations in Fig. 1 for the generalization error. This
suggests that after the random features maps the data is su�ciently close to a homoscedastic mixture. Further, the lower
panel of Fig. 1 shows that the strong universality property seems to hold beyond square loss minimization.

We analyze as well the �nite regularization setting in Fig. 2: we compare the simulations on real data with the
prediction of the exact Gaussian asymptotics: we match the covariance of each pre-processed real dataset and compute
the performance of the ERM estimator thanks to the deterministic replica formula. 3.1. The predictions of the Gaussian
theory matches the numerical simulations. As discussed for Fig. 1, it seems that the homoscedasticity assumption in
Theorem. 3.3 can be sometimes relaxed.

Universality of the double descent phenomena — One �nding in modern machine learning that goes against the
classical statistical theory wisdom is the double descent behaviour of learning curves [13, 43–45], see upper panel of
Fig. 1: the test error does not deteriorate as the number of parameters is increased with a characteristic divergence at
α = 1, known as the interpolation peak. As shown in Fig. 1 and Fig. 2, the generalization error and its characteristic
"double descent" behavior for α > 1 is universal for homoscedastic data, while the training error appears universal even
for heteroscedastic data (see Fig. 3).

Universality of linear separability — Recently, [10] investigated the linear separability of Gaussian data with a
random teacher and noise ∆, generalizing the classical results by [46] to a single-index target. [10] has shown the
existence of a critical phase transition αc(∆) that goes continuously from αc(∞) = 2 (for in�nite noise) to αc > 2 for
�nite ∆ (with αc →∞ as ∆→ 0). As discussed in corollary 3.5, this transition is universal for homoscedastic mixtures.
The interest of this transition thus extends way beyond Gaussian data and in fact agrees with the real data experiment in
Figs. 1 and 2. As for the double descent phenomena, we believe it is a very interesting consequence of our theorems that
the theoretical works mentioned above are valid way beyond the simple Gaussian assumption.

Non-universal behavior for generalization— Finally, we implemented di�erent transforms beyond random features
for the pre-processing step: we considered the wavelet scattering transform [47], orthogonal random projections [48],
and even no transform at all. Without the shu�ing of the random projection, the fact that the data are complex and
probably rather heteroscedastic than homoscedastic, we expected a weaker form of universality. We present the results
of ridge regression with labels generated by a random teacher vector in Fig. 3. The strong universality statement in
Theorem. 3.6, that did not required any assumption on the data, remains valid and we observed a perfect collapse of
the training data. However, as expected, the generalization error shows clear deviations with respect to the Gaussian
behavior. Presumably these transforms do not homogenize the data enough such that Gaussian universality for the test
error to hold.

4.2 Correlated teacher
Previously, we showed that ridge regression with a random teacher model, even when the data is structured, can lead to
universal behaviour. We now consider the dual task: take a simple homogeneous model for the data and study correlated
target weights. Indeed, some recent works have studied examples of the lack of universality between Gaussian mixtures
and Gaussian models [49, 50]; we want to follow this direction and use the setting described in Theorem. 3.7: we consider
a 2-cluster GMM with opposite means of norm µ and same covariance Σ. We build a series of learning tasks at �xed
(α, λ) varying the overlap between the teacher vector and the cluster means as follows:

θ0(Ω) = Ωµ⊥ +
√

1− Ω2µ (29)
such that µ>µ⊥ = 0 (30)

The results are presented in Fig. 4 for both ridge and logistic regression. They clearly show that a small correlation
between the target weights and the mixture means breaks Gaussian Universality. A neat geometrical intuition of the result
is given in Fig. 4: as we decrease Ω, we generate labels which are more and more correlated with the data distribution,
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and consequently there is a correction factor to the Gaussian prediction as Theorem. 3.7 predicts. We refer to Appendix. C
for a more detailed discussion on correlated teachers. We conclude that universality is broken in tasks where the labels
are correlated with the structure. Note, however, that as proven in Corollary. 3.8: the discrepancy between the GMM
prediction and the Gaussian one goes to zero for any correlation measure Ω as λ→ 0+, where the universality is restored
as suggested by Thm. 3.6.
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A Replica computation

A.1 Formal statement of the theorem
We �rst provide the full statement of Proposition 3.1. Consider a minimization problem of the form

θ̂ = arg min
θ∈Rd

1

n

n∑
ν=1

`
(
yν ,θ>xν

)
+ r(θ), (31)

where the data (xν , yν) is generated according to the following Gaussian mixture model:

xν ∼
∑
c∈C

pcN

(
µc√
d
,Σc

)
and yν ∼ P0(· |θ>0 xν) (32)

and assume the following:

1. The functions `(y, ·) and r are continuous and coercive, and the function `(y, ·) + r(·) is strongly convex,

2. The covariance matrices Σc are positive de�nite, and their spectral norms are uniformly bounded,

3. The means µc/
√
d and the teacher vector θ0 are uniformly bounded,

4. the number of clusters |C| is �nite,

5. the distribution P0 is sub-gaussian with uniformly bounded norm.

Then, as n, d→∞ with n/d→ α > 0, we have

εtr(θ̂)
P'
∑
c∈C

pc Eω(s)
c ,ω

(t)
c ,y

[
`
(
y,proxV ?c `(y,·)(ω

(s)
c )
)]

=: εtr(θ0, {µc}c∈C, {Σc}c∈C)

εtr(θ̂)
P'
∑
c∈C

pc Eω(s)
c ,ω

(t)
c ,y

[
`
(
y, ω(s)

c

)]
=: εtr(θ0, {µc}c∈C, {Σc}c∈C)

(33)

where (
ω

(s)
c

ω
(t)
c

)
∼ N

([
πc
h?c

]
,

[
ρ m?

c

m?
c q?c

])
and y ∼ P0

(
·
∣∣ω(t)

c

)
. (34)

and the prox function is

proxf (x) = min
z∈R

[
1

2
(z − x)2 + f(z)

]
(35)

The overlaps used in the equation are de�ned as follows:

ρc =
1

d
θ>0 Σcθ0, πc =

1

d
θ>0 µc, (36)

and (V ?c , q
?
c ,m

?
c , h

?
c)c∈C are the unique �xed point of the following set of self-consistent replica saddle-point equations:

V̂c = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
∂ωf`(y, hc +

√
qcξc, Vc)

]
q̂c = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

2
]

m̂c = αpcEξc∼N(0,1)

[∫
dy ∂ωZ0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

]
ĥc = αpcEξc∼N(0,1)
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dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

]


Vc = E
{ξc}

i.i.d∼ N(0,Id)

[
η̂>q̂

−1/2
c Σ

1/2
c ξc

]
qc = E

{ξc}
i.i.d∼ N(0,Id)

[
η̂>Σcη̂

]
mc = E
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[
θ>0 Σcη̂
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hc = E
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[
µ>c η̂
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and we have de�ned the following auxiliary functions:

Z0(y, ω, V ) =

∫
dλ√
2πV

P0(y|λ) e−
(λ−ω)2

2V (38)

f`(y, ω, V ) = −V −1∂ωMV `(y,·)(ω) = V −1
(

proxV `(y,·)(ω)− ω
)
. (39)

Finally, the auxiliary variable η̂ is a function of {ξc, V̂c, m̂c, q̂c, ĥc}:

η̂ = proxr(Σ̂−1/2·)

(
Σ̂−1/2

(∑
c∈C

µ̂c +
√
q̂cΣ

1/2
c ξc

))
(40)

with
µ̂c = ĥcµc + m̂cΣcθ0 and Σ̂ =

∑
c∈C

V̂cΣc (41)

We will not prove this theorem, since the proof is virtually equivalent to the one in [22, 40]. Instead, the next sections
are dedicated to the derivation of these equations, using the so-called replica method from statistical physics [51]. Simpler
particular cases of these equations can be found in Appendix A.9.

A.2 Gibbs measure and free energy
The starting point for our replica computation is to de�ne the Gibbs measure over the weights W ∈ RK×d:

µβ(θ) =
1

Zβ
e
−β
[
n∑
ν=1

`(yν ,θ>xν)+λr(θ)

]
=

1

Zβ
e−βr(θ)

n∏
ν=1

e−β`(y
ν ,θ>xν) (42)

where β > 0 is a parameter we eventually want to send to β → 0+, and Zβ ∈ R is the partition function (the
normalisation of the Gibbs measure). For convenience, we will de�ne the following useful notation:

Pθ(θ) ≡ e−βr(θ), P`(y
ν |θ>xν) ≡ e−β`(y

ν ,θ>xν) (43)

which allow us to write the Gibbs measure as:

µβ(θ) =
1

Zβ
Pθ(θ)

n∏
ν=1

P`(y
ν |θ>xν) (44)

When β →∞, the Gibbs measure µβ will concentrate around the θ that minimize the empirical risk (1). As a result, the
free energy density de�ned as

−βfβ = lim
d→∞

1

d
E logZβ (45)

where the limit is taken with n/d = α �xed, and the expectation is over the distribution of the data, will concentrate
around the minimum risk. In order to take the expectation explicitly, we use the replica trick:

logZβ = lim
s→0+

1

s
∂sZ

s
β |s=0 (46)

Therefore, the replica computation boils down to the computation of the averaged replicated partition function:

EZsβ = E

[∫
Rd

dθ Pθ(θ)

n∏
ν=1

P`
(
yν |θ>xν

)]s
(47)

=

n∏
ν=1

E(xν ,yν)

∫ s∏
a=1

dθa Pθ(θa)P`

(
yν |θa>xν

)
(48)
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A.3 Taking the average over the data
The main di�erence in this computation with respect to the usual binary Gaussian mixture is that the labels are generated
by a teacher target function. In other words, the joint distribution of the data is given by:

Pθ0(x, y) = P0(y|τ)
∑
c∈C

ρcN

(
x;
µc√
d
, Id

)
(49)

where P0(y|τ) is the probability induced by the teacher activation f0(τ). The expression in (48) can then be written as:

EZsβ =

∫ s∏
a=1

dθa Pθ(θa)

(∫
R

dy

∫
Rd

dxP0(y|θ>0 x)Px(x)

s∏
a=1

P`

(
yν |θa>xν

))n
(50)

We make a change of variables by introducing the local �elds τ = θ>0 x and λa = θa>x. The distribution of the local
�elds will be a Gaussian mixture itself, and we can compute the moments for each mode:

πc ≡ Exν [τc] =
1

d
θ>0 µc

ρc ≡ Varxν [τc] =
1

d
θ>0 Σcθ0

hac ≡ Exν [λac ] =
1

d
θa>µc

qabc ≡ Covxν
[
λac , λ

b
c

]
=

1

d
θa>Σcθ

b

ma
c ≡ Covxν [τc, λ

a
c ] =

1

d
θ>0 Σcθ

a

(51)

Equivalently, the local �elds distribution is the following low-dimensional Gaussian mixture distribution:

P (τ,λ) =
∑
c∈C

pc N

([
πc
hc

]
,

[
ρc m>c
mc Qc

])
, (52)

where we have de�ned the vectorsm,h ∈ Rs with entries ma, ha and the matrix Q ∈ Rs×s with entries qab. Therefore,
we can factorize the partition function by only integrating over the local �eld distribution:

EZsβ =

∫ s∏
a=1

dθa Pθ(θa)

[∫
dy

∫
dτ P0(y|τ)

∫ ( s∏
a=1

dλaP`(y|λa)

)
P (τ,λ|m,h, q)

]n
(53)

A.4 Writing as a saddle-point problem
Note that (πc, ρc) are �xed inputs in the problem. By Fourier transform arguments, we can write

δ

(
ma
c −

1

d
θ>0 Σcθ

a

)
=

∫
iR

dm̂a
c

2π
em̂

a
c(dm

a
c−θ

>
0 Σcθ

a), (54)

where the integral is on the imaginary line. By doing the same arguments for the qabc and hac , it ensues that

EZsβ =

∫ ∏
c∈C

s∏
a=1

dma
cm̂

a
c

2π

dhac ĥ
a
c

2π

∏
1≤a≤b≤s

dqabc dq̂abc
2π

edΦ(s)
rs (m,m̂,q,q̂) (55)

where we have de�ned the free energy potential:

Φ(s)
rs (m, m̂, q, q̂) =

∑
c∈C

 s∑
a=1

m̂a
cm

a
c +

s∑
a=1

ĥach
a
c +

∑
1≤a≤b≤s

q̂abc q
ab
c

− αΨ(s)
g (m,h, q)−Ψ

(s)
θ (m̂, ĥ, q̂)

Ψ
(s)
` (m,h, q) ≡ log

∫
dy

∫
dτ P0(y|τ)

∫ s∏
a=1

dλaP`(y|λa)P (τ,λ|m,h, q)

Ψ
(s)
θ (m̂, ĥ, q̂) ≡ 1

d
log

∫ s∏
a=1

dθa Pθ(θ)
∏
c∈C

e

s∑
a=1

[ĥacθ
a>µc+m̂

aθ>0 Σcθ
a]+

∑
1≤a≤b≤s

q̂abc θ
a>Σcθ

b

(56)
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Therefore, as we take the d→∞ limit, we can apply the saddle-point method [51] to compute fβ

−βfβ = extr
m,m̂,h,ĥ,q,q̂

lim
s→0+

Φ(s)(m, m̂,h, ĥ, q, q̂)

s
(57)

Remark A.1. We have introduced the parameters q̂, m̂, ĥ as pure imaginary numbers, but the optimization problem
considers them as real numbers. This stems from the fact that the function Φ is holomorphic, so the integral is independent
from the contour of integration. More details can be found in [52].

A.5 Replica symmetric ansatz
In order to make progress with the s→ 0+ limit, we make the following replica symmetric ansatz:

ma
c = mc m̂a

c = m̂c, a = 1, · · · , s

hac = hc ĥac = ĥc, a = 1, · · · , s

qaac = rc, q̂aac = −1

2
r̂c, a = 1, · · · , s

qabc = qc, q̂aac = q̂c, 1 ≤ a < b ≤ s (58)

for all c ∈ C. Since ` and r are convex, the function Φ(s) has a unique saddle point, which must therefore coincide with
the replica symmetric ansatz. We also de�ne

Vc = rc − qc, and V̂c = r̂c − q̂c (59)

By inserting this ansatz above, we can take the s→ 0+ limit. This is done through a classical but computationally heavy
method known as the Hubbard-Stratonovich transform; details can be found in [14], Appendix C. We simply reproduce
the �nal results here:

−βfβ = extr
{mc,m̂c,hc,ĥc,qc,q̂c,Vc,V̂c}

Φrs({mc, m̂c, hc, ĥc, qc, q̂c, Vc, V̂c}) (60)

The replicated free energy Φrs is given by the following formula:

Φrs({mc, m̂c, hc, ĥc, qc, q̂c, Vc, V̂c}) =
∑
c∈C

[
1

2

(
V̂cqc − q̂cVc

)
− 1

2
V̂cVc + m̂cmc + ĥchc

]
(61)

− αΨ`({mc, hc, qc, Vc})−Ψθ({m̂c, ĥc, q̂c, V̂c})
(62)

where we have decomposed the contributions coming from the loss (Ψ`) and the regularization (Ψθ):

Ψ` =
∑
c∈C

E
ξc

i.i.d∼ N(0,1)

∫
dyZ0

(
y,
mc√
qc
ξ + πc, ρ−

m2
c

qc

)
logZ`(y, hc +

√
qc ξc, Vc) (63)

Ψθ =
1

d
E
ξc

i.i.d∼ N(0,Id)
logZθ

(∑
c∈C

V̂cΣc,
∑
c∈C

ĥcµc + m̂cΣcθ0 +
√
q̂cΣ

1/2
c ξc

)
, (64)

and de�ned the following auxiliary free energies:

Z`/0(y, ω, V ) =

∫
dλ√
2πV

P`/0(y|λ) e−
(λ−ω)2

2V (65)

Zθ(A, b) =

∫
dθe−βr(θ)e−

1
2θ
>Aθ+b>θ (66)

A.6 Taking the zero temperature limit
In order to take the β →∞ limit, we make the following rescalings:

Vc → β−1Vc V̂c → βV̂c q̂c → β2q̂c m̂c → βm̂c. (67)
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It is easy to check how this rescaling a�ects β−1Φ(rs), so we only need to consider Ψ` and Ψθ .
We start with the latter: letting

Lθ(θ) =
1

2
θ>Aθ − b>θ + r(θ)

by the Laplace method for any A, b,

lim
β→∞

1

β
logZθ(βA, βb) = − inf

θ
Lθ(θ) = −Lθ(η) (68)

where
η = proxr(A1/2·)(A

1/2b). (69)

As a result, every integral involved in Ψθ (and, later, its partial derivatives) concentrates around its value at η̂ de�ned in
(40). For the term Ψ`, the term Z0 is left unchanged, and by the same reasoning as above

lim
β→∞

1

β
logZ`(y, ω, βV ) = −V −1MV `(y,·)(ω). (70)

A.7 Saddle-point equations
The saddle-point equations are obtained by taking the derivatives of the free energy potential with respect to the overlap
parameters. We obtain a set of self-consistent equations which we should solve in order to �nd a �xed point:

V̂c = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
∂ωf`(y, hc +

√
qcξc, Vc)

]
q̂c = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

2
]

m̂c = αpcEξc∼N(0,1)

[∫
dy ∂ωZ0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

]
ĥc = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

] (71)



Vc = E
{ξc}

i.i.d∼ N(0,Id)

[
η̂>q̂

−1/2
c Σ

1/2
c ξc

]
qc = E

{ξc}
i.i.d∼ N(0,Id)

[
η̂>Σcη̂

]
mc = E

{ξc}
i.i.d∼ N(0,Id)

[
θ>0 Σcη̂

]
hc = E

{ξc}
i.i.d∼ N(0,Id)

[
µ>c η̂

] (72)

where all the relevant quantities have been de�ned in Appendix A.1.

A.8 Training and generalization errors
It now remains to compute the training and generalization errors from the free energy. Recalling that

εtr(θ̂) =
1

n

n∑
ν=1

`
(
yν , θ̂>xν

)
,

we can write using the de�nition of the free energy (45):

lim
n→∞

εtr = lim
β→∞

∂βfβ − r(θ̂).

Computing explicitly the derivative and averaging again over the data yields

lim
n→∞

εtr = − lim
β→∞

∂βΨ`,

where Ψ` is the free energy contribution of the loss de�ned in (63). Writing explicitly this derivative,

−∂βΨ` =
∑
c∈C

Eξc∼N(0,1)

∫
R

dy
Z0

(
y, ω

(0)
c , ρ− m2

c

qc

)
Z`(y, ω

(`)
c , Vc)

∫
R

dλ√
2πVc

e−(λ−ω(`)
c )V −1

c (λ−ω(`)
c ,Vc))−β`(y,λ)`(y, λ)︸ ︷︷ ︸

Z̃`(y,ω
(`)
c ,Vc)

(73)
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where
ω(0)
c = πc +

mc√
qc
ξc and ω(`)

c = hc +
√
qcξc.

We can now make the change of variables in (67), and use again Laplace’s approximation: if

ηc = proxV `(y,·)(ω
(`)
c ) and L(λ) = −(λ− ω(`)

c )V −1
c (λ− ω(`)

c )− β`(y, λ),

then
Z`(y, ω

(`)
c , Vc) ∼ e−βL(ηc) and Z̃`(y, ω

(`)
c , Vc) ∼ e−βL(ηc)`(y, ηc),

and all of the overlaps will concentrate around the solutions of (71), (72). Finally, the term containing Z0 is an expectation
of y according to P0(y | τc), where

τc = ω(0)
c +

√
ρ− m2

c

qc
ξ(0)
c

and ξ(0)
c is a Gaussian variable independent from everything else. Putting all together, we can write

lim
n→∞

εtr(θ̂) =
∑
c∈C

pc Eνc,τc,y
[
`
(
y,proxV ?c `(y,·)(νc)

)]
(74)

with (
νc
τc

)
∼ N

([
πc
hc

]
,

[
ρc m?

c

m?
c q?c

])
and y ∼ P0(· | τc). (75)

The generalization error is much simpler to obtain: since xnew, ynew are independent from the estimator θ̂, we simply
have

lim
n→∞

εgen(θ̂) =
∑
c∈C

pc Eνc,τc,y [` (y, νc)] (76)

where νc, τc, y follow the same distribution as above.

A.9 Examples
Ridge penalty Consider a particular case of the general equations reported above: the case of a ridge penalty

r(θ) =
λ

2
||θ||22.

We then have:

proxr(x) = (1 + λ)−1x (77)

which simplify the prior equations considerably. Indeed, we can now compute every expectation in (72), which yields
the following �xed-point equations:

V̂c = −αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
∂ωf`(y, hc +

√
qcξc, Vc)

]
q̂c = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

2
]

m̂c = αpcEξc∼N(0,1)

[∫
dy ∂ωZ0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

]
ĥc = αpcEξc∼N(0,1)

[∫
dy Z0

(
y, πc + mc√

q
c
ξc, ρ− m2

c

qc

)
f`(y, hc +

√
qcξc, Vc)

] (78)



Vc = 1
d tr

[
Σc

(
λId + Σ̂

)−1
]

qc = 1
d tr

[( ∑
c′∈C

q̂c′Σc′ +
∑

c′,c′′∈C
µ̂c′µ̂

>
c′′

)
Σc

(
λId + Σ̂

)−2
]

mc = 1
d tr

[( ∑
c′∈C

µ̂c′θ
>
0

)
Σc

(
λId + Σ̂

)−1
]

hc = 1
d tr

[( ∑
c′∈C

µ̂c′µ
>
c

)(
λId + Σ̂

)−1
]

(79)
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Gaussian covariate model The equations for the Gaussian covariate model can be found in [19]; they also correspond
to taking |C| = 1 in the ones above. We reproduce them here for completeness:

V̂ = −αEξ∼N(0,1)

[∫
dy Z0

(
y, π + m√

q ξ, ρ−
m2

q

)
∂ωf`(y, h+

√
qξ, V )

]
q̂ = αEξ∼N(0,1)

[∫
dy Z0

(
y, π + m√

q ξ, ρ−
m2

q

)
f`(y, h+

√
qξ, V )2

]
m̂ = αEξ∼N(0,1)

[∫
dy ∂ωZ0

(
y, π + m√

q ξ, ρ−
m2

q

)
f`(y, h+

√
qξ, V )

]
ĥ = αEξ∼N(0,1)

[∫
dy Z0

(
y, π + m√

q ξ, ρ−
m2

q

)
f`(y, h+

√
qξ, V )

] (80)



V = 1
d tr

[
Σ
(
λId + Σ̂

)−1
]

q = 1
d tr

[(
q̂Σ + µ̂µ̂>

)
Σ
(
λId + Σ̂

)−2
]

m = 1
d tr

[
µ̂θ>0 Σ

(
λId + Σ̂

)−1
]

h = 1
d tr

[
µ̂µ>

(
λId + Σ̂

)−1
]

(81)

where this time
µ̂ = ĥµ+ m̂Σθ0 and Σ̂ = V̂ Σ. (82)

The errors are given by

lim
n→∞

εtr(θ̂) = Eν,τ,y
[
`
(
y,proxV ?`(y,·)(ν)

)]
(83)

lim
n→∞

εgen(θ̂) = Eν,τ,y [` (y, ν)] (84)

with (
ν
τ

)
∼ N

([
π
h

]
,

[
ρ m?

m? q?

])
and y ∼ P0(· | τ). (85)

Ridge regression We place ourselves in the ridge regression case, where

P0(τ |∆) = N(τ,∆) l(y, ŷ) = (y − ŷ)2. (86)

In this case, the equations in (79) simplify even further, yielding
V̂c = αpc

1+Vc

q̂c = αpc
(1+Vc)2

(ρc + ∆ + qc − 2mc + (hc − πc)2)

m̂c = αpc
1+Vc

ĥc = αpc(πc−hc)
1+Vc

(87)



V = 1
d tr

[
Σ
(
λId + Σ̂

)−1
]

q = 1
d tr

[(
q̂Σ + µ̂µ̂>

)
Σ
(
λId + Σ̂

)−2
]

m = 1
d tr

[
µ̂θ>0 Σ

(
λId + Σ̂

)−1
]

h = 1
d tr

[
µ̂µ>

(
λId + Σ̂

)−1
]

(88)

The training and generalization error also bene�t from a very simple expression

εtr =
∑
c

q̂?c
α

εtr =
∑
c

q̂?c (1 + V ?c )2

α
. (89)
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B Universality of Gaussian Mixture Models
In this section we prove the main results shown in in Sec. 3 regarding universality properties of Gaussian Mixture Models.

B.1 Mean Universality : proof of Proposition 3.2

Let us rewrite the assumptions here. Let {V̂ ?c }Kc=1 be the �xed points of the (replica) saddle point equations describing
the centered Gaussian mixture problem, i.e. the solutions of of eqs. (78), (79). We assume that the teacher vector and the
data structure respect the following:

lim
n,d→∞

θ>0 µc
d

= 0 ∀c ∈ C (90)

lim
n,d→∞

1

d
θ>0 Σc′

(
λ+

∑
c∈C

V̂ ?c Σc

)−1

µc → 0 ∀(c, c′) ∈ C× C (91)

and the loss and teacher are both symmetric:

`(x, y) = `(−x,−y) (92)
P0 (y|τ) = P0 (−y| − τ) . (93)

In the saddle-point equations (78), (79), the mean vectors appear always coupled with the overlaps {hc, ĥc}c∈C. Hence,
to prove Prop. 3.2 it su�ces to prove the following result:

Lemma B.1. If (a+ b+ c) hold, then {hc = ĥc = 0}c∈C is a �xed point for the problem.

First consider the update equations for {hc}c∈C:

hc =
1

d

∑
l

tr

(ĥlµlµ>c + m̂lΣlθ0µ
>
c

)(
λId +

∑
l′

V̂l′Σl′

)−1
 (94)

'
a+c

1

d

∑
l

tr

(ĥlµlµ>c )
(
λId +

∑
l′

V̂l′Σl′

)−1
 (95)

By continuity of the saddle-point equations, if at the �xed point {ĥ?c → 0}c∈C holds, we also easily have that {h?c → 0}c∈C.
Now assume {h?c = 0}c∈C at the �xed point. We exploit symmetry argument inherent to the update functions to show
that {ĥ?c = 0}c∈C under weak assumptions on the teacher and loss functions. We write the updates using assumption c):

ĥc = αEξ∼N(0,1)

[∫
dy Z0

(
y,
mc√
qc
ξ + πc, ρc −

m2
c

qc

)
f`(y, hc +

√
qcξ, V )

]
(96)

'
hc→0

αEξ∼N(0,1)

[∫
dy Z0

(
y,
mc√
qc
ξ, ρc −

m2
c

qc

)
f`(y,

√
qcξ, Vc)

]
(97)

Reminding the de�nition of the teacher measure term:

Z0(y, ω, V ) = Eλ∼N(ω,V ) [P0(y|λ)] λ ≡ x
>θ0√
d

(98)

we see that the symmetry conditions impose basic restrictions on the label generation:

f) Eλ∼N(ω,V ) [P0(y|λ)] = Eλ∼N(−ω,V ) [P0(−y|λ)] (99)

and hence Z0 is even in its second argument. Additionally, we have

f`(y, ω, V ) =
1

V
(prox V l(y,·)(ω)− ω) prox V `(y,·)(w) = arg min

z

[
1

2V
(z − w)2 + `(y, z)

]
(100)

The symmetry condition on ` then implies that

prox V `(−y,·)(−ω) = −prox V `(y,·)(ω), (101)

so f` is odd in its second argument. All that’s left to notice is that (97) is an Gaussian integral of an odd function, hence
it is equal to 0.
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B.2 Gaussian Universality : proof of Proposition 3.3

We proved that the �xed point respects {h?c , ĥ?c = 0, 0}c∈C under the hypothesis of Prop. 3.2. Assume now that the
mixture is homogeneous:

Σc = Σ ∀c ∈ C (102)

Then we have

εGMM
gen

(
{µc}Kc=1, {Σ}Kc=1

)
' εGMM

gen

(
0, {Σ}Kc=1

)
(103)

εGMM
tr

(
{µc}Kc=1, {Σ}Kc=1

)
' εGMM

tr

(
0, {Σ}Kc=1

)
(104)

But the right-hand side of those equations corresponds to a distribution of the form

x ∼
∑
c∈C

N(0,Σ) = N(0,Σ)!

This proves Proposition 3.3

B.3 Covariance universality
Surprisingly in the limit of vanishing regularization, λ→ 0+, the covariance is not relevant for the high dimensional
learning problem. We show that when a unique minimizer of the loss exists, and we can take safely the limit λ→ 0+ in
the saddle point equations, the covariance Σ disappears completely from the overlap expression. Indeed assuming the
minimizer θ̂ is unique, we can safely simplify expression of the type:

lim
λ→0+

Σn(λId + V̂ Σ)n
′

=
1

V̂
Σn−n

′
(105)

Then by plugging in the λ→ 0+ simpli�cation in eqs. (80), (81) we have complete independence from the covariance
matrix Σ: 

V̂ = −αEξ∼N(0,1)

[∫
dy Z0

(
y, mc√qc ξ, ρc −

m2
c

qc

)
∂ωf`(y,

√
qcξ, Vc)

]
q̂ = αEξ∼N(0,1)

[∫
dy Z0

(
y, mc√q ξ, ρ−

m2

q

)
f`(y,

√
qξ, V )2

]
m̂ = αEξ∼N(0,1)

[∫
dy ∂ωZ0

(
y, m√q ξ, ρ−

m2

q

)
f`(y,

√
qξ, V )

] (106)


V = 1

q = q̂ + ρm̂2

m = m̂ρ

(107)

which concludes the proof.

B.4 Strong universality
We never made any speci�c assumption on the loss up to now, apart the very general symmetry condition in Assumption
2. In this section we show strong universality for square loss regression for any GMM estimation problem respecting the
mean universality property (Prop. 3.2). We assume to consider a ridge regression problem in the underparametrized
regime α > 1:

P0(τ |∆) = N(τ,∆) `(y, ŷ) = (y − ŷ)2 (108)

the replicas then correspond to equations (87), (88). In the λ→ 0+ limit, the equation simplify greatly:
V̂c = αpc

1+Vc

q̂c = αpc
(1+Vc)2

(ρc + ∆ + qc − 2mc)

m̂c = αpc
1+Vc

(109)


Vc = 1

d tr
[
Σc(
∑
l∈C V̂lΣl)

−1
]

qc = 1
d

∑K
l∈C tr

[
q̂lΣlΣc(

∑
l′∈C V̂l′Σl′)

−2
]

+ 1
d

∑
(l,l)′∈C×C tr

[
m̂lm̂l′Σlθ0θ

>
0 Σl′Σc(

∑
l′′∈C V̂l′′Σl′′)

−2
]

mc = 1
d

∑K
l=1 tr

[
m̂lΣlθ0θ

T
0 Σc(

∑
l′ V̂l′Σl′)

−1
] (110)
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Consider the equation for the overlaps {qc}c∈C:

qc =
1

d

K∑
l=1

tr

[
q̂lΣlΣc(

∑
l′

V̂l′Σl′)
−2

]
+

1

d

K∑
l,k=1

tr

[
m̂lm̂kΣlθ0θ

T
0 ΣkΣc(

∑
l′

V̂l′Σl′)
−2

]
(111)

≡ Rc +Gc (112)

The error metrics can be decomposed as:

εtr =
∑
c∈C

pc
(1 + Vc)2

(Rc + ∆) +
∑
c∈C

pc
(1 + Vc)2

(ρc +Gc − 2mc) (113)

εgen =
∑
c∈C

pc(Rc + ∆) +
∑
c∈C

pc(ρc +Gc − 2mc) (114)

We focus on the second term and show that it is equal to zero. Looking at eqs. (110),(109), we note that:

m̂c = V̂c ∀c ∈ C (115)

By using eq. (115) we can simplify the equations for {m̂c, Gc}:

Gc = ρc, mc = ρc ∀c ∈ C (116)

Plugging this relations in the saddle point equations we obtain:{
V̂c = αpc

1+Vc
= m̂c

q̂c = αpc
(1+Vc)2

(∆ +Rc)
(117)

Vc = 1
d tr

[
Σc(
∑
l∈C V̂lΣl)

−1
]

qc = 1
d

∑K
l=1 tr

[
q̂lΣlΣc(

∑
l′ V̂l′Σl′)

−2
]

+ ρc ≡ Rc + ρc

mc = ρc

(118)

The �xed point of the equations does not depend on {ρc}∈C anymore and we are left with equations only for {V̂c, q̂c, Vc, Rc}c∈C:{
V̂c = αpc

1+Vc

q̂c = αpc
(1+Vc)2

(∆ +Rc)
(119)Vc = 1

d tr
[
Σc(
∑
l∈C V̂lΣl)

−1
]

Rc = 1
d

∑K
l=1 tr

[
q̂lΣlΣc(

∑
l′ V̂l′Σl′)

−2
] (120)

The errors can be computed in a closed form with a series of algebraic manipulation. One can verify by algebraic
manipulation the following relations:

∑
c

VcV̂c =
∑
c

1

d
tr

[
V̂cΣc(

∑
l∈C

V̂lΣl)
−1

]
= 1 (121)

∑
c

RcV̂c − Vcq̂c =
1

d

K∑
l=1

tr

[
q̂lΣl(

∑
c

V̂cΣc)(
∑
l′

V̂l′Σl′)
−2

]
− 1

d
tr

[∑
c

q̂cΣc(
∑
l∈C

V̂lΣl)
−1

]
= 0 (122)

Now we express everything in eq. (121) in terms of the non-hatted overlaps to obtain:

?)
∑
c

αpc
1 + Vc

Vc = 1 (123)

#)
∑
c

αpc
(1 + Vc)2

Rc =
∑
c

αpc
(1 + Vc)2

Vc∆ (124)

We remark that we can write the training and generalization error can be written as:

εtr =
∑
c

q̂c
α

εtr =
∑
c

q̂?c (1 + V ?c )2

α
(125)
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So if we compute the quantity
∑
c q̂c we conclude. By plugging in (#) into the expression above we obtain:∑

c

q̂c =
∑
c

αpc
(1 + Vc)2

(Rc + ∆) (126)

=
(#)

∆
∑
c

αpc
(1 + Vc)2

+ ∆
∑
c

αpc
(1 + Vc)2

Vc (127)

= ∆
∑
c

αpc
1 + Vc

(128)

and �nally using relation (?) we prove the theorem:

εtr =
∑
c

q̂?c
α

(129)

=
∑
c

q̂?c
α
± ∆

α
(130)

=
(?)

∆(1− 1

α
) (131)

On the other hand, the generalization error does not respect the strong universlaity statement as we analyze in the next
section (See Fig. 5).

C Non-universality of Gaussian Mixture Models
In the previous section we enumerated a series of results unveiling universality of GMM. Now we want to study the dual
task: when GMM model are not universal? We have two ways to break universality: a) allow strong heterogeneity in the
data structure; b) consider labels which are strongly correlated with the data structure. The plan for this section is to
review more in detail these two processes for universality breaking.

C.1 Strongly heterogeneous mixtures
We proved in Theorem. 3.6 a strong universality statement for the training loss of ridge regression. However in this
section we want to clarify that the theorem is not valid beyond its assumption for general mixtures. We prove this by
analyzing a counterexample: a strongly heterogeneous 2-clusters Gaussian Mixture:

Σ+ = diag(0.1, . . . , 0.1, 1.9, . . . , 1.9) p+ = 0.8 (132)
Σ− = diag(1.9, . . . , 1.9, 0.1, . . . , 0.1) p− = 0.2 (133)

We present in Fig. 5 the comparison of the heterogeneous GMM performance with the Gaussian theory: although the
training errors coincide as predicted by Theorem. 3.6, the generalization errors are di�erent. However, we remark that real
data after preprocessing seem homogeneous enough to obtain a good agreement with the exact Gaussian asymtptotics as
we see in Fig. 1.

C.2 Correlated teachers
In this section we investigate in deeper detail the controlled setting of Theorem. 3.7. We do not necessarily consider
estimation problems which respects the assumption of mean universality property (Prop. 3.2), and in fact we precisely
analyze the consequences if we relax these conditions. We perform ridge regression on a two-mixtures GMM with
opposite means and same covariance matrix proportional to Id. In this scenario the exact asymptotics for the performance
of the ERM estimator admits a closed form expression. We remind here the main parameters for the theoretical analysis
are:

ρ =
1

d
θ>0 Σθ0 =

1

d
‖θ0‖22 γ =

1

d
||µ||22 ∆ = Eξξ2 µ̂± = ĥ±µ± + m̂±Σθ0 (134)

In this simple setting we can simplify the general mixture equations in eqs. (80),(81) without doing any assumption on
the teacher. We �rst map the equation to a single Gaussian problem Gθ,Id,µ. We have to slightly modify the proof of
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Figure 5: Training and generalization error for ridge regression on the GMM de�ned in eq. (132). Left: We compare
the performance of the Gaussian asymtptotics (solid black line) with the GMM one (solid red line), while the orange
dots represents simulations which agrees with the theoretical predictionas predicted by Theorem. 3.1. Right: Two
dimensional toy plot of 10000 samples coming from the heterogeneous Gaussian mixture.

Prop. 3.3 presented in Sec. B.2, indeed we cannot blindly assume that the mean overlaps {h+, h−} are zero but one can
show that at the �xed point the overlaps respect:

ĥ?+ = −ĥ?−, m̂?
+ = m̂?

− → µ̂?+ = µ̂?− (135)

V̂ = V̂+ + V̂− q̂ = q̂+ + q̂− m̂ = m̂+ + m̂− ĥ = ĥ+ − ĥ− (136)
V = V+ = V− q = q+ = q− m = m+ = m− h = h+ = −h− (137)

the �xed point of the replica equations for the mixture de�ned above are mapped to the one of a single Gaussian problem
for the overlaps {V,m, q, h, V̂ , m̂, q̂, ĥ}. Now we can simplify them even further by plugging in the assumption on the
covariance, all the traces simplify and we get:

V = 1
λ+V̂

q = V 2
(
q̂ + ρm̂2 + 2πm̂ĥ+ γĥ2

)
m = V

(
ρm̂+ πĥ

)
h = V

(
γĥ+ πm̂

) (138)

These equations are actually solvable! De�ne

η := V V̂ =
αV

1 + V
;

Now, we know that the generalization error satis�es:

V 2q̂ =
V 2α

(1 + V )2
εgen =

η2

α
(εgen).

We can plug this into the equation for q to get

εgen = ρ+

(
η2

α
(εgen) + ρ(V m̂)2 + 2π(V m̂)(V ĥ) + γ(V ĥ)2

)
︸ ︷︷ ︸

q

−2
(
ρV m̂+ πV ĥ

)
︸ ︷︷ ︸

m

+(π − h)2 (139)

εtr =
εgen

(1 + V )2
(140)
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with the relations:
V =

η

α− η
, V m̂ = η, V ĥ = η(π − h)

and the expression of π − h as a function of η:

π − h = π − V (γĥ+ πm̂) = π − γη(π − h)− πη ⇐⇒ π − h = π
1− η

1 + γη
(141)

we simplify everything in terms only of η to get:

εgen =
α
(
∆ + (η − 1)2ρ

)
(α− η2)

(
1− π2 (η − 1)2

(
γη2 + 2η − 1

)
(∆ + (η − 1)2ρ) (1 + γη)2

)
(142)

εtr =
(α− η)2

(
∆ + (η − 1)2ρ

)
α (α− η2)

(
1− π2 (η − 1)2

(
γη2 + 2η − 1

)
(∆ + (η − 1)2ρ) (1 + γη)2

)
(143)

All that remains is to solve for η using the equations for V and V̂ , which yields

η = 1 +
1

2

(
α− 1 + λ−

√
4λ+ (α− 1 + λ)2

)
. (144)

Vanishing regularization We can take λ = 0 inside (144) even when α < 1, and we �nd

η(λ = 0) = min(α, 1) (145)

Finally, this yields

εgen =

{
α∆
α−1 α ≥ 1
π2(α−1)(α2γ+2α−1)

(αγ+1)2 − (α−1)2ρ+∆
α−1 else

(146)

εtrain =

{
(α−1)∆

α α ≥ 1

0 else
(147)

We retrieve the results of Corollary. 3.8: even with correlated teachers we show that in the underparametrized regime we
have Gaussian universality.

Extension of Corollary. 3.8: The Gaussian universality result for correlated teacher at vanishing regularization can
be extended as well to general balanced mixtures with homoscedastic covariance, i.e. the case where

pc =
1

|C|
, Σc = Σ, λ = 0.

In order to do so, we consider the general saddle point equation for ridge regression in eq. (87),(88), and plug in the
assumptions: 

V̂ = α
|C|(1+V )

q̂c = α
|C|(1+V )2 (ρ+ ∆ + qc − 2m+ (hc − πc)2)

m̂ = α
|C|(1+V )

ĥc = α(πc−hc)
|C|(1+V )

(148)



V = 1
d tr

[
ΣΣ̂−1

]
qc = 1

d tr
[(
q̂cΣ + µ̂µ̂>

)
ΣΣ̂−2

]
m = 1

d tr
[
µ̂θ>0 ΣΣ̂−1

]
hc = 1

d tr
[
µ̂µ>c Σ̂−1

]
(149)

In particular, these assumptions imply that Vc, V̂c,mc, m̂c do not depend on the class labels c, and hence

Σ̂ = V̂ Σ.
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Figure 6: Theoretical prediction from eq. (158) for the di�erence between the generalization error computed from the
Gaussian theory and GMM one plotted as a function of the number of samples used in the �t in Algorithm. C.3. We use
di�erent regularization strength Λ ∈ {1e− 10, 0.1, 1, 10}, increasing clockwise in the �gure.

Now, consider the assignment
ĥc = 0 and hc = πc; (150)

is is easy to check that they are a �xed point of the above saddle-point equations, since then

hc =
m̂πc

V̂
= πc

Plugging in this relation in the expression of the update for {q̂c}c∈C we obtain:

q̂?c =
αpc

(1 + V ?c )2
(ρc + ∆ + q?c − 2m?

c + (h?c − πc)2) =
αpc

(1 + V ?c )2
(ρc + ∆ + q?c − 2m?

c) (151)

Hence by looking at the expression of generalization and training error for ridge regression in eq. (125) we conclude that
they will not depend on the values of the mean overlaps {h?c}c∈C and we can prove Gaussian universality in the same
way as we did in the proof of Theorem. 3.4.

C.3 Interpolating teachers
Di�erent works observed over di�erent datasets that if we �nd an interpolating teacher vector, in such a way that we
can keep the real labels to study ERM performance, the theoretical predictions coming from Gaussian asymptotics would
agree with simulations, [19] among others. This observation apparently contradicts the result of Theorem. 3.7 in which
we show that correlated labels (as we expect real labels to be) break Gaussian universality. We try to motivate this in the
same setting as Theorem. 3.7:

Theorem C.1. (Real labels universality) Consider the same setting of Theorem. 3.7. Fix now the teacher vector to be the
maximally correlated one θ = µ and �nd an interpolating teacher θ̃ using ñ samples coming from the GMM. If we compare
the exact asymptotics of Gaussian and GMM for regularization Λ at �xed α = ñ

d we obtain a discrepancy:

∆εgen =
4(E − 1)α2

(
E2γ + 2e− 1

)
(α+ 1)2(Eγ + 1)2

(152)

with E(α,Λ) solution of:

E = 1 +
1

2

(
α− 1 + Λ−

√
4Λ + (α− 1 + Λ)2

)
. (153)

The result above solve the apparent contradiction: if we strongly overparametrize the �tting model, interpolating
teachers can be uncorrelated with the data structure.

The proof of the results relies strongly on the fact that we can analyze analytically the performance in this scenario
being it the same as the previous section. Reminding from eq. (145) that in the limit λ→ 0 we have in the overparametrized
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Algorithm 1 Get theoretical learning curves keeping real labels
Data generation: Generate the data from the 2-clusters GMM described in C.1 and set:

µ+ = −µ− =
√
γ(1, . . . , 1)>, Σ+ = Σ− = Id, θ0 = µ+ (154)

Fit interpolating teacher Perform ridge regression for λ → 0. Take α = n
d < 1 so that the ERM estimator will

interpolate the data.
Run exact asymptotics Compute the theoretical performance of the associated 2-GMM and equivalent GCM from
the estimated θ̂ for the same α with a �xed regularization parameter Λ.

setting η(α, λ = 0) = α, we can write:

herm =
µ>θ̂

d
= γα

γ + 1

1 + γα
(155)

qerm =
θ̂>Σθ̂

d
= α

(
− ∆

α− 1
− (α− 1)π2

αγ + 1
+ ρ

)
(156)

We summarize the algorithmic procedure in in Algorithm. C.3. In order to compute the generalization error from eq. (142)
we need the quantities {ρ, π}. Note that in Algorithm. C.3 we compute the theoretical curve for the GMM and the GCM
from the estimated θ̂. This translates into the fact that the estimated overlaps from numerical simulations in the previous
step become the equivalent to:

π = herm ρ = qerm (157)

We �x the regularization for the theoretical prediction to be Λ, and for simplicity we use the same sample complexity
parameter α. We are now in a position to compare Gaussian and GMM theoretical prediction, more precisely we analyze
the di�erence of the generalization errors for the two data model. Recalling the expression for the generalization error in
eq. (142), we just need to plug the estimated overalps in eq. (157) to obtain:

∆εgen =
4α2(E − 1)

(
E2γ + 2e− 1

)
(α+ 1)2(Eγ + 1)2

(158)

where E(α,Λ) is the solution of eq. (144), retrieving the result in Theorem. C.1. For the sake of clarity we stated the
theorem in a simple setting, indeed once we estimated θ̂ we could have decided to change the value of the sample
complexity, as we are now interested in running theory curves. However, to simplify the equations we assumed to
run the theoretical prediction for the same value of α as in the ERM �t. We present the results in Fig. 6 for γ = 1:
although the true labels are maximally correlated with the data structure, we see that the Gaussian theoretical predictions
with the interpolating teacher θ̂ are very close to the GMM one. We remark that the upper-left plot in Fig. 1 is a nice
characterization of Theorem. (3.8): as we reach the underparametrized regime we restore Gaussian universality for
Λ→ 0+ even for correlated teachers.

D Details on real dataset simulations
In this section we report the procedure to create the random regression task on real data, see Algorithm. D. The
implementation of the di�erent numerical simulations described in this work are available in a GitHub respository.
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Algorithm 2 Random teacher regression on real data
Data processing: Load data and perform the preprocessing step with a transform matrix F ∈ Rd×d′ , with d′

dimension of the images in the chosen dataset. We choose for all the �gures in this manuscript d = 2000.
Match covariance Compute Σ̂ = 1

nXX
>

Create new labels Forget the real labels associated with the dataset and create new label according to:

yν =


θ>0 xν√

d
+
√

∆ξ Ridge regression
sign

(
θ>0 xν√

d
+
√

∆ξ
)

Logistic regression
(159)

θ0 ∼ N(0, Id) ξ ∼ N(0, 1) (160)

Run learning curves Fix the regularization parameter λ.
for α in a given range do
Simulation Solve the ERM in eq. (1) using sklearn package LogisticRegression [53] or the Moore-Penrose pseudo-
inverse for the ridge estimator:

θ̂ =

{
X>(XX> + λId)

−1Y n < d

(X>X + λId)
−1X>y n > d

(161)

Gaussian theory Solve saddle point equations in eqs. (80),(81) de�ning Gaussian asymptotics for the model. 2.1.
Compute erros Compute the training loss and generalization error using the metrics:

g(y, ŷ) =

{
(y − ŷ)2 Ridge regression
P(y 6= ŷ) Logistic regression

(162)

end for
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